EP1287858A2 - Golf club and method of producing the same - Google Patents
Golf club and method of producing the same Download PDFInfo
- Publication number
- EP1287858A2 EP1287858A2 EP02019305A EP02019305A EP1287858A2 EP 1287858 A2 EP1287858 A2 EP 1287858A2 EP 02019305 A EP02019305 A EP 02019305A EP 02019305 A EP02019305 A EP 02019305A EP 1287858 A2 EP1287858 A2 EP 1287858A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- center
- face
- rear side
- golf club
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0408—Heads characterised by specific dimensions, e.g. thickness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0408—Heads characterised by specific dimensions, e.g. thickness
- A63B53/0412—Volume
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0458—Heads with non-uniform thickness of the impact face plate
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0466—Heads wood-type
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B60/00—Details or accessories of golf clubs, bats, rackets or the like
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B53/00—Golf clubs
- A63B53/04—Heads
- A63B53/0416—Heads having an impact surface provided by a face insert
Definitions
- the present invention relates generally to golf clubs and methods of producing the same, and particularly to structures golf club heads formed of metal and including a face having a center with an average crystal grain size smaller at the rear side than at the front side and methods of producing the same.
- golf club heads have been produced by a variety of known methods.
- One such method of producing the head is casting.
- material for the head is exposed to a high temperature and thus melted and the melted metal is cast into a shell formed of melted and shaped wax to mold the head.
- a crown, a sole and other components of the head excluding the face are cast, as described above, and thus shaped.
- the plate is for example pressed to form the face. The head components and the face are bonded together to produce a golf club head.
- a method forging and thus molding the face of the head of a golf club for example a round bar is forged by die forging to mold a face member and head components and the face member are bonded together and further undergo a heat treatment to enhance the head in strength.
- a cast and thus molded face has a large number of voids. It is thus not only reduced in strength but significantly varies in strength. As such, the face is readily damaged by an impact caused when it hits a ball. To prevent such damage on the face, the face needs to be increased in thickness.
- the face is increased in thickness, a portion other than the face must instead be reduced in weight and a large head cannot be produced. In addition, the thick face hardly flexes. The head provides poor restitution coefficient, resulting in reduced ball flight distances.
- the plate is typically rolled by a roller. As such, the plate thus has relatively uniform, small crystal grains.
- the plate has a strength depending on the size of its crystal grains. Accordingly, the face has a relatively large strength, corresponding to that of the plate that has been rolled.
- the strength of the rolled plate has an anisotropy. More specifically, it is large in the direction in which the plate is rolled, and small in the direction perpendicular to the direction in which the plate is rolled. Since the strength of a face is influenced by small vertical strength, it is difficult to reduce the face in thickness. As such it is difficult to enhance a head in restitution coefficient and also to produce a large head.
- a round bar is forged to produce a face
- the face's crystal grains can be reduced in size.
- a block material formed for example of a round bar or a square material is processed into a form of a face in a flat plate.
- the face has a center with large plastic deformability and the center thus has finer crystal grains than the periphery of the face.
- the face thus has a strength largest at the center and smaller at the periphery.
- a forged face is weak at a stressed portion and strong at a stress-free portion. Therefore it has been difficult to reduce the face in thickness, and it has thus been difficult to enhance the head in restitution coefficient and increase it in size.
- the present invention has been made to overcome such disadvantages as described above.
- the present invention contemplates a golf club excellent in restitution coefficient and also having a large head.
- the present invention in one aspect provides a golf club including a head formed of metal and having a face with a center having an average crystal grain size smaller at a rear side than at a front side.
- an "average crystal grain size” is a size represented by using a 2-dimentional numeral of a crystal grain contained in an area of a square of 25 mm by 25 mm in a photograph enlarged by 100 times.
- a player hits a ball with a golf club at its face's center surface (a ball hitting surface).
- the center flexes rearward, and, as indicated in Fig. 8 by arrows, the center has rear and front sides experiencing tensile and compressive stresses, respectively.
- the face has a periphery surrounding the center and having front and rear sides experiencing tensile and compressive stresses, respectively.
- the present inventor examined the relationship between these stresses and damage of the face by observing a cross section of a cut, damaged face, and found that in most cases the face had a rear surface having a crack which then reached the face's front surface to damage the face.
- the average crystal grain size in the face's center at the front side is 2-100 times, preferably 10-100 times, more preferably 50-100 times that in the face's center at the rear side.
- the average crystal grain size in the face's center at the rear side is 0.1 ⁇ m to less than 50 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m.
- the face that has a center having a rear side with a reduced average crystal grain size can provide the rear side with increased strength and hence enhanced endurance against tensile stress.
- the center is preferably surrounded by a periphery having an average crystal grain size smaller at the front side than at the rear side, since the periphery experiences tensile stress and it is accordingly desirable to reinforce it.
- the face's center may have a rear side provided with a protrusion.
- the protrusion in a vicinity of a surface is adapted to have a smaller average crystal grain size than the face's center at the front side.
