[go: up one dir, main page]

EP1339885B1 - Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede - Google Patents

Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede Download PDF

Info

Publication number
EP1339885B1
EP1339885B1 EP01993711A EP01993711A EP1339885B1 EP 1339885 B1 EP1339885 B1 EP 1339885B1 EP 01993711 A EP01993711 A EP 01993711A EP 01993711 A EP01993711 A EP 01993711A EP 1339885 B1 EP1339885 B1 EP 1339885B1
Authority
EP
European Patent Office
Prior art keywords
current
mold
ingot mould
melting
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01993711A
Other languages
German (de)
English (en)
Other versions
EP1339885A2 (fr
EP1339885B2 (fr
Inventor
Wolfgang Holzgruber
Harald Holzgruber
Lev Medovar
Izrail Lantsman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inteco Internationale Techinsche Beratung GmbH
Original Assignee
Inteco Internationale Techinsche Beratung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3689255&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1339885(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inteco Internationale Techinsche Beratung GmbH filed Critical Inteco Internationale Techinsche Beratung GmbH
Publication of EP1339885A2 publication Critical patent/EP1339885A2/fr
Publication of EP1339885B1 publication Critical patent/EP1339885B1/fr
Application granted granted Critical
Publication of EP1339885B2 publication Critical patent/EP1339885B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting

