EP1297639B1 - Strahlformungsverfahren mit zyklisch erneuerten gewichtungsvektoren - Google Patents
Strahlformungsverfahren mit zyklisch erneuerten gewichtungsvektoren Download PDFInfo
- Publication number
- EP1297639B1 EP1297639B1 EP01956300A EP01956300A EP1297639B1 EP 1297639 B1 EP1297639 B1 EP 1297639B1 EP 01956300 A EP01956300 A EP 01956300A EP 01956300 A EP01956300 A EP 01956300A EP 1297639 B1 EP1297639 B1 EP 1297639B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weighting
- vectors
- determined
- base station
- subscriber station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0634—Antenna weights or vector/matrix coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0645—Variable feedback
- H04B7/065—Variable contents, e.g. long-term or short-short
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
Definitions
- the invention relates to a method for beam shaping in one Radio communication system with a base station whose associated antenna device comprises a plurality of antenna elements, so that a spatial resolution in the beam shaping is possible.
- messages In radio communication systems, messages (language, Image information or other data) via transmission channels with the help of electromagnetic waves (radio interface) transfer.
- the transmission takes place both in the downward direction (downlink) from the base station to the subscriber station, as also in the upward direction (uplink) from the subscriber station to the base station.
- Signals transmitted with the electromagnetic waves be subject to their propagation in a propagation medium et al Interference due to interference. disorders noise can cause i.a. by noise of the input stage of the recipient arise. By diffractions and reflections signal components go through different propagation paths. This has the consequence that a signal several times, respectively from different directions, with different Delays, dampings and phasing arrive at the receiver can, and on the other hand can be contributions of the received signal coherent with changing phase relationships during Overlay receivers and there to extinguishing effects on one short-term time scale (almost fading) lead.
- a method is known, wherein a spatial covariance matrix for a connection from a base station is determined to a subscriber station.
- an eigenvector is calculated from the covariance matrix and for connection as a beamforming vector used.
- the transmission signals for the connection are with the Beamforming vector weighted and antenna elements for radiation fed.
- Intracellular Interferences are due the use of joint detection, for example in the Terminals, not included in the beam shaping and a Falsification of received signals due to intercell interference is neglected.
- this method determines in one Environment with multipath propagation a dispersion path with good Transmission characteristics and concentrates the transmission power the base station spatially on this propagation path. However, this does not prevent interference on this transmission short term to signal cancellations and thus lead to interruptions of the transmission can.
- the recommendations of the 3GPP (3 rd Generation Partnership Project, http://www.3gpp.org ) therefore provide methods in which the subscriber station estimates a short-term channel impulse response h m of the channel from the mth antenna element to the subscriber station and calculates weighting factors w m with which the transmit signal is to be weighted before being emitted by the mth antenna element.
- 3GPP 3 rd Generation Partnership Project
- the subscriber station estimates a short-term channel impulse response h m of the channel from the mth antenna element to the subscriber station and calculates weighting factors w m with which the transmit signal is to be weighted before being emitted by the mth antenna element.
- Corresponding concepts have also been described in M. Raitola, A. Hottinen and R. Wichmann, "Transmission diversity in wideband CDMA", published in Proc. 49 th IEEE Vehicular Technology Conf. Spring (VTC '99 Spring), pp. 1545-1549, Houston, Texas 1999.
- a serious problem with this approach is that the vector of the weighting factors estimated by the subscriber station must be transmitted to the base station, and that according to the recommendations of the 3GPP only a small Bandwidth of one bit per slot (slot) available stands.
- the vectors can therefore only be transmitted roughly quantized become.
- the antenna elements adjustable If the channel changes more slowly and z. For example, four time slots for transmission of the vector are at least 16 different values of the vector can be displayed.
- the known concepts reach their limits when the number of antenna elements of the base station is greater than two is because the bandwidth needed to transfer the vector takes with its component number, d. H. with the number the antenna elements to. That means: a large number of Although antenna elements would be desirable on the one hand to the To be able to align transmission beam as accurately as possible, on the other hand may be due to the limited bandwidth available Weighting vector will not be updated as often as this would be required to adapt to the fast fading.
- the invention is based on the object, an improved Specify a method of beam forming, which is a more reliable Shaping the downlink beam allowed.
- the inventive method for data transmission is in a radio communication system with a base station and Used subscriber stations.
- the subscriber stations are For example, mobile stations, such as in a mobile network, or base stations, so in so-called subscriber access networks to the wireless subscriber line.
- the base station points an antenna device (smart antenna) with several antenna elements on.
- the antenna elements allow a directional Reception or a directed transmission of data via the radio interface.
- the inventive method distinguishes between a Initialization phase, each at longer intervals corresponding to a large number of time slots of the relevant Subscriber station, and a working phase, whose steps are more frequent, e.g. up to once per Time slot, to be performed.
- the initialization phase becomes a plurality of so-called first weighting vectors determined in a subsequent work phase the radio communication system are used to a actually used for beamforming current weighting vector new for each cycle of the work phase set.
- the one with the determination of the weighting vectors associated processing effort is therefore relatively rare, in the initialization phases, on; the determination of the current weighting vector, e.g. only a selection or forming a linear combination of the first weighting vectors on the other hand, can do so often be as needed, caused by fast fading To compensate for transmission interruptions.
- weighting vectors are during the existence of a call connection between subscriber station and change base station slowly or not at all, and that the compensation of fast fading by switching or alternating weighting of weighting vectors at the base station at short intervals, can be used in the initialization phase to the base station transmitted information about the components of the weighting vectors also as long-term feedback information and the in the working phase transmitted as short-term feedback information be designated.
- predetermined weighting vectors such vectors are accepted apart from a non-vanishing component, preferably with the Value 1, only components with value 0 have.
- a first preferred embodiment of the method provides that the first weighting vectors are based on measurements of the Downlink transmission are determined. This approach is particularly useful in radio communication systems, using different frequencies for uplink and downlink, because in such radio communication systems is the fast signal fading (almost fading) on the different Frequencies not correlated.
- Steps of the method according to the invention both for the Determination of the first weighting vectors in the initialization phase as well as for the redefinition of the current weighting vectors be executed in the working phase, thus only be executed at the subscriber station. So will Double processing effort avoided, and also circuit components for carrying out the method steps must be provided only once, at the subscriber station.
- the first weighting vectors determined at the subscriber station transmitted to the base station and in the work phase the redefinition of the current weighting vector takes place in that the subscriber station is among the determined ones first weighting vectors selects a dominant and a designation of the selected dominant weighting vector transmits to the base station. Because this transfer not in every single timeslot of the subscriber station must take place, you can temporarily assigned a separate channel or in individual time slots can be the transmission of payload data such as voice from the subscriber station to the base station interrupted or restricted to Transmission bandwidth for the transmission of the weighting vectors to accomplish. These weighting vectors can so with a much higher resolution than this in the conventional transmission bandwidth techniques of one bit per timeslot is possible.
