[go: up one dir, main page]

EP1326484B1 - Apparatus for operating discharge lamps - Google Patents

Apparatus for operating discharge lamps Download PDF

Info

Publication number
EP1326484B1
EP1326484B1 EP02027137A EP02027137A EP1326484B1 EP 1326484 B1 EP1326484 B1 EP 1326484B1 EP 02027137 A EP02027137 A EP 02027137A EP 02027137 A EP02027137 A EP 02027137A EP 1326484 B1 EP1326484 B1 EP 1326484B1
Authority
EP
European Patent Office
Prior art keywords
voltage
diode
operating device
bridge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02027137A
Other languages
German (de)
French (fr)
Other versions
EP1326484A2 (en
EP1326484A3 (en
Inventor
Bernd Rudolph
Arwed Storm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1326484A2 publication Critical patent/EP1326484A2/en
Publication of EP1326484A3 publication Critical patent/EP1326484A3/en
Application granted granted Critical
Publication of EP1326484B1 publication Critical patent/EP1326484B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a control gear for gas discharge lamps according to the preamble of claim 1. It is in particular an improvement of the half-bridge inverter contained in the operating device and its control. Furthermore, the invention deals with the simplification of a switch-off device of the operating device and a cost-effective power factor correction of the current absorbed by the network.
  • Document EP 0 481 077 A2 discloses a circuit arrangement for operating a lamp.
  • the circuit arrangement comprises a half-bridge inverter with MOSFETs.
  • the drive signals for the MOSFETs are derived from a respective additional winding, which are applied to a lamp inductor.
  • drive circuits for the MOSFETs each contain an LC parallel resonant circuit.
  • the drive circuits also include Zener diodes. They are used to shorten the on-time of the MOSFETs or for overvoltage protection.
  • the document EP 1 001 662 (Nerone) describes a half-bridge circuit with complementary MOSFETs. To control the resonance of the load circuit during the ignition of a connected gas discharge lamp Zener diodes are connected in parallel with the drive electrodes of the MOSFETs for limiting the voltage.
  • the document EP 0 093 469 (De Bijl) describes an operating device for gas discharge lamps, which represents the state of the art.
  • This operating device includes a self-oscillating half-bridge inverter, which generates a high-frequency alternating voltage from a DC voltage by alternately switching on and off an upper and a lower series-connected half-bridge transistors.
  • the DC voltage is usually generated by means of a bridge rectifier, consisting of four rectifier diodes, from the mains voltage.
  • Self-oscillating in this context means that the control of the half-bridge transistors is obtained from a load circuit and no independently oscillating oscillator circuit is provided for generating said drive.
  • said drive is obtained by means of a current transformer.
  • a primary winding of the current transformer is arranged in the load circuit and is of a Load current flows through, which can be set equal to the current that is emitted by the half-bridge inverter substantially.
  • Each secondary winding of the current transformer is arranged in two drive circuits, each of which generates a signal which is supplied to the control electrodes of the half-bridge transistors.
  • the load circuit is connected to the junction of the half-bridge transistors.
  • the main component of the load circuit is a lamp choke, to which gas discharge lamps can be connected in series via terminal connections. It is also possible to switch several load circuits in parallel; The primary winding must then be arranged in such a way that it flows through the sum of all load circuits.
  • a feedback signal is generated which is substantially proportional to the load current.
  • the secondary windings ideally have to be short-circuited, in practice low-resistance terminated. Otherwise, either saturation phenomena occur in the current transformer, or the primary winding exerts an undesirably large influence on the load circuit.
  • bipolar transistors are used for the half-bridge transistors, which receive their control from the secondary windings. The base terminal of the bipolar transistors, which is used as a control electrode is naturally low enough to o. G. To avoid effects.
  • the voltage drop across the secondary windings is below the o.g. Conditions a measure of the load current and forms in the prior art feedback signals. These are each supplied to a timer, which consists in the simplest case of the series connection of a time capacitor and a time resistor. If the respective time capacitor is charged to an integration value which is sufficient to trigger a turn-off transistor, the respective half-bridge transistor is switched off.
  • a resonant capacitor is connected in series with the lamp inductor and acting in parallel with a gas discharge lamp, which resonant circuit forms a resonant circuit with the lamp inductor. This is operated to ignite near its resonance, which forms a sufficiently high voltage to ignite a gas discharge lamp at the resonance capacitor.
  • a high current is formed in the lamp inductor and thus in the half-bridge transistors.
  • the amplitude of the load current is limited in the prior art. This is done via a respective first voltage threshold, which is connected in parallel to the respective time resistor. If the load current rises above a predetermined level, then the respective feedback signal reaches a value which causes the respective first voltage threshold value switch to break and thus leads to the instantaneous switching-off of the respective half-bridge transistor.
  • MOSFET MOS Field effect transistors
  • control gear for gas discharge lamps having the features of the preamble of claim 1 by the features of the characterizing part of claim 1.
  • Particularly advantageous embodiments can be found in the dependent claims.
  • bipolar transistors are increasingly being used by voltage-controlled semiconductor switches, e.g. Replaced MOSFET and IGBT.
  • the drive circuits are each equipped with a second voltage threshold, which has a second voltage threshold and comes to lie in a parallel circuit to the secondary winding.
  • the second voltage threshold consists of the series connection of a Zener diode and a current measuring resistor, wherein the Zener diode has a Zener voltage which corresponds to the second voltage threshold. If the voltage at the secondary winding rises starting at zero, the second voltage threshold value switch is initially inoperative.
  • the zener diode Upon reaching the second voltage threshold, the zener diode begins to conduct and closes the secondary winding as desired from low impedance.
  • the value of the second voltage threshold must be lower than a threshold voltage which the voltage-controlled semiconductor switch at least requires as drive.
  • the current sense resistor two conditions must be met. On the one hand, the value of the current measuring resistor must be small enough so that a low-impedance termination of the secondary winding is ensured. On the other hand, the value of the current sense resistor must be large enough so that the voltage at the secondary winding can continue to rise up to the first voltage threshold.
  • the voltage at the current measuring resistor is naturally also a measure of the load current.
  • the voltage at the current measuring resistor can thereby be used according to the invention for the detection of a fault. It is fed to a shutdown device.
  • the time average of the voltage at the current measuring resistor is formed in the turn-off device. If this exceeds a given limit value, the turn-off device prevents a further oscillation of the half-bridge inverter. This happens in particular by suppression of the drive signal of one of the two half-bridge transistors.
  • the operating devices in question generally have two mains voltage terminals which can be connected to a mains voltage, whereby a mains current can flow.
  • Relevant standards eg: IEC 1000-3-2
  • PFC circuits Power Factor Correction
  • a cost-effective implementation of these PFC circuits represent so-called.
  • Pump circuits, as z. B. in EP 253 224 (breeding bars) or EP 1 028 606 (Rudolph) are described.
  • Another effect which occurs in the half-bridge inverter according to the invention with pump circuit is the strong modulation of the operating frequency by the mains voltage, which has the oscillation of the half-bridge inverter.
  • said operating frequency is within a frequency band having a bandwidth of more than 10 kHz.
  • the electromagnetic interference caused by an operating device according to the invention is distributed over a wide frequency band.
  • the energy that hits a faulty device advantageously low.
  • the effort for the suppression of a control gear according to the invention can be kept low.
  • a further advantageous use of the current measuring resistor according to the invention is given in the starting circuit of the self-oscillating half-bridge inverter.
  • To start the half-bridge inverter it is customary to charge a start capacitor and, upon reaching a trigger voltage at the charging capacitor, a portion of the charge stored in the charging capacitor via a trigger element to the control electrode of a half-bridge capacitor to discharge.
  • the problem may arise that the charge pulse generated in this way at the relevant control electrode is too short and too low and no sustained oscillation of the half-bridge inverter is triggered.
  • a portion of the stored charge of the charging capacitor is supplied via a diode to the current measuring resistor according to the invention. This makes it possible to achieve a reliable oscillation of the half-bridge inverter.
