[go: up one dir, main page]

EP1280167B1 - Semiconductive screen for power cable - Google Patents

Semiconductive screen for power cable Download PDF

Info

Publication number
EP1280167B1
EP1280167B1 EP02291796A EP02291796A EP1280167B1 EP 1280167 B1 EP1280167 B1 EP 1280167B1 EP 02291796 A EP02291796 A EP 02291796A EP 02291796 A EP02291796 A EP 02291796A EP 1280167 B1 EP1280167 B1 EP 1280167B1
Authority
EP
European Patent Office
Prior art keywords
layer
shield
insulating layer
semiconductor
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02291796A
Other languages
German (de)
French (fr)
Other versions
EP1280167A1 (en
Inventor
Bernard Aladenize
Robert Gadessaud
Hakim Janah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP1280167A1 publication Critical patent/EP1280167A1/en
Application granted granted Critical
Publication of EP1280167B1 publication Critical patent/EP1280167B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Definitions

  • the present invention relates to a semiconductor screen for power cable. It relates more particularly to such a screen for use in a medium power cable, high and very high voltage direct current.
  • the electrical insulation layer is generally made of polyethylene, high or low density, crosslinked or uncrosslinked.
  • Semiconductors screens in turn, generally consist of a polar matrix, that is to say comprising polar groups such as hydrophilic groups, such as a copolymer of ethylene and acrylate. alkyl, charged by means of an electrically conductive filler, for example carbon black.
  • polar groups such as hydrophilic groups, such as a copolymer of ethylene and acrylate. alkyl
  • an electrically conductive filler for example carbon black.
  • the injection of space charges into the insulation and the quantity of space charges thus injected are a function of both the nature of the insulation and that of the semiconductors (the electrode), and more precisely, the nature of the matrix of the semiconductor screens, the nature and the level of the conductive filler in this matrix, as well as the interaction between these constituents.
  • the document EP-0 644 558 proposes to replace the polar matrix of semiconductor screens by an apolar matrix. In this case, the accumulation of space charges in the electrical insulation layer in the vicinity of the interface of the latter with the semiconductor screens is effectively reduced, but there are problems of compatibility between the load and the matrix.
  • this solution limits the conductivity of semiconductor screens, necessary for electrical continuity with the core of the cable and allowing the insulation to withstand lightning strikes.
  • the purpose of the present invention is therefore to develop a semiconductor screen for limiting the injection of space charges in the adjacent electrical insulation layer when applying an electric field, while ensuring the electric functions of use.
  • the present invention proposes for this purpose a semiconductor screen for an energy cable comprising two layers, each of said layers comprising a polymer matrix in which a conductive filler is dispersed, a first of said layers having a longitudinal electrical conductivity greater than 0.1 S / m at 20 to 90 ° C, characterized in that the second of said layers is placed in contact with an electrical insulation layer of said energy cable and is such that the amount of space charge that can be injected from said second layer into said layer of insulation is low, so that the amount of space charge that can be injected from said semiconductor screen into said insulation layer is less than the amount of space charge that can be injected from said second layer only in said electrical insulation layer, said second layer forming a barrier limiting the injection of space charges into said electrical insulation layer.
  • the overall electrical properties of the semiconductor screen are retained, that is to say a sufficient electrical conductivity to play its role of screen by homogenizing the distribution of the electric field inside the while reducing the amount of space charge that can be injected into the electrical insulation layer by virtue of the presence of a semiconductor layer of low space charge injection directly in contact with the electrical insulation.
  • the invention is based on the satisfaction of two constraints considered as contradictory until now, namely the limitation of the injection of space charges in the electrical insulation layer and the good electrical conductivity of the semiconductor screen. .
  • the invention makes it possible to choose the material of the first layer intended to come into contact with the conductive core or a metal screen of a power cable, without any restriction as to the quantity of loads of space that it is likely to inject into the insulation of the cable. This opens the way for materials with interesting electrical properties but not used until now due to the injection too large space loads that they entailed in, insulation.
  • the amount of space charge that can be injected from the semiconductor screen into the insulation layer is less than 200 nC at 25 to 70 ° C.
  • the amount of space charge that can be injected from the second layer alone into the electrical insulation layer is less than 250 nC between 25 and 70 ° C.
  • the longitudinal electrical voluminal conductivity of the first layer will be chosen greater than 5 S / m between 20 and 90 ° C. This allows in particular the resistance to shock stresses to which the cable can be subjected during its operation.
  • the longitudinal electrical conductivity of said second layer will be chosen between 10 -4 and 10 -1 S / m between 20 and 90 ° C. This has the advantage of reducing the constraints with respect to the choice of the type and / or the rate of the conductive charge.
  • the first layer may comprise a matrix chosen from copolymers of ethylene and alkyl acrylate or mixtures of these copolymers with polyolefins, and a conductive filler dispersed in this matrix.
  • this first layer any material known for conventional semiconductor screens, in particular based on polar matrix.
  • the second layer may comprise a polymer matrix chosen from polyethylene, polypropylene, polystyrene and their copolymers, polymeric alloys selected from polyethylene, polypropylene, polystyrene and copolymers thereof, and mixtures of compounds selected from polyethylene, polypropylene, polystyrene, their copolymers and the foregoing alloys, and a conductive filler dispersed therein.
  • a polymer matrix chosen from polyethylene, polypropylene, polystyrene and their copolymers, polymeric alloys selected from polyethylene, polypropylene, polystyrene and copolymers thereof, and mixtures of compounds selected from polyethylene, polypropylene, polystyrene, their copolymers and the foregoing alloys, and a conductive filler dispersed therein.