Definitions

  • the invention relates to a method for producing blocks or strands of metal - in particular of steels and Ni and Co base alloys - by melting self-consuming electrodes in an electrically conductive slag bath using alternating or direct current in a short, downwardly open water-cooled mold, via which a current contact is made to the slag bath and which is associated with a bottom plate.
  • the invention covers an apparatus for carrying out this method.
  • the value of 70% can hardly be undershot in the conventional ESU process, because then the power supply from the Abschmelzelektrode must be greatly reduced in the slag, which is a low temperature of the slag and subsequently a poor, often rillige surface of the remelt entails. If the power is too low In many cases, slag bath also forms a thick slag coat between the block and the mold, which in turn hinders the removal of heat from the block surface, so that the desired flat melt pool can not be achieved again.
  • the slag bath temperature and the meltdown rate are - and in context so that sump depth as well as formation of the surface - are closely linked and can not be controlled and controlled independently of each other and separately.
  • Another way to increase slag bath temperature is to remelt smaller diameter electrodes.
  • the end face of the electrode immersed in the slag bath is smaller, so that a comparatively hotter slag bath is needed to achieve the desired melting rate.
  • the use of small diameter electrodes results in an increased heat concentration in the center of the block, which can result in a V-shaped sump with increased tendency to segregation.
  • the DE 196 14 185 C the Applicant describes a short, water-cooled, downwardly open mold for the ESU process or continuous casting process, in which the meniscus of the casting mirror is covered by an electrically conductive slag and does not contain directly water-cooled, current-conducting elements in the region of the slag bath above the casting mirror, via which a contact to a power source can be produced.
  • materials for these current-conducting elements graphite or a refractory metal - for example, W, Mo, Nb od. Like. - Used.
  • the current-conducting elements can be electrically insulated from the water-cooled part as well as from one another by non-water-cooled, non-conductive elements, for example made of ceramic.
  • the materials used for these current-conducting elements are graphite or a refractory metal, for example W, Mo, Nb or the like.
  • the current-conducting elements can be electrically insulated from the water-cooled part and from one another by non-water-cooled elements which are not made of ceramic, such as ceramic.
  • a potential difference should be set which is small enough to avoid so-called flashovers, which in themselves are caused by the fact that a potential difference builds up between the mold and the block and the slag skin adhering to the block is not always and not at all Represent a sufficient resistance to a current transfer between mold wall and block surface represents.
  • a partial flow is to be directed from the mold directly back to the power supply, although the discharge of all the current across the block and electrode would give a better result in terms of desulfurization.
  • a potential difference should be set which is small enough to avoid so-called flashovers, which in themselves are caused by the fact that a potential difference builds up between the mold and the block and the slag skin adhering to the block is not always and not at all Represent a sufficient resistance to a current transfer between mold wall and block surface represents.
  • a partial flow is to be directed from the mold directly back to the power supply, although the discharge of all the current across the block and electrode would give a better result in terms of desulfurization.
  • the inventor has set the goal of being able to control the melting rate of the electrode independently of the temperature of the slag bath and at the same time to ensure a good block surface.
  • the Abschmelzelektrode can be completely de-energized. But it is also possible to lead a partial flow through the electrode.
  • the Umschmelzblöcke formed in the lower part of the mold can be pulled out of this either down or the mold is raised in the manner in which the block standing on a bottom plate grows.