  • resistors are denoted by the letter R, transistors by the letter T, diodes by the letter D, capacitors by the letter C, and terminals by the letter J each followed by a number.
  • FIG. 1 shows the basic circuit of a control gear according to the invention.
  • the operating device can be connected to a mains voltage via terminals J1, J2.
  • the mains voltage is fed to a block FR.
  • the filter devices have the task to suppress interference.
  • the rectifier device usually consists of a bridge rectifier consisting of four diodes. With the aid of the rectifier device, a DC voltage is supplied to a half-bridge inverter HB.
  • the half-bridge inverter essentially comprises the series connection of an upper semiconductor switch T1 and a lower semiconductor switch T2, which are voltage-controlled according to the invention.
  • the exemplary embodiment in FIG. 1 is realized with N-channel MOSFET.
  • IGBT IGBT or P-channel MOSFETs.
  • N-channel MOSFET used in Figure 1, it is necessary that the positive output of the rectifier device is supplied via a node 3 to the upper transistor T1, while the negative output of the rectifier device is connected to the ground potential M.
  • the same polarity applies to commercial IGBTs. Reverse polarity must be when using P-channel MOSFET.
  • a storage capacitor Cl is connected, which caches energy from the mains voltage before it is delivered to a lamp Lp.
  • the half-bridge inverter HB For driving the half-bridge transistors T1, T2, the half-bridge inverter HB contains a drive circuit 1, 2 for each half-bridge transistor T1, T2.
  • the drive circuits 1, 2 are each connected via a terminal A to the respective gate terminal and via a terminal B to the respective source terminal. Connected to the respective half-bridge transistor.
  • the drive circuit 2 for the lower half-bridge transistor T2 has a third terminal S, to which a turn-off device can be connected.
  • the junction of the half-bridge transistors T1, T2 forms a node 4, to which a load circuit is connected.
  • a second terminal of the load circuit is connected in Figure 1 to the ground potential M. Gleichacted the second terminal of the load circuit can alternatively be connected to the node 3.
  • the load circuit consists essentially of the series connection of a primary winding L2 of a current transformer, a lamp inductor L1, a resonance capacitor C2 and a coupling capacitor C3.
  • Parallel to the resonant capacitor C2, one or more lamps Lp connected in series can be connected via the lamp terminals J3, J4.
  • a preheating of the lamp filaments is not provided. However, those skilled in the art are generally familiar devices for filament heating available, which he can use with the operating device according to the invention. It is also possible to operate several parallel-connected load circuits. The function of the individual elements of the load circuit can be taken from the prior art.
  • FIG. 2 shows a preferred exemplary embodiment of a drive circuit according to the invention.
  • a secondary winding L3 of the current transformer is connected between a node 20 and the connection B known from FIG.
  • a diode D1 lies with its anode at the node 20 and with its cathode at a node 21.
  • Via a resistor R3, the node 21 is connected to the connection A known from FIG.
  • Connected in parallel with the secondary winding L3 is an integrating element which is designed as a series connection of a time resistor R1 and a time capacitor C4 and has an integration constant which corresponds to the product of the values of R1 and C4.
  • the junction of R1 and C4 forms a node 22.
  • an integration value is tapped and applied to the control electrode of a semiconductor switch T3.
  • the switching path of the semiconductor switch T3 is located between the terminals A and B.
  • a resistor R4 are connected.
  • the semiconductor switch T3 is designed as a small-signal bipolar transistor.
  • a first voltage threshold is switched to a first voltage threshold. It is designed as a zener diode D3. If the voltage fed into the drive circuit by L3 exceeds a value which results in exceeding the zener voltage of D3, then the time capacitor C4 is charged not only via the time resistor R1 but also via D3, thereby reducing the integration constant of the integrator.
  • a second voltage threshold value switch is connected according to the invention with a second voltage threshold. It is preferred as a series circuit of a Zener diode D2 and a current measuring resistor R2 executed.
  • the associated half-bridge transistor is first of all driven via terminal A.
  • the zener voltage of D2 is exceeded according to the invention. This results in a current flow through the current measuring resistor R2, which is substantially proportional to the load current in the load circuit. This prevents saturation of the current transformer and achieves a load current-proportional charge of the integration element. If the current in the load circuit is so large that the zener voltage of D3 is exceeded, then the associated half-bridge transistor shuts down quickly.
  • a terminal S is led out. With respect to terminal B, a voltage proportional to the load current can be taken from it. This can be supplied to a shutdown device as explained below. Since the voltages in the turn-off device are generally related to the ground potential M, only the drive circuit associated with the lower half-bridge transistor has a terminal S.
  • the half-bridge inverter HB according to the invention, as described in FIGS. 1 and 2, is realized in an operating device with a pump circuit.
  • the positive output of the rectifier device in the block FR is not directly connected to the node 3, but via two parallel connected series circuits of two diodes.
  • a first diode series circuit with a first diode junction, the diodes D5 and D6 form.
  • a second diode series circuit with a second diode connection point form the diodes D4 and D7.
  • Various nodes of the load circuit known from FIG. 1 are connected to the diode connection points via reactance double poles.
  • the lamp terminal J3 is connected to the first diode connection point via a pumping capacitor C6.
  • the lamp terminal J3 is distinguished from the lamp terminal J4 in that the value of the amplitude of its AC component is larger than the ground potential.
  • the resonance capacitor C2 from FIG. 1 is omitted. Its function is taken over by the pump capacitor C6.
  • connection point of the primary winding L2 and the lamp inductor L1 is connected via the series circuit of a pumping inductor L4 and a capacitor C7 to the second diode connection point.
  • the pump inductor L4 can also be connected directly to the node 4 known from FIG. 1, which represents the connection point of the half-brittle transistors T1 and T2.
  • the capacitor C7 essentially serves to block a DC component in the current through the pumping inductor L4.
  • the node 4 known from FIG. 1 is connected to the first diode connection point via a second pump capacitor C5.
  • FIG. 3 shows a pump circuit structure with three so-called pump branches: one pump branch is represented by the pump capacitor C6, another by the second pump capacitor C5 and a third by the pump choke L4.
  • diodes D5 and D7 Another possible variation relates to the diodes D5 and D7. These diodes can also take over functions that are assigned to the rectifier device in block FR. Corresponding diodes in the rectifier device can then be omitted.
  • FIG. 4 shows how the current measuring resistor R2 according to the invention and the connection S connected thereto from FIG. 2 can be advantageously used for a switch-off and a starting device of the operating device.
  • the shutdown device includes a well-known thyristor replica consisting of the resistors R42, R43, R44 and R45 and the transistors T41 and T42.
  • the thyristor replica is connected via a resistor R41 to the node 3 of FIG.
  • the other end of the thyristor reproduction is at ground potential M.
  • a voltage divider consisting of resistors R46 and R47 supplies a voltage which is proportional to the load current via terminal S.
  • the voltage divider divides the supplied voltage to a value which normally does not cause the operating device to be switched off.
  • a capacitor C40 which is fed by the voltage divider, the time average of the load current is formed and provided in the form of a reference to the ground potential voltage.
  • This voltage is supplied to the control electrode of a semiconductor switch, which is designed as a bipolar transistor T43. If the mean value of the load current exceeds a specified value in the event of a fault, the thyristor simulation is triggered via the collector connection of T43.
  • a terminal G2 which is connected to the control electrode of the lower half-bridge transistor, connected to the ground potential M via a diode D42. This prevents further oscillation of the half-bridge inverter.
  • the start of the oscillation of the half-bridge inverter is done by means of a well-known starting capacitor C41, which is charged via the resistor R41 from the mains voltage. Connected to C41 is a trigger diode D40 (DIAC).
  • a trigger diode D40 (DIAC)
  • the control electrode of the lower half-bridge transistor is supplied with a start pulse via a diode D41 and the terminal G2.
  • this start pulse is too short and no reliable starting of the oscillation of the half-bridge inverter takes place.
  • the terminal S is used: Via a diode D43, the terminal S according to the invention with the trigger diode D40 connected.
  • the start pulse is not only via the diode D41, but also according to the invention via the diode D43 and on the diode D2 and the resistor R3 of Figure 2. Thus, the start pulse is extended and increases what leads to a safe start of the oscillation of the half-bridge inverter.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