  • the second layer may comprise a polymer matrix chosen from polyolefin thermoplastic elastomers and their mixtures.
  • the polymer matrix may consist of a mixture comprising polyethylene and a hydrogenated block copolymer of styrene, chosen from styrene and butadiene copolymers and styrene and isoprene copolymers.
  • the filler may be chosen from carbon blacks, for example acetylene black.
  • the present invention also relates to an energy cable comprising at least one semiconductor screen as defined above.
  • a cable according to the invention may furthermore comprise, between the external semiconductor screen and the outer protective sheath, a protective metal screen.
  • the invention is particularly applicable to DC power cables.
  • the inner semiconductor screen 3 is a composite which comprises (see figure 2 ) a layer 31 of high longitudinal electrical conductivity, typically greater than 0.1 S / m between 20 and 90 ° C, and preferably greater than 5 S / m at these temperatures, in contact with the conductive core 1, and a layer 32 capable of injecting a small amount of space charge into the insulation layer 4 after polarization, so that the amount of space charge injected from the screen 3 in the electrical insulation layer 4 is typically less than 200 nC between 25 and 70 ° C, the layer 32 being in contact with the electrical insulation layer 4.
  • the outer semiconductor screen 5 is a composite which comprises a layer 51 of high electrical conductivity, typically greater than 0.1 S / m between 20 and 90 ° C, and preferably greater than 5 S / m at these temperatures, the layer 51 being in contact with the metal screen 6, and a layer 52 capable of injecting a small amount of space charge into the insulation layer 4 after polarization, so that the the amount of space charge injected from screen 5 into the electrical insulation layer 4 is typically less than 200 nC between 25 and 70 ° C, the layer 52 being in contact with the electrical insulation layer 4.
  • the semiconductor screens 3 and 5 according to the invention make it possible both to obtain a satisfactory electrical conductivity in the vicinity of the conductive elements of the cable 10 in order to ensure the homogenization function of the distribution of the field electrical, and to limit the injection of space charges in the electrical insulation layer 4 since the layers 32 and 52 of the semiconductor screens 3 and 5 in contact with the latter inject a small amount of space charge after polarization.
  • Each of these samples comprises an electrically insulating layer I of thickness 0.8 mm placed between two semiconductor layers SC1 and SC2 of identical compositions.
  • the two layers SC1 and SC2 are composite semiconductor screens according to the invention, each consisting of a layer made of a Composition 1 material given below, capable of inducing a large quantity of charges. and a layer of a Composition 2 material given below, inducing a small amount of space charge in the electrically insulating layer with which it is in contact.
  • the two layers SC1 and SC2 consist solely of a material of Composition 2 above.
  • the two layers SC1 and SC2 consist solely of a material of Composition 1 above.
  • compositions 1 and 2 above have been chosen in order to make comparisons of amounts of space charge injected, regardless of their electrical conductivity.
  • the test implemented consists in sending the beam of a YAG laser onto the tested sample, each semiconductor screen of which constitutes a (+) and (-) electrode.
  • This beam absorbed at the surface of the (-) electrode decomposes this surface by pyrolysis, and the gases emitted cause a pressure wave which passes through the sample, causing a displacement of space charge and the appearance of image charges at the electrodes. , giving rise to the measured signal.
  • the processing of this signal gives an indication of the distribution of the electric field and the charge density in the sample.
  • Table 1 below gives the results obtained outside the applied field, after polarization of the samples during 4 hours under a continuous electrical voltage of +40 kV at ambient temperature (25 ° C.).
  • Table 2 gives the results obtained after polarization of the samples for 4 hours under a DC voltage of +40 kV at 70 ° C. ⁇ b> ⁇ u> Table 2 ⁇ / u> ⁇ /b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) AT 0.15 0.19 48 B 1.1 0.6 126 VS 2.5 1.8 196
  • Table 2 shows that the results obtained at room temperature are also valid at elevated temperature.
  • the two layers SC1 and SC2 are composite semiconductor screens according to the invention, each consisting of a layer made of a Composition 3 material given below, capable of inducing a large quantity of charges. space, and a layer of a Composition 4 material given below, inducing a small amount of space charges in the electrically insulating layer I with which it is in contact.
  • the two layers SC1 and SC2 consist solely of a material of Composition 4 above.
  • the two layers SC1 and SC2 consist solely of a material of Composition 3 above
  • the two layers SC1 and SC2 consist solely of a high space charge injection material with high commercial electrical conductivity, based on a mixture of polyethylene and copolymer of ethylene and vinyl acetate.
  • compositions 3 to 5 above have been chosen in order to make comparisons of quantities of injected space charges, independently of their electrical conductivity.
  • Table 3 gives the results obtained outside the applied field, after polarization of the samples during 4 hours under a continuous electrical voltage of +40 kV at ambient temperature (25 ° C.).
  • Table 4 gives the results obtained after polarization of the samples for 4 hours under a DC voltage of +40 kV at 70 ° C. ⁇ b> ⁇ u> Table 4 ⁇ / u> ⁇ /b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) D 0.52 0.3 53 E 1.25 0.65 102 F 2.82 1.91 422 BOY WUT 1.15 0.98 205
  • a screen according to the invention can be obtained by coextrusion of its two constituent layers in a suitable device, well known to those skilled in the art.
  • an energy cable according to the invention may comprise only a semiconductor screen according to the invention, for example the inner semiconductor screen only or the outer semiconductor display only.
  • the cable according to the invention may comprise other types of metal shields, for example a laminated or welded aluminum screen.
  • the protective structure which comprises the metal screen and the outer sheath may also include other protective elements such as in particular a swelling protective band in the presence of water.
  • a protective strip may be interposed between the outer semiconductor screen and the metal shield. It ensures itself or is associated with conductive means ensuring electrical continuity between the outer semiconductor screen and the metal screen.