- weighting vectors can also be done in the Time division with the designations take place. It will preferably the ratio of the number of timeslots in which Labels of the weighting vectors are transmitted, to those in which information about new or changed Transfer values of the components of the weighting vectors is dynamically dependent on the speed of the Subscriber station.
- Weighting vectors each correspond to directions of radiation the antenna device of the base station. Though It can be due to fast fading to short-term impairments the transmission on such a directed propagation path come; the directions themselves, in which the downlink signal must be radiated to the subscriber station well to reach, but also change in a moving subscriber station only slowly, say on a time scale of seconds to minutes.
- Weighting vector is used here as the dominant weighting vector designated. Since the individual coefficients of this weighting vector already known at the base station must they are no longer transferred individually in the work phase; it suffices to transfer only one designation which it the base station allows the desired by the subscriber station dominant weighting vector among those at her stored and used for transmission.
- the amount of information required to transmit such a name is required, is completely independent of, with which resolution the coefficients of the weighting vectors have been transmitted in the initialization phase, and they is also independent of the number of coefficients of each vector, that is, the number of antenna elements of the antenna device the base station. This amount of information grows only logarithmically with the number of the base station transmitted weighting vectors. That way is in the working phase of the subscriber station a highly accurate Beamforming with minimal bandwidth requirements for transmission the name possible.
- a first spatial covariance matrix of the received downlink signal and it becomes eigenvectors of this first covariance matrix determined as the weighting vectors to the base station be transmitted.
- This first covariance matrix can be used for the whole of the Subscriber station received downlink signal generated uniformly become. As the individual contributions to from the subscriber station received downlink signal, however, not only through the path traveled, but also through for this Differentiate route needed runtime, it is more informative if the first covariance matrix for each tap of the Downlink signal is generated individually.
- each first covariance matrix has a plurality of Timeslots of the downlink signal is averaged.
- the weighting vector In order to be in the work phase the respectively temporarily most suitable It is preferable to determine the weighting vector generates a second spatial covariance matrix, and as dominant Weighting vector will be the one among the determined Eigenvectors selected with the second covariance matrix has the largest eigenvalue.
- This second spatial Covariance matrix may e.g. for each of the subscriber stations allocated time slot are generated again.
- each antenna element periodically a training sequence which radiates the subscriber station known and to the training sequences of the other antenna elements is orthogonal, and that the weighting vectors are based on the determined by the subscriber station training sequences determined become.
- the number of determined Weighting vectors are two; in this case one bit suffices to denote the respectively dominant weighting vector in the working phase, and this bit can be in transmitted to each of the subscriber station allocated time slot become.
- weighting vectors preferably a power of 2 n , in which case n bits are needed to designate the dominant weighting vector.
- the transmission of this name can be distributed over several time slots; if a bits are available for transmission in each timeslot, n / a time slots are needed and the weighting vector specified by the label is used in the time slots immediately following the full transmission of the label.
- the first weighting vectors based on measurements of uplink transmission determined.
- This approach has the advantage that the transmission of the coefficients of the first weighting vectors not required from the subscriber station to the base station is. Such a method is therefore more compatible with existing mobile systems, such a Do not provide for transmission.
- the first weighting vectors are eigenvalues of a covariance matrix, because these Eigenvalues correspond to a single propagation path between the base station and the subscriber station exchanged several different ways at the same time Radio signal. If between the subscriber station and the base station a direct propagation path (LOS, line of sight), which is for the base station based on the receive statistics of the uplink signal is detected, it is sufficient it that this is the downlink signal with a single, this one Weighted transmission path corresponding weighting vector radiates. In this way, the transmission power of the base station targeted to the direct transmission path, other transmission paths of lesser quality are not targeted supplied with transmission power.
- LOS local area network
- a linear combination of first weighting vectors are used. This matches with a targeted distribution of the transmission power of the base station corresponding to a limited number of propagation paths the number of current values entering the linear combination Weighting vectors. If in such a situation a transmission paths fail quickly due to fast fading, the probability is high that at least one another weighting vector of the linear combination a transmission path with usable quality. this applies especially if it is the first weighting vectors is the eigenvectors of the covariance matrix, since these are the probabilities of destructive interference statistically uncorrelated.
- each propagation path becomes a characteristic space-time block coding associated with the contributions of the various Transmission paths distinguishable under all circumstances power.
- the current weighting vector used by the base station Downlink signal weighted on the antenna elements must not necessarily with one of the determined first weighting vectors be identical; it can also be a Act linear combination of several first weighting vectors.
- a beam shaping based transmitted from the subscriber station to the base station Short term feedback information e.g. done by that the subscriber station to the base station instead of Labels of eigenvectors used Information transmits over the weighting coefficients of the linear combination. This information can give details about the amount and particularly about the phase of the weighting coefficients. This allows a base station two or three a plurality of first weighting vectors in phase and possibly in amplitude to coordinate so that the SNR (signal to noise ratio) at the subscriber device.
- SNR signal to noise ratio
- the weighting vectors determined by a subscriber station can be transmitted to the base station by each The values of their individual components successively to the Base station to be transmitted.
- the required amount of data and therefore the duration of the transfer depends on the resolution with which the weighting vectors are determined and be transmitted.
- Such component-wise transmission is useful if in an early stage of the compound between subscriber and base station that of the subscriber station detected vectors are transmitted for the first time have to.
- the base station has a set of weighting vectors and the initialization phase is repeated to current Determine values of the first weighting vectors (what should reasonably be done regularly), can in considerable Scope of transmission bandwidth during the overhaul of the Long-term feedback information can be saved by instead of the values of the components of a currently determined first weighting vector only the change of the Components compared to the previous value of this vector the subscriber station is transmitted to the base station and there to a determined in the previous initialization phase Value is added.
- the way to the base station recovered current value of the first weighting vector can have a much higher resolution than the transmitted bit number corresponds.
- the difference can be limited to that for each component of the first weighting vector the sign of the difference between that in the current one Initialization phase determined value and one in one value formed before the previous initialization phase is that the signs are transmitted to the base station and each component of the first weighting vector stored there according to the transmitted sign by one Unit is incremented or decremented.
- Figure 1 shows the structure of a radio communication system in which the method according to the invention is applicable. It consists of a plurality of mobile switching centers MSC, which are networked with each other or provide access to a fixed network PSTN. Furthermore, these mobile switching centers MSC are each connected to at least one base station controller BSC. Each base station controller BSC in turn allows a connection to at least one base station BS. Such a base station BS can establish a communication link to subscriber stations MS via a radio interface. For this purpose, at least some of the base stations BS are equipped with antenna devices AE, which have a plurality of antenna elements (A 1 -A A M ).
- Fig. 1 are exemplary compounds V1, V2, Vk for transmission of payload and signaling information between subscriber stations MS1, MS2, MSk, MSn and one Base station BS shown.