- This protrusion can provide the face with enhanced endurance as well as increased restitution coefficient and also help to ensure that the face has a flat front surface.
- the present invention in another aspect provides a golf club including a head formed of metal and having a face having a center and a periphery surrounding the center.
- the center and the periphery each have a first region having a relatively large average crystal grain size and a second region having a relatively small average crystal grain size.
- the center as seen in cross section has the first region and the second region therein at front and rear sides, respectively, and the periphery as seen in cross section has the second region and the first region therein at the front and rear sides, respectively.
- the second region is a region in a strip continuously extending from the center at the rear side to the periphery at the front side.
- the center has a rear side provided with a protrusion, preferably the second region extends within the protrusion.
- the present invention provides a method of producing a golf club, including the steps of: forging a metal material to plastically deform the metal material into a plate to allow plastic flow of the metal material in a center at a rear side to be larger than plastic flow of the metal material in the center at a front side; and mechanically or plastically processing the forged metal material to shape the metal material into a face of a head of the golf club.
- the plastic flow of the metal material in the center at the rear side that increased is to be larger than in the center at the front side can reduce an average crystal grain size of the metal material in the center at the rear side to be smaller than in the center at the front side.
- the step of forging includes the step of plastically deforming the metal material to allow the center to have a front side provided with a protrusion to reduce plastic flow of the metal material in the center at the front side.
- the metal material that is plastically deformed to have a center having a front side provided with a protrusion allows the front side to be free of significant plastic flow. Since there does not exist any element in the metal material at the rear side which actively restricts plastic flow, the metal material flows there freely. As a result, plastic flow of the metal material in the center at the rear side can be promoted and the average crystal grain size there can be smaller than that in the center at the front side.
- the present invention contemplates a golf club head formed of metal and having a face having a center having rear surface (a surface opposite that hitting a ball) side having a reduced average crystal grain size to provide the center's rear side with increased strength to allow the face to be reduced in thickness to enhance the head in restitution coefficient and also increase it in size (for example to 300 to 500 cm 3 ).
- Fig. 1 is a perspective view of a head 1 of a wood golf club with the present invention applied thereto.
- the golf club's shaft and grip are not shown as they can be those well known which are generally, conventionally adopted.
- Head 1 has a hollow, shell structure formed of metal, and, as shown in Fig. 1, it has a face 2, a toe 3, a crown 4, a heel 5, and a sole 6.
- Fig. 2 shows a structure, in cross section, of face 2 taken along a line II-II of Fig. 1.
- Fig. 2 schematically shows in a cross section of face 2 a first region 7a having a relatively large average crystal grain size and a second region 7b having a relatively small average crystal grain size.
- a side located in face 2 at an upper side is a front side, which is used to hit a ball
- a side located in face 2 at a lower side and facing an internal space of head 1 is a rear side.
- center 2a damage at center 2a significantly depends on whether center 2a has a rear side resistant to tensile stress. Accordingly, center 2a is required to have a rear side increased in strength.
- a member formed of metal having a reduced average crystal grain size can have increased strength.
- face 2 can have a rear side having an increased strength simply by having a reduced average crystal grain size in center 2a at the rear side
- a reduced average crystal grain size may be provided throughout face 2 uniformly. In the present embodiment, however, it is provided selectively in face 2 at center 2a along the rear side.
- center 2a as seen in cross section, is provided with a first region 7a having a relatively large average crystal grain size and arranged in center 2a at the front side and a second region 7b having a relatively small average crystal grain size and arranged in center 2a at the rear side.
- Center 2a can thus have a rear side having a reduced average crystal grain size to provide increased strength to the rear side of the center of the face experiencing a tensile stress when it hits a ball. This can enhance resistance to tensile stress of the rear side of the center o the face to reduce damage of face 2.
- center 2a is surrounded by a periphery 2b, which also has first and second regions 7a and 7b, as seen in cross section.
- the second region 7b may be positioned at the front side and the first region 7a may be positioned at the rear side.
- the second region 7b in the Fig. 2 example, is a region in the form of a strip continuously extending from face 2 at the rear side toward periphery 2b at the front side.
- the face's center 2a at the front side has an average crystal grain size approximately 2-3 to 100 times, preferably 10-20 to 100 times, more preferably 30-50 to 100 times the center at the rear side.
- center 2a By setting the average crystal grain size of the front side and that of the rear side to satisfy the above relationship, center 2a can have a rear side increased in strength.
- center 2a has a rear side having an average crystal grain size of 0.1 to less than 50 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. Center 2a having a rear side having an average crystal grain size thus reduced allows the rear side to have an effectively increased strength.
- face 2 may have center 2a having a rear side provided with a protrusion 11.
- the second region 7b extends in protrusion 11, and protrusion 11 in a vicinity of a surface has a smaller average crystal grain size than the center 2a at the front side.