Landscapes

  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Communication Cables (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)
  • Cable Accessories (AREA)

Abstract

A semi-conductor screen for power cables consists of conductive material dispersed in a polymer matrix and comprises a layer of high longitudinal volume conductivity and a layer in contact with the insulating layer within the cable which restricts the injection of charges into the insulating layer from the screen. A semiconductor screen (3, 5) for a power cable comprises two layers (31, 32; 51, 52), each consisting of conducting material dispersed in a polymer matrix. The first of these layers (31, 51) has a longitudinal volume conductivity of more than 0.1 S/m at 20-90 degrees C. The second layer (32, 52) is designed to be in contact with an electrically insulating layer (4) in the power cable and is such that only a small quantity of space charges can be injected into (4) from the second layer (32, 52), i.e. the quantity of charge which can be injected into (4) from the screen (3, 5) is less than that which can be injected into (4) from the second layer alone, the second layer (32, 52) forming a barrier to the injection of charges into layer (4). An Independent claim is also included for a power cable with a screen as described above.

Description

La présente invention concerne un écran semi-conducteur pour câble d'énergie. Elle concerne plus particulièrement un tel écran destiné à être utilisé dans un câble d'énergie moyenne, haute et très haute tension à courant continu.The present invention relates to a semiconductor screen for power cable. It relates more particularly to such a screen for use in a medium power cable, high and very high voltage direct current.

Un câble d'énergie de ce type comprend de manière connue les éléments suivants, disposés de manière coaxiale de l'intérieur vers l'extérieur du câble :

  • une âme conductrice, comprenant par exemple des fils de cuivre
  • un écran semi-conducteur dit intérieur en contact avec l'âme du câble
  • une couche d'isolation électrique
  • un écran semi-conducteur dit extérieur en contact avec la couche d'isolation électrique
  • de manière optionnelle, un écran métallique de protection
  • une gaine extérieure de protection.
An energy cable of this type comprises, in known manner, the following elements arranged coaxially from the inside to the outside of the cable:
  • a conductive core, comprising, for example, copper wires
  • an internal semiconductor screen in contact with the core of the cable
  • a layer of electrical insulation
  • an external semiconductor screen in contact with the electrical insulation layer
  • optionally, a protective metal screen
  • an outer protective sheath.

La couche d'isolation électrique est généralement constituée de polyéthylène, haute ou basse densité, réticulé ou non réticulé. Les écrans semi-conducteurs, quant à eux, sont en général constitués d'une matrice polaire, c'est-à-dire comprenant des groupements polaires tels que des groupements hydrophiles, comme par exemple un copolymère d'éthylène et d'acrylate d'alkyl, chargée au moyen d'une charge électriquement conductrice, par exemple du noir de carbone. Le choix d'une matrice polaire est guidé par la nécessité de rendre la charge compatible avec la matrice afin d'assurer une meilleure interaction entre ces deux constituants.The electrical insulation layer is generally made of polyethylene, high or low density, crosslinked or uncrosslinked. Semiconductors screens, in turn, generally consist of a polar matrix, that is to say comprising polar groups such as hydrophilic groups, such as a copolymer of ethylene and acrylate. alkyl, charged by means of an electrically conductive filler, for example carbon black. The choice of a polar matrix is guided by the need to make the charge compatible with the matrix in order to ensure better interaction between these two constituents.

Lors du fonctionnement d'un tel câble en courant continu, notamment à haute et très haute tension, un champ électrique très élevé apparaît entre l'âme conductrice et l'écran semi-conducteur intérieur, ainsi qu'entre l'écran d'aluminium et l'écran semi-conducteur extérieur. Ce champ électrique provoque la diffusion (on parle dans ce cas d'injection) de charges électriques depuis l'écran semi-conducteur dans la couche d'isolation électrique. Ces charges électriques sont alors piégées dans la couche d'isolation électrique.When operating such a DC cable, especially at high and very high voltage, a very high electric field appears between the conductive core and the inner semiconductor screen, and between the aluminum screen and the external semiconductor screen. This electric field causes the diffusion (we speak in this case of injection) of electrical charges from the semiconductor screen in the insulation layer electric. These electric charges are then trapped in the electrical insulation layer.

Or les phénomènes de claquage et de vieillissement des câbles d'énergie, notamment des câbles haute tension et très haute tension, sont dus au renforcement du champ électrique dans des zones localisées de ces câbles. Sous tension continue, ce renforcement de champ est induit par une distribution particulière de charges d'espace, fonction de la nature et de la densité de celles-ci.However, the phenomena of breakdown and aging of power cables, especially high voltage and very high voltage cables, are due to the strengthening of the electric field in localized areas of these cables. Under DC voltage, this field enhancement is induced by a particular distribution of space charges, depending on the nature and density of these.

Ainsi, l'injection de charges d'espace dans l'isolation et la quantité de charges d'espace ainsi injectées sont fonction à la fois de la nature de l'isolation et de celle des semi-conducteurs (l'électrode), et plus précisément de la nature de la matrice des écrans semi-conducteur, de la nature et du taux de la charge conductrice dans cette matrice, ainsi que de l'interaction entre ces constituants.Thus, the injection of space charges into the insulation and the quantity of space charges thus injected are a function of both the nature of the insulation and that of the semiconductors (the electrode), and more precisely, the nature of the matrix of the semiconductor screens, the nature and the level of the conductive filler in this matrix, as well as the interaction between these constituents.