  • the present invention is therefore a process for the production of blocks or strands of metals, in particular of steels and Ni and Co base alloys by melting self-consuming electrodes in an electrically conductive slag bath in a short, downwardly open water-cooled mold over which in known manner, a current contact to the slag is produced, wherein the supplied melt stream controlled controllably introduced both via the Abschmelzelektrode and on the mold in the slag with respect to the distribution of the current between the electrode and mold and the return of the melt stream both on the mold and on optionally returning the block and bottom plate; the distribution of the streams is adjusted by means of a controlled control and constructed on the bottom plate block relative to the mold either by raising or lowering of the bottom plate moves and held the metal or slag in the mold.
  • the proportion of current supplied via the consumable electrode can be from 0 to 100% of the total supplied melt stream.
  • the proportion of the stream returned to the melt power supply via the bottom plate may also be 0 to 100% of the total melt flow returned.
  • the short, electrically conductive mold can be permanently installed in a working platform and the remelting block can be pulled down.
  • melt current supply a direct-current power source is used as the melt current supply
  • the supply line with all the above-mentioned variants can be connected either as a cathode or as an anode by incorporating a pole-changing switch in each of the two melt current supplies.
  • a short water-cooled mold with associated bottom plate and at least two provided in the slag bath current-conducting element is used in which the supply of the melt stream of at least one power source to both the Abschmelzelektrode and at least one current-conducting element of the mold either individually or is jointly adjustable by a suitable control arrangement, and that the return line to the at least one power source of both at least one current-conducting element of the mold and the Umschmelzblock supporting movable in the longitudinal axis of the mold base plate is selectively adjustable either individually or jointly by a control arrangement.
  • the power source may be a rectifier system whose polarity is reversible.
  • insulating elements separate electrically conductive elements are arranged in a horizon of the mold.
  • the distribution of the current intensities between the individual supply and return lines can be set by adjustable resistors.
  • a water-cooled mold 10 with hollow annular mold body 12 is according to Fig. 1 from the bottom, on the one hand hollow - bottom plate 14 associated with the outer diameter is slightly shorter than the inner diameter d of the mold 10; the bottom plate 14 can be inserted so far into the mold opening or the inner mold cavity 11 of the height h for starting the plant, until it extends directly below the upper edge 13 of the Kokillenhohl stressess 12.
  • a ring-like insulating member 16 On the upper edge 13 rests a ring-like insulating member 16 and on this one - also ring-like and / or formed of several parts - current-conducting element 18; The latter is electrically insulated from the - non-conductive the current - insulating elements 16 against the water-cooled lower portion 20 of the mold 10 and upwardly separated by an upper insulating member 16 a from a water-cooled hollow ring 22 as the upper region.
  • the upper insulating 16 a is not absolutely necessary.
  • a lower one produced by a remelting process with a self-consumable electrode 28 is stored, in that water-cooled lower one
  • liquid slag may be poured into the mold gap bounded by the mold 10 and the electrode 28 until the slag level 25 of the resulting slag bath 24 is about the upper edge of the current conducting element 16 a has reached.
  • the electrode 28 on the one hand and the bottom plate 14 on the other hand are connected via high current lines 32, 34 with one pole of a DC or AC source 36; from the line 32 branches off a high current line 32 a , which is connected at the other end to the current conducting element 18.
  • the supply of the melt stream to the slag 24 takes place from that AC or DC source 36 - depending on the position of these connected by the lines 32, 32 a high current contacts 38, 39 - either only via the electrode 28 or only via the current-conducting element 18th the mold 10 or via electrode 28 and mold 10 at the same time, wherein the proportion of current flowing through the electrode 28 and the Stromleitelement 18 current through adjustable resistors 42 and 42 a - or other comparable in the effect facilities - set as desired can be.
  • the return of the entire melt stream is carried out in this arrangement exclusively on the remelting block 30 and the lowerable bottom plate 14 through the return line 34th