- Center 2a that has a rear side provided with protrusion 11 can have an increased thickness and also allows the second region 7b to extend in protrusion 11. This can enhance face 2 in endurance as well as restitution coefficient. Furthermore, in shaping face 2, plastic flow of metal material in center 2a at the rear side can be facilitated, and protrusion 11 also allows a portion thereof in a vicinity of a surface to have a smaller average crystal grain size, while it also readily ensures that face 2 has a sufficiently flat front surface.
- FIGs. 4 and 5 are cross sections showing characteristic steps of the golf club production method in accordance with the present invention.
- a ⁇ titanium (15V-6Cr-4AL) round bar (of metal) having a diameter of 21 mm and a length of 140 mm is prepared and heated together with a die to a prescribed temperature. The round bar is then placed in the die and it is pressed by 1,600 t and thus roughly forged into a plate. The round bar is thus plastically deformed into a plate to obtain a metal material 8 shaped as shown in Fig. 4.
- metal material 8 is plastically deformed to provide a protrusion 9 to a front side of a center 8a of the material, so that plastic flow of metal material 8 in center 8a at the rear side can be increased to be larger than that of metal material 8 in center 8a at the front side.
- metal material 8 in center 8a at the rear side By increasing plastic flow of metal material 8 in center 8a at the rear side to be larger than that of the material in center 8a at the front side, distortion at the rear side when the material is forged can be increased and the average crystal grain size of metal material 8 in center 8a at the rear side can be reduced to be smaller than that of the material in center 8a at the front side. Note that at peripheral portion 8b metal material 8 flows as it does at the rear side.
- metal material 8 can be formed into a geometry of face 2 of head 1 of a golf club.
- crystal of metal material 8 in center 8a at the rear side can be reduced in size, and dissolving, aging or subjecting it to any other similar heat treatment can further reduce it in size.
- Fig. 2 structure can be obtained simply by further forging the Fig. 4 structure to push protrusion 9 into metal material 8.
- Fig. 6 structure can be obtained simply by further forging the Fig. 4 metal material 8 in a die for molding a rear side of metal material 8 which is provided with a depression corresponding to protrusion 11.
- the present inventor produced face 2 by the method of the present invention and observed its cross-sectional metallographic structure, as described hereinafter.
- Fig. 3A-3C each show a metallographic structure of a portion of face 2 in cross section, as seen in the direction of its depth or thickness.
- Fig. 3A shows a metallographic structure of face 2 in center 2a at the front side, as seen in cross section.
- Fig. 3B shows a metallographic structure of face 2 in center 2a at an internal portion as seen in the direction of the depth of the face, as seen in cross section.
- Fig. 3C shows a metallographic structure of face 2 in center 2a at the rear side, as seen in cross section.
- center 2a has a significantly finer crystal grain at the rear side than at the front side.
- Center 2a had a Vickers hardness of Hv380 at the front side and Hv300 at the rear side.
- head components other than face 2, such as crown 4 and sole 6, are for example cast and thus formed.
- the head components and face 2 are for example welded and thus bonded together to produce golf club head 1. Thereafter, head 1, and a grip and a shaft are bonded together to complete a golf club.
- the present inventor compared in endurance the present invention, i.e., head 1 having a face of the present invention with a conventional product, i.e., head 1 having a typical face, as shown in Table 1.
- a ball was hit with the head at a speed of 38 m/s repeatedly until face 2 was damaged.
- the conventional product was a head formed of 15V-6Cr-4AL titanium and having a face of 2.9 mm in thickness.
- the product of the present invention was a head formed of 15V-6Cr-4AL titanium and having a face of 2.9 mm in thickness.
- the number of hitting times until the face was damaged Average crystal grain size in the face's center at the rear side Present Invention 5000 times 0.5 to 1 ⁇ m Conventional Product 3000 times 50 to 100 ⁇ m
- the conventional product hit a ball 3, 000 times before face 2 was damaged, whereas the product of the present invention hit a ball 5, 000 times before face 2 was damaged.
- the present invention has thus been found to be able to provide face 2 with significantly increased endurance.
- the endurance thus increased allows face 2 to be reduced in thickness. Face 2 can be formed to more readily flex and thus provide an enhanced coefficient of restitution. Furthermore, head 1 can also be increased in size.
- plastic flow of metal material 8 in the center at the rear side is increased to provide a finer crystal by forging metal material 8 to have a center provided with protrusion 9, as shown in Fig. 4, at the front side.
- plastic flow of metal material 8 in the center at the rear side may be increased by a method other than the above.
- face 2 can also be formed of the material other than titanium, such as iron, stainless steel, aluminum, magnesium, copper alloy, or the like.
- a face can have a rear side increased in strength to enhance resistance to tensile stress of the rear side.
- the face can be reduced in thickness, and a head can be enhanced in restitution coefficient, while it can be increased in size.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Golf Clubs (AREA)
Abstract
Description
- The present invention relates generally to golf clubs and methods of producing the same, and particularly to structures golf club heads formed of metal and including a face having a center with an average crystal grain size smaller at the rear side than at the front side and methods of producing the same.
