EP1294956B1 - Corrosion resistant material - Google Patents
Corrosion resistant material Download PDFInfo
- Publication number
- EP1294956B1 EP1294956B1 EP01942857A EP01942857A EP1294956B1 EP 1294956 B1 EP1294956 B1 EP 1294956B1 EP 01942857 A EP01942857 A EP 01942857A EP 01942857 A EP01942857 A EP 01942857A EP 1294956 B1 EP1294956 B1 EP 1294956B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- less
- equal
- cold
- strength
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 35
- 230000007797 corrosion Effects 0.000 title claims abstract description 26
- 238000005260 corrosion Methods 0.000 title claims abstract description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011651 chromium Substances 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 239000011572 manganese Substances 0.000 claims abstract description 14
- 239000010949 copper Substances 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011733 molybdenum Substances 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 230000035699 permeability Effects 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 150000004767 nitrides Chemical class 0.000 claims abstract description 3
- 230000005291 magnetic effect Effects 0.000 claims description 6
- 150000001805 chlorine compounds Chemical class 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000002907 paramagnetic material Substances 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 238000005275 alloying Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
Definitions
- the invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for facilities in oilfield technology, in particular for drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.
- drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.
- Corrosion resistant materials showing paramagnetic behavior and high strength are for facilities in the oil field technology, in particular for drill string components, usable. However, they are getting higher Parts requirements and stricter standards of materials gestelit or created.
- the material For directional measurements when drilling or sinking a hole with to perform a necessary accuracy, the material must have a Permeability of less than 1.005.
- a high mechanical strength in particular a high 0.2% elongation value, is in the With regard to an advantageous plant engineering conception and a high Operational safety of the parts required because the stresses of the same up provided for the limits of the respective material load capacity and always larger drilling depths are required. Furthermore, a notched impact strength of Material important because often abrupt or jerky high loads from the Parts have to be endured.
- the parts are often mounted or used at low temperatures, so that also the toughness transition temperature (FATT) of the material a high Significance.
- FATT toughness transition temperature
- the invention sets itself the goal of a paramagnetic material with high Yield point, high notched impact strength and high permanent fatigue strength as well to create a low toughness transition temperature at the same time corrosion resistant, in particular resistant to pitting, in chloride-containing media.
- the advantages achieved by the invention are in particular in the alloying effect of a balanced nitrogen concentration. It It has surprisingly been found that in the production of parts a particular high output can be achieved. Although in a hot deformation no nitride precipitations can be given, the deformability of the Material at fluctuating forging heat at contents above 0.29 wt .-% Nitrogen leaps and bounds. Also can in the narrow concentration range of 0.17 to 0.29 wt.% N is an excretion of dissociated phases be prevented easily when the other alloying elements in the salary ranges. Nitrogen, nickel and molybdenum synergistically provide an extremely high resistance Pitting.
- the carbon content of the alloy is of a corrosion-chemical Limited reasons, with a further reduction of the same Corrosion resistance of the material, especially the hole and Stress corrosion cracking, increase.
- the silicon content in the material according to the invention 0.89 wt .-%, from corrosion-chemical reasons and in particular the low magnetic Because of permeability, do not exceed.
- the nitrogen solubility of the alloy and austenite stabilization are achieved Promoted manganese.
- the manganese content with 4.49 wt .-% limited to the top and for nickel are introduced into the alloy.
- a minimum content of 0.51% by weight Manganese is needed for effective sulfur fixation.
- chromium is the basis for the formation of a Passive layer on the surface of the parts represents.
- Alloy elements in particular Mo and N to prevent a large extent, are Contents of at least 25.1 wt.% Cr required. Due to higher contents than 38,9 Wt .-% increases the risk of excretion of intermetallic phases.
- the alloying element nickel is important in the intended concentrations Stabilization of the cubic face-centered atomic lattice, ie for small ones Permeability, and interactive with chromium and molybdenum effective for one Prevention of pitting corrosion. Up to 38.9 wt .-% are the toughness, the FATT and the fatigue strength advantageously increased. When falling below of 22.9% by weight, the stabilizing effect is increasingly reduced with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and regarding the magnetic values in the Cold deformation; So it increases the tendency to form zones with Verformungsmartentsit.
- the nitrogen content is synergistic to the rest Alloy composition matched.
- This content of 0.17 to 0.29% by weight has the further advantage that a block solidify under atmospheric pressure can be left without gas bubbles by exceeding the Solubility limit in the solidification are formed in this.
- High mechanical property values at a relative magnetic Permeability of 1.004 and smaller are achieved when the material is in the precipitation-free state at least 3.6 times hot-formed and at one Temperature of 100 to 590 ° C, preferably from 360 to 490 ° C, with a Forming degree of less than 38%, preferably from 6 to 19%, cold-worked.