  • Fig. 2 In an inventive arrangement according to Fig. 2 is the mold 10 with at least two insulating elements 16, 16 a both against each other and against the lower portion 20 of the mold 10 and - here mandatory - against the upper portion 22 of the mold 10, namely those hollow ring 12, insulated Stromleitmaschinen 18, 18 a equipped.
  • two partial circuit-shaped current-conducting elements 18, 18 a can be seen, which are separated from each other by correspondingly shaped insulating elements 16 b, forming a ring with them; become - as described here - two or more lying at different potentials Stromleiticide 18, 18 a required, they can be formed in particular in molds 10 laid around a longitudinal axis A circular cross section circular as a ring and arranged one above the other and by the intervening - also annular - insulating 16 isolated from each other.
  • Fig. 4 an arrangement for carrying out a method with two parallel controllable current sources 36, 36 a for the melt power supply is shown.
  • the supply of the melt stream of each of the two current sources 36, 36 a individually or collectively either only to the electrode 28 or only to the current-conducting element 18 a - or to both together -, depending on the position of the high-current switch 38, 38 a , 38 b and 39 in the lines 32 and 32 a and the high-current switch 38 b in the branch line 32 n between the power source 36 a and electrode 28th
  • the return of the melt stream can also be done individually or jointly to one of the two current sources 36, 36a or to both together from the current element 18 in the mold 10 and / or the bottom plate 14, depending on the position of the arranged in the return line 34 and 35 high-current switch 40, 40 a and 41 or the high-current switch 40 b in a return line 34 to the second current source 36 a connecting branch line 34 n .
  • the switching capabilities of this arrangement when using AC are listed in Table 1 below. Their revelation is of particular importance.
  • Block & mold 38,39,38a / 40,41,40a 38b / 40b 10 36a electrode block 38,38b / 40,41a 39,38a / 41,40a 11 36a electrode mold 38,38b / 41,40b 39,38a / 40,40a 12 36a electrode Block & mold 38,38b / 40,41,40a 39,38a / 40a 13 36a mold block 39,38a, 38b / 40,40b 38 / 41,40a 14 36a mold mold 39,38a, 38b / 41,40b 38 / 40,40a 15 36a mold Block & mold 39,38a, 38b / 40,41,40b 38 / 40a 16 36a Electr. & Coke.
  • the electrode and the slag bath can be protected against the ingress of air by gas-tight hoods (not shown here) which can also be sealed against the mold flange.
  • gas-tight hoods not shown here
  • the remelting under controlled atmosphere and exclusion of atmospheric oxygen take place, which also allows the production of ultrahigh remelting strands and prevents burning of oxygen-related elements.
  • the entire melt stream was first passed over the electrode and remelted by the conventional ESU process until the slag mirror with the Kokillenring with the power supply line covered. Up to this point about 470 kg had melted away from the electrode.
  • the melt rate was last 460 kg / h with a power supply to the slag bath of 450 kW, the current 8.0 kA at 58 V secondary voltage. From this point on, the mold stroke was adjusted so that the steel mirror was about 30 to 50 mm below the insulation was kept against the current-conducting ring of the mold and thus always in the range of the slag bath. After reaching the current-conducting ring, there was a division of the melt current between the current-conducting ring and the consumable electrode, at the same time the transformer voltage was lowered to 44 V.
  • the current through the electrode went back to 6.1 kA, while a current flow through the mold of 11.4 kA was established.
  • the corresponding active power amounted to 27 kW at the electrode and 385 kW via the mold.
  • the melting rate decreased to 390 kg / h under these conditions. With these conditions was about 3.5 hours. melted.
  • the energy supply to the electrode was switched off, so that the supply of the melt stream took place exclusively via the mold.
  • the voltage at the transformer was again increased to 55 V, which resulted in an increase of the mold current to 13.9 kA.
  • the power input to the slag bath was 480 kW, while at the same time the melting rate decreased to 275 kg / h.
  • the block produced had a smooth surface over the entire length, and especially in the upper part, built up at a low melting rate, which had no grooves or overlaps.
  • the structure of the block produced after forging was integrity over the entire length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Claims (16)