- Conventionally, golf club heads have been produced by a variety of known methods. One such method of producing the head is casting. In this method, material for the head is exposed to a high temperature and thus melted and the melted metal is cast into a shell formed of melted and shaped wax to mold the head. There also is a method using a plate to produce the face of the head of a gold club. In this method, a crown, a sole and other components of the head excluding the face are cast, as described above, and thus shaped. On the other hand, the plate is for example pressed to form the face. The head components and the face are bonded together to produce a golf club head.
- Furthermore, there also exists a method forging and thus molding the face of the head of a golf club. In this method, for example a round bar is forged by die forging to mold a face member and head components and the face member are bonded together and further undergo a heat treatment to enhance the head in strength.
- However, a cast and thus molded face has a large number of voids. It is thus not only reduced in strength but significantly varies in strength. As such, the face is readily damaged by an impact caused when it hits a ball. To prevent such damage on the face, the face needs to be increased in thickness.
- If the face is increased in thickness, a portion other than the face must instead be reduced in weight and a large head cannot be produced. In addition, the thick face hardly flexes. The head provides poor restitution coefficient, resulting in reduced ball flight distances.
- If a plate is used to produce a face, the plate is typically rolled by a roller. As such, the plate thus has relatively uniform, small crystal grains. The plate has a strength depending on the size of its crystal grains. Accordingly, the face has a relatively large strength, corresponding to that of the plate that has been rolled.
- The strength of the rolled plate, however, has an anisotropy. More specifically, it is large in the direction in which the plate is rolled, and small in the direction perpendicular to the direction in which the plate is rolled. Since the strength of a face is influenced by small vertical strength, it is difficult to reduce the face in thickness. As such it is difficult to enhance a head in restitution coefficient and also to produce a large head.
- If a round bar is forged to produce a face, the face's crystal grains can be reduced in size. In typical forging, however, a block material formed for example of a round bar or a square material is processed into a form of a face in a flat plate. As such, the face has a center with large plastic deformability and the center thus has finer crystal grains than the periphery of the face. The face thus has a strength largest at the center and smaller at the periphery. Furthermore, in forging, a portion of a material which is closer to a surface thereof contacts the die and thus has smaller plastic deformation, and, as shown in Fig. 7, inner portions of the material have finer grains and hence increased strength.
- However, as shown in Fig. 8, when a
ball 10 impinges on the center of aface 2, the center flexes rearward, so that in the vicinity of the face's front side a compressive stress is introduced and in the vicinity of the face's rear side a tensile stress is introduced, as indicated in the figure by arrows, and these stresses decreases, as seen from theface 2 front or rear side inwards. - As such, a forged face is weak at a stressed portion and strong at a stress-free portion. Therefore it has been difficult to reduce the face in thickness, and it has thus been difficult to enhance the head in restitution coefficient and increase it in size.
- The present invention has been made to overcome such disadvantages as described above.
- The present invention contemplates a golf club excellent in restitution coefficient and also having a large head.
- The present invention in one aspect provides a golf club including a head formed of metal and having a face with a center having an average crystal grain size smaller at a rear side than at a front side. Note that in the present specification an "average crystal grain size" is a size represented by using a 2-dimentional numeral of a crystal grain contained in an area of a square of 25 mm by 25 mm in a photograph enlarged by 100 times.
- Typically, a player hits a ball with a golf club at its face's center surface (a ball hitting surface). The center flexes rearward, and, as indicated in Fig. 8 by arrows, the center has rear and front sides experiencing tensile and compressive stresses, respectively. In contrast, the face has a periphery surrounding the center and having front and rear sides experiencing tensile and compressive stresses, respectively. The present inventor examined the relationship between these stresses and damage of the face by observing a cross section of a cut, damaged face, and found that in most cases the face had a rear surface having a crack which then reached the face's front surface to damage the face. It would be said that damage of the face depends on the resistance of the rear side of the center of the face to tensile stress. Accordingly the present inventor reduced the average crystal grain size of the rear side of the center of the face. As a result, the face was able to have a rear side provided with increased strength and enhanced endurance against tensile stress.
- The average crystal grain size in the face's center at the front side is 2-100 times, preferably 10-100 times, more preferably 50-100 times that in the face's center at the rear side.
- The average crystal grain size in the face's center at the rear side is 0.1 µm to less than 50 µm, preferably 0.1 µm to 20 µm, more preferably 0.1 µm to 10 µm.
- The face that has a center having a rear side with a reduced average crystal grain size can provide the rear side with increased strength and hence enhanced endurance against tensile stress.
- Furthermore in the face the center is preferably surrounded by a periphery having an average crystal grain size smaller at the front side than at the rear side, since the periphery experiences tensile stress and it is accordingly desirable to reinforce it.
- As has been described above, when the face's center hits a ball it flexes rearward, while the face's periphery surrounding the center has a front side experiencing tensile stress, as indicated in Fig. 8 by arrows. The average crystal grain size in the face's periphery at the front side that is smaller than in the periphery at the rear side can provide the periphery's front side with increased strength and hence enhanced endurance against tensile stress.