- the material has a hole corrosion potential in neutral Solution at room temperature greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80000 ppm chlorides.
- Table 1 shows the chemical composition of the alloys according to the invention and of the comparative materials. Furthermore, the figures for the hot deformation and the cold deformation of the forgings of this table can be removed. Table 2 shows the magnetic and mechanical characteristics of these materials. With the sample designation 1 to 5 are comparative alloys and with the sample designation A to E, alloys composed according to the invention are summarized in Table 1. The test results of the materials are shown in Table 2, which will be briefly described below.
- the alloys 1 to 3 have low nitrogen contents , therefore show no desired solidification in a cold molding , as can be seen from the R p0,2 values, and also for the permanent fatigue strength were low numerical values (not shown in the table) of ⁇ 270, 210 and 290 N / mm 2 determined. Corrosion-wise, neither the SCC nor the CPT values are sufficient, which is due in particular to low Mo contents and, in the case of material 2, to a low Cr content. Alloys 4 and 5 have a not sufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also raises the value of flexural fatigue strength ( ⁇ 308, 340 N / mm 2 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Glass Compositions (AREA)
- Heat Treatment Of Steel (AREA)
- Earth Drilling (AREA)
- Heat Treatment Of Articles (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
Die Erfindung betrifft einen Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend aus den Elementen Kohlenstoff (C), Silizium (Si), Mangan (Mn), Chrom (Cr), Molybdän ( Mo), Nickel (Ni), Kupfer (Cu), Stickstoff (N), Eisen (Fe) sowie herstellungsbedingten Verunreinigungen, welcher Werkstoff warmverformt und nach einer Abkühlung kaltverformt ist.The invention relates to a material with high corrosion resistance in media with high chloride concentration, suitable for facilities in oilfield technology, in particular for drill string components consisting of the elements Carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and production-related Impurities, which material thermoformed and after cooling cold-worked.
Korrosionsbeständige Werkstoffe, die paramagnetisches Verhalten zeigen und hohe Festigkeit aufweisen, sind für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, verwendbar. Allerdings werden immer höhere Anforderungen an die Teile und immer strengere Maßstäbe an die Werkstoffe gestelit bzw. angelegt.Corrosion resistant materials showing paramagnetic behavior and high strength, are for facilities in the oil field technology, in particular for drill string components, usable. However, they are getting higher Parts requirements and stricter standards of materials gestelit or created.
Um Richtungsmessungen bei einem Abteufen bzw. Niederbringen einer Bohrung mit einer notwendigen Genauigkeit durchführen zu können, muß der Werkstoff eine Permeabilität von kleiner als 1,005 haben.For directional measurements when drilling or sinking a hole with to perform a necessary accuracy, the material must have a Permeability of less than 1.005.
Eine hohe mechanische Festigkeit, insbesondere ein hoher 0,2% Dehnwert, ist im Hinblick auf eine vorteilhafte anlagentechnische Konzeption und auf eine hohe Betriebssicherheit der Teile erforderlich, weil die Beanspruchungen derselben bis zu den Grenzwerten der jeweiligen Werkstoffbelastbarkeit vorgesehen und immer größere Bohrtiefen erforderlich sind. Weiters ist eine Kerbschlagzähigkeit des Materials wichtig, weil oft schlagartig oder stoßartig hohe Belastungen von den Teilen ertragen werden müssen.A high mechanical strength, in particular a high 0.2% elongation value, is in the With regard to an advantageous plant engineering conception and a high Operational safety of the parts required because the stresses of the same up provided for the limits of the respective material load capacity and always larger drilling depths are required. Furthermore, a notched impact strength of Material important because often abrupt or jerky high loads from the Parts have to be endured.
Insbesondere für Bohrstrangteile und Schwerstangen ist in vielen Fällen eine hohe Dauerwechselfestigkeit von Bedeutung, weil bei einer Rotation der Teile bzw. der Schwerstangen schwellende oder wechselnde Beanspruchungen vorliegen können.In particular, for drill string parts and drill collars is in many cases a high Permanence fatigue strength of importance, because in a rotation of the parts or the Schwerstangen swelling or changing stresses may be present.
Die Teile werden oft bei niedrigen Temperaturen montiert oder eingesetzt, so daß auch der Zähigkeitsübergangstemperatur (FATT) des Werkstoffes ein hoher Stellenwert zukommt.The parts are often mounted or used at low temperatures, so that also the toughness transition temperature (FATT) of the material a high Significance.