The device has a half-bridge inverter with transistors (T1,T2) and a load circuit coupling between the transistors includes a primary transformer winding via which a load current flows. Drive circuits (1,2) of transistors includes an integration unit that switches off the transistor on reaching a preset value, and two voltage threshold value switches, where a threshold of one switch is less than that of other switch.

Description

Technisches GebietTechnical area

Die Erfindung geht aus von einem Betriebsgerät für Gasentladungslampen gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine Verbesserung des im Betriebsgerät enthaltenen Halbbrückenwechselrichters und dessen Ansteuerung. Des weiteren behandelt die Erfindung die Vereinfachung einer Abschalteinrichtung des Betriebsgeräts und eine kostengünstige Leistungsfaktorkorrektur des vom Netz aufgenommenen Stroms.The invention relates to a control gear for gas discharge lamps according to the preamble of claim 1. It is in particular an improvement of the half-bridge inverter contained in the operating device and its control. Furthermore, the invention deals with the simplification of a switch-off device of the operating device and a cost-effective power factor correction of the current absorbed by the network.

Stand der TechnikState of the art

In der Schrift EP 0 481 077 A2 (Schmitt) wird eine Schaltungsanordnung zum Betrieb einer Lampe offenbart. Die Schaltungsanordnung umfasst einen Halbbrückenwechselrichter mit MOSFETs. Die Ansteuersignale für die MOSFETs werden aus jeweils einer Zusatzwicklung abgeleitet, die auf eine Lampendrossel aufgebracht sind. Zur Einstellung der Schwingbedingung enthalten Ansteuerkreise für die MOSFETs jeweils einen LC-Parallelschwingkreis. In Ausführungsbeispielen enthalten die Ansteuerkreise auch Zenerdioden. Sie dienen zur Verkürzung der Einschaltdauer der MOSFETs oder zum Überspannungsschutz.Document EP 0 481 077 A2 (Schmitt) discloses a circuit arrangement for operating a lamp. The circuit arrangement comprises a half-bridge inverter with MOSFETs. The drive signals for the MOSFETs are derived from a respective additional winding, which are applied to a lamp inductor. To set the oscillation condition, drive circuits for the MOSFETs each contain an LC parallel resonant circuit. In embodiments, the drive circuits also include Zener diodes. They are used to shorten the on-time of the MOSFETs or for overvoltage protection.

In der Schrift EP 1 001 662 (Nerone) ist eine Halbbrückenschaltung mit komplementären MOSFETs beschrieben. Zur Steuerung der Resonanz des Lastkreises während der Zündung einer angeschlossenen Gasentladungslampe sind parallel zu den Ansteuerelektroden der MOSFETs Zenerdioden zur Spannungsbegrenzung geschaltet.The document EP 1 001 662 (Nerone) describes a half-bridge circuit with complementary MOSFETs. To control the resonance of the load circuit during the ignition of a connected gas discharge lamp Zener diodes are connected in parallel with the drive electrodes of the MOSFETs for limiting the voltage.

In der Schrift EP 0 093 469 (De Bijl) ist ein Betriebsgerät für Gasentladungslampen beschrieben, das den Stand der Technik darstellt. Dieses Betriebsgerät enthält einen selbstschwingenden Halbbrückenwechselrichter, der aus einer Gleichspannung eine hochfrequente Wechselspannung erzeugt, indem ein oberer und ein unterer in Serie geschaltete Halbbrückentransistoren abwechselnd ein- und ausgeschaltet werden. Die Gleichspannung wird meist mit Hilfe eines Brückengleichrichters, bestehend aus vier Gleichrichterdioden, aus der Netzspannung erzeugt. Selbstschwingend bedeutet in diesem Zusammenhang, dass die Ansteuerung der Halbbrückentransistoren aus einem Lastkreis gewonnen wird und keine unabhängig schwingende Oszillatorschaltung zur Erzeugung besagter Ansteuerung bereitgestellt wird. Bevorzugt wird die besagte Ansteuerung mit Hilfe eines Stromtransformators gewonnen. Eine Primärwicklung des Stromtransformators ist im Lastkreis angeordnet und wird von einem Laststrom durchflossen, der im wesentlichen dem Strom gleichgesetzt werden kann, den der Halbbrückenwechselrichter abgibt. Je eine Sekundärwicklung des Stromtransformators ist in zwei Ansteuerschaltungen angeordnet, die jeweils ein Signal erzeugen, das den Steuerelektroden der Halbbrückentransistoren zugeführt wird. Der Lastkreis ist an der Verbindungsstelle der Halbbrückentransistoren angeschlossen. Hauptbestandteil des Lastkreises ist eine Lampendrossel, zu der über Klemmenanschlüsse Gasentladungslampen seriell geschaltet werden können. Es ist auch möglich mehrere Lastkreise parallel zu schalten; die Primärwicklung ist dann so anzuordnen, dass sie von der Summe aller Lastkreise durchflossen wird.The document EP 0 093 469 (De Bijl) describes an operating device for gas discharge lamps, which represents the state of the art. This operating device includes a self-oscillating half-bridge inverter, which generates a high-frequency alternating voltage from a DC voltage by alternately switching on and off an upper and a lower series-connected half-bridge transistors. The DC voltage is usually generated by means of a bridge rectifier, consisting of four rectifier diodes, from the mains voltage. Self-oscillating in this context means that the control of the half-bridge transistors is obtained from a load circuit and no independently oscillating oscillator circuit is provided for generating said drive. Preferably, said drive is obtained by means of a current transformer. A primary winding of the current transformer is arranged in the load circuit and is of a Load current flows through, which can be set equal to the current that is emitted by the half-bridge inverter substantially. Each secondary winding of the current transformer is arranged in two drive circuits, each of which generates a signal which is supplied to the control electrodes of the half-bridge transistors. The load circuit is connected to the junction of the half-bridge transistors. The main component of the load circuit is a lamp choke, to which gas discharge lamps can be connected in series via terminal connections. It is also possible to switch several load circuits in parallel; The primary winding must then be arranged in such a way that it flows through the sum of all load circuits.

In den Ansteuerschaltungen wird jeweils ein Rückkoppelsignal erzeugt, das dem Laststrom im wesentlichen proportional ist. Dazu müssen die Sekundärwicklungen im Idealfall kurzgeschlossen, in der Praxis niederohmig abgeschlossen werden. Anderenfalls treten entweder im Stromtransformator Sättigungserscheinungen auf, oder die Primärwicklung übt einen unerwünscht großen Einfluss auf den Lastkreis aus. Nach dem Stand der Technik werden für die Halbbrückentransistoren Bipolartransistoren eingesetzt, welche ihre Ansteuerung aus den Sekundärwicklungen beziehen. Der Basisanschluss der Bipolartransistoren, welcher als Steuerelektrode verwendet wird ist naturgemäß niederohmig genug, um o. g. Effekte zu vermeiden.In the drive circuits in each case a feedback signal is generated which is substantially proportional to the load current. For this purpose, the secondary windings ideally have to be short-circuited, in practice low-resistance terminated. Otherwise, either saturation phenomena occur in the current transformer, or the primary winding exerts an undesirably large influence on the load circuit. In the prior art bipolar transistors are used for the half-bridge transistors, which receive their control from the secondary windings. The base terminal of the bipolar transistors, which is used as a control electrode is naturally low enough to o. G. To avoid effects.

Der Spannungsabfall an den Sekundärwicklungen, stellt unter den o.g. Bedingungen ein Maß für den Laststrom dar und bildet im Stand der Technik Rückkoppelsignale. Diese werden jeweils einem Zeitglied zugeführt, das im einfachsten Fall aus der Serienschaltung eines Zeitkondensators und eines Zeitwiderstandes besteht. Ist der jeweilige Zeitkondensator auf einen Integrationswert aufgeladen, der genügt, um einen Ausschalttransistor anzusteuern, wird der jeweilige Halbbrückentransistor ausgeschaltet.The voltage drop across the secondary windings is below the o.g. Conditions a measure of the load current and forms in the prior art feedback signals. These are each supplied to a timer, which consists in the simplest case of the series connection of a time capacitor and a time resistor. If the respective time capacitor is charged to an integration value which is sufficient to trigger a turn-off transistor, the respective half-bridge transistor is switched off.

Insbesondere zur Zündung der Gasentladungslampen ist seriell zur Lampendrossel und parallel zu einer Gasentladungslampe wirkend ein Resonanzkondensator geschaltet, der mit der Lampendrossel einen Resonanzkreis bildet. Dieser wird zur Zündung nahe seiner Resonanz betrieben, wodurch sich am Resonanzkondensator eine zur Zündung einer Gasentladungslampe genügend hohe Spannung ausbildet.In particular for igniting the gas discharge lamps, a resonant capacitor is connected in series with the lamp inductor and acting in parallel with a gas discharge lamp, which resonant circuit forms a resonant circuit with the lamp inductor. This is operated to ignite near its resonance, which forms a sufficiently high voltage to ignite a gas discharge lamp at the resonance capacitor.

Dementsprechend bildet sich in der Lampendrossel und damit in den Halbbrückentransistoren ein hoher Strom aus. Um eine Überlastung von Bauelementen zu Vermeiden, wird im Stand der Technik die Amplitude des Laststroms begrenzt. Dies geschieht über jeweils einen ersten Spannungsschwellwertschalter, der parallel zum jeweiligen Zeitwiderstand geschaltet ist. Steigt der Laststrom über ein vorgegebenes Maß, so erreicht das jeweilige Rückkoppelsignal, einen Wert, der den jeweiligen ersten Spannungsschwellwertschalter durchbrechen lässt und somit zum sofortigen Ausschalten des jeweiligen Halbbrückentransistors führt.Accordingly, a high current is formed in the lamp inductor and thus in the half-bridge transistors. In order to avoid overloading of components, the amplitude of the load current is limited in the prior art. This is done via a respective first voltage threshold, which is connected in parallel to the respective time resistor. If the load current rises above a predetermined level, then the respective feedback signal reaches a value which causes the respective first voltage threshold value switch to break and thus leads to the instantaneous switching-off of the respective half-bridge transistor.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung, ein Betriebsgerät für Gasentladungslampen gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, das die im Stand der Technik dargestellte Topologie nicht nur für Halbbrücken mit Bipolartransistoren, die naturgemäß einen Ansteuerstrom benötigen, realisierbar macht, sondern auch spannungsgesteuerte Halbleiterschalter wie MOS-Feldeffekttransistoren (MOSFET) eingesetzt werden können. Die diesem Problem zugrunde liegende Aufgabenstellung beinhaltet im wesentlichen in der Bereitstellung eines Ansteuersignals für die Halbleiterschalter, das proportional zum Laststrom ist.It is an object of the present invention to provide a control gear for gas discharge lamps according to the preamble of claim 1, which makes the topology shown in the prior art not only for half-bridges with bipolar transistors, which naturally require a drive current feasible, but also voltage-controlled semiconductor switches such as MOS Field effect transistors (MOSFET) can be used. The problem underlying this problem essentially involves the provision of a driving signal for the semiconductor switches, which is proportional to the load current.