Pour limiter le phénomène d'injection de charges d'espace, le document EP-0 644 558 propose de remplacer la matrice polaire des écrans semi-conducteurs par une matrice apolaire. Dans ce cas, on réduit effectivement l'accumulation de charges d'espace dans la couche d'isolation électrique à proximité de l'interface de cette dernière avec les écrans semi-conducteurs, mais on rencontre des problèmes de compatibilité entre la charge et la matrice.To limit the phenomenon of space charge injection, the document EP-0 644 558 proposes to replace the polar matrix of semiconductor screens by an apolar matrix. In this case, the accumulation of space charges in the electrical insulation layer in the vicinity of the interface of the latter with the semiconductor screens is effectively reduced, but there are problems of compatibility between the load and the matrix.

En outre, cette solution limite la conductivité des écrans semi-conducteurs, nécessaire à la continuité électrique avec l'âme du câble et permettant à l'isolation de résister aux chocs de foudre.In addition, this solution limits the conductivity of semiconductor screens, necessary for electrical continuity with the core of the cable and allowing the insulation to withstand lightning strikes.

Le but de la présente invention est donc de mettre au point un écran semi-conducteur permettant de limiter l'injection de charges d'espace dans la couche d'isolation électrique adjacente lors de l'application d'un champ électrique, tout en assurant les fonctions électriques d'usage.The purpose of the present invention is therefore to develop a semiconductor screen for limiting the injection of space charges in the adjacent electrical insulation layer when applying an electric field, while ensuring the electric functions of use.

La présente invention propose à cet effet un écran semi-conducteur pour câble d'énergie comprenant deux couches, chacune desdites couches comportant une matrice polymère dans laquelle est dispersée une charge conductrice, une première desdites couches ayant une conductivité électrique volumique longitudinale supérieure à 0 ,1 S/m entre 20 et 90°C,
caractérisé en ce que la deuxième desdites couches est placée au contact d'une couche d'isolation électrique dudit câble d'énergie et est telle que la quantité de charges d'espace susceptibles d'être injectées depuis ladite deuxième couche dans ladite couche d'isolation est faible, de sorte que la quantité de charges d'espace susceptibles d'être injectées depuis ledit écran semi-conducteur dans ladite couche d'isolation est inférieure à la quantité de charges d'espace susceptibles d'être injectées depuis ladite deuxième couche seule dans ladite couche d'isolation électrique, ladite deuxième couche formant une barrière limitant l'injection de charges d'espace dans ladite couche d'isolation électrique.
The present invention proposes for this purpose a semiconductor screen for an energy cable comprising two layers, each of said layers comprising a polymer matrix in which a conductive filler is dispersed, a first of said layers having a longitudinal electrical conductivity greater than 0.1 S / m at 20 to 90 ° C,
characterized in that the second of said layers is placed in contact with an electrical insulation layer of said energy cable and is such that the amount of space charge that can be injected from said second layer into said layer of insulation is low, so that the amount of space charge that can be injected from said semiconductor screen into said insulation layer is less than the amount of space charge that can be injected from said second layer only in said electrical insulation layer, said second layer forming a barrier limiting the injection of space charges into said electrical insulation layer.

Grâce à l'invention, on conserve les propriétés électriques globales de l'écran semi-conducteur, c'est-à-dire une conductivité électrique suffisante pour jouer son rôle d'écran en homogénéisant la répartition du champ électrique à l'intérieur du câble, tout en réduisant la quantité de charges d'espace susceptibles d'être injectées dans la couche d'isolation électrique grâce à la présence d'une couche semi-conductrice de faible injection de charges d'espace directement en contact avec la couche d'isolation électrique.Thanks to the invention, the overall electrical properties of the semiconductor screen are retained, that is to say a sufficient electrical conductivity to play its role of screen by homogenizing the distribution of the electric field inside the while reducing the amount of space charge that can be injected into the electrical insulation layer by virtue of the presence of a semiconductor layer of low space charge injection directly in contact with the electrical insulation.

L'invention repose sur la satisfaction de deux contraintes considérées comme contradictoires jusqu'à présent, à savoir la limitation de l'injection de charges d'espace dans la couche d'isolation électrique et la bonne conductivité électrique de l'écran semi-conducteur.The invention is based on the satisfaction of two constraints considered as contradictory until now, namely the limitation of the injection of space charges in the electrical insulation layer and the good electrical conductivity of the semiconductor screen. .

En outre, il est important de noter que l'invention permet de choisir le matériau de la première couche destinée à venir en contact avec l'âme conductrice ou un écran métallique d'un câble d'énergie, sans contrainte quant à la quantité de charges d'espace qu'il est susceptible d'injecter dans l'isolation du câble. Cela ouvre donc la voie à des matériaux ayant des propriétés électriques intéressantes mais non utilisés jusqu'à présent du fait de l'injection trop importante charges d'espace qu'ils entraînaient dans, l'isolation.In addition, it is important to note that the invention makes it possible to choose the material of the first layer intended to come into contact with the conductive core or a metal screen of a power cable, without any restriction as to the quantity of loads of space that it is likely to inject into the insulation of the cable. This opens the way for materials with interesting electrical properties but not used until now due to the injection too large space loads that they entailed in, insulation.

De manière très avantageuse, la quantité de charges d'espace susceptibles d'être injectées depuis l'écran semi-conducteur dans la couche d'isolation est inférieure à 200 nC entre 25 et 70°C.Very advantageously, the amount of space charge that can be injected from the semiconductor screen into the insulation layer is less than 200 nC at 25 to 70 ° C.

Selon l'invention, la quantité de charges d'espace susceptibles d'être injectées depuis la deuxième couche seule dans la couche d'isolation électrique est inférieure à 250 nC entre 25 et 70°C.According to the invention, the amount of space charge that can be injected from the second layer alone into the electrical insulation layer is less than 250 nC between 25 and 70 ° C.