Entscheidende Bedeutung besitzt das Korrosionsverhalten für in der Ölfeldtechnik verwendete Teile, das sind einerseits die Spannungsrißkorrosion (SCC) und andererseits die Lochkorrosion ( Pitting, CPT).Of decisive importance is the corrosion behavior in oil field technology parts used, these are on the one hand the stress corrosion cracking (SCC) and on the other hand pitting corrosion (pitting, CPT).
Wie aus obigen Darlegungen hervorgeht, sind Werkstoffe mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration wie z.B. JP-A-0104781 die für Einrichtungen in der Ölfeldtechnik geeignet sind, gleichzeitig einer Vielzahl von hohen Beanspruchungen ausgesetzt.As can be seen from the above, are materials with large Corrosion resistance in high chloride media such as e.g. JP-A-0104781 for Facilities in oil field technology are suitable, at the same time a variety of exposed to high loads.
Im stand der Technik gibtes außerdem Legierungen die unter dem Namen URANUS SB8 oder URANUS B28 schon bekannt sind.In the state of the art there are also alloys under the name URANUS SB8 or URANUS B28 are already known.
Die Erfindung setzt sich zum Ziel, einen paramagnetischen Werkstoff mit hoher Dehngrenze, hoher Kerbschlagzähigkeit und hoher Dauerwechselfestigkeit sowie einer niedrigen Zähigkeitsübergangstemperatur zu erstellen, der gleichzeitig korrosionsbeständig, insbesondere beständig gegen Lochkorrosion, in chloridhaltigen Medien ist.The invention sets itself the goal of a paramagnetic material with high Yield point, high notched impact strength and high permanent fatigue strength as well to create a low toughness transition temperature at the same time corrosion resistant, in particular resistant to pitting, in chloride-containing media.
Dieses Ziel wird bei einem Werkstoff der eingangs genannten Art dadurch erreicht,
daß diese im wesentlichen aus den Elementen in Gew.-%
eine Permeabilität von kleiner als 1,0048
eine Dehngrenze (Rp0,2) von größer als 710 N/mm2
eine Kerbschlagzähigkeit von über 60 J
eine Dauerwechselfestigkeit von größer ±310 N/mm2
bei N = 107 Lastwechsel und
eine Zähigkeitstemperatur von unter -28°C (FATT)
aufweist.This goal is achieved in a material of the type mentioned in that it consists essentially of the elements in wt .-%
a permeability of less than 1.0048
a yield strength (R p0.2 ) greater than 710 N / mm 2
an impact strength of more than 60 J
a permanent fatigue strength of greater than ± 310 N / mm 2
at N = 10 7 load changes and
a toughness temperature below -28 ° C (FATT)
having.
Die durch die Erfindung erreichten Vorteile liegen insbesondere in der legierungstechnischen Wirkung einer ausgewogenen Stickstoffkonzentration. Es wurde überraschend gefunden, daß bei der Herstellung von Teilen ein besonders hohes Ausbringen erreicht werden kann. Obwohl bei einer Warmverformung keinerlei Nitridausscheidungen gegeben sein können, wird die Verformbarkeit des Werkstoffes bei schwankender Schmiedehitze bei Gehalten über 0,29 Gew.-% Stickstoff sprunghaft verschlechtert. Auch kann im engen Konzentrationsbereich von 0,17 bis 0,29 Gew.-% N eine Ausscheidung von vergeseltschafteten Phasen auf einfache Weise verhindert werden, wenn die weiteren Legierungselemente in den vorgesehenen Gehaltsbereichen vorliegen. Stickstoff, Nickel und Molybdän erbringen dabei auch synergetisch eine äußerst hohe Resistenz gegen Lochkorrosion (Pitting).The advantages achieved by the invention are in particular in the alloying effect of a balanced nitrogen concentration. It It has surprisingly been found that in the production of parts a particular high output can be achieved. Although in a hot deformation no nitride precipitations can be given, the deformability of the Material at fluctuating forging heat at contents above 0.29 wt .-% Nitrogen leaps and bounds. Also can in the narrow concentration range of 0.17 to 0.29 wt.% N is an excretion of dissociated phases be prevented easily when the other alloying elements in the salary ranges. Nitrogen, nickel and molybdenum synergistically provide an extremely high resistance Pitting.
Mit 0,03 Gew.-% ist der Kohlenstoffgehalt der Legierung aus korrosionschemischen Gründen nach oben begrenzt, wobei eine weitere Senkung desselben die Korrosionsbeständigkeit des Werkstoffes, insbesondere die Loch-und Spannungsrißkorrosion, erhöhen.At 0.03% by weight, the carbon content of the alloy is of a corrosion-chemical Limited reasons, with a further reduction of the same Corrosion resistance of the material, especially the hole and Stress corrosion cracking, increase.