Diese Aufgabe wird durch ein Betriebsgerät für Gasentladungslampen mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by a control gear for gas discharge lamps having the features of the preamble of claim 1 by the features of the characterizing part of claim 1. Particularly advantageous embodiments can be found in the dependent claims.

Meist aus Kostengründen werden Bipolartransistoren zunehmend von spannungsgesteuerten Halbleiterschaltern wie z.B. MOSFET und IGBT abgelöst.Mostly for cost reasons, bipolar transistors are increasingly being used by voltage-controlled semiconductor switches, e.g. Replaced MOSFET and IGBT.

Wird mit einer der oben beschriebenen Sekundärwicklungen anstatt eines Bipolartransistors ein spannungsgesteuerter Halbleiterschalter angesteuert, so ist der Abschluss der Sekundärwicklung nicht mehr niederohmig, sondern hochohmig und die im Abschnitt zum Stand der Technik erwähnten Nachteile stellen sich ein. Erfindungsgemäß werden die Ansteuerschaltungen jeweils mit einem zweiten Spannungsschwellwertschalter ausgestattet, der eine zweite Spannungsschwelle aufweist und in einer Parallelschaltung zur Sekundärwicklung zu liegen kommt. Im einfachsten Fall besteht der zweite Spannungsschwellwertschalter aus der Serienschaltung einer Zenerdiode und einem Strommesswiderstand, wobei die Zenerdiode eine Zenerspannung aufweist, die der zweiten Spannungsschwelle entspricht. Steigt die Spannung an der Sekundärwicklung bei Null beginnend an, so ist der zweite Spannungsschwellwertschalter zunächst unwirksam. Bei Erreichen der zweiten Spannungsschwelle beginnt die Zenerdiode zu leiten und schließt die Sekundärwicklung wunschgemäß niederohmig ab. Der Wert der zweiten Spannungsschwelle muss niedriger sein als eine Thresholdspannung, welche der spannungsgesteuerte Halbleiterschalter mindestens als Ansteuerung benötigt. Bei der Dimensionierung des Strommesswiderstands sind zwei Bedingungen zu erfüllen. Einerseits muss der Wert des Strommesswiderstands klein genug sein, damit ein niederohmiger Abschluss der Sekundärwicklung gewährleistet ist. Andererseits muss der Wert des Strommesswiderstands groß genug sein, damit die Spannung an der Sekundärwicklung weiter bis zur ersten Spannungsschwelle ansteigen kann.If a voltage-controlled semiconductor switch is actuated with one of the secondary windings described above instead of a bipolar transistor, then the termination of the secondary winding is no longer low-ohmic, but rather high-resistance, and the disadvantages mentioned in the section on the prior art are reached. According to the invention The drive circuits are each equipped with a second voltage threshold, which has a second voltage threshold and comes to lie in a parallel circuit to the secondary winding. In the simplest case, the second voltage threshold consists of the series connection of a Zener diode and a current measuring resistor, wherein the Zener diode has a Zener voltage which corresponds to the second voltage threshold. If the voltage at the secondary winding rises starting at zero, the second voltage threshold value switch is initially inoperative. Upon reaching the second voltage threshold, the zener diode begins to conduct and closes the secondary winding as desired from low impedance. The value of the second voltage threshold must be lower than a threshold voltage which the voltage-controlled semiconductor switch at least requires as drive. When dimensioning the current sense resistor, two conditions must be met. On the one hand, the value of the current measuring resistor must be small enough so that a low-impedance termination of the secondary winding is ensured. On the other hand, the value of the current sense resistor must be large enough so that the voltage at the secondary winding can continue to rise up to the first voltage threshold.

Da im Strommesswiderstand erfindungsgemäß ein dem Laststrom im wesentlichen proportionaler Strom fließt, ist auch die Spannung am Strommesswiderstand naturgemäß ein Maß für den Laststrom. Die Spannung am Strommesswiderstand kann dadurch erfindungsgemäß zur Detektion eines Fehlerfalls herangezogen werden. Sie wird dazu einer Abschalteinrichtung zugeführt. Um Störungen zu unterdrücken, wird in der Abschalteinrichtung das zeitliche Mittel der Spannung am Strommesswiderstand gebildet. Überschreitet dieses einen gegebenen Grenzwert, unterbindet die Abschalteinrichtung eine weitere Oszillation des Halbbrückenwechselrichters. Dies geschieht insbesondere durch Unterdrückung des Ansteuersignals eines der beiden Halbbrückentransistoren.Since, according to the invention, a current which is essentially proportional to the load current flows in the current measuring resistor, the voltage at the current measuring resistor is naturally also a measure of the load current. The voltage at the current measuring resistor can thereby be used according to the invention for the detection of a fault. It is fed to a shutdown device. In order to suppress interference, the time average of the voltage at the current measuring resistor is formed in the turn-off device. If this exceeds a given limit value, the turn-off device prevents a further oscillation of the half-bridge inverter. This happens in particular by suppression of the drive signal of one of the two half-bridge transistors.

Die in Rede stehenden Betriebsgeräte besitzen im allgemeinen zwei Netzspannungsklemmen, die mit einer Netzspannung verbindbar sind, wodurch ein Netzstrom fließen kann. Einschlägige Normen (z.B.: IEC 1000-3-2) schreiben maximale Amplituden für die Oberschwingungen des Netzstroms vor. Zur Einhaltung dieser Normen besitzen Betriebsgeräte sog. PFC-Schaltungen (Power-Factor-Correction). Eine kostengünstige Realisierung dieser PFC-Schaltungen stellen sog. Pumpschaltungen dar, wie sie z. B. in EP 253 224 (Zuchtriegel) oder EP 1 028 606 (Rudolph) beschrieben sind. Bei der Kombination einer Pumpschaltung mit einem selbstschwingenden Halbbrückenwechselrichter nach dem Stand der Technik gibt es Probleme bei der Erzeugung der nötigen Zündspannung für die Gasentladungslampen und durch hohe Verlustleistung beim Schalten der Halbbrückentransistoren. Insbesondere bei großer Leistung für die Gasentladungslampen treten die genannten Probleme auf. Eine Ursache dafür sind u. a. Speicherzeiten, die typisch sind für Bipolartransistoren sind und kein exaktes Festlegen des Ausschaltzeitpunkts erlauben. Die vorliegende Erfindung ermöglicht den Einsatz von spannungsgesteuerten Halbleiterschaltern wie MOSFETS, die keine Speicherzeiten aufweisen und deshalb die genannten Probleme vermieden werden können. Das bedeutet, dass der erfindungsgemäße Halbbrückenwechselrichter in Kombination mit einer Pumpschaltung vorteilhaft auch bei einer Last angewendet werden kann, die eine Leistung von über 100W verbraucht.The operating devices in question generally have two mains voltage terminals which can be connected to a mains voltage, whereby a mains current can flow. Relevant standards (eg: IEC 1000-3-2) write maximum amplitudes for the harmonics of the mains current. To comply with these standards, operating devices have so-called PFC circuits (Power Factor Correction). A cost-effective implementation of these PFC circuits represent so-called. Pump circuits, as z. B. in EP 253 224 (breeding bars) or EP 1 028 606 (Rudolph) are described. In the combination of a pump circuit with a self-oscillating half-bridge inverter according to the prior art, there are problems in generating the necessary ignition voltage for the gas discharge lamps and by high power dissipation when switching the half-bridge transistors. Especially with high power for the gas discharge lamps, the problems mentioned occur. One reason for this is, among other things, storage times which are typical for bipolar transistors and do not allow an exact setting of the switch-off time. The present invention allows the use of voltage-controlled semiconductor switches such as MOSFETs, which have no storage times and therefore the aforementioned problems can be avoided. This means that the half-bridge inverter according to the invention, in combination with a pump circuit, can advantageously also be used for a load that consumes a power of more than 100W.