- An operation and maintenance center OMC implements control and maintenance functions for the mobile network or parts of it. The functionality This structure is applicable to other radio communication systems transferable, in which the invention can be used, in particular for subscriber access networks with a wireless subscriber line.
- Fig. 2 shows schematically the structure of a base station BS.
- a signal generating device SA composes the transmission signal for the subscriber station MSk in radio blocks and assigns it to a frequency channel TCH.
- a transmission / reception device TX / RX receives the transmission signal s k (t) from the signal generation device SA.
- the transceiver TX / RX comprises a beamforming network, in which the transmission signal s k (t) for the subscriber station MSk is combined with transmission signals s1 (t), s 2 (t),... Intended for other subscriber stations, where the same transmission frequency is assigned.
- the beamforming network comprises for each subscriber signal and each antenna element a multiplier M which multiplies the transmission signal s k (t) by a component w m (k) of a weighting vector w (k) associated with the receiving subscriber station MSk.
- a structure analogous to the described beamforming network which is not specifically shown in the figure, is arranged between the antenna elements A 1 , A 2 ,..., A M and a digital signal processor DSP to process the received mixture of uplink signals into the Divide contributions of the individual subscriber stations and supply them separately to the DSP.
- a memory device SE contains for each subscriber station MSk a set of weighting vectors w (k, 1) , w (k, 2) ,..., Among which the weighting vector w (k) used by the multipliers M is selected.
- FIG 3 shows schematically the structure of a subscriber station MSk for carrying out a first embodiment of the method according to the invention.
- the subscriber station MSk comprises a single antenna A which receives the downlink signal transmitted by the base station BS.
- the baseband converted reception signal from the antenna A is fed to a so-called Rake Searcher RS, which serves to measure propagation time differences of contributions of the downlink signal, which have reached the antenna A on different propagation paths.
- the receive signal is also applied to a rake amplifier RA which comprises a plurality of rake fingers, three of which are shown in the figure, and each having a delay DEL and a despreader EE.
- the delay elements DEL delay the received signal in each case by a delay value ⁇ 1 , ⁇ 2 , ⁇ 3 , .... supplied by the Rake-Searcher RS.
- the despreader descramblers EE deliver a sequence of estimated symbols at their outputs, the results of the estimation may be different for each descrambler due to different phase angles of the downlink signal Entscrambling- and spreading code in the individual fingers of the rake amplifier.
- despreading scramblers EE are also the results of the estimation of training sequences included, broadcast by the base station and for each antenna element of the base station quasi-orthogonal and characteristic.
- a signal processor SP is used to compare the results of the estimation these training sequences with the subscriber station known, actually contained in the training sequences Symbols. Based on this comparison, the impulse response the transmission channel between base station BS and subscriber station MSk for every single finger or tap be determined.
- a Maximum Ratio Combiner MRC the individual estimated symbol sequences to a combined symbol sequence with the best possible signal-to-noise ratio and these together to a speech signal processing unit SSV delivers.
- This unit SSV representing the received symbol sequence in a for a user audible signal converts or receives tones into a transmit symbol sequence implements, is well known and needs here not to be described.
- the signal processor SP determines the impulse responses of each antenna element AE 1 ,..., AE M individually for each tap and combines these impulse responses in the manner known, for example, from the cited DE 198 03 188 to form a spatial covariance matrix R xx .
- These spatial covariance matrices are supplied to a computing unit RE, the operation of which will be described with reference to the flowchart of FIG.
- the arithmetic unit RE sums a large number of supplied covariance matrices R xx separately for each tap and forms an average value R xx the covariance matrices.
- the analysis can apply to all eigenvectors and values of the covariance matrix R xx
- a control unit KE determines, among the eigenvectors found in the analysis, a limited number, eg 2 or 4, which have the eigenvalues with the highest amounts and which consequently correspond to the transmission paths with the lowest attenuation.
- a method for Eigenvektorananlyse can be used, which are the eigenvectors of the covariance matrix R xx in the order of decreasing amounts of eigenvalues, and which is aborted when the finite number of eigenvectors is determined.
- the coefficients of the determined eigenvectors w (k, 1) , w (k, 2) , ... are combined with the useful data stream coming from the speech processing unit SSV and transmitted to the base station via the antenna A (step 4).
- the base station stores them in its memory unit SE for use as coefficients for the multipliers M of the beamforming network.
- the arithmetic unit RE enters a working phase in which it receives these covariance matrices R xx respectively from the signal processor SP based on a single time slot of the subscriber station (step 5) and multiplied by each of the eigenvectors stored in the memory unit and transmitted to the base station, to determine the eigenvalues of these vectors for the covariance matrix R xx in question (step 6).
- the number of the eigenvector having the larger eigenvalue is transmitted to the base station in step 7 via the control unit KE. This eigenvector is called the dominant eigenvector, because it provides the strongest and usually best contribution to the received signal.
- the vector used by the base station for beamforming can be updated in each timeslot and used for beamforming in the subsequent timeslot.
- the steps of the working phase can be repeated cyclically many times be done before the initialization phase again must be to the coefficients of the eigenvectors To update.
- predetermined first weighting vectors are used instead of determined eigenvectors for weighting the downlink signal.
- the number of these predetermined first weighting vectors is equal to the number of eigenvectors obtained later and not larger than the number of antenna elements of the base station.
- the predetermined first weighting vectors form an orthonormal system, in particular they can be a set of vectors of the form (1,0, 0, ...) (0, 1, 0, ...), (0,0, 1 , 0, ...) act.
- Such a choice of predetermined weighting vectors means that each predetermined weighting vector corresponds to the action of a single antenna element on the downlink signal.
- the subscriber station By transmitting a designation of a weighting vector to the base station, the subscriber station thus has the opportunity to determine which of the multiple antenna elements is used to broadcast the downlink signal intended for it.
- the number of detected and transmitted to the base station Eigenvectors is two, so only one transmitted from the subscriber station to the base station Bit to specify which of these eigenvectors of the base station is to be used for transmission.
- This bit can also be understood as an indication of the coefficients a linear combination of the two eigenvectors, each after the value of this bit is either (0,1) or (1,0).
- the base station continuously with both weight vectors transmit weighted downlink signals, and that the relative phase of the two weighting vectors based on the transmitted from the subscriber station Short-term feedback information is set.
- the transmitted from the subscriber station Linear combination coefficients and / or Phase information also each comprise more than one bit, so that intermediate values of the coefficients or the Phase shift can be adjusted, and she can optionally transmitted to several time slots become.
- the method is readily based on more than two eigenvectors generalizable; in this case, the short-term feedback information about amount and / or phase of each Transfer eigenvectors in a given order be the base station, the assignment of amplitudes and / or Allows phase values to an eigenvector, or it the two concepts presented above can be combined, in each case a designation of an eigenvector in Related to amount and / or phase information to the Base station is transmitted.
- the transmission of long-term feedback information indicates the coefficients of the individual eigenvectors to which Base station can be done via its own signaling channel.