Der Siliziumgehalt soll beim erfindungsgemäßen Werkstoff 0,89 Gew.-%, aus korrosionschemischen Gründen und insbesondere der niedrigen magnetischen Permeabilität wegen, nicht überschreiten.The silicon content in the material according to the invention 0.89 wt .-%, from corrosion-chemical reasons and in particular the low magnetic Because of permeability, do not exceed.
Die Stickstofflöslichkeit der Legierung und die Austenitstabilisierung werden durch Mangan gefördert. Allerdings müssen im Hinblick auf eine Verhinderung von Lochkorrosion die Mangangehalte mit 4,49 Gew.-% nach oben hin beschränkt und dafür Nickel in die Legierung eingeführt werden. Ein Mindestgehalt an 0,51 Gew.-% Mangan ist für eine wirkungsvolle Schwefelabbindung erforderlich.The nitrogen solubility of the alloy and austenite stabilization are achieved Promoted manganese. However, with regard to prevention of Pitting corrosion the manganese content with 4.49 wt .-% limited to the top and for nickel are introduced into the alloy. A minimum content of 0.51% by weight Manganese is needed for effective sulfur fixation.
Eines der besonders wichtigen Legierungselemente im Hinblick auf den Korrosionswiderstand ist Chrom, weil Chrom die Grundlage für die Bildung einer Passivschicht an der Oberfläche der Teile darstellt. Um ein gegebenenfalls stellenweises Durchbrechen dieser Schicht, in Synergiewirkung mit den übrigen Legierungselementen, insbesondere Mo und N in hohem Maße zu verhindern, sind Gehalte von mindestens 25,1 Gew.% Cr erforderlich. Durch höhere Gehalte als 38,9 Gew.-% steigt die Gefahr einer Auscheidung von intermetallischen Phasen.One of the most important alloying elements with regard to Corrosion resistance is chromium, because chromium is the basis for the formation of a Passive layer on the surface of the parts represents. To an if necessary break through this layer in layers, in synergy with the rest Alloy elements, in particular Mo and N to prevent a large extent, are Contents of at least 25.1 wt.% Cr required. Due to higher contents than 38,9 Wt .-% increases the risk of excretion of intermetallic phases.
Wenn auch das Legierungslemente Molybdän äußerst wichtig für eine Beständigkeit des Werkstoffes gegen Spalt- und Lochkorrosion ist, sollte der Gehalt 5,9 Gew.-% nicht überschreiten, weil dann eine Neigung zur Bildung von vergesellschafteten Phasen sprunghaft steigt. Niedrigere Gehalte als 2,1 Gew.-% verschlechtern das Korrosionsverhalten des Werkstoffes überproportional.Even though the alloying element molybdenum is extremely important for durability of the material against crevice and pitting corrosion, the content should be 5.9% by weight not exceed, because then a tendency to the formation of socialized Phases rise dramatically. Lower contents than 2.1% by weight deteriorate this Corrosion behavior of the material disproportionately.
Das Legierungselement Nickel ist in den vorgesehenen Konzentrationen wichtig zur Stabilisierung des kubisch flächenzentrierten Atomgitters, also für geringe Permeabilität, und interaktiv mit Chrom und Molybdän wirkungsvoll für eine Vermeidung der Lochkorrosion. Bis 38,9 Gew.-% werden die Zähigkeit, die FATT und die Dauerwechselfestigkeit vorteilhaft angehoben. Bei einem Unterschreiten von 22,9 Gew.-% verringert sich in zunehmendem Maße der stabilisierende Effekt hinsichtlich der Korrosion, insbesondere der Spannungsrißkorrosion, in chloridhaltigen Medien und betreffend die magnetischen Werte bei der Kaltverformung; es erhöht sich also die Neigung zur Ausbildung von Zonen mit Verformungsmartentsit.The alloying element nickel is important in the intended concentrations Stabilization of the cubic face-centered atomic lattice, ie for small ones Permeability, and interactive with chromium and molybdenum effective for one Prevention of pitting corrosion. Up to 38.9 wt .-% are the toughness, the FATT and the fatigue strength advantageously increased. When falling below of 22.9% by weight, the stabilizing effect is increasingly reduced with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and regarding the magnetic values in the Cold deformation; So it increases the tendency to form zones with Verformungsmartentsit.
Zur Steigerung der Korrosionsbeständigkeit ist auch ein Kupfergehalt in Grenzen der Legierung vorgesehen wenn auch die Wirkung dieses Elementes verschiedentlich in Frage gestellt wird. To increase the corrosion resistance and a copper content is limited provided the alloy albeit the effect of this element is questioned several times.