Ein weiterer Effekt, der beim erfindungsgemäßen Halbbrückenwechselrichters mit Pumpschaltung auftritt, ist die starke Modulation der Betriebsfrequenz durch die Netzspannung, die die Oszillation des Halbbrückenwechselrichters aufweist. Abhängig vom momentanen Wert der Netzspannung liegt besagte Betriebsfrequenz innerhalb eines Frequenzbandes, das eine Bandbreite von über 10kHz aufweist. Damit werden die elektromagnetischen Störungen, die ein erfindungsgemäßes Betriebsgerät verursacht auf ein breites Frequenzband verteilt. Damit ist die Energie, die ein gestörtes Gerät trifft, vorteilhaft gering. Zudem kann der Aufwand für die Entstörung eines erfindungsgemäßen Betriebsgeräts gering gehalten werden.Another effect which occurs in the half-bridge inverter according to the invention with pump circuit is the strong modulation of the operating frequency by the mains voltage, which has the oscillation of the half-bridge inverter. Depending on the instantaneous value of the mains voltage, said operating frequency is within a frequency band having a bandwidth of more than 10 kHz. Thus, the electromagnetic interference caused by an operating device according to the invention is distributed over a wide frequency band. Thus, the energy that hits a faulty device, advantageously low. In addition, the effort for the suppression of a control gear according to the invention can be kept low.

Eine weitere vorteilhafte Nutzung des erfindungsgemäßen Strommesswiderstandes ist in der Startschaltung des selbstschwingenden Halbbrückenwechselrichters gegeben. Zum Start des Halbbrückenwechselrichters ist es üblich einen Startkondensator zu laden und bei Erreichen einer Triggerspannung am Ladekondensator einen Teil der im Ladekondensator gespeicherten Ladung über ein Triggerelement auf die Steuerelektrode eines Halbbrückenkondensators zu entladen. Dabei kann das Problem auftreten, dass der so erzeugte Ladeimpuls an der betreffenden Steuerelektrode zu kurz und zu niedrig ist und keine anhaltende Oszillation des Halbbrückenwechselrichters ausgelöst wird. Erfindungsgemäß wird ein Teil der gespeicherten Ladung des Ladekondensators über eine Diode dem erfindungsgemäßen Strommesswiderstand zugeführt. Damit lässt sich ein sicheres Anschwingen des Halbbrückenwechselrichters erreichen.A further advantageous use of the current measuring resistor according to the invention is given in the starting circuit of the self-oscillating half-bridge inverter. To start the half-bridge inverter, it is customary to charge a start capacitor and, upon reaching a trigger voltage at the charging capacitor, a portion of the charge stored in the charging capacitor via a trigger element to the control electrode of a half-bridge capacitor to discharge. In this case, the problem may arise that the charge pulse generated in this way at the relevant control electrode is too short and too low and no sustained oscillation of the half-bridge inverter is triggered. According to the invention, a portion of the stored charge of the charging capacitor is supplied via a diode to the current measuring resistor according to the invention. This makes it possible to achieve a reliable oscillation of the half-bridge inverter.

Beschreibung der ZeichnungenDescription of the drawings

Im folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Es zeigen:

Figur 1
die Grundschaltung des erfindungsgemäßen Betriebsgeräts
Figur 2
ein Ausführungsbeispiel einer erfindungsgemäßen Ansteuerschaltung
Figur 3
ein Ausführungsbeispiel eines erfindungsgemäßen Betriebsgeräts mit Pumpschaltung
Figur 4
ein Ausführungsbeispiel für eine erfindungsgemäße Abschalteinrichtung
In the following, the invention will be explained in more detail with reference to embodiments. Show it:
FIG. 1
the basic circuit of the operating device according to the invention
FIG. 2
An embodiment of a drive circuit according to the invention
FIG. 3
An embodiment of an operating device according to the invention with pump circuit
FIG. 4
an embodiment of a shutdown device according to the invention

Im folgenden werden Widerstände durch den Buchstaben R, Transistoren durch den Buchstaben T, Dioden durch den Buchstaben D, Kondensatoren durch den Buchstaben C und Anschlussklemmen durch den Buchstaben J jeweils gefolgt von einer Zahl bezeichnet.In the following, resistors are denoted by the letter R, transistors by the letter T, diodes by the letter D, capacitors by the letter C, and terminals by the letter J each followed by a number.

In Figur 1 ist die Grundschaltung eines erfindungsgemäßen Betriebsgeräts dargestellt. Über die Anschlussklemmen J1, J2 kann das Betriebsgerät an eine Netzspannung angeschlossen werden. Die Netzspannung wird einem Block FR zugeführt. Darin sind allgemein bekannte Filter- und Gleichrichtereinrichtungen enthalten. Die Filtereinrichtungen haben die Aufgabe Störungen zu unterdrücken. Die Gleichrichtereinrichtung besteht in der Regel aus einem Brückengleichrichter bestehend aus vier Dioden. Mit Hilfe der Gleichrichtereinrichtung wird einem Halbbrückenwechselrichter HB eine Gleichspannung zugeführt. Der Halbbrückenwechselrichter enthält im wesentlichen die Serienschaltung eines oberen Halbleiterschalters T1 und eines unteren Halbleiterschalters T2, die erfindungsgemäß spannungsgesteuert sind. Das Ausführungsbeispiel in Figur 1 ist mit N-Kanal MOSFET realisiert. Es ist jedoch auch der Einsatz von beispielsweise IGBT oder P-Kanal MOSFET möglich. Bei den in Figur 1 eingesetzten N-Kanal MOSFET ist es erforderlich, dass der positive Ausgang der Gleichrichtereinrichtung über einen Knoten 3 dem oberen Transistor T1 zugeführt wird, während der negative Ausgang der Gleichrichtereinrichtung mit dem Massepotenzial M verbunden ist. Die gleiche Polung gilt für handelsübliche IGBT. Umgepolt muss bei der Verwendung von P-Kanal MOSFET werden.FIG. 1 shows the basic circuit of a control gear according to the invention. The operating device can be connected to a mains voltage via terminals J1, J2. The mains voltage is fed to a block FR. This includes well-known filter and rectifier devices. The filter devices have the task to suppress interference. The rectifier device usually consists of a bridge rectifier consisting of four diodes. With the aid of the rectifier device, a DC voltage is supplied to a half-bridge inverter HB. The half-bridge inverter essentially comprises the series connection of an upper semiconductor switch T1 and a lower semiconductor switch T2, which are voltage-controlled according to the invention. The exemplary embodiment in FIG. 1 is realized with N-channel MOSFET. However, it is also possible to use, for example, IGBT or P-channel MOSFETs. In the N-channel MOSFET used in Figure 1, it is necessary that the positive output of the rectifier device is supplied via a node 3 to the upper transistor T1, while the negative output of the rectifier device is connected to the ground potential M. The same polarity applies to commercial IGBTs. Reverse polarity must be when using P-channel MOSFET.

Zwischen den Knoten 3 und das Massepotenzial M ist ein Speicherkondensator Cl geschaltet, der Energie aus der Netzspannung zwischenspeichert, bevor sie an eine Lampe Lp abgegeben wird.Between the node 3 and the ground potential M, a storage capacitor Cl is connected, which caches energy from the mains voltage before it is delivered to a lamp Lp.

Zur Ansteuerung der Halbbrückentransistoren T1, T2 enthält der Halbbrückenwechselrichter HB für jeden Halbbrückentransistor T1, T2 eine Ansteuerschaltung 1, 2. Die Ansteuerschaltungen 1, 2 sind jeweils über einen Anschluss A mit dem jeweiligen Gate-Anschluss und über einen Anschluss B mit dem jeweiligen Source-Anschluss des betreffenden Halbbrückentransistors verbunden. Die Ansteuerschaltung 2 für den unteren Halbbrückentransistor T2 besitzt einen dritten Anschluss S, an den eine Abschalteinrichtung anschließbar ist.For driving the half-bridge transistors T1, T2, the half-bridge inverter HB contains a drive circuit 1, 2 for each half-bridge transistor T1, T2. The drive circuits 1, 2 are each connected via a terminal A to the respective gate terminal and via a terminal B to the respective source terminal. Connected to the respective half-bridge transistor. The drive circuit 2 for the lower half-bridge transistor T2 has a third terminal S, to which a turn-off device can be connected.

Die Verbindungsstelle der Halbbrückentransistoren T1, T2 bildet einen Knoten 4, an dem ein Lastkreis angeschlossen ist. Ein zweiter Anschluss des Lastkreises ist in Figur 1 verbunden mit dem Massepotenzial M. Gleichwirkend kann der zweite Anschluss des Lastkreises alternativ mit dem Knoten 3 verbunden werden. Der Lastkreis besteht im wesentlichen aus der Serienschaltung einer Primärwicklung L2 eines Stromtransformators, einer Lampendrossel L1, eines Resonanzkondensators C2 und eines Koppelkondensators C3. Parallel zum Resonanzkondensator C2 sind über die Lampenklemmen J3, J4 eine oder mehrere in Serie geschaltete Lampen Lp anschließbar. Im Ausführungsbeispiel ist eine Vorheizung der Lampenwendeln nicht vorgesehen. Dem Fachmann stehen jedoch allgemein bekannte Einrichtungen zur Wendelheizung zur Verfügung, die er mit dem erfindungsgemäßen Betriebsgerät einsetzen kann. Es ist auch möglich mehrere parallel geschaltete Lastkreise zu betreiben. Die Funktion der einzelnen Elemente des Lastkreises kann dem Stand der Technik entnommen werden.The junction of the half-bridge transistors T1, T2 forms a node 4, to which a load circuit is connected. A second terminal of the load circuit is connected in Figure 1 to the ground potential M. Gleichwirkend the second terminal of the load circuit can alternatively be connected to the node 3. The load circuit consists essentially of the series connection of a primary winding L2 of a current transformer, a lamp inductor L1, a resonance capacitor C2 and a coupling capacitor C3. Parallel to the resonant capacitor C2, one or more lamps Lp connected in series can be connected via the lamp terminals J3, J4. In the exemplary embodiment, a preheating of the lamp filaments is not provided. However, those skilled in the art are generally familiar devices for filament heating available, which he can use with the operating device according to the invention. It is also possible to operate several parallel-connected load circuits. The function of the individual elements of the load circuit can be taken from the prior art.