- The face's center may have a rear side provided with a protrusion. In that case, the protrusion in a vicinity of a surface is adapted to have a smaller average crystal grain size than the face's center at the front side. This protrusion can provide the face with enhanced endurance as well as increased restitution coefficient and also help to ensure that the face has a flat front surface.
- The present invention in another aspect provides a golf club including a head formed of metal and having a face having a center and a periphery surrounding the center. The center and the periphery each have a first region having a relatively large average crystal grain size and a second region having a relatively small average crystal grain size. The center as seen in cross section has the first region and the second region therein at front and rear sides, respectively, and the periphery as seen in cross section has the second region and the first region therein at the front and rear sides, respectively. Preferably the second region is a region in a strip continuously extending from the center at the rear side to the periphery at the front side. Furthermore, if the center has a rear side provided with a protrusion, preferably the second region extends within the protrusion.
- The present invention provides a method of producing a golf club, including the steps of: forging a metal material to plastically deform the metal material into a plate to allow plastic flow of the metal material in a center at a rear side to be larger than plastic flow of the metal material in the center at a front side; and mechanically or plastically processing the forged metal material to shape the metal material into a face of a head of the golf club.
- The plastic flow of the metal material in the center at the rear side that increased is to be larger than in the center at the front side can reduce an average crystal grain size of the metal material in the center at the rear side to be smaller than in the center at the front side. By cutting or similarly mechanically processing the metal material or forging, sheet-metal working, pressing or similarly plastically processing the metal material, a golf club can be provided with a face having a center having an average crystal grain size smaller at the rear side than at the front side.
- The step of forging includes the step of plastically deforming the metal material to allow the center to have a front side provided with a protrusion to reduce plastic flow of the metal material in the center at the front side.
- The metal material that is plastically deformed to have a center having a front side provided with a protrusion allows the front side to be free of significant plastic flow. Since there does not exist any element in the metal material at the rear side which actively restricts plastic flow, the metal material flows there freely. As a result, plastic flow of the metal material in the center at the rear side can be promoted and the average crystal grain size there can be smaller than that in the center at the front side.
- The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
- In the drawings:
- Fig. 1 is a perspective view of a head of a golf club with the present invention applied thereto;
- Fig. 2 is an enlarged cross section in Fig. 1, taken along a line II-II;
- Fig. 3A shows a metallographic structure, as seen in cross section, of a face's center at a front side, Fig. 3B shows a metallographic structure, as seen in cross section, thereof at an internal portion, as seen in the direction of its thickness, and Fig. 3C shows a metallographic structure, as seen in cross section, thereof at a rear side;
- Figs. 4 and 5 are cross sections illustrating characteristic, first and second steps, respectively, in a process for producing a golf club in accordance with the present invention;
- Fig. 6 is a cross section of an exemplary variation of the Fig. 2 face structure;
- Fig. 7A shows a metallographic structure, as seen in cross section, of a conventional, cast face's center at a front side, Fig. 7B shows a metallographic structure, as seen in cross section, thereof at an internal portion, as seen in the direction of its thickness, and Fig. 7C shows a metallographic structure, as seen in cross section, thereof at a rear side; and
- Fig. 8 schematically shows a face hitting a ball and deforming, thus experiencing a tensile or compressive stress.
-
- Hereinafter the present invention in an embodiment will be described. The present invention contemplates a golf club head formed of metal and having a face having a center having rear surface (a surface opposite that hitting a ball) side having a reduced average crystal grain size to provide the center's rear side with increased strength to allow the face to be reduced in thickness to enhance the head in restitution coefficient and also increase it in size (for example to 300 to 500 cm3).