Wie früher erwähnt, ist der Stickstoffgehalt synergetisch auf die übrige Legierungszusammensetzung abgestimmt. Dieser Gehalt von 0,17 bis 0,29 Gew.-% besitzt den weiteren Vorteil, daß ein Block unter Atmosphärendruck erstarren gelassen werden kann, ohne daß Gaseinschlüsse durch eine Überschreitung der Löslichkeitsgrenze bei der Erstarrung in diesem gebildet werden.As mentioned earlier, the nitrogen content is synergistic to the rest Alloy composition matched. This content of 0.17 to 0.29% by weight has the further advantage that a block solidify under atmospheric pressure can be left without gas bubbles by exceeding the Solubility limit in the solidification are formed in this.
Auf einem besonders hohem Niveau können die magnetischen, die mechanischen und insbesondere die Werte der Korrosionsbeständigkeit des Werkstoffes eingestellt werden, wenn dieser im wesentlichen aus den Elementen in Gew.-%
- C =
- kleiner/gleich 0,02, vorzugsweise 0,01 bis 0,02
- Si=
- kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70
- Mn =
- 1,1 bis 2,9, vorzugsweise 2,01 bis 2,6
- Cr=
- 26,1 bis 27,9, vorzugsweise 26,5 bis 27,5
- Mo=
- 2,9 bis 5,9, vorzugsweise 3,2 bis 3,8
- Ni=
- 27,9 bis 32,5, vorzugsweise 30,9 bis 32,1
- Cu=
- 0,98 bis 1,45, vorzugsweise 1,0 bis 1,4
- N =
- 0,175 bis 0,29, vorzugsweise 0,18 bis 0,22
besteht.At a particularly high level, the magnetic, mechanical and in particular the corrosion resistance values of the material can be adjusted if it consists essentially of the elements in% by weight.
- C =
- less than or equal to 0.02, preferably from 0.01 to 0.02
- Si =
- less than or equal to 0.75, preferably 0.20 to 0.70
- Mn =
- 1.1 to 2.9, preferably 2.01 to 2.6
- Cr =
- 26.1 to 27.9, preferably 26.5 to 27.5
- Mo =
- 2.9 to 5.9, preferably 3.2 to 3.8
- Ni =
- 27.9 to 32.5, preferably 30.9 to 32.1
- Cu =
- 0.98 to 1.45, preferably 1.0 to 1.4
- N =
- 0.175 to 0.29, preferably 0.18 to 0.22
consists.
Hohe mechanische Eigenschaftswerte bei einer relativen magnetischen Permeabilität von 1.004 und kleiner werden erreicht, wenn der Werkstoff im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C, mit einem Umformgrad von kleiner als 38%, vorzugsweise von 6 bis 19 %, kaltverformt ist. Erfindungsgemäß weist der Werkstoff ein Lochkorrosionspotential in neutraler Lösung bei Raumtemperatur von größer als 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride auf.High mechanical property values at a relative magnetic Permeability of 1.004 and smaller are achieved when the material is in the precipitation-free state at least 3.6 times hot-formed and at one Temperature of 100 to 590 ° C, preferably from 360 to 490 ° C, with a Forming degree of less than 38%, preferably from 6 to 19%, cold-worked. According to the invention, the material has a hole corrosion potential in neutral Solution at room temperature greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80000 ppm chlorides.
Anhand von Beispielen wird die Erfindung näher erläutert.
In der Tabelle 1 ist die chemische Zusammensetzung der erfindungsgemäßen
Legierungen und der Vergleichswerkstoffe angegeben. Weiters sind die
Kennzahlen für die Warmverformung und die Kaltverformung der Schmiedestücke
dieser Tabelle entnehmbar.
Aus der Tabelle 2 sind die magnetischen und die mechanischen Kennwerte dieser
Werkstoffe ersichtlich.
Mit der Probenbezeichnung 1 bis 5 sind Vergleichslegierungen und mit der
Probenbezeichnung A bis E sind erfindungsgemäß zusammengesetzte Legierungen
in der Tabelle 1 zusammengestellt. Die Untersuchungsergebnisse der Werkstoffe
sind der Tabelle 2 zu entnehmen, auf welche Ergebnisse nachfolgend kurz
eingegangen wird.
Die Legierungen 1 bis 3 weisen geringe Stickstoffgehalte auf, zeigen deshalb keine
gewünschte Verfestigung bei einer Kaltverfomung, wie aus den Rp0,2-Werten
hervorgeht, und auch für die Dauerwechselfestigkeit wurden niedrige Zahlenwerte
(in der Tabelle nicht angegeben) von ± 270, 210 und 290 N/mm2 ermittelt.