In Figur 2 ist ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Ansteuerschaltung dargestellt. Eine Sekundärwicklung L3 des Stromtransformators ist zwischen einen Knoten 20 und dem aus Figur 1 bekannten Anschluss B geschaltet. Eine Diode D1 liegt mit ihrer Anode am Knoten 20 und mit ihrer Kathode an einem Knoten 21. Über einen Widerstand R3 ist der Knoten 21 mit dem aus Figur 1 bekannten Anschluss A verbunden. Parallel zur Sekundärwicklung L3 ist ein Integrationsglied geschaltet, das als Serienschaltung eines Zeitwiderstandes R1 und eines Zeitkondensators C4 ausgeführt ist und eine Integrationskonstante aufweist, die dem Produkt aus den Werten von R1 und C4 entspricht. Die Verbindungsstelle von R1 und C4 bildet einen Knoten 22. Parallel zu C4 wird ein Integrationswert abgegriffen und der Steuerelektrode eines Halbleiterschalters T3 zugeführt. Die Schaltstrecke des Halbleiterschalters T3 liegt zwischen den Anschlüssen A und B. Dazu parallel kann, wie im Ausführungsbeispiel, zur Erhöhnung der Schaltsicherheit ein Widerstand R4 geschaltet werden. Bevorzugt wird der Halbleiterschalter T3 als Kleinsignal-Bipolartransistor ausgeführt.FIG. 2 shows a preferred exemplary embodiment of a drive circuit according to the invention. A secondary winding L3 of the current transformer is connected between a node 20 and the connection B known from FIG. A diode D1 lies with its anode at the node 20 and with its cathode at a node 21. Via a resistor R3, the node 21 is connected to the connection A known from FIG. Connected in parallel with the secondary winding L3 is an integrating element which is designed as a series connection of a time resistor R1 and a time capacitor C4 and has an integration constant which corresponds to the product of the values of R1 and C4. The junction of R1 and C4 forms a node 22. Parallel to C4, an integration value is tapped and applied to the control electrode of a semiconductor switch T3. The switching path of the semiconductor switch T3 is located between the terminals A and B. In parallel, as in the embodiment, to increase the switching reliability, a resistor R4 are connected. Preferably, the semiconductor switch T3 is designed as a small-signal bipolar transistor.

Zwischen Knoten 21 und Knoten 22 ist ein erster Spannungsschwellwertschalter mit einer ersten Spannungsschwelle geschaltet. Er ist als Zenerdiode D3 ausgeführt. Überschreitet die von L3 in die Ansteuerschaltung eingespeiste Spannung einen Wert, der zur Überschreitung der Zenerspannung von D3 führt, so wird der Zeitkondensator C4 nicht nur über den Zeitwiderstand R1, sondern auch über D3 geladen, wodurch die Integrationskonstante des Integrationsglieds reduziert wird.Between node 21 and node 22, a first voltage threshold is switched to a first voltage threshold. It is designed as a zener diode D3. If the voltage fed into the drive circuit by L3 exceeds a value which results in exceeding the zener voltage of D3, then the time capacitor C4 is charged not only via the time resistor R1 but also via D3, thereby reducing the integration constant of the integrator.

Zwischen dem Knoten 21 und dem Anschluss B ist erfindungsgemäß ein zweiter Spannungsschwellwertschalter mit einer zweiten Spannungsschwelle geschaltet. Er wird bevorzugt als Serienschaltung einer Zenerdiode D2 und eines Strommesswiderstands R2 ausgeführt. Bei Ansteigen der Spannung an L3 wird zunächst der über Anschluss A der zugeordnete Halbbrückentransistor angesteuert. Nach weiterem Ansteigen der Spannung an R2 wird erfindungsgemäß die Zenerspannung von D2 überschritten. Damit kommt ein Stromfluss über den Strommesswiderstand R2 zustande, der im wesentlichen proportional zum Laststrom im Lastkreis ist. Damit wird eine Sättigung des Stromtransformators verhindert und eine laststrom-proportionale Ladung des Integrationsglieds erreicht. Wird der Strom im Lastkreis so groß, dass die Zenerspannung von D3 überschritten wird, so kommt es zu einem schnellen abschalten des zugeordneten Halbbrückentransistors.Between the node 21 and the terminal B, a second voltage threshold value switch is connected according to the invention with a second voltage threshold. It is preferred as a series circuit of a Zener diode D2 and a current measuring resistor R2 executed. When the voltage at L3 rises, the associated half-bridge transistor is first of all driven via terminal A. After further increase of the voltage at R2, the zener voltage of D2 is exceeded according to the invention. This results in a current flow through the current measuring resistor R2, which is substantially proportional to the load current in the load circuit. This prevents saturation of the current transformer and achieves a load current-proportional charge of the integration element. If the current in the load circuit is so large that the zener voltage of D3 is exceeded, then the associated half-bridge transistor shuts down quickly.

An der Verbindungsstelle zwischen D2 und dem Strommesswiderstand R2 ist ein Anschluss S herausgeführt. An ihm kann bezüglich Anschluss B eine dem Laststrom proportionale Spannung entnommen werden. Diese kann wie unten ausgeführt einer Abschalteinrichtung zugeführt werden. Da die Spannungen in der Abschalteinrichtung im allgemeinen auf das Massepotenzial M bezogen sind, besitzt nur die dem unteren Halbbrückentransistor zugeordnete Ansteuerschaltung einen Anschluss S.At the junction between D2 and the current measuring resistor R2, a terminal S is led out. With respect to terminal B, a voltage proportional to the load current can be taken from it. This can be supplied to a shutdown device as explained below. Since the voltages in the turn-off device are generally related to the ground potential M, only the drive circuit associated with the lower half-bridge transistor has a terminal S.

In der folgenden Tabelle sind die bevorzugten Dimensionierungen von in Figur 2 dargestellten Bauelementen zusammengestellt. Bauelement Wert D2 5,6V D3 22V R1 1,8kΩ R2 27Ω R3 220Ω R4 2,2kΩ C4 10nF The following table summarizes the preferred dimensions of components shown in FIG. module value D2 5.6V D3 22V R1 1,8kΩ R2 27Ω R3 220Ω R4 2,2kΩ C4 10nF

In Figur 3 ist der erfindungsgemäße Halbbrückenwechselrichter HB, wie er in den Figuren 1 und 2 beschrieben wird, in einem Betriebsgerät mit Pumpschaltung realisiert. Im Gegensatz zu Figur 1 ist der positive Ausgang der Gleichrichtereinrichtung im Block FR nicht direkt mit dem Knoten 3 verbunden, sondern über zwei parallel geschaltete Serienschaltungen von jeweils zwei Dioden. Eine erste Diodenserienschaltung mit einem ersten Diodenverbindungspunkt bilden die Dioden D5 und D6. Eine zweite Diodenserienschaltung mit einem zweiten Diodenverbindungspunkt bilden die Dioden D4 und D7. Verschiedene Knoten des aus Figur 1 bekannten Lastkreises sind über Reaktanzzweipole mit den Diodenverbindungspunkten verbunden.In FIG. 3, the half-bridge inverter HB according to the invention, as described in FIGS. 1 and 2, is realized in an operating device with a pump circuit. In contrast to Figure 1, the positive output of the rectifier device in the block FR is not directly connected to the node 3, but via two parallel connected series circuits of two diodes. A first diode series circuit with a first diode junction, the diodes D5 and D6 form. A second diode series circuit with a second diode connection point form the diodes D4 and D7. Various nodes of the load circuit known from FIG. 1 are connected to the diode connection points via reactance double poles.

Die Lampenklemme J3 ist über einen Pumpkondensator C6 mit dem ersten Diodenverbindungspunkt verbunden. Die Lampenklemme J3 zeichnet sich gegenüber der Lampenklemme J4 dadurch aus, dass der Wert der Amplitude ihrer Wechselspannungskomponente gegenüber dem Massepotenzial größer ist. Der Resonanzkondensator C2 aus Figur 1 entfällt. Seine Funktion wird vom Pumpkondensator C6 übernommen.The lamp terminal J3 is connected to the first diode connection point via a pumping capacitor C6. The lamp terminal J3 is distinguished from the lamp terminal J4 in that the value of the amplitude of its AC component is larger than the ground potential. The resonance capacitor C2 from FIG. 1 is omitted. Its function is taken over by the pump capacitor C6.