- the existing standards better compatible, but is a time division multiplex transmission with the short term feedback information within the payload data packets.
- FIGS. 6A, B and C show different formats for the Multiplex transmission of short term and long term feedback information as part of a WCDMA system.
- Each transmission frame comprises 15 timeslots.
- the multiplex format of Figure 6A is at each 14 of the Timeslots of such a framework the available Feedback bit for transmitting short term feedback information, i.e. of labels of eigenvectors to use or of relative amplitudes and phases of the individual eigenvectors corresponding downlink signals, transfer.
- the fifteenth frame becomes a long-term feedback bit transmit what information about the components includes the determined by the subscriber station eigenvectors.
- Figure 6B shows a second multiplex format in which each one four time slots, in which short-term feedback information is transmitted, with a time slot for long-term feedback information alternate.
- This format is suitable if a fast movement of the subscriber station requires a more frequent update of the eigenvectors but it is also useful for the initial phase of a Connection in which it is desirable after initial calculation a set of eigenvectors as quickly as possible to transfer to the base station.
- Alternatively, too a format that uses two time slots each, in which short term feedback information is transmitted is followed, one for long-term feedback information.
- Both formats have compared to other numerical ratios of Time slots for short-term or long-term feedback information the advantage that the periods of these formats of 5 or 3 bits fit exactly in a time frame.
- the formats described above have the advantage that is an even number of bits of short-term feedback information in every WCDMA frame. If the number of detected and transmitted to the base station Eigenvectors is two, the designation of an eigenvector So if only one bit is included, this has no effect. In the practically significant case, however, that each four eigenvectors be transmitted to the base station and to their selection from the subscriber station to the base station transmitted name is two bits long, so always one fits integer number of labels in a frame, and a merge of bits transmitted in different frames to one Designation is not required.
- Figure 6C shows a multiplex format in an extended one Meaning in which the transmission of short-term feedback information completely omitted.
- Such a format is for two different application situations especially useful:
- the second application situation is one of extremely fast moving subscriber station at which the reception qualities individual transmission paths vary so fast that the of the subscriber station supplied short-term feedback information at the time, where applied by the base station can be, is already outdated. At such a station Therefore, it makes more sense, the eigenvectors as fast as possible to update.
- To broadcast the downlink signal can e.g. always the best eigenvector used are assumed, on the assumption that reception interruptions fast fading due to the high speed of the Subscriber station will never stop so long that the interruption is not bridged by interpolation, or it Several eigenvectors can be used simultaneously.
- FIGS. 8A and 8B show the time evolution of a component c of a first weighting vector used by the base station BS for two different methods for transmitting the long-term feedback information from the subscriber station MSk to the base station BS.
- a thin solid line c mess denotes the time course of the value of the component c measured by the subscriber station
- a bold solid line c ste shows the evolution of the value of c actually used by the base station for the beam shaping.
- the component c may be a real-valued component of a first weighting vector, a real or imaginary part of a complex-valued component, or an amount or angle component.
- the base station BS Due to the time multiplex transmission with the Short term feedback information has very limited bandwidth for the transmission of the values of c, the base station BS the values determined by the subscriber station MSk in each case only follow with a non-vanishing delay, the may be several timeslots and among others of the Resolution of the transmitted long-term feedback information is determined. This delay is however in the representation Figures 8A and 8B neglected to the comparison not unnecessarily complicating the two methods.
- component c is using a resolution of four bits is measured and processed.
- three bits are used, which can represent the values -3, -2, -1, 0, 1, -..., 4.
- One of four bits is saved. The savings could be more pronounced if the time interval between two measurements of c becomes shorter, the difference to be transmitted correspondingly smaller and the number of bits required for their transmission would be smaller.
- c can be incremented only to the value 6, so there is a significant deviation between the two values.
- c steu is incremented at short time intervals, until the time 7 5 c c steu measured has overtaken.
- a second embodiment of the method according to the invention will be described with reference to FIG.
- this embodiment become the first weighting vectors by measurements the uplink transmission from a subscriber station MSk determined to the base station BS.
- the base station BS is closed this purpose with components analogous to that with reference to FIG 3 rake searcher described for the subscriber station RS, rake amplifier RA, signal processor SP, arithmetic unit RE, Memory element SE etc. equipped.
- the computing unit RE forms a averaged covariance matrix for each tap of the Uplink signal and determines the eigenvectors and eigenvalues the covariance matrix thus obtained. These eigenvalues correspond each one transmission path and contain the information about the relative phases of the corresponding contribution the uplink signal at the individual antenna elements and thus about the direction from which to receive the post becomes. If the frequencies of uplink and downlink at the considered Radio communication system are the same, the phase information contained in the eigenvector directly for the weighting of the downlink signal is used.
- step 2 also includes the determination of the eigenvalues of the eigenvectors.
- the amount of the eigenvalue is on Measure the quality of each individual transmission path; For the later use will therefore be a given number of e.g. 2 or 4 eigenvectors selected and stored in step 3, the eigenvalues among the found eigenvectors with the highest amount.
- the arithmetic unit receives cyclic covariance matrices from the signal processor, each covariance matrix being each on a single tap of the Uplink signal is related.
- the stored in the memory unit SE Eigenvectors correspond to one each certain tap.
- the arithmetic unit determines in step 6 for each stored eigenvector its current eigenvalue multiplied by the one supplied in step 5 same tap as the eigenvector corresponding covariance matrix.
- the eigenvalue obtained provides a measure of the transmission quality on the transmission path corresponding to the eigenvector with a temporal resolution that the rate of Generation of covariance matrices in the working phase corresponds.
- the covariance matrices of the Signal processor allocated for each of the subscriber station Timeslot currently generated; the eigenvalue is therefore a measure of the transmission quality of the transmission path considering the fast fading.
- a step 8 follows in which a current weighting vector w (k) is calculated by a linear combination of the stored eigenvectors w (k, 1) , w (k, 2) , ... is formed, each of the eigenvectors w (k, 1) , w (k, 2) , ... in the linear combination multiplied by its eigenvalue obtained in step 6 or its amount.
- a normalization of the linear combination is possible.
- This weighting in the formation of the linear combination ensures that those transmission paths which have the best transmission characteristics in the short term dominate the downlink signal radiated by the base station.
- the other eigenvectors entering the current weighting vector w (k) serve to ensure that even in the event that the highest weighted transmission path fails from one timeslot to the next, a useful signal arrives at the subscriber station.
- the associated eigenvector can be used directly as the current weighting vector w (k) , in other words all other eigenvectors enter the linear combination with coefficients 0.
- Such codes are z. From Tarokh et al., Space-Time Block Codes of Orthogonal Designs, IEEE Trans. On Information Theory, Vol. 45, No. 5, July 1999. A section of the transceiver Tx / Rx of such a base station is shown in FIG.
- a complex-valued symbol sequence determined for the subscriber station MSk is split into two lines, one of which contains a space-time block encoder STBE, which here interchanges two successive symbols of the symbol sequence s k (t) in their sequence, conjugates and reverses the sign of a symbol.