Korrosionschemisch sind weder die SCC- noch die CPT-Werte ausreichend, was
insbesondere auf jeweils niedrige Mo-Gehalte und beim Werkstoff 2 auf einen
niedrigen Cr-Gehalt zurückzuführen ist.
Die Legierungen 4 und 5 besitzen eine nicht ausreichend hohe und eine überhöhte
Stickstoffkonzentration, was zu höheren Streckgrenzenwerten führt und auch den
Wert der Biegewechselfestigkeit (± 308, 340 N/mm2) anhebt. Auf Grund eines
geringen Cr-Gehaltes ist beim Werkstoff 4 ein nachteiliges DUAL-Mikrogefüge
(Anätzungen an den Komgrenzen) gegeben, wobei weiter anzumerken ist, daß
auch der Werkstoff 5 trotz jeweils ausreichender Mo-Konzentrationen der
geringeren Cr-Gehalte wegen, die Anforderungen an die Korrosionsbeständigkeit
nicht erfüllt. Die Ergebnisse der Legierungen A bis E zeigen, daß die
Stickstoffgehalte zu einer gewünschten Verfestigung durch eine Kaltumformung
führen und die jeweiligen Konzentrationen von Stickstoff, Nickel und Molybdän
synergetisch eine hohe Korrosionsbeständigkeit des Werkstoffes in chloridhaltigen
Medien, insbesondere einen hohen Widerstand gegen Pitting, bewirken.
The invention will be explained in more detail by way of examples.
Table 1 shows the chemical composition of the alloys according to the invention and of the comparative materials. Furthermore, the figures for the hot deformation and the cold deformation of the forgings of this table can be removed.
Table 2 shows the magnetic and mechanical characteristics of these materials.
With the sample designation 1 to 5 are comparative alloys and with the sample designation A to E, alloys composed according to the invention are summarized in Table 1. The test results of the materials are shown in Table 2, which will be briefly described below.
The alloys 1 to 3 have low nitrogen contents , therefore show no desired solidification in a cold molding , as can be seen from the R p0,2 values, and also for the permanent fatigue strength were low numerical values (not shown in the table) of ± 270, 210 and 290 N / mm 2 determined.
Corrosion-wise, neither the SCC nor the CPT values are sufficient, which is due in particular to low Mo contents and, in the case of material 2, to a low Cr content.
Alloys 4 and 5 have a not sufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also raises the value of flexural fatigue strength (± 308, 340 N / mm 2 ). Due to a low Cr content of the material 4 is a disadvantageous DUAL microstructure (etchings at the grain boundaries) given, it should be further noted that the material 5, despite each sufficient Mo concentrations of lower Cr contents due to, the requirements of the corrosion resistance is not met. The results of Alloys A to E show that the nitrogen contents result in a desired solidification by cold working and the respective concentrations of nitrogen, nickel and molybdenum synergistically provide high corrosion resistance of the material in chloride containing media, particularly high resistance to pitting.
Claims (4)
- A cold-formed material with a high degree of corrosion resistance in media with a high chloride concentration, suitable for devices in the field of oil recovery, in particular for drilling-rod components, consisting in the elements in % by weight:
carbon (C) less than / equal to 0·03 silicon (Si) less than / equal to 0·89 manganese (Mn) 0·51 to 4·49 chromium (Cr) 25·1 to 38·9 molybdenum (Mo) 2·1 to 5·9 nickel (Ni) 22·9 to 38·9 copper (Cu) 0·51 to 1·49 nitrogen (N) 0·17 to 0·29 iron (Fe) remainder,
a magnetic permeability of less than 1·0048 G/Oe
a yield strength (Rp0·2) of greater than 710 N/mm2
a notched-bar impact strength of over 60 J
an alternating-stress fatigue strength of at least ± 310 N/mm2
at N = 107 load alternation and
a toughness transition temperature of below -28°C (FATT). - A material according to Claim 1, consisting in the elements in % by weight:
- C =
- less than / equal to 0·02, preferably from 0·01 to 0·02
- Si =
- less than / equal to 0·75, preferably from 0·20 to 0·70
- Mn =
- 1·1 to 2·9, preferably from 2·01 to 2·6
- Cr =
- 26·1 to 27·9, preferably from 26·5 to 27·5
- Mo =
- 2·9 to 5·9, preferably from 3·2 to 3·8
- Ni =
- 27·9 to 32·5, preferably from 30·9 to 32·1
- Cu =
- 0·98 to 1·45, preferably from 1·0 to 1·4
- N =
- 0·175 to 0·29, preferably from 0·18 to 0·22
- A material according to Claim 1 or 2, which is hot-formed at least 3·6-fold in the precipitation-free state and is cold-formed at a temperature of from 100 to 590°C, preferably from 360 to 490°C, with a deformation strain of less than 38%, preferably from 6 to 19%.