Der Verbindungspunkt der Primärwicklung L2 und der Lampendrossel L1 ist über die Serienschaltung einer Pumpdrossel L4 und eines Kondensators C7 mit dem zweiten Diodenverbindungspunkt verbunden. Die Pumpdrossel L4 kann aber auch direkt an dem aus Figur 1 bekannten Knoten 4, der den Verbindungspunkt der Halbbrüchentransistoren T1 und T2 darstellt, angeschlossen werden. Der Kondensator C7 dient im wesentlichen zum Abblocken einer Gleichstromkomponente im Strom durch die Pumpdrossel L4.The connection point of the primary winding L2 and the lamp inductor L1 is connected via the series circuit of a pumping inductor L4 and a capacitor C7 to the second diode connection point. The pump inductor L4 can also be connected directly to the node 4 known from FIG. 1, which represents the connection point of the half-brittle transistors T1 and T2. The capacitor C7 essentially serves to block a DC component in the current through the pumping inductor L4.

Der aus Figur 1 bekannte Knoten 4 ist über einen zweiten Pumpkondensator C5 mit dem ersten Diodenverbindungspunkt verbunden.The node 4 known from FIG. 1 is connected to the first diode connection point via a second pump capacitor C5.

In Figur 3 ist eine Pumpschaltungsstruktur mit 3 sog. Pumpzweigen dargestellt: Ein Pumpzweig wird durch den Pumpkondensator C6 repräsentiert, ein weiterer durch den zweiten Pumpkondensator C5 und ein dritter durch die Pumpdrossel L4. Jeder Pumpzweig für sich hat bereits eine Wirkung als PFC-Schaltung, so dass nicht zwingend immer alle drei Pumpzweige vorhanden sein müssen. Vielmehr ist jede beliebige Kombination der Pumpzweige möglich.FIG. 3 shows a pump circuit structure with three so-called pump branches: one pump branch is represented by the pump capacitor C6, another by the second pump capacitor C5 and a third by the pump choke L4. Each pump branch in itself already has an effect as a PFC circuit, so that not always necessarily all three pump branches must be present. Rather, any combination of pumping branches is possible.

Eine weitere Variationsmöglichkeit betrifft die Dioden D5 und D7. Diese Dioden können auch Funktionen übernehmen, die der Gleichrichtereinrichtung im Block FR zugeordnet sind. Entsprechende Dioden in der Gleichrichtereinrichtung können dann entfallen.Another possible variation relates to the diodes D5 and D7. These diodes can also take over functions that are assigned to the rectifier device in block FR. Corresponding diodes in the rectifier device can then be omitted.

Figur 4 zeigt, wie der erfindungsgemäße Strommesswiderstand R2 und der damit verbundene Anschluss S aus Figur 2 vorteilhaft für eine Abschalt- und eine Starteinrichtung des Betriebsgeräts verwendet werden kann.FIG. 4 shows how the current measuring resistor R2 according to the invention and the connection S connected thereto from FIG. 2 can be advantageously used for a switch-off and a starting device of the operating device.

Die Abschalteinrichtung enthält eine allgemein bekannte Thyristornachbildung bestehend aus den Widerständen R42, R43, R44 und R45 und den Transistoren T41 und T42. Die Thyristornachbildung ist über einen Widerstand R41 mit dem Knoten 3 aus Figur 1 verbunden. Das andere Ende der Thyristornachbildung liegt auf Massepotenzial M.The shutdown device includes a well-known thyristor replica consisting of the resistors R42, R43, R44 and R45 and the transistors T41 and T42. The thyristor replica is connected via a resistor R41 to the node 3 of FIG. The other end of the thyristor reproduction is at ground potential M.

Über den Anschluss S wird in einen Spannungsteiler bestehend aus den Widerständen R46 und R47 eine Spannung eingespeist, die proportional zum Laststrom ist. Der Spannungsteiler teilt die eingespeiste Spannung auf einen Wert, der im Normalfall keine Abschaltung des Betriebsgeräts bewirkt. Durch einen Kondensator C40, der vom Spannungsteiler gespeist wird, wird das zeitliche Mittel des Laststroms gebildet und in Form einer auf das Massepotenzial bezogenen Spannung bereitgesellt. Diese Spannung wird der Steuerelektrode eines Halbleiterschalters zugeführt, der als Bipolartransistor T43 ausgeführt ist. Überschreitet das Mittel des Laststroms im Fehlerfall ein vorgegebenes Maß, so wird über den Kollektoranschluss von T43 die Thyristornachbildung getriggert. Dadurch wird über eine Diode D42 ein Anschluss G2, der mit der Steuerelektrode des unteren Halbbrückentransistors verbunden ist, mit dem Massepotenzial M verbunden. Damit wird eine weitere Oszillation des Halbbrückenwechselrichters unterbunden.A voltage divider consisting of resistors R46 and R47 supplies a voltage which is proportional to the load current via terminal S. The voltage divider divides the supplied voltage to a value which normally does not cause the operating device to be switched off. By a capacitor C40, which is fed by the voltage divider, the time average of the load current is formed and provided in the form of a reference to the ground potential voltage. This voltage is supplied to the control electrode of a semiconductor switch, which is designed as a bipolar transistor T43. If the mean value of the load current exceeds a specified value in the event of a fault, the thyristor simulation is triggered via the collector connection of T43. Thereby, a terminal G2, which is connected to the control electrode of the lower half-bridge transistor, connected to the ground potential M via a diode D42. This prevents further oscillation of the half-bridge inverter.

Der Start der Oszillation des Halbbrückenwechselrichters geschieht mit Hilfe eines allgemein bekannten Startkondensators C41, der über den Widerstand R41 aus der Netzspannung geladen wird. Mit C41 verbunden ist eine Triggerdiode D40 (DIAC). Erreicht die Spannung an C41 die Triggerspannung der Triggerdiode D40, wird die Steuerelektrode des unteren Halbbrückentransistors über eine Diode D41 und den Anschluss G2 mit einem Startimpuls beaufschlagt. In der Praxis kommt es vor, dass dieser Startimpuls zu kurz ausfällt und kein sicheres Starten der Oszillation des Halbbrückenwechselrichters erfolgt. Vorteilhaft wird deshalb der Anschluss S verwendet: Über eine Diode D43 ist der Anschluss S erfindungsgemäß mit der Triggerdiode D40 verbunden. Der Startimpuls läuft nicht nur über die Diode D41, sondern erfindungsgemäß auch über die Diode D43 und weiter über die Diode D2 und den Widerstand R3 aus Figur 2. Damit wird der Startimpuls verlängert und vergrößert was zu einem sicheren Start der Oszillation des Halbbrückenwechselrichters führt.The start of the oscillation of the half-bridge inverter is done by means of a well-known starting capacitor C41, which is charged via the resistor R41 from the mains voltage. Connected to C41 is a trigger diode D40 (DIAC). When the voltage at C41 reaches the trigger voltage of the trigger diode D40, the control electrode of the lower half-bridge transistor is supplied with a start pulse via a diode D41 and the terminal G2. In practice, this start pulse is too short and no reliable starting of the oscillation of the half-bridge inverter takes place. Advantageously, therefore, the terminal S is used: Via a diode D43, the terminal S according to the invention with the trigger diode D40 connected. The start pulse is not only via the diode D41, but also according to the invention via the diode D43 and on the diode D2 and the resistor R3 of Figure 2. Thus, the start pulse is extended and increases what leads to a safe start of the oscillation of the half-bridge inverter.