- STBE space-time block encoder
- Variant of the second embodiment of the method is the Step 8 of forming a linear combination thus by the Space-time block encoding replaced. Otherwise match the process steps; in particular, both exist Variants the possibility to save those among the ones Eigenvectors that enter into the linear combination, or used to weight the space-time block coded signals from one cycle of work to the next exchange.
- Space-time block codes can also be used at a base station be used, which has a downlink signal to three or more each corresponding to an eigenvector transmission paths radiates.
- a first option for this is the use known per se space-time block codes that the generation of three or more non-destructive interfering Enable symbol sequences from a symbol sequence.
- a second, preferred possibility arises from the fact that it is rare occurs that three or more transmission paths exactly the same Have maturities. Only if the terms of these transmission paths are the same, are the (not time-shifted) Training sequences of the signals transmitted on these paths orthogonal. Space-time block coding is therefore generally used only temporarily and only for every two of the transmission paths needed.
- the subscriber station can therefore through Monitoring the orthogonality of those on these transmission paths received downlink signals recognize time equality and - possibly in the context of the short-term feedback information - the Base station respectively denote pairs of eigenvectors the space-time block coding is to be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Forging (AREA)
- Electron Beam Exposure (AREA)
Description
- Fig. 1
- ein Blockschaltbild eines Mobilfunknetzes
- Fig. 2
- ein Blockschaltbild der Basisstation;
- Fig. 3
- ein Blockschaltbild der Teilnehmerstation und
- Fig. 4
- ein Flußdiagramm des Verfahrens gemäß einer ersten Ausgestaltung;
- Fig. 5
- ein Flußdiagramm des Verfahrens gemäß einer zweiten Ausgestaltung;
- Fig. 6A, B und C
- Multiplexformate für die Übertragung von Kurzzeit- und Langzeit-Rückkopplungsinformation;
- Fig. 7
- ein Blockschaltbild eines Teils einer Sende/Empfangseinrichtung einer Basisstation; und
- Fig. 8A, B
- die zeitliche Entwicklung einer Komponente eines Gewichtungsvektors an einer Basisstation für zwei verschiedene Verfahren zur Rückkopplung von Information über die Komponenten des Gewichtungsvektors an die Basisstation.
Claims (33)
- Verfahren zur Strahlformung in einem Funk-Kommunikationssystem mit Teilnehmerstationen (MSk,MS1 bis MSn) und einer Basisstation (BS), die eine Antenneneinrichtung (AE) mit mehreren Antennenelementen (A1 bis AM) aufweist, die ein Downlinksignal jeweils gewichtet mit Koeffizienten wi, i=1, ..., M eines aktuellen Gewichtungsvektors w abstrahlen, dadurch gekennzeichnet, daßa) in einer Initialisierungsphase eine Mehrzahl von ersten Gewichtungsvektoren w (j) ermittelt werden, undb) in einer Arbeitsphase der für die Ausstrahlung eines Zeitschlitzes des für die Teilnehmerstation (MSk) bestimmten Downlinksignals verwendete aktuelle Gewichtungsvektor w anhand der ermittelten ersten Gewichtungsvektoren zyklisch neu festgelegt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ersten Gewichtungsvektoren anhand von Messungen der Downlink-Übertragung ermittelt werden.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daßa) in der Initialisierungsphase die ersten Gewichtungsvektoren w (j) an der Teilnehmerstation ermittelt werden, und die ermittelten ersten Gewichtungsvektoren an die Basisstation übertragen werden; und daßb) in der Betriebsphase die Teilnehmerstation unter den ermittelten ersten Gewichtungsvektoren einen dominierenden auswählt und eine Bezeichnung des dominierenden Gewichtungsvektors an die Basisstation überträgt.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß zur Übertragung eines ersten Gewichtungsvektors an die Basisstation an der Teilnehmerstation die Differenz zwischen dem in der aktuellen Initialisierungsphase ermittelten Wert und dem in einer vorherigen Initialisierungsphase ermittelten Wert gebildet wird, diese Differenz an die Basisstation übertragen wird und dort zu einem in der vorherigen Phase ermittelten Wert addiert wird, um den aktuellen Wert des ersten Gewichtungsvektors wiederzugewinnen.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß zur Übertragung eines ersten Gewichtungsvektors an die Basisstation an der Teilnehmerstation das Vorzeichen der Differenz zwischen dem in der aktuellen Initialisierungsphase ermittelten Wert und dem in einer vorherigen Initialisierungsphase ermittelten Wert gebildet wird, die Vorzeichen an die Basisstation übertragen werden und jede Komponente des dort gespeicherten ersten Gewichtungsvektors entsprechend dem übertragenen Vorzeichen um eine Einheit inkrementiert bzw. dekrementiert wird.
- Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß in der Initialisierungsphase eine erste räumliche Kovarianzmatrix des empfangenen Downlinksignals erzeugt wird, daß Eigenvektoren der ersten Kovarianzmatrix ermittelt werden und daß die Eigenvektoren als erste Gewichtungsvektoren übertragen werden.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die erste Kovarianzmatrix für jeden Tap des Downlinksignals einzeln erzeugt wird.
- Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die ermittelten ersten Eigenvektoren diejenigen aus der Gesamtheit der Eigenvektoren der ersten Kovarianzmatrix oder -matrizen sind, die die größten Eigenwerte aufweisen.
- Verfahren nach Anspruch 6, 7 oder 8, dadurch gekennzeichnet, daß die erste Kovarianzmatrix über eine Vielzahl von Zeitschlitzen des Downlinksignals gemittelt wird.
- Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß in der Betriebsphase zyklisch eine zweite räumliche Kovarianzmatrix erzeugt wird, und daß als dominierender Gewichtungsvektor derjenige unter den ermittelten Eigenvektoren ausgewählt wird, der mit der zweiten Kovarianzmatrix den größten Eigenwert aufweist.
- Verfahren nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, daß jedes Antennenelement periodisch eine Trainingssequenz ausstrahlt, die zu den Trainingssequenzen der anderen Antennenelemente orthogonal ist, und daß die ersten Gewichtungsvektoren anhand der von der Teilnehmerstation empfangenen Trainingssequenzen ermittelt werden.
- Verfahren nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, daß die Zahl der ermittelten ersten Gewichtungsvektoren zwei beträgt, und daß die Bezeichnung des dominanten Gewichtungsvektors in jedem der Teilnehmerstation zugeteilten Zeitschlitz übertragen wird.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Bezeichnung zur Strahlformung in dem unmittelbar auf ihre Übertragung folgenden Zeitschlitz eingesetzt wird.