A noter que lorsque l'on parle de quantité de charges d'espace injectées, celle-ci est mesurée par la méthode de l'onde de pression, qui sera décrite en détail plus loin.Note that when talking about the amount of space charge injected, it is measured by the pressure wave method, which will be described in detail below.

De préférence, la conductivité électrique volumique longitudinale de la première couche sera choisie supérieure à 5 S/m entre 20 et 90°C. Ceci permet notamment la tenue aux contraintes de choc auxquelles le câble peut être soumis lors de son fonctionnement.Preferably, the longitudinal electrical voluminal conductivity of the first layer will be chosen greater than 5 S / m between 20 and 90 ° C. This allows in particular the resistance to shock stresses to which the cable can be subjected during its operation.

De préférence également, on choisira la conductivité électrique volumique longitudinale de ladite deuxième couche entre 10-4 et 10-1 S/m entre 20 et 90°C. Ceci a l'avantage de réduire les contraintes par rapport au choix du type et/ou du taux de la charge conductrice.Also preferably, the longitudinal electrical conductivity of said second layer will be chosen between 10 -4 and 10 -1 S / m between 20 and 90 ° C. This has the advantage of reducing the constraints with respect to the choice of the type and / or the rate of the conductive charge.

De manière avantageuse, la première couche peut comporter une matrice choisie parmi les copolymères d'éthylène et d'acrylate d'alkyle ou les mélanges de ces copolymères avec des polyoléfines, et une charge conductrice dispersée dans cette matrice.Advantageously, the first layer may comprise a matrix chosen from copolymers of ethylene and alkyl acrylate or mixtures of these copolymers with polyolefins, and a conductive filler dispersed in this matrix.

En fait, on peut choisir pour cette première couche tout matériau connu pour les écrans semi-conducteurs classiques, notamment à base de matrice polaire.In fact, it is possible to choose for this first layer any material known for conventional semiconductor screens, in particular based on polar matrix.

De manière avantageuse encore, selon une première variante de réalisation, la deuxième couche peut comporter une matrice polymère choisie parmi le polyéthylène, le polypropylène, le polystyrène et leurs copolymères, les alliages de polymères choisis parmi le polyéthylène, le polypropylène, le polystyrène et leurs copolymères, et les mélanges de composés choisis parmi le polyéthylène, le polypropylène, le polystyrène, leurs copolymère et les alliages précédents, et une charge conductrice dispersée dans cette matrice.Advantageously still, according to a first variant embodiment, the second layer may comprise a polymer matrix chosen from polyethylene, polypropylene, polystyrene and their copolymers, polymeric alloys selected from polyethylene, polypropylene, polystyrene and copolymers thereof, and mixtures of compounds selected from polyethylene, polypropylene, polystyrene, their copolymers and the foregoing alloys, and a conductive filler dispersed therein.

Selon une deuxième variante, la deuxième couche peut comporter une matrice polymère choisie parmi les élastomères thermoplastiques polyoléfiniques et leurs mélanges.According to a second variant, the second layer may comprise a polymer matrix chosen from polyolefin thermoplastic elastomers and their mixtures.

Plus spécifiquement, la matrice polymère peut être constituée d'un mélange comprenant du polyéthylène et un copolymère séquencé hydrogéné de styrène, choisi parmi les copolymères de styrène et butadiène et de styrène et isoprène.More specifically, the polymer matrix may consist of a mixture comprising polyethylene and a hydrogenated block copolymer of styrene, chosen from styrene and butadiene copolymers and styrene and isoprene copolymers.

La charge peut être choisie parmi les noirs de carbone, comme par exemple le noir d'acétylène.The filler may be chosen from carbon blacks, for example acetylene black.

La présente invention concerne également un câble d'énergie comprenant au moins un écran semi-conducteur tel que défini précédemment.The present invention also relates to an energy cable comprising at least one semiconductor screen as defined above.

Plus précisément, un câble d'énergie selon l'invention comprend, disposés coaxialement et de l'intérieur vers l'extérieur :

  • une âme conductrice
  • un écran semi-conducteur intérieur
  • une couche d'isolation électrique
  • un écran semi-conducteur extérieur
  • une gaine de protection extérieure
la première couche de l'écran semi-conducteur intérieur étant en contact avec l'âme conductrice, et
les deuxièmes couches des écrans semi-conducteurs intérieur et extérieur étant en contact avec la couche d'isolation électrique.More specifically, an energy cable according to the invention comprises, arranged coaxially and from the inside towards the outside:
  • a conductive soul
  • an internal semiconductor screen
  • a layer of electrical insulation
  • an external semiconductor screen
  • an outer protective sheath
the first layer of the inner semiconductor screen being in contact with the conductive core, and
the second layers of the inner and outer semiconductor screens being in contact with the electrical insulation layer.

Un câble selon l'invention peut comprendre en outre, entre l'écran semi-conducteur extérieur et la gaine de protection extérieure, un écran métallique de protection.A cable according to the invention may furthermore comprise, between the external semiconductor screen and the outer protective sheath, a protective metal screen.

L'invention s'applique tout particulièrement aux câbles d'énergie à courant continu.The invention is particularly applicable to DC power cables.

D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante d'un mode de réalisation de l'invention, donnée à titre illustratif et nullement limitatif.Other features and advantages of the present invention will appear in the following description of an embodiment of the invention, given for illustrative and not limiting.