- The present invention is applicable to any golf club, whether it may be an iron club or a wood club. Fig. 1 is a perspective view of a
head 1 of a wood golf club with the present invention applied thereto. The golf club's shaft and grip are not shown as they can be those well known which are generally, conventionally adopted. -
Head 1 has a hollow, shell structure formed of metal, and, as shown in Fig. 1, it has aface 2, atoe 3, acrown 4, aheel 5, and a sole 6. - Fig. 2 shows a structure, in cross section, of
face 2 taken along a line II-II of Fig. 1. Fig. 2 schematically shows in a cross section offace 2 afirst region 7a having a relatively large average crystal grain size and asecond region 7b having a relatively small average crystal grain size. - As seen in Fig. 2, a side located in
face 2 at an upper side is a front side, which is used to hit a ball, and a side located inface 2 at a lower side and facing an internal space ofhead 1 is a rear side. When a player hits a ball with a golf club at the face'scenter 2a on the front side,center 2a flexes rearward (downward in Fig. 2) and its rear and front sides experience tensile and compressive stresses, respectively. - As has been described previously, damage at
center 2a significantly depends on whethercenter 2a has a rear side resistant to tensile stress. Accordingly,center 2a is required to have a rear side increased in strength. - A member formed of metal having a reduced average crystal grain size can have increased strength. As such,
face 2 can have a rear side having an increased strength simply by having a reduced average crystal grain size incenter 2a at the rear side - A reduced average crystal grain size may be provided throughout
face 2 uniformly. In the present embodiment, however, it is provided selectively inface 2 atcenter 2a along the rear side. - More specifically, as shown in Fig. 2,
center 2a, as seen in cross section, is provided with afirst region 7a having a relatively large average crystal grain size and arranged incenter 2a at the front side and asecond region 7b having a relatively small average crystal grain size and arranged incenter 2a at the rear side. -
Center 2a can thus have a rear side having a reduced average crystal grain size to provide increased strength to the rear side of the center of the face experiencing a tensile stress when it hits a ball. This can enhance resistance to tensile stress of the rear side of the center o the face to reduce damage offace 2. - In the Fig. 2 example,
center 2a is surrounded by aperiphery 2b, which also has first andsecond regions periphery 2b, thesecond region 7b may be positioned at the front side and thefirst region 7a may be positioned at the rear side. - Note that the
second region 7b, in the Fig. 2 example, is a region in the form of a strip continuously extending fromface 2 at the rear side towardperiphery 2b at the front side. - The average crystal grain size of
face 2 in accordance with the present invention will now be described more specifically. - The face's
center 2a at the front side has an average crystal grain size approximately 2-3 to 100 times, preferably 10-20 to 100 times, more preferably 30-50 to 100 times the center at the rear side. - By setting the average crystal grain size of the front side and that of the rear side to satisfy the above relationship,
center 2a can have a rear side increased in strength. - Furthermore,
center 2a has a rear side having an average crystal grain size of 0.1 to less than 50 µm, preferably 0.1 to 20 µm, more preferably 0.1 to 10 µm.Center 2a having a rear side having an average crystal grain size thus reduced allows the rear side to have an effectively increased strength. - An exemplary variation of the cross-sectional structure of
face 2 shown in Fig. 2 will now be described with reference to Fig. 6. - As shown in Fig. 6,
face 2 may havecenter 2a having a rear side provided with aprotrusion 11. In that case, thesecond region 7b extends inprotrusion 11, andprotrusion 11 in a vicinity of a surface has a smaller average crystal grain size than thecenter 2a at the front side. -
Center 2a that has a rear side provided withprotrusion 11 can have an increased thickness and also allows thesecond region 7b to extend inprotrusion 11. This can enhanceface 2 in endurance as well as restitution coefficient. Furthermore, in shapingface 2, plastic flow of metal material incenter 2a at the rear side can be facilitated, andprotrusion 11 also allows a portion thereof in a vicinity of a surface to have a smaller average crystal grain size, while it also readily ensures thatface 2 has a sufficiently flat front surface. - A method of producing a golf club in accordance with the present invention will now be described with reference to Figs. 4 and 5. Figs. 4 and 5 are cross sections showing characteristic steps of the golf club production method in accordance with the present invention.
- Initially, a β titanium (15V-6Cr-4AL) round bar (of metal) having a diameter of 21 mm and a length of 140 mm is prepared and heated together with a die to a prescribed temperature. The round bar is then placed in the die and it is pressed by 1,600 t and thus roughly forged into a plate. The round bar is thus plastically deformed into a plate to obtain a
metal material 8 shaped as shown in Fig. 4. - In doing so, as shown in Fig. 4,
metal material 8 is plastically deformed to provide aprotrusion 9 to a front side of acenter 8a of the material, so that plastic flow ofmetal material 8 incenter 8a at the rear side can be increased to be larger than that ofmetal material 8 incenter 8a at the front side. - This is because in
center 8a at the front side the die restrains plastic flow ofmetal material 8, whereas at the rear side,metal material 8 freely flows, since at the rear side there does not exist any element substantially restraining plastic flow ofmetal material 8. - By increasing plastic flow of
metal material 8 incenter 8a at the rear side to be larger than that of the material incenter 8a at the front side, distortion at the rear side when the material is forged can be increased and the average crystal grain size ofmetal material 8 incenter 8a at the rear side can be reduced to be smaller than that of the material incenter 8a at the front side. Note that atperipheral portion 8b metal material 8 flows as it does at the rear side. - The forged product shown in Fig. 4 is then mechanically processed. More specifically, for
example protrusion 9 is machined and thereby removed ormetal material 8 is further forged toplanarize protrusion 9. Thus, as shown in Fig. 5,metal material 8 can be formed into a geometry offace 2 ofhead 1 of a golf club. - With only a single forging step, crystal of