- Verfahren nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, daß die Zahl der ermittelten ersten Gewichtungsvektoren 2n, n=2, 3, ... beträgt, und daß die n Bit umfassende Bezeichnung des dominanten Gewichtungsvektors in Portionen von a Bits, a=1, ..., n in jedem der Teilnehmerstation zugeteilten Zeitschlitz übertragen wird.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Bezeichnung zur Strahlformung in den n/a unmittelbar auf ihre Übertragung folgenden Zeitschlitzen eingesetzt wird.
- Verfahren nach einem der Ansprüche 3 bis 15, dadurch gekennzeichnet, daß in bestimmten Zeitschlitzen anstelle der Bezeichnung des dominierenden Gewichtungsvektors Information über die Komponenten eines Gewichtungsvektors übertragen wird.
- Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Verhältnis der Zahl von Zeitschlitzen, in denen eine Bezeichnung eines Gewichtungsvektors übertragen wird, oder der Zeitschlitze, in denen Information über die Komponenten eines Gewichtungsvektors übertragen wird, in Abhängigkeit von der Bewegungsgeschwindigkeit der Teilnehmerstation variabel ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die ersten Gewichtungsvektoren anhand von Messungen der Uplink-Übertragung ermittelt werden.
- Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß in der Initialisierungsphase eine erste räumliche Kovarianzmatrix des empfangenen Uplinksignals erzeugt wird, daß Eigenvektoren der ersten Kovarianzmatrix ermittelt werden und daß die Eigenvektoren als erste Gewichtungsvektoren verwendet werden.
- Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die erste Kovarianzmatrix für jeden Tap des Uplinksignals einzeln erzeugt wird.
- Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die ermittelten Eigenvektoren diejenigen aus der Gesamtheit der Eigenvektoren der ersten Kovarianzmatrix oder -matrizen sind, die die größten Eigenwerte aufweisen.
- Verfahren nach Anspruch 19, 20 oder 21, dadurch gekennzeichnet, daß die erste Kovarianzmatrix über eine Vielzahl von Zeitschlitzen des Uplinksignals gemittelt wird.
- Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, daß in der Betriebsphase zyklisch eine zweite räumliche Kovarianzmatrix erzeugt wird, und daß als dominierender Gewichtungsvektor derjenige unter den ermittelten Eigenvektoren ausgewählt wird, der mit der zweiten Kovarianzmatrix den größten Eigenwert aufweist.
- Verfahren nach einem der Ansprüche 19 bis 23, dadurch gekennzeichnet, daß jede Teilnehmerstation periodisch eine Trainingssequenz ausstrahlt, und daß die ersten Gewichtungsvektoren anhand der von der Basisstation empfangenen Trainingssequenzen ermittelt werden.
- Verfahren nach einem der Ansprüche 1, 2, 16 bis 24, dadurch gekennzeichnet, daß der aktuelle Gewichtungsvektor eine Linearkombination der ersten Gewichtungsvektoren ist.
- Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß die Teilnehmerstation in der Betriebsphase Information über die Koeffizienten der Linearkombination an die Basisstation überträgt.
- Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die Information eine Phase und/oder einen Betrag eines Koeffizienten der Linearkombination angibt.
- Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, daß die Zahl der ersten Gewichtungsvektoren 2 ist.
- Verfahren nach Anspruch 19 und Anspruch 25, dadurch gekennzeichnet, daß die Koeffizienten der Linearkombination für einen ersten Gewichtungsvektor um so größer gewählt werden, je größer dessen Eigenwert ist.
- Verfahren nach einem der Ansprüche 1, 2, 16 bis 22, dadurch gekennzeichnet, daß aus einer für die Teilnehmerstation (MSk) bestimmten Symbolfolge mehrere Downlink-Signale erzeugt werden, die jeweils eine unterschiedliche Space-Time-Block-Codierung aufweisen, und daß jedes der Downlinksignale mit einem anderen aktuellen Gewichtungsvektor gewichtet ausgestrahlt wird.
- Verfahren nach Anspruch 25 oder 29, dadurch gekennzeichnet, daß der aktuelle Gewichtungsvektor aus den ersten Gewichtungsvektoren ausgewählt wird, wenn ein LOS-Übertragungsweg zwischen Basisstation und Teilnehmerstation existiert.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor Abschluß der Ermittlung der Mehrzahl von ersten Gewichtungsvektoren w (j) die Festlegung des für die Ausstrahlung eines Zeitschlitzes des für die Teilnehmerstation (MSk) bestimmten Downlinksignals verwendeten aktuellen Gewichtungsvektors w anhand von vorab festgelegten Gewichtungsvektoren erfolgt.
- Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß die vorab festgelegten Gewichtungsvektoren jeweils genau eine nichtverschwindende Komponente haben.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10032426 | 2000-07-04 | ||
DE10032426A DE10032426B4 (de) | 2000-07-04 | 2000-07-04 | Strahlformungsverfahren |
PCT/DE2001/002405 WO2002003565A2 (de) | 2000-07-04 | 2001-06-29 | Strahlungsverfahren mit zyklisch erneuerten gewichtungsvektoren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1297639A2 EP1297639A2 (de) | 2003-04-02 |
EP1297639B1 true EP1297639B1 (de) | 2005-01-19 |
Family
ID=7647716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01956300A Expired - Lifetime EP1297639B1 (de) | 2000-07-04 | 2001-06-29 | Strahlformungsverfahren mit zyklisch erneuerten gewichtungsvektoren |
Country Status (10)
Country | Link |
---|---|
US (1) | US7099630B2 (de) |
EP (1) | EP1297639B1 (de) |
JP (1) | JP4027224B2 (de) |
KR (1) | KR100559343B1 (de) |
CN (1) | CN1197270C (de) |
AT (1) | ATE287594T1 (de) |
AU (1) | AU2001278373A1 (de) |
DE (2) | DE10032426B4 (de) |
ES (1) | ES2232649T3 (de) |
WO (1) | WO2002003565A2 (de) |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295509B2 (en) * | 2000-09-13 | 2007-11-13 | Qualcomm, Incorporated | Signaling method in an OFDM multiple access system |
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
DE10051144C2 (de) * | 2000-10-16 | 2002-11-14 | Siemens Ag | Verfahren zur Verbesserung einer Kanalabschätzung in einem Funk-Kommunikationssystem |
DE10051133A1 (de) | 2000-10-16 | 2002-05-02 | Siemens Ag | Strahlformungsverfahren |
ES2266010T3 (es) * | 2000-11-17 | 2007-03-01 | Nokia Corporation | Metodo para controlar la ponderacion de señales de datos en transceptores de elementos multiples y dispositivos y red de telecomunicaciones correspondientes. |
DE10058060A1 (de) * | 2000-11-23 | 2002-05-29 | Siemens Ag | Verfahren und Vorrichtung zur Feedback-Übertragung in einem Funk-Kommunikationssystem |