  1. Procédé pour la fabrication de lingots ou de barres de métal, en particulier en aciers ainsi qu'en alliages à base de Ni et de Co, par la fusion d'électrodes de fusion auto-consommables dans un bain de laitier électro-conducteur en utilisant un courant alternatif ou continu dans une lingotière courte, refroidie à l'eau, ouverte vers le bas, à l'aide de laquelle un contact électrique est établi avec le bain de laitier et à laquelle est associée une plaque de base,
    caractérisé en ce que
    le courant électrique de fusion est introduit dans le bain de laitier aussi bien par l'électrode de fusion que par la lingotière, en ce que la répartition du courant de fusion entre l'électrode de fusion et la lingotière est réglée de manière contrôlée et en ce que le retour du courant de fusion est réalisé, au choix, aussi bien par l'intermédiaire de la lingotière que par l'intermédiaire du lingot et de la plaque de base, la répartition des courants étant réglée de manière contrôlée à l'aide d'une régulation et le lingot placé sur la plaque de base étant déplacé par rapport à la lingotière soit par la montée de celle-ci soit par la descente de la plaque de base et le niveau de métal ou de laitier dans la lingotière étant maintenu constant.
  2. Procédé selon la revendication 1, caractérisé en ce que la portion du courant de fusion total amené fournie par l'électrode de fusion est choisie entre 0% et 100%.
  3. Procédé selon la revendication 1, caractérisé en ce que la portion du courant de fusion ramenée par la plaque de base est choisie entre 0% et 100%.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la conduite d'amenée et la conduite de retour pour le courant sont commutées, en utilisant, en particulier, du courant continu.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la barre produite est extraite en continu hors de la lingotière.
  6. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que la barre formée est extraite pas à pas de la lingotière.
  7. Procédé selon l'une quelconque des revendications 4 ou 6, caractérisé en ce qu'un mouvement oscillant est réalisé avec la lingotière.
  8. Procédé selon l'une quelconque des revendications 5 ou 7, caractérisé en ce que chaque pas de course est directement suivi d'un pas de contre-course dans la direction opposée, la longueur de course du pas de contre-course représentant au maximum 60% de la longueur de course du pas de course précédent.
  9. Dispositif pour la réalisation du procédé pour la fabrication de lingots ou de barres de métal, en particulier en aciers ainsi qu'en alliages à base de Ni et de Co, par la fusion d'électrodes de fusion auto-consommables (28) dans un bain de laitier électro-conducteur (24) selon l'une des revendications précédentes, en utilisant une lingotière courte refroidie à l'eau (10) avec une plaque de base associée (14) et avec au moins deux éléments électro-conducteurs (18, 18a) prévus dans la zone du bain de laitier (24) et qui sont isolés par rapport à la zone inférieure (20) de la lingotière (10) formant le lingot de fusion (30) et, le cas échéant, par rapport à d'autres éléments électro-conducteurs, caractérisé en ce que la conduite d'amenée (32, 32a) du courant de fusion à partir d'au moins une source de courant (36, 36a) et vers l'électrode de fusion (28) ainsi que vers au moins un élément électro-conducteur (18) de la lingotière (10) est réglable de manière sélective soit individuellement soit conjointement au moyen d'un dispositif de régulation approprié et en ce que la conduite de retour (34, 35) vers la au moins une source de courant et à partir d'au moins un élément électro-conducteur (18a) de la lingotière (10) ainsi que de la plaque de base (14) soutenant le lingot de fusion (30) déplaçable dans l'axe longitudinal (A) de la lingotière (10) est réglable de manière sélective soit individuellement soit conjointement au moyen d'un agencement de régulation.
  10. Dispositif selon la revendication 9, caractérisé par deux sources de courant (36, 36a) dont l'une est raccordée à l'électrode de fusion (28), l'autre source de courant (36a) étant raccordée à la fois à l'électrode de fusion et à l'élément électro-conducteur (18a).
  11. Dispositif selon la revendication 10, caractérisé par deux sources de courant (36, 36a) réglables indépendamment l'une de l'autre.
  12. Dispositif selon l'une des revendications 9 à 11, caractérisé en ce qu'une conduite d'amenée (32) partant de la source de courant (36) s'étend jusqu'à l'électrode de fusion (28) et une autre conduite d'amenée (32a) partant de la source de courant s'étend jusqu'à l'élément électro-conducteur (18) ou en ce que des conduites de retour (34, 35) partant de la plaque de base (14) et de l'élément électro-conducteur (18) s'étendent jusqu'à la source de courant (36).
  13. Dispositif selon l'une des revendications 9 à 12, caractérisé en ce que plusieurs éléments électro-conducteurs (18, 18a) séparés par des éléments isolants (16b) sont disposés sur une ligne horizontale de la lingotière (10).
  14. Dispositif selon la revendication 13, caractérisé en ce que les éléments électro-conducteurs (18, 18a) forment avec les éléments isolants (16b) un anneau, deux éléments électro-conducteurs (18, 18a) étant éventuellement présents, dont l'un est raccordé à la conduite d'amenée (42a) et l'autre à la conduite de retour (35).
  15. Dispositif selon l'une des revendications 9 à 14, caractérisé en ce que la répartition des puissances électriques entre les différentes conduites d'amenée ou de retour (32, 32a ; 35) est réglable au moyen de résistances réglables (42, 42a ; 44, 44a).
  16. Dispositif selon l'une des revendications 9 à 15, caractérisé par des installations de redressement comme source/s de courant (36, 36a) et dont la polarité est commutable.
EP01993711A 2000-11-10 2001-11-09 Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede Expired - Lifetime EP1339885B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0189300A AT410412B (de) 2000-11-10 2000-11-10 Verfahren zum elektroschlacke umschmelzen von metallen
AT18932000 2000-11-10
PCT/EP2001/013014 WO2002038820A2 (fr) 2000-11-10 2001-11-09 Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede

Publications (3)

Publication Number Publication Date
EP1339885A2 EP1339885A2 (fr) 2003-09-03
EP1339885B1 true EP1339885B1 (fr) 2008-03-19
EP1339885B2 EP1339885B2 (fr) 2010-11-03

Family

ID=3689255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993711A Expired - Lifetime EP1339885B2 (fr) 2000-11-10 2001-11-09 Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede

Country Status (7)

Country Link
US (1) US6853672B2 (fr)
EP (1) EP1339885B2 (fr)
JP (1) JP3902133B2 (fr)
AT (1) AT410412B (fr)
AU (1) AU2002219090A1 (fr)
DE (2) DE10154727A1 (fr)
WO (1) WO2002038820A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410412B (de) 2000-11-10 2003-04-25 Inteco Int Techn Beratung Verfahren zum elektroschlacke umschmelzen von metallen
US20050173092A1 (en) * 2004-02-10 2005-08-11 Kennedy Richard L. Method and apparatus for reducing segregation in metallic ingots
EP1925681B1 (fr) * 2006-11-15 2011-04-27 Inteco special melting technologies GmbH Procédé de refonte de métaux sous laitier électroconducteur et lingotière à cet effet
AT504574B1 (de) * 2006-11-15 2009-08-15 Inteco Special Melting Technol Verfahren zum elektroschlacke umschmelzen von metallen
AT512471B1 (de) * 2012-02-07 2014-02-15 Inteco Special Melting Technologies Gmbh Umschmelzanlage für selbstverzehrende elektroden
CN102974807A (zh) * 2012-08-01 2013-03-20 南昌大学 一种提高液态金属充型能力的方法及装置
US9186724B2 (en) 2012-08-10 2015-11-17 Siemens Energy, Inc. Electroslag and electrogas repair of superalloy components
CN104805304B (zh) * 2015-05-12 2017-07-28 重庆钢铁(集团)有限责任公司 一种利于维护的电渣重熔炉底水箱结构
CN106270423B (zh) * 2016-09-30 2018-07-10 东北大学 一种导电结晶器电渣重熔控制铸锭凝固组织方向的方法
CN109339127B (zh) * 2018-11-20 2020-04-21 山东大学 高速液压夯夯实地基承载力实时确定方法及系统
CN113547102B (zh) * 2021-07-23 2022-03-22 东北大学 导电结晶器电渣重熔法制备大型钢锭的装置及方法
CN114289704B (zh) * 2021-12-31 2024-01-26 北京钢研高纳科技股份有限公司 一种电渣重熔锭坯生产装置及生产系统
CN115710640B (zh) * 2022-12-08 2024-10-01 东北大学 分瓣式导电结晶器及改善熔池分布的电渣重熔装置与方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US531143A (en) * 1894-12-18 Apparatus for electric heating
US513270A (en) * 1894-01-23 August friedrich wilhelm kreinsen
US2880483A (en) * 1957-06-11 1959-04-07 Stauffer Chemical Co Vacuum casting
US2942045A (en) * 1958-04-30 1960-06-21 Westinghouse Electric Corp Vacuum arc furnace control
DE1483646A1 (de) 1965-06-11 1969-09-25 Suedwestfalen Ag Stahlwerke Verfahren und Vorrichtung zum Herstellen von Gussbloecken,vorzugsweise Stahlbloecken
RU1768657C (ru) 1967-01-16 1992-10-15 Институт Электросварки Им.Е.О.Патона Способ электрошлакового переплава расходуемого электрода в охлаждаемом кристаллизаторе
AT289874B (de) 1967-08-07 1971-05-10 Boehler & Co Ag Geb Verfahren zur Herstellung von Gußblöcken aus hochschmelzenden Metallen, insbesondere Stahl, durch Elektroschlackeumschmelzen und Vorrichtung zur Durchführung desselben
US3652773A (en) 1967-10-18 1972-03-28 Wolfgang Holzgruber Process of electrically remelting high-melting metals
US3495018A (en) * 1968-04-19 1970-02-10 Allegheny Ludlum Steel Arc voltage control for consumable electrode furnaces
GB1246676A (en) 1968-10-08 1971-09-15 Ts Lab Avtomatiki Electroslag remelting of metal
US3619464A (en) * 1970-02-03 1971-11-09 Boehler & Co Ag Geb Apparatus for electroslag remelting of metals and in particular steel
DE2328804C2 (de) 1973-06-06 1975-07-17 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Verfahren zum Elektroschlacke-Umschmelzen In einer trichterförmigen Kokille
DE2340525A1 (de) 1973-08-10 1975-02-20 Leybold Heraeus Gmbh & Co Kg Anordnung zur durchfuehrung von elektroschlacke-umschmelzprozessen in trichterfoermigen kokillen
US3868473A (en) * 1973-12-20 1975-02-25 Teledyne Wah Chang Method and apparatus for monitoring the electrode support of an arc furnace
JPS55501184A (fr) 1979-01-31 1980-12-25
DE2942485A1 (de) 1979-10-20 1981-04-30 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum herstellen von ferrozirkon mit praktisch beliebigem eisengehalt
JPS63130723A (ja) 1986-11-20 1988-06-02 Kobe Steel Ltd エレクトロスラグ再溶融の操業方法
AT388751B (de) 1987-01-09 1989-08-25 Inteco Int Techn Beratung Verfahren zur herstellung von bloecken aus abschmelzelektroden in kurzen gleitkokillen
CA2104014C (fr) 1991-02-15 2000-05-02 David E. Briles Gene de structure de proteine pneumococcique
AT406384B (de) * 1996-01-29 2000-04-25 Inteco Int Techn Beratung Verfahren zum elektroschlacke-strangschmelzen von metallen
AT406239B (de) * 1996-04-09 2000-03-27 Inteco Int Techn Beratung Wassergekühlte kokille für das stranggiessen oder elektroschlacke-umschmelzen
DE19614182C1 (de) 1996-04-11 1997-07-31 Inteco Int Techn Beratung Wassergekühlte Kokille zum Herstellen von Blöcken oder Strängen sowie deren Verwendung
US5974075A (en) * 1998-08-11 1999-10-26 Kompan; Jaroslav Yurievich Method of Magnetically-controllable, electroslag melting of titanium and titanium-based alloys and apparatus for carrying out same
AT410412B (de) 2000-11-10 2003-04-25 Inteco Int Techn Beratung Verfahren zum elektroschlacke umschmelzen von metallen