Dans les figures suivantes :

  • la figure 1 est une vue en perspective éclatée d'un câble d'énergie incorporant deux écrans semi-conducteurs selon l'invention
  • la figure 2 est une vue en coupe transversale du câble de la figure 1
  • la figure 3 est une vue en coupe d'un échantillon servant à effectuer l'essai dit de l'onde de pression.
In the following figures:
  • the figure 1 is an exploded perspective view of an energy cable incorporating two semiconductor screens according to the invention
  • the figure 2 is a cross-sectional view of the cable from the figure 1
  • the figure 3 is a sectional view of a sample used to perform the so-called pressure wave test.

La figure 1 montre un câble 10 comprenant, disposés coaxialement de l'intérieur vers l'extérieur :

  • une âme conductrice 1 formée d'un toron de conducteurs de cuivre 2
  • un écran semi-conducteur intérieur 3 en contact avec l'âme conductrice 1
  • une couche d'isolation électrique 4 en un matériau diélectrique tel que le polyéthylène haute ou basse densité, le polyéthylène réticulé ou le terpolymère d'éthylène-propylène-diène à chaîne principale méthylène (EPDM)
  • un écran semi-conducteur extérieur 5 en contact avec la couche d'isolation électrique 4
  • un écran métallique de protection 6, optionnel, constitué d'un ruban d'aluminium
  • une gaine extérieure de protection 7 en un matériau tel que le polychlorure de vinyle, le polyéthylène ou un mélange de polymère et de charges ignifugeantes.
The figure 1 shows a cable 10 comprising, arranged coaxially from the inside towards the outside:
  • a conductive core 1 formed of a strand of copper conductors 2
  • an internal semiconductor screen 3 in contact with the conductive core 1
  • an electrical insulation layer 4 made of a dielectric material such as high or low density polyethylene, crosslinked polyethylene or methylene-propylene-diene terpolymer with a methylene main chain (EPDM)
  • an outer semiconductor screen 5 in contact with the electrical insulation layer 4
  • a protective metal screen 6, optional, consisting of an aluminum ribbon
  • an outer protective sheath 7 of a material such as polyvinyl chloride, polyethylene or a mixture of polymer and flame retardant fillers.

Selon l'invention, l'écran semi-conducteur intérieur 3 est un composite qui comprend (voir figure 2) une couche 31 de conductivité électrique volumique longitudinale élevée, typiquement supérieure à 0,1 S/m entre 20 et 90°C, et de préférence supérieure à 5 S/m à ces températures, en contact avec l'âme conductrice 1, et une couche 32 susceptible d'injecter une faible quantité de charges d'espace dans la couche d'isolation 4 après polarisation, de sorte que la quantité de charges d'espace injectées depuis l'écran 3 dans la couche d'isolation électrique 4 est typiquement inférieure à 200 nC entre 25 et 70°C, la couche 32 étant en contact avec la couche d'isolation électrique 4.According to the invention, the inner semiconductor screen 3 is a composite which comprises (see figure 2 ) a layer 31 of high longitudinal electrical conductivity, typically greater than 0.1 S / m between 20 and 90 ° C, and preferably greater than 5 S / m at these temperatures, in contact with the conductive core 1, and a layer 32 capable of injecting a small amount of space charge into the insulation layer 4 after polarization, so that the amount of space charge injected from the screen 3 in the electrical insulation layer 4 is typically less than 200 nC between 25 and 70 ° C, the layer 32 being in contact with the electrical insulation layer 4.

Toujours selon l'invention, l'écran semi-conducteur extérieur 5 est un composite qui comprend une couche 51 de conductivité électrique volumique élevée, typiquement supérieure à 0,1 S/m entre 20 et 90°C, et de préférence supérieure à 5 S/m à ces températures, la couche 51 étant en contact avec l'écran métallique 6, et une couche 52 susceptible d'injecter une faible quantité de charges d'espace dans la couche d'isolation 4 après polarisation, de sorte que la quantité de charges d'espace injectées depuis l'écran 5 dans la couche d'isolation électrique 4 est typiquement inférieure à 200 nC entre 25 et 70°C, la couche 52 étant en contact avec la couche d'isolation électrique 4.Still according to the invention, the outer semiconductor screen 5 is a composite which comprises a layer 51 of high electrical conductivity, typically greater than 0.1 S / m between 20 and 90 ° C, and preferably greater than 5 S / m at these temperatures, the layer 51 being in contact with the metal screen 6, and a layer 52 capable of injecting a small amount of space charge into the insulation layer 4 after polarization, so that the the amount of space charge injected from screen 5 into the electrical insulation layer 4 is typically less than 200 nC between 25 and 70 ° C, the layer 52 being in contact with the electrical insulation layer 4.

Comme mentionné plus haut, les écrans semi-conducteurs 3 et 5 selon l'invention permettent à la fois d'obtenir une conductivité électrique satisfaisante au voisinage des éléments conducteurs du câble 10 afin d'assurer la fonction d'homogénéisation de la répartition du champ électrique, et de limiter l'injection de charges d'espace dans la couche d'isolation électrique 4 puisque les couches 32 et 52 des écrans semi-conducteurs 3 et 5 en contact avec cette dernière injectent une faible quantité de charges d'espace après polarisation.As mentioned above, the semiconductor screens 3 and 5 according to the invention make it possible both to obtain a satisfactory electrical conductivity in the vicinity of the conductive elements of the cable 10 in order to ensure the homogenization function of the distribution of the field electrical, and to limit the injection of space charges in the electrical insulation layer 4 since the layers 32 and 52 of the semiconductor screens 3 and 5 in contact with the latter inject a small amount of space charge after polarization.