- A material according to one of Claims 1 to 3, which has a pitting potential in a neutral solution at room temperature of greater than 1100 mVH/1000 ppm of chlorides and/or 1000 mVH/80000 ppm of chlorides.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0113300A AT408889B (en) | 2000-06-30 | 2000-06-30 | CORROSION-RESISTANT MATERIAL |
AT113300 | 2000-06-30 | ||
PCT/AT2001/000188 WO2002002837A1 (en) | 2000-06-30 | 2001-06-08 | Corrosion resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1294956A1 EP1294956A1 (en) | 2003-03-26 |
EP1294956B1 true EP1294956B1 (en) | 2004-12-15 |
Family
ID=3685991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01942857A Expired - Lifetime EP1294956B1 (en) | 2000-06-30 | 2001-06-08 | Corrosion resistant material |
Country Status (9)
Country | Link |
---|---|
US (1) | US6764647B2 (en) |
EP (1) | EP1294956B1 (en) |
AT (2) | AT408889B (en) |
AU (1) | AU2001265657A1 (en) |
CA (1) | CA2396207C (en) |
DE (1) | DE50104841D1 (en) |
ES (1) | ES2231505T3 (en) |
NO (1) | NO330002B1 (en) |
WO (1) | WO2002002837A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE525252C2 (en) * | 2001-11-22 | 2005-01-11 | Sandvik Ab | Super austenitic stainless steel and the use of this steel |
AT410550B (en) * | 2002-01-23 | 2003-05-26 | Boehler Edelstahl | Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen |
US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
JP2009541587A (en) * | 2006-06-23 | 2009-11-26 | ジョルゲンセン フォージ コーポレーション | Austenitic paramagnetic corrosion resistant materials |
US10351922B2 (en) | 2008-04-11 | 2019-07-16 | Questek Innovations Llc | Surface hardenable stainless steels |
EP2265739B1 (en) * | 2008-04-11 | 2019-06-12 | Questek Innovations LLC | Martensitic stainless steel strengthened by copper-nucleated nitride precipitates |
US10053758B2 (en) * | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US9206497B2 (en) | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
US9347121B2 (en) | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
RU2611252C1 (en) * | 2015-10-13 | 2017-02-21 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Method of producing high-strength rolled product of austenite stainless steel with nanostructure |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
DE102018133251A1 (en) | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Drill string component with high corrosion resistance and process for their manufacture |
DE102018133255A1 (en) | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Super austenitic material |
WO2021070735A1 (en) * | 2019-10-10 | 2021-04-15 | 日本製鉄株式会社 | Alloy material and seamless pipe for oil well |
US12344918B2 (en) | 2023-07-12 | 2025-07-01 | Ati Properties Llc | Titanium alloys |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI760020A7 (en) * | 1976-01-07 | 1977-07-08 | Rauma Repola Oy | |
US4201575A (en) * | 1979-05-18 | 1980-05-06 | Carpenter Technology Corporation | Austenitic stainless corrosion-resistant alloy |
US4400349A (en) | 1981-06-24 | 1983-08-23 | Sumitomo Metal Industries, Ltd. | Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
US4421571A (en) | 1981-07-03 | 1983-12-20 | Sumitomo Metal Industries, Ltd. | Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
DE3716665A1 (en) | 1987-05-19 | 1988-12-08 | Vdm Nickel Tech | CORROSION RESISTANT ALLOY |
US4824638A (en) | 1987-06-29 | 1989-04-25 | Carondelet Foundry Company | Corrosion resistant alloy |
JPS6447817A (en) | 1987-08-13 | 1989-02-22 | Nippon Steel Corp | Production of austenitic stainless steel having excellent seawater corrosion resistance |
DE4342188C2 (en) | 1993-12-10 | 1998-06-04 | Bayer Ag | Austenitic alloys and their uses |
DE19748205A1 (en) | 1997-10-31 | 1999-05-06 | Abb Research Ltd | Process for producing a workpiece from a chrome alloy and its use |
-
2000
- 2000-06-30 AT AT0113300A patent/AT408889B/en not_active IP Right Cessation
-
2001
- 2001-06-08 AU AU2001265657A patent/AU2001265657A1/en not_active Abandoned
- 2001-06-08 CA CA002396207A patent/CA2396207C/en not_active Expired - Lifetime
- 2001-06-08 DE DE50104841T patent/DE50104841D1/en not_active Expired - Lifetime
- 2001-06-08 EP EP01942857A patent/EP1294956B1/en not_active Expired - Lifetime
- 2001-06-08 AT AT01942857T patent/ATE284979T1/en active
- 2001-06-08 ES ES01942857T patent/ES2231505T3/en not_active Expired - Lifetime
- 2001-06-08 WO PCT/AT2001/000188 patent/WO2002002837A1/en active IP Right Grant
- 2001-06-08 US US10/182,725 patent/US6764647B2/en not_active Expired - Lifetime