metal material 8 incenter 8a at the rear side can be reduced in size, and dissolving, aging or subjecting it to any other similar heat treatment can further reduce it in size. - Note that the Fig. 2 structure can be obtained simply by further forging the Fig. 4 structure to push
protrusion 9 intometal material 8. Furthermore, the Fig. 6 structure can be obtained simply by further forging the Fig. 4metal material 8 in a die for molding a rear side ofmetal material 8 which is provided with a depression corresponding toprotrusion 11. - The present inventor produced
face 2 by the method of the present invention and observed its cross-sectional metallographic structure, as described hereinafter. - Fig. 3A-3C each show a metallographic structure of a portion of
face 2 in cross section, as seen in the direction of its depth or thickness. Fig. 3A shows a metallographic structure offace 2 incenter 2a at the front side, as seen in cross section. Fig. 3B shows a metallographic structure offace 2 incenter 2a at an internal portion as seen in the direction of the depth of the face, as seen in cross section. Fig. 3C shows a metallographic structure offace 2 incenter 2a at the rear side, as seen in cross section. - As shown in Figs. 3A-3C, it can be understood that
center 2a has a significantly finer crystal grain at the rear side than at the front side.Center 2a had a Vickers hardness of Hv380 at the front side and Hv300 at the rear side. - While golf
club head face 2 produced as described above, head components other thanface 2, such ascrown 4 and sole 6, are for example cast and thus formed. The head components andface 2 are for example welded and thus bonded together to producegolf club head 1. Thereafter,head 1, and a grip and a shaft are bonded together to complete a golf club. - The present inventor compared in endurance the present invention, i.e.,
head 1 having a face of the present invention with a conventional product, i.e.,head 1 having a typical face, as shown in Table 1. Note that in the endurance test a ball was hit with the head at a speed of 38 m/s repeatedly untilface 2 was damaged. the conventional product was a head formed of 15V-6Cr-4AL titanium and having a face of 2.9 mm in thickness. The product of the present invention was a head formed of 15V-6Cr-4AL titanium and having a face of 2.9 mm in thickness.The number of hitting times until the face was damaged Average crystal grain size in the face's center at the rear side Present Invention 5000 times 0.5 to 1 µm Conventional Product 3000 times 50 to 100 µm - As shown in Table 1, the conventional product hit a
ball 3, 000 times beforeface 2 was damaged, whereas the product of the present invention hit aball 5, 000 times beforeface 2 was damaged. The present invention has thus been found to be able to provideface 2 with significantly increased endurance. - The endurance thus increased allows
face 2 to be reduced in thickness.Face 2 can be formed to more readily flex and thus provide an enhanced coefficient of restitution. Furthermore,head 1 can also be increased in size. - In the above embodiment, plastic flow of
metal material 8 in the center at the rear side is increased to provide a finer crystal by forgingmetal material 8 to have a center provided withprotrusion 9, as shown in Fig. 4, at the front side. However, plastic flow ofmetal material 8 in the center at the rear side may be increased by a method other than the above. Furthermore,face 2 can also be formed of the material other than titanium, such as iron, stainless steel, aluminum, magnesium, copper alloy, or the like. - In accordance with the present invention a face can have a rear side increased in strength to enhance resistance to tensile stress of the rear side. As such, the face can be reduced in thickness, and a head can be enhanced in restitution coefficient, while it can be increased in size.
- Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Claims (10)
- A golf club including a head (1) formed of metal and having a face (2), wherein said face (2) has a center (2a) having an average crystal grain size smaller at a rear side than at a front side.
- The golf club of claim 1, wherein said average crystal grain size at said front side is 2-100 times, preferably 10-100 times, more preferably 50-100 times said average crystal grain size at said rear side.
- The golf club of claim 1 or 2, wherein said average crystal grain size at said rear side is 0.1µm to less than 50µm, preferably 0.1µm to 20µm, more preferably 0.1µm to 10µm.
- The golf club of one of claims 1 to 3, wherein in said face (2) said center (2a) is surrounded by a periphery (2b) having an average crystal grain size smaller at said front side than at said rear side.
- The golf club of one of claims 1 to 4, wherein said center (2a) has said rear side provided with a protrusion (11), said protrusion (11) in a vicinity of a surface having a smaller average crystal grain size than said center (2a) at said front side.
- A golf club including a head (1) formed of metal and having a face (2), wherein said face (2) has a center (2a) and a periphery (2b) surrounding said center (2a), said center (2a) and said periphery (2b) each having a first region (7a) having a relatively large average crystal grain size and a second region (7b) having a relatively small average crystal grain size, said center (2a) as seen in cross section having said first region (7a) and said second region (7b) therein at front and rear sides, respectively, said periphery (2b) as seen in cross section having said second region (7b) and said first region (7a) therein at said front and rear sides, respectively.
- The golf club of claim 6, wherein said second region (7b) is a region in a strip continuously extending from said center (2a) at said rear side to said periphery (2b) at said front side.
- The golf club of claim 6 or 7, wherein said center (2a) has said rear side provided with a protrusion (11) and said second region (7b) extends within said protrusion (11).
- A method of producing a golf club, comprising the steps of:forging a metal material (8) to plastically deform said metal material (8) into a plate to allow plastic flow of said metal material (8) in a center (8a) at a rear side to be larger than plastic flow of said metal material (8) in said center (8a) at a front side; andmechanically or plastically processing said forged metal material (8) to shape said metal material (8) into a face (2) of a head (1) of the golf club.