Afin de montrer l'efficacité de l'invention, on a procédé à des mesures de charges d'espace par la méthode de l'onde de pression, en tant que telle connue, sur trois échantillons différents A, B et C, dont la structure de base est montrée en figure 3. Les épaisseurs des couches SC1 et SC2 de l'échantillon A sont doubles de celles des couches SC1 et SC2 des échantillons B et C.In order to demonstrate the effectiveness of the invention, space charge measurements were carried out by the pressure wave method, as known, on three different samples A, B and C, whose basic structure is shown in figure 3 . The thicknesses of the SC1 and SC2 layers of the sample A are double those of the layers SC1 and SC2 of the samples B and C.

Chacun de ces échantillons comprend une couche électriquement isolante I d'épaisseur 0,8 mm placée entre deux couches semi-conductrices SC1 et SC2 de compositions identiques.Each of these samples comprises an electrically insulating layer I of thickness 0.8 mm placed between two semiconductor layers SC1 and SC2 of identical compositions.

Dans l'échantillon A, les deux couches SC1 et SC2 sont des écrans semi-conducteurs composites selon l'invention constitués chacun d'une couche en un matériau de Composition 1 donnée ci-dessous, susceptible d'induire une forte quantité de charges d'espace et d'une couche en un matériau de Composition 2 donnée ci-dessous, induisant une faible quantité de charges d'espace dans la couche électriquement isolante I avec laquelle elle est en contact.In the sample A, the two layers SC1 and SC2 are composite semiconductor screens according to the invention, each consisting of a layer made of a Composition 1 material given below, capable of inducing a large quantity of charges. and a layer of a Composition 2 material given below, inducing a small amount of space charge in the electrically insulating layer with which it is in contact.

Composition 1Composition 1

  • Polyéthylène basse densité (0,919 g/cm3) ayant un Melt Flow Index de 2 et une masse molaire moyenne en poids de 126 500 g/mol : 100 partsLow density polyethylene (0.919 g / cm 3 ) having a Melt Flow Index of 2 and a weight average molecular weight of 126,500 g / mol: 100 parts
  • SBS hydrogéné (copolymère séquencé, hydrogéné de styrène et de butadiène) : 20 partsHydrogenated SBS (block copolymer, hydrogenated styrene and butadiene): 20 parts
  • Noir au four ENSACO 250 G : 39 partsBlack oven ENSACO 250 G: 39 parts
  • Antioxydant : 0,25 partAntioxidant: 0.25 part
Composition 2Composition 2

  • Polyéthylène basse densité (0,919 g/cm3) ayant un Melt Flow Index de 2 et une masse molaire moyenne en poids de 126 500 g/mol : 100 partsLow density polyethylene (0.919 g / cm 3 ) having a Melt Flow Index of 2 and a weight average molecular weight of 126,500 g / mol: 100 parts
  • SBS hydrogéné : 20 partsHydrogenated SBS: 20 parts
  • Noir d'acétylène DENKA : 39 partsAcetylene black DENKA: 39 parts
  • Antioxydant : 0,25 partAntioxidant: 0.25 part

Dans l'échantillon B, les deux couches SC1 et SC2 sont constituées uniquement d'un matériau de Composition 2 ci-dessus.In sample B, the two layers SC1 and SC2 consist solely of a material of Composition 2 above.

Dans l'échantillon C, les deux couches SC1 et SC2 sont constituées uniquement d'un matériau de Composition 1 ci-dessus.In the sample C, the two layers SC1 and SC2 consist solely of a material of Composition 1 above.

Il est important d'insister sur le fait que les compositions 1 et 2 ci-dessus ont été choisies afin de pouvoir effectuer des comparaisons de quantités de charges d'espace injectées, et ce indépendamment de leur conductivité électrique.It is important to emphasize that compositions 1 and 2 above have been chosen in order to make comparisons of amounts of space charge injected, regardless of their electrical conductivity.

L'essai mis en oeuvre, dit essai de l'onde de pression, consiste à envoyer le faisceau d'un laser YAG sur l'échantillon testé, dont chaque écran semi-conducteur constitue une électrode (+) et (-). Ce faisceau absorbé en surface de l'électrode (-) décompose cette surface par pyrolyse, et les gaz émis provoquent une onde de pression qui traverse l'échantillon, provoquant un déplacement de charges d'espace et l'apparition de charges images aux électrodes, donnant lieu au signal mesuré. Le traitement de ce signal donne une indication sur la répartition du champ électrique et sur la densité de charge volumique dans l'échantillon.The test implemented, called the pressure wave test, consists in sending the beam of a YAG laser onto the tested sample, each semiconductor screen of which constitutes a (+) and (-) electrode. This beam absorbed at the surface of the (-) electrode decomposes this surface by pyrolysis, and the gases emitted cause a pressure wave which passes through the sample, causing a displacement of space charge and the appearance of image charges at the electrodes. , giving rise to the measured signal. The processing of this signal gives an indication of the distribution of the electric field and the charge density in the sample.

Les valeurs mises en évidence lors de cet essai sur les échantillons testés sont la densité maximale D+ de charges positives dans la couche isolante I, la densité maximale D- de charges négatives dans la couche isolante I et la quantité totale QT de charges dans la couche isolante I (en fait son image).The values highlighted during this test on the samples tested are the maximum density D + of positive charges in the insulating layer I, the maximum density D - of negative charges in the insulating layer I and the total quantity Q T of charges in the insulating layer I (in fact its image).