-
2002
- 2002-06-18 NO NO20022917A patent/NO330002B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
ES2231505T3 (en) | 2005-05-16 |
CA2396207C (en) | 2007-08-14 |
AT408889B (en) | 2002-03-25 |
US6764647B2 (en) | 2004-07-20 |
DE50104841D1 (en) | 2005-01-20 |
ATA11332000A (en) | 2001-08-15 |
EP1294956A1 (en) | 2003-03-26 |
US20030024612A1 (en) | 2003-02-06 |
AU2001265657A1 (en) | 2002-01-14 |
NO330002B1 (en) | 2011-02-07 |
WO2002002837A1 (en) | 2002-01-10 |
NO20022917D0 (en) | 2002-06-18 |
NO20022917L (en) | 2002-06-18 |
ATE284979T1 (en) | 2005-01-15 |
CA2396207A1 (en) | 2002-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1294956B1 (en) | Corrosion resistant material | |
DE69404937T2 (en) | Nickel alloy | |
DE60215655T2 (en) | MARTENSITIC STAINLESS STEEL | |
DE69506537T2 (en) | STAINLESS STEEL TWO-PHASE STEEL | |
DE3221857C2 (en) | Iron alloy with increased resistance to stress corrosion cracking | |
DE3751267T2 (en) | Corrosion-resistant, high-strength nickel alloy. | |
DE69706224T2 (en) | Heat resistant steel and steam turbine rotor | |
DE102006033973A1 (en) | Stainless austenitic cast steel and its use | |
DE69506800T2 (en) | Ni-Cr-Mo alloys containing copper | |
EP2632628B1 (en) | Ni-fe-cr-mo alloy | |
DE69510060T2 (en) | STAINLESS STEEL MARTENSITE STEEL WITH EXCELLENT PROCESSABILITY AND SULFUR INDUCED STRESS CORROSION RESISTANCE | |
DE69003202T2 (en) | High-strength, heat-resistant, low-alloy steels. | |
DE1301586B (en) | Austenitic precipitation hardenable steel alloy and process for its heat treatment | |
DE2447137B2 (en) | STEEL ALLOY RESISTANT AGAINST PITCH CORROSION | |
DE60016286T2 (en) | Low alloy and heat resistant steel, heat treatment process and turbine rotor | |
DE69025468T2 (en) | Austenitic stainless steel | |
AT410447B (en) | HOT STEEL SUBJECT | |
DE69505603T2 (en) | Component made of heat-resistant austenitic steel with excellent strength at high temperatures | |
DE3851948T2 (en) | CORROSION RESISTANT ALLOY. | |
DE3937857C2 (en) | ||
EP0455625B1 (en) | High strength corrosion-resistant duplex alloy | |
DE60201984T2 (en) | TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF | |
DE69110707T2 (en) | High strength stainless steel. | |
DE102018133251A1 (en) | Drill string component with high corrosion resistance and process for their manufacture | |
DE60129223T2 (en) | AUSTENITIC ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20030805 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041215 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50104841 Country of ref document: DE Date of ref document: 20050120 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050315 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050315 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050401 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2231505 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050608 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: EDELSTAHL WITTEN KREFELD GMBH Effective date: 20050915 |
|
ET | Fr: translation filed | ||
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EDELSTAHL WITTEN KREFELD GMBH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
BERE | Be: lapsed |
Owner name: *SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY G.M.B.H. Effective date: 20050630 Owner name: *BOHLER EDELSTAHL G.M.B.H. Effective date: 20050630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050515 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20090618 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20090618 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200629 Year of fee payment: 20 Ref country code: FR Payment date: 20200625 Year of fee payment: 20 Ref country code: FI Payment date: 20200629 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20200626 Year of fee payment: 20 Ref country code: GB Payment date: 20200629 Year of fee payment: 20 Ref country code: SE Payment date: 20200629 Year of fee payment: 20 Ref country code: IT Payment date: 20200619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200520 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200701 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50104841 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20210607 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210607 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 284979 Country of ref document: AT Kind code of ref document: T Effective date: 20210608 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210609 |