Also Published As

Publication number Publication date
WO2002038820A3 (fr) 2002-12-12
JP2004522850A (ja) 2004-07-29
AU2002219090A1 (en) 2002-05-21
DE50113765D1 (de) 2008-04-30
US20040026380A1 (en) 2004-02-12
DE10154727A1 (de) 2002-05-23
AT410412B (de) 2003-04-25
JP3902133B2 (ja) 2007-04-04
US6853672B2 (en) 2005-02-08
WO2002038820A2 (fr) 2002-05-16
EP1339885A2 (fr) 2003-09-03
EP1339885B2 (fr) 2010-11-03
ATA18932000A (de) 2002-09-15

Similar Documents

Publication Publication Date Title
EP1339885B1 (fr) Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede
EP1253986B1 (fr) Procede et dispositif de fabrication de corps coules en metal
EP0786531B1 (fr) Procédé et dispositif pour la refusion de métaux sous forme de barres
DE2340674A1 (de) Verfahren und gleichstrom-lichtbogenofen zur herstellung von stahl
EP0800879A2 (fr) Lingotière refroidie pour la fabrication de lingots, procédé de coulée continue ainsi que procédé pour la refonte sous laitier électroconducteur
EP1334214B1 (fr) Procede et dispositif pour la fabrication de lingots ou de barres metalliques par fusion d'electrodes dans un bain de laitier electroconducteur
DE1483646A1 (de) Verfahren und Vorrichtung zum Herstellen von Gussbloecken,vorzugsweise Stahlbloecken
DE1812102B2 (de) Verfahren und Vorrichtung zur Herstellung von Blöcken
EP0275349B1 (fr) Procédé pour le traitement métallurgique dit secondaire de métal fondu, en particulier d'acier fondu
DE2211455C3 (de) Verfahren zum Ausgleichen unterschiedlicher Abschmelzgeschwindigkeiten von Elektroden
EP0727500A1 (fr) Procédé et installation pour la fabrication de lingots métalliques
DE60219446T2 (de) Plasmabrenner zur erwärmung von geschmolzenem stahl
DE1817124A1 (de) Verfahren und Vorrichtung zum Kuehlen von durch Elektroschlackenumschmelzen gebildeten Metallschmelzen,insbesondere von Stahlschmelzen
EP1257675A1 (fr) Procede et systeme pour la production de corps coules creux en metal
AT282845B (de) Verfahren zur Herstellung von Blöcken
DE3050278C2 (de) Verfahren und Vorrichtung zum Plasmalichtbogenumschmelzen der Oberfl{chenschicht eines flachen Metallwerkst}cks
DE2113521A1 (de) Elektroschlacke-Umschmelzverfahren und Vorrichtung zu dessen Durchfuehrung
DE2728530A1 (de) Vorrichtung zum elektroschlackeumschmelzen und auftragsschweissen von metallen
DE232074C (fr)
AT395296B (de) Verfahren und vorrichtung zur herstellung von bloecken
EP1187943A1 (fr) Procede et dispositif de realisation en continu de tiges coulees ou refondues selon un procede sous laitier electroconducteur
DE1608105A1 (de) Schmelzelektroden-Verfahren
DE1956126A1 (de) Verfahren,und Anlage zur Herstellung von aus Metallen,insbesondere aus Staehlen bestehenden Bloecken mit sich betraechtlich aendernden Querschnitten
EP0259503A1 (fr) Installation de plasma a induction
DE2321447A1 (de) Anlage zum elektroschlacke-umschmelzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040220

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50113765

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALD VACUUM TECHNOLOGIES GMBH

Effective date: 20081219

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20101103

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121129

Year of fee payment: 12

Ref country code: IT

Payment date: 20121122

Year of fee payment: 12

Ref country code: GB

Payment date: 20121126

Year of fee payment: 12

Ref country code: SE

Payment date: 20121126

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131113

Year of fee payment: 13

BERE Be: lapsed

Owner name: INTECO INTERNATIONALE TECHNISCHE BERATUNG -G. MBH

Effective date: 20131130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131110

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131109

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113765

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602