DE10131946B4 (de) * | 2001-07-02 | 2014-10-16 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Mobilfunk-Kommunikationssystems und Stationen dafür |
US7046978B2 (en) * | 2002-02-08 | 2006-05-16 | Qualcomm, Inc. | Method and apparatus for transmit pre-correction in wireless communications |
EP1476967B1 (de) * | 2002-02-21 | 2013-11-06 | Samsung Electronics Co., Ltd. | Mobilkommunikationsvorrichtung mit einem antennenarray und mobilkommunikationsverfahren |
DE10232694A1 (de) * | 2002-07-18 | 2004-01-29 | Siemens Ag | Verfahren zur dynamischen Anpassung einer Strahlformung in einem Funk-Kommunikationssystem |
EP1383250B1 (de) * | 2002-07-18 | 2006-02-01 | Siemens Aktiengesellschaft | Verfahren zur dynamischen Anpassung einer Strahlformung in einem Funk-Kommunikationssystem |
US7412212B2 (en) | 2002-10-07 | 2008-08-12 | Nokia Corporation | Communication system |
WO2004040690A2 (en) * | 2002-10-29 | 2004-05-13 | Nokia Corporation | Low complexity beamformers for multiple transmit and receive antennas |
JP4154229B2 (ja) * | 2002-12-27 | 2008-09-24 | 富士通株式会社 | 適応アレーアンテナ制御装置 |
FR2849970A1 (fr) * | 2003-01-10 | 2004-07-16 | Thomson Licensing Sa | Systeme de mesure de qualite de reception en diversite |
US7079870B2 (en) * | 2003-06-09 | 2006-07-18 | Ipr Licensing, Inc. | Compensation techniques for group delay effects in transmit beamforming radio communication |
WO2005053185A1 (fr) * | 2003-11-28 | 2005-06-09 | Huawei Technologies Co., Ltd. | Procedes et dispositifs pour realiser une superposition dans des reseaux d'antennes omnidirectionnelles |
DE60314924T2 (de) * | 2003-12-22 | 2008-03-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Messverfahren zur räumlichen ablaufplanung |
JP4292093B2 (ja) * | 2004-02-24 | 2009-07-08 | 富士通株式会社 | アレーアンテナシステム、ウエイト制御装置及びウエイト制御方法 |
KR20050106658A (ko) * | 2004-05-06 | 2005-11-11 | 한국전자통신연구원 | Ofdm/tdd 방식의 하향링크용 고유빔을 형성하기위한 스마트 안테나 시스템 및 그 방법 |
US9148256B2 (en) | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US7920646B2 (en) | 2004-12-21 | 2011-04-05 | Samsung Electronics Co., Ltd | Method for selecting switched beam using pilot signal and system thereof |
EP1691493A1 (de) * | 2005-02-14 | 2006-08-16 | Siemens Aktiengesellschaft | Sender- und emfängerseitige Bearbeitung von mit einer Smart Antenna abgestrahlten bzw. empfangenen Signalen |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9154211B2 (en) * | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US9408220B2 (en) | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US8599945B2 (en) | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US20070071147A1 (en) * | 2005-06-16 | 2007-03-29 | Hemanth Sampath | Pseudo eigen-beamforming with dynamic beam selection |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US20070041457A1 (en) | 2005-08-22 | 2007-02-22 | Tamer Kadous | Method and apparatus for providing antenna diversity in a wireless communication system |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US8738053B2 (en) * | 2005-09-21 | 2014-05-27 | Broadcom Corporation | Method and system for finding a threshold for semi-orthogonal user group selection in multiuser MIMO downlink transmission |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
WO2008002224A1 (en) * | 2006-06-26 | 2008-01-03 | Telefonaktiebolaget L M Ericsson (Publ) | A method and apparatus to optimize the choice of communication link in a wireless network with mimo |
KR101237384B1 (ko) * | 2006-07-10 | 2013-02-26 | 인하대학교 산학협력단 | 무선 통신 네트워크에서 빔 형성 장치 및 방법 |
US8249513B2 (en) * | 2007-08-13 | 2012-08-21 | Samsung Electronics Co., Ltd. | System and method for training different types of directional antennas that adapts the training sequence length to the number of antennas |
JP5109707B2 (ja) * | 2008-02-19 | 2012-12-26 | コニカミノルタビジネステクノロジーズ株式会社 | 定着装置及び画像形成装置 |
KR101408938B1 (ko) * | 2008-04-02 | 2014-06-17 | 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 | 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법 |
US8478204B2 (en) * | 2008-07-14 | 2013-07-02 | Samsung Electronics Co., Ltd. | System and method for antenna training of beamforming vectors having reuse of directional information |
US8380531B2 (en) * | 2008-07-25 | 2013-02-19 | Invivodata, Inc. | Clinical trial endpoint development process |
KR101888649B1 (ko) * | 2011-11-17 | 2018-08-16 | 삼성전자주식회사 | 빔포밍 방법, 이를 수행하는 장치 및 의료영상시스템 |
KR102185415B1 (ko) * | 2013-01-11 | 2020-12-02 | 삼성전자주식회사 | 빔 포밍 모듈, 상기 빔 포밍 모듈을 이용하는 초음파 이미징 장치, 상기 빔 포밍 모듈을 이용한 빔 포밍 방법 및 상기 빔 포밍 모듈을 이용한 초음파 이미징 장치의 제어 방법 |
EP3577781A4 (de) * | 2017-02-02 | 2020-08-26 | Nokia Technologies Oy | Adaptive explizite csi-rückkopplung und overhead-reduktion |
EP4164137B1 (de) | 2021-10-05 | 2024-07-17 | Nokia Solutions and Networks Oy | Berechnung von strahlformungsparametern |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US634199A (en) * | 1898-03-25 | 1899-10-03 | F D Cummer & Son Company | Mechanical drier. |
US5634199A (en) | 1993-04-14 | 1997-05-27 | Stanford University | Method of subspace beamforming using adaptive transmitting antennas with feedback |
EP0807989B1 (de) | 1996-05-17 | 2001-06-27 | Motorola Ltd | Verfahren und Vorrichtung zur Gewichtung eines Uebertragungsweges |
KR100229094B1 (ko) | 1996-06-28 | 1999-11-01 | 최승원 | 수신신호에 대한 자기상관행렬의 최대고유치에 대응하는 고유벡터를 이용한 배열 안테나의 신호 처리 방법 |
US6275543B1 (en) * | 1996-10-11 | 2001-08-14 | Arraycomm, Inc. | Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing |
EP0970388B1 (de) * | 1997-03-25 | 2001-11-21 | Siemens Aktiengesellschaft | Verfahren zum richtungsschätzen |
US5999131A (en) * | 1997-07-01 | 1999-12-07 | Information Systems Laboratories, Inc. | Wireless geolocation system |
EP0899896A1 (de) | 1997-08-27 | 1999-03-03 | Siemens Aktiengesellschaft | Verfahren und Einrichtung zur Schätzung räumlicher Parameter von Überstragungskanälen |
US5982327A (en) * | 1998-01-12 | 1999-11-09 | Motorola, Inc. | Adaptive array method, device, base station and subscriber unit |
DE19803188B4 (de) * | 1998-01-28 | 2006-04-20 | Siemens Ag | Verfahren und Basisstation zur Datenübertragung in einem Funk-Kommunikationssystem |
JP3464606B2 (ja) | 1998-03-31 | 2003-11-10 | 松下電器産業株式会社 | 無線通信装置及び無線通信方法 |
US6400780B1 (en) * | 1998-11-06 | 2002-06-04 | Lucent Technologies Inc. | Space-time diversity for wireless systems |