Claims (8)

  1. Operating device for operating gas discharge lamps, having the following features:
    • a free-running half-bridge inverter (HB) which contains two half-bridge transistors (T1, T2) connected in series,
    • a load circuit which is connected to the connection point between the half-bridge transistors (4) and which contains a primary winding (L2) of a current transformer through which a load current flows which is drawn from the half-bridge inverter (HB),
    • in each case one drive circuit (1, 2) for each half-bridge transistor (T1, T2), which in each case contains the following components:
    - a secondary winding (L3) of the current transformer,
    - an integration element (R1, C4) which essentially integrates the voltage across the secondary winding (L3) of the current transformer and switches off the relevant half-bridge transistor on reaching a predetermined integration value,
    - a first voltage threshold value switch (D3), which reduces the integration constant of the integration element on reaching a given first voltage threshold,
    characterized in that
    • the half-bridge transistors (T1, T2) are voltage controlled transistors, and
    • at least one drive circuit (1, 2) has a second voltage threshold value switch (D2, R2) with a second voltage threshold which is lower than the first voltage threshold, with the second voltage threshold value switch (D2, R2) being connected in parallel with the secondary winding (L3), and
    • the value of the second voltage threshold is lower than a threshold voltage which the half-bridge transistors (T1, T2) require, as a minimum, as a drive.
  2. Operating device according to Claim 1, characterized in that the second voltage threshold value switch contains a zener diode (D2) and a current measurement resistor (R2) connected in series.
  3. Operating device according to Claim 2, characterized in that the voltage across the current measurement resistor (R2) is supplied to a switching-off device, which evaluates the time mean value or the instantaneous value of this voltage and, if a given limit value is exceeded, prevents further oscillation of the half-bridge inverter (HB).
  4. Operating device according to Claim 1, characterized in that the operating device has two mains voltage terminals (J1, J2), which can be connected to a mains voltage, and power factor correction for a mains current flowing via the mains voltage terminals (J1, J2) is achieved by means of a pumping circuit.
  5. Operating device according to Claim 4, characterized in that the pumping circuit has the following features:
    • a portion of the mains current flows via a first pumping diode (D5) which, with a second pumping diode (D6), forms a first diode series circuit having a first diode connection point, with the diodes being connected such that they allow current to flow from the mains terminals to the half-bridge inverter (HB),
    • the operating device has at least two lamp terminals (J3, J4), which can be connected to lamp connections, with one lamp terminal (J3) being connected to the first diode connection point via a pumping capacitor (C6).
  6. Operating device according to Claim 5, characterized in that the pumping capacitor (C6) is connected to that lamp terminal (J3) which, with respect to a reference earth potential (M), is at a voltage which has the maximum value for the AC voltage component in comparison to the voltage at the other lamp terminals (J4).
  7. Operating device according to Claim 5, characterized by the following features:
    • a second diode series circuit formed by two diodes (D4, D7) is connected in parallel with the first diode series circuit, thus forming a second diode connection point, with the diodes (D4, D7) being connected such that they allow current to flow from the mains to the half-bridge inverter (HB),
    • the second diode connection point is connected at least via a pumping inductor (L4) to the connection point (4) of the half-bridge transistors (T1, T2).
  8. Operating device according to Claim 2, characterized in that the operating device contains a starting capacitor (C41), which is connected to the current measurement resistor (R2) via a trigger diode (D40) and a diode (D43) connected in series.
EP02027137A 2002-01-02 2002-12-04 Apparatus for operating discharge lamps Expired - Lifetime EP1326484B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10200049 2002-01-02
DE10200049A DE10200049A1 (en) 2002-01-02 2002-01-02 Control gear for gas discharge lamps

Publications (3)

Publication Number Publication Date
EP1326484A2 EP1326484A2 (en) 2003-07-09
EP1326484A3 EP1326484A3 (en) 2005-01-05
EP1326484B1 true EP1326484B1 (en) 2006-08-09

Family

ID=7711453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027137A Expired - Lifetime EP1326484B1 (en) 2002-01-02 2002-12-04 Apparatus for operating discharge lamps

Country Status (6)

Country Link
US (1) US6677716B2 (en)
EP (1) EP1326484B1 (en)
CN (1) CN100438715C (en)
AT (1) ATE336156T1 (en)
CA (1) CA2415510A1 (en)
DE (2) DE10200049A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241327A1 (en) * 2002-09-04 2004-03-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement for operating discharge lamps
DE10351621B4 (en) * 2003-11-05 2013-05-16 Osram Gmbh Electronic ballast and method with weiterzuvertet in case of failure of the light-emitting device converter
DE102004001618A1 (en) * 2004-01-09 2005-08-11 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement for operating light sources
US7498750B2 (en) * 2004-06-21 2009-03-03 Koninklijke Philips Electronics N.V. Gas discharge lamp driving circuit and method with resonating sweep voltage
JP2009539218A (en) * 2006-05-31 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for operating a gas discharge lamp
WO2008132652A1 (en) * 2007-04-27 2008-11-06 Koninklijke Philips Electronics N.V. Self-oscillating switch circuit for use in a switching dc-dc-converter
JP4816634B2 (en) * 2007-12-28 2011-11-16 ウシオ電機株式会社 Substrate heating apparatus and substrate heating method
US20090200953A1 (en) * 2008-02-08 2009-08-13 Ray James King Methods and apparatus for a high power factor ballast having high efficiency during normal operation and during dimming
US8258712B1 (en) * 2008-07-25 2012-09-04 Universal Lighting Technologies, Inc. Ballast circuit for reducing lamp striations

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201631A (en) 1982-04-20 1983-11-16 Philips Nv DC AC CONVERTER FOR IGNITION AND AC POWERING A GAS AND / OR VAPOR DISCHARGE LAMP.
US5173643A (en) * 1990-06-25 1992-12-22 Lutron Electronics Co., Inc. Circuit for dimming compact fluorescent lamps
US5545955A (en) * 1994-03-04 1996-08-13 International Rectifier Corporation MOS gate driver for ballast circuits
JP3484863B2 (en) * 1995-03-29 2004-01-06 東芝ライテック株式会社 Power supply device, discharge lamp lighting device and lighting device
EP0757512B1 (en) * 1995-07-31 2001-11-14 STMicroelectronics S.r.l. Driving circuit, MOS transistor using the same and corresponding applications
DE19548506A1 (en) * 1995-12-22 1997-06-26 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating a lamp
US5619106A (en) * 1996-06-24 1997-04-08 General Electric Company Diodeless start circiut for gas discharge lamp having a voltage divider connected across the switching element of the inverter
JPH11514146A (en) * 1996-08-14 1999-11-30 コーニンクレッカ、フィリップス、エレクトロニクス、エヌ.ヴィ. Circuit device
US6078143A (en) * 1998-11-16 2000-06-20 General Electric Company Gas discharge lamp ballast with output voltage clamping circuit
US6541925B1 (en) * 1998-11-18 2003-04-01 Koninklijke Philips Electronics N.V. Resonant converter circuit with suppression of transients during changes in operating condition
ITMI991131A1 (en) * 1999-05-21 2000-11-21 St Microelectronics Srl HALF-BRIDGE SEMI-BRIDGE PILOTING ARCHITECTURE AT VARIABLE FREQUENCY, IN PARTICULAR FOR ELECTRIC LOADS

Also Published As

Publication number Publication date
CA2415510A1 (en) 2003-07-02
ATE336156T1 (en) 2006-09-15
CN100438715C (en) 2008-11-26
DE50207779D1 (en) 2006-09-21
US20030122504A1 (en) 2003-07-03
EP1326484A2 (en) 2003-07-09
US6677716B2 (en) 2004-01-13
CN1430460A (en) 2003-07-16
EP1326484A3 (en) 2005-01-05
DE10200049A1 (en) 2003-07-17

Similar Documents

Publication Publication Date Title
EP1705961A2 (en) Circuit and method for operating lamps
EP0798952A1 (en) Circuit arrangement for operating electric lamps and method of operation
EP0439240B1 (en) Electronic ballast
EP1326484B1 (en) Apparatus for operating discharge lamps
EP0917412B1 (en) Self-oscillating circuit with simplified startup circuit
EP1526622B1 (en) Electronic ballast with protection circuit for switching transitors of a converter
EP0753987B1 (en) Circuit and method of operation for electric lamps
DE10062047A1 (en) Electronic transformer with good immunity to high voltage pulses
DE10241327A1 (en) Circuit arrangement for operating discharge lamps
WO2009010098A1 (en) Circuit arrangement comprising a voltage transformer and associated method
EP0682464B1 (en) Circuit for operating electric lamps
DE19715341C1 (en) Electronic ballast with automatic restart
EP0389847B1 (en) Circuit
EP1658676B1 (en) Circuit and method for conditioning a supply voltage containing voltage peaks
EP0276460B1 (en) Circuit arrangement for operating a low-pressure discharge lamp
EP0707436B1 (en) Circuit for operating incandescent lamps
EP1608208B1 (en) Circuit with shut-down device for operating light sources
DE19722124A1 (en) Circuit arrangement for operating electric light bulbs
DE102005028419A1 (en) Electronic ballast for e.g. coldstarting discharge lamp, has varistor, shutdown device, diode, resistors and integration capacitor connected in parallel for limiting voltage across intermediate circuit capacitor
DE3420229A1 (en) Circuit arrangement for operating metal-vapour discharge lamps
DE102007052669B4 (en) Ballast for a gas discharge lamp, e.g. an HID lamp
EP1223792A1 (en) Ballasting circuit for operating electrical lamps
EP1741319A1 (en) Device for generation of voltage pulse sequences in particular for operation of capacitive discharge lamps
EP1902598B1 (en) Circuit arrangement and method for operating at least one electric lamp
DE10046443A1 (en) Electronic circuit for the detection of the change in gas discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050120

17Q First examination report despatched

Effective date: 20050620

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207779

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061120

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070109

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061204

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111213

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 336156

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50207779

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207779

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703