- The method of claim 9, wherein the step of forging includes the step of plastically deforming said metal material (8) to allow said center (8a) to have a front side provided with a protrusion (9) to reduce plastic flow of said metal material (8) in said center (8a) at said front side.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001258142 | 2001-08-28 | ||
JP2001258142 | 2001-08-28 | ||
JP2002232574A JP3860095B2 (en) | 2001-08-28 | 2002-08-09 | Golf club and method for manufacturing the same |
JP2002232574 | 2002-08-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1287858A2 true EP1287858A2 (en) | 2003-03-05 |
EP1287858A3 EP1287858A3 (en) | 2004-01-07 |
Family
ID=26621127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02019305A Withdrawn EP1287858A3 (en) | 2001-08-28 | 2002-08-28 | Golf club and method of producing the same |
Country Status (3)
Country | Link |
---|---|
US (1) | US20030050134A1 (en) |
EP (1) | EP1287858A3 (en) |
JP (1) | JP3860095B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1217721C (en) * | 2003-07-30 | 2005-09-07 | 世元运动器材(上海)有限公司 | Manufacture of golf club head |
JP4832344B2 (en) * | 2007-03-16 | 2011-12-07 | 東洋ゴム工業株式会社 | Anti-vibration bush manufacturing method and anti-vibration bush |
US7749104B2 (en) | 2008-12-08 | 2010-07-06 | Sri Sports Limited | Golf club head |
JP5607704B2 (en) * | 2011-11-25 | 2014-10-15 | 株式会社遠藤製作所 | Golf club head and manufacturing method thereof |
US8852024B2 (en) | 2012-11-02 | 2014-10-07 | Karsten Manufacturing Corporation | Golf club head having a nanocrystalline titanium alloy |
US10512828B2 (en) | 2017-10-13 | 2019-12-24 | Chi-Hung Su | Manufacture method for partial structure refinement of a forged iron golf club head |
JP6470818B1 (en) * | 2017-10-31 | 2019-02-13 | 基宏 蘇 | Method for manufacturing a forged club head |
JP2022063703A (en) | 2020-10-12 | 2022-04-22 | ヤマハ株式会社 | Golf club head |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205560A (en) * | 1990-09-27 | 1993-04-27 | Yamaha Corporation | Golf club head |
US5611742A (en) * | 1995-08-04 | 1997-03-18 | Kabushiki Kaisha Endo Seisakusho | Wood-type golf club head |
US6193614B1 (en) * | 1997-09-09 | 2001-02-27 | Daiwa Seiko, Inc. | Golf club head |
-
2002
- 2002-08-09 JP JP2002232574A patent/JP3860095B2/en not_active Expired - Fee Related
- 2002-08-26 US US10/227,956 patent/US20030050134A1/en not_active Abandoned
- 2002-08-28 EP EP02019305A patent/EP1287858A3/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205560A (en) * | 1990-09-27 | 1993-04-27 | Yamaha Corporation | Golf club head |
US5611742A (en) * | 1995-08-04 | 1997-03-18 | Kabushiki Kaisha Endo Seisakusho | Wood-type golf club head |
US6193614B1 (en) * | 1997-09-09 | 2001-02-27 | Daiwa Seiko, Inc. | Golf club head |
Also Published As
Publication number | Publication date |
---|---|
JP3860095B2 (en) | 2006-12-20 |
JP2003144591A (en) | 2003-05-20 |
EP1287858A3 (en) | 2004-01-07 |
US20030050134A1 (en) | 2003-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6986715B2 (en) | Golf club head with a face insert | |
US5205560A (en) | Golf club head | |
US6966848B2 (en) | Golf club head and method of manufacturing the same | |
US6497629B2 (en) | Golfing iron club and manufacturing method thereof | |
US8128510B2 (en) | Golf club head | |
US20040092333A1 (en) | Golf club head with a face insert | |
KR20010098598A (en) | Method for processing a striking plate for a golf club head | |
US7380325B2 (en) | Method for manufacturing a golf club head | |
JP2003190340A (en) | Golf club | |
JP3779531B2 (en) | Golf club | |
US7040000B2 (en) | Method for manufacturing a golf club head | |
JP4184749B2 (en) | Golf club head | |
US20050023329A1 (en) | Method of making a golf club head | |
EP1287858A2 (en) | Golf club and method of producing the same | |
US6719643B1 (en) | Golf club head with a face insert | |
US20060196037A1 (en) | Forging blank for a golf club head | |
JP2004065660A (en) | Golf club head | |
JP2004167115A (en) | Golf club head | |
JP4285929B2 (en) | Manufacturing method of golf club head | |
JP4456241B2 (en) | Manufacturing method of golf club head | |
JP2004057645A (en) | Golf club head | |
US20090247317A1 (en) | Golf club and manufacturing method thereof | |
JP4074089B2 (en) | Wood type golf club head | |
JP3719365B2 (en) | Golf club head and manufacturing method thereof | |
JP2005052272A (en) | Golf club head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040708 |