FI108588B (fi) | 1998-12-15 | 2002-02-15 | Nokia Corp | Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon |
US6177906B1 (en) | 1999-04-01 | 2001-01-23 | Arraycomm, Inc. | Multimode iterative adaptive smart antenna processing method and apparatus |
US7110480B1 (en) * | 1999-04-06 | 2006-09-19 | Sanyo Electric Co., Ltd. | Adaptive array apparatus |
US6166690A (en) * | 1999-07-02 | 2000-12-26 | Sensor Systems, Inc. | Adaptive nulling methods for GPS reception in multiple-interference environments |
US6326976B1 (en) * | 1999-08-06 | 2001-12-04 | Tobias Huettner | Method for determining the representation of a picture on a display and method for determining the color of a pixel displayed |
DE19951524C1 (de) * | 1999-10-26 | 2001-08-23 | Siemens Ag | Verfahren zur Strahlformung in einem Funk-Kommunikationssystem |
US6571225B1 (en) * | 2000-02-11 | 2003-05-27 | International Business Machines Corporation | Text categorizers based on regularizing adaptations of the problem of computing linear separators |
DE10026077B4 (de) * | 2000-05-25 | 2007-03-22 | Siemens Ag | Strahlformungsverfahren |
-
2000
- 2000-07-04 DE DE10032426A patent/DE10032426B4/de not_active Expired - Fee Related
-
2001
- 2001-06-29 CN CNB018123899A patent/CN1197270C/zh not_active Expired - Fee Related
- 2001-06-29 KR KR1020027017017A patent/KR100559343B1/ko not_active IP Right Cessation
- 2001-06-29 ES ES01956300T patent/ES2232649T3/es not_active Expired - Lifetime
- 2001-06-29 EP EP01956300A patent/EP1297639B1/de not_active Expired - Lifetime
- 2001-06-29 JP JP2002507531A patent/JP4027224B2/ja not_active Expired - Fee Related
- 2001-06-29 WO PCT/DE2001/002405 patent/WO2002003565A2/de active IP Right Grant
- 2001-06-29 AT AT01956300T patent/ATE287594T1/de not_active IP Right Cessation
- 2001-06-29 DE DE50105134T patent/DE50105134D1/de not_active Expired - Lifetime
- 2001-06-29 US US10/312,769 patent/US7099630B2/en not_active Expired - Fee Related
- 2001-06-29 AU AU2001278373A patent/AU2001278373A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
ATE287594T1 (de) | 2005-02-15 |
CN1440597A (zh) | 2003-09-03 |
JP4027224B2 (ja) | 2007-12-26 |
WO2002003565A3 (de) | 2002-07-18 |
DE50105134D1 (de) | 2005-02-24 |
DE10032426A1 (de) | 2002-01-17 |
US7099630B2 (en) | 2006-08-29 |
KR20030007965A (ko) | 2003-01-23 |
ES2232649T3 (es) | 2005-06-01 |
CN1197270C (zh) | 2005-04-13 |
EP1297639A2 (de) | 2003-04-02 |
KR100559343B1 (ko) | 2006-03-15 |
JP2004511119A (ja) | 2004-04-08 |
WO2002003565A2 (de) | 2002-01-10 |
AU2001278373A1 (en) | 2002-01-14 |
DE10032426B4 (de) | 2006-01-12 |
US20030109226A1 (en) | 2003-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1297639B1 (de) | Strahlformungsverfahren mit zyklisch erneuerten gewichtungsvektoren | |
DE10026077B4 (de) | Strahlformungsverfahren | |
DE19803188B4 (de) | Verfahren und Basisstation zur Datenübertragung in einem Funk-Kommunikationssystem | |
EP1402657B1 (de) | Adaptives signalverarbeitungsverfahren in einem mimo-system | |
EP1327314B1 (de) | Strahlformungsverfahren | |
DE60308193T2 (de) | Gruppenempfänger mit subarraysauswahl, verfahren unter verwendung derselben, und empfänger derselben enthaltend | |
DE60316385T2 (de) | Vorrichtung und Verfahren zur Datenübertragung mit Sendeantennendiversität in einem Kommunikationssystem mit Paketdiensten | |
DE60021772T2 (de) | Verfahren und vorrichtung zur übertragung mit mehreren antennen | |
DE60029012T2 (de) | Verfahren und vorrichtung für sende-diversity | |
DE60118280T2 (de) | Funkanlage, die zur Echtzeitveränderung der Antennenrichtwirkung fähig ist, und für die Funkanlage verwendete Dopplerfrequenzschätzschaltung | |
EP1125376B1 (de) | Verfahren und funkstation für die übertragung von vorverzerrten signalen über mehrere funkkanäle | |
DE69835623T2 (de) | Verfahren und einrichtung für richtfunkkommunikation | |
DE10051144C2 (de) | Verfahren zur Verbesserung einer Kanalabschätzung in einem Funk-Kommunikationssystem | |
EP1166460B1 (de) | Strahlformungsverfahren der abwärtsstrecke für basisstationen in funk-kommunikationssystemen | |
DE10025987C2 (de) | Verfahren zum Steuern der Downlink-Strahlformung | |
EP1224749B1 (de) | Strahlformung in einem funk-kommunikationssystem | |
DE10026076C2 (de) | Verfahren und Vorrichtung zum Auswerten eines Uplink-Funksignals | |
DE10032427A1 (de) | Verfahren und Vorrichtung zum Auswerten eines Funksignals | |
DE10025287B4 (de) | Verfahren und Kommunikationssystem zur Schätzung einer Störungs-Kovarianzmatrix für die Abwärtsverbindung in zellularen Mobilfunknetzen mit adaptiven Antennen | |
EP1352483B1 (de) | Verfahren zur feedback-übertragung in einem funk-kommunikationssystem und stationen für ein funk-kommunikationssystem | |
DE10025989B4 (de) | Strahlformungsverfahren | |
DE10058336B4 (de) | Verfahren zur Strahlformung in Systemen mit Gruppenantennen an Sende- und Empfangsstationen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021227 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50105134 Country of ref document: DE Date of ref document: 20050224 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2232649 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050629 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050629 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20051020 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20050630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080627 Year of fee payment: 8 |
|
NLS | Nl: assignments of ep-patents |
Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG Effective date: 20080422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080624 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080618 Year of fee payment: 8 Ref country code: SE Payment date: 20080612 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090205 AND 20090211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20090525 Year of fee payment: 9 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20100101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100706 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100629 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140618 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140619 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50105134 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150629 |