Le Tableau 1 ci-dessous donne les résultats obtenus hors champ appliqué, après polarisation des échantillons durant 4 heures sous une tension électrique continue de +40 kV à température ambiante (25°C). Tableau 1 Echantillon D+ (C/m3) D- (C/m3) QT (nC) A 0,019 0,03 5 B 0,9 0,05 76 C 1,8 0,5 98 Table 1 below gives the results obtained outside the applied field, after polarization of the samples during 4 hours under a continuous electrical voltage of +40 kV at ambient temperature (25 ° C.). <b><u> Table 1 </ u></b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) AT 0,019 0.03 5 B 0.9 0.05 76 VS 1.8 0.5 98

Ce tableau met en évidence le fait que, à température ambiante, un écran semi-conducteur selon l'invention injecte 19 fois moins de charges d'espace que la couche entraînant la plus forte injection seule (échantillon C), mais également 15 fois moins que celle présentant la plus faible injection de charges d'espace seule (échantillon B). Ce résultat est donc tout à fait surprenant.This table shows that at room temperature, a semiconductor screen according to the invention injects 19 times less space charge than the layer causing the highest injection alone (sample C), but also 15 times less the one with the lowest space-only charge injection (sample B). This result is therefore quite surprising.

Il montre que l'on peut choisir pour la première couche d'un écran semi-conducteur selon l'invention, un matériau à forte, moyenne ou faible injection de charges d'espace, du moment que ses caractéristiques de conductivité électrique sont satisfaisantes.It shows that one can choose for the first layer of a semiconductor screen according to the invention, a material with high, medium or low space charge injection, as long as its electrical conductivity characteristics are satisfactory.

Le Tableau 2 ci-dessous donne les résultats obtenus après polarisation des échantillons durant 4 heures sous une tension électrique continue de +40 kV à 70°C. Tableau 2 Echantillon D+ (C/m3) D- (C/m3) QT (nC) A 0,15 0,19 48 B 1,1 0,6 126 C 2,5 1,8 196 Table 2 below gives the results obtained after polarization of the samples for 4 hours under a DC voltage of +40 kV at 70 ° C. <b><u> Table 2 </ u></b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) AT 0.15 0.19 48 B 1.1 0.6 126 VS 2.5 1.8 196

Le Tableau 2 montre que les résultats obtenus à température ambiante sont également valables à température élevée.Table 2 shows that the results obtained at room temperature are also valid at elevated temperature.

On a procédé à d'autres mesures, dans les mêmes conditions que celles décrites ci-dessus, sur des échantillons D, E, F et G, dont la structure de base est également celle de la figure 3.Other measurements were made, under the same conditions as those described above, on samples D, E, F and G, whose basic structure is also that of figure 3 .

Dans l'échantillon D, les deux couches SC1 et SC2 sont des écrans semi-conducteurs composites selon l'invention constitués chacun d'une couche en un matériau de Composition 3 donnée ci-dessous, susceptible d'induire une forte quantité de charges d'espace, et d'une couche en un matériau de Composition 4 donnée ci-dessous, induisant une faible quantité de charges d'espace dans la couche électriquement isolante I avec laquelle elle est en contact.In the sample D, the two layers SC1 and SC2 are composite semiconductor screens according to the invention, each consisting of a layer made of a Composition 3 material given below, capable of inducing a large quantity of charges. space, and a layer of a Composition 4 material given below, inducing a small amount of space charges in the electrically insulating layer I with which it is in contact.

Composition 3Composition 3

  • Polyéthylène basse densité (0,920 g/cm3) ayant un Melt Flow Index de 2 et une masse molaire moyenne en poids de 212 000 g/mol : 100 partsLow density polyethylene (0.920 g / cm 3 ) having a Melt Flow Index of 2 and a weight average molecular weight of 212 000 g / mol: 100 parts
  • SBS hydrogéné : 20 partsHydrogenated SBS: 20 parts
  • Noir au four ENSACO 250G : 39 partsBlack oven ENSACO 250G: 39 parts
  • Antioxydant : 0,25 partAntioxidant: 0.25 part
Composition 4Composition 4

  • Polyéthylène basse densité (0,920 g/cm3) ayant un Melt Flow Index de 2 et une masse molaire moyenne en poids de 212 000 g/mol : 100 partsLow density polyethylene (0.920 g / cm 3 ) having a Melt Flow Index of 2 and a weight average molecular weight of 212 000 g / mol: 100 parts
  • SBS hydrogéné : 20 parts (
    Figure imgb0001
    A expliciter par les inventeurs)
    Hydrogenated SBS: 20 parts (
    Figure imgb0001
    To be explained by the inventors)
  • Noir d'acétylène DENKA : 39 partsAcetylene black DENKA: 39 parts
  • Antioxydant : 0,25 partAntioxidant: 0.25 part

Dans l'échantillon E, les deux couches SC1 et SC2 sont constituées uniquement d'un matériau de Composition 4 ci-dessus.In the sample E, the two layers SC1 and SC2 consist solely of a material of Composition 4 above.

Dans l'échantillon F, les deux couches SC1 et SC2 sont constituées uniquement d'un matériau de Composition 3 ci-dessusIn the sample F, the two layers SC1 and SC2 consist solely of a material of Composition 3 above

Dans l'échantillon G, les deux couches SC1 et SC2 sont constituées uniquement d'un matériau semi-conducteur à forte injection de charges d'espace et conductivité électrique élevée du commerce, à base d'un mélange de polyéthylène et de copolymère d'éthylène et d'acétate de vinyl.In the sample G, the two layers SC1 and SC2 consist solely of a high space charge injection material with high commercial electrical conductivity, based on a mixture of polyethylene and copolymer of ethylene and vinyl acetate.

A noter que pour tous les échantillons D à G, les épaisseurs des couches SC1 et SC2 sont identiques.Note that for all the samples D to G, the thicknesses of the layers SC1 and SC2 are identical.

Ici encore, il est important d'insister sur le fait que les compositions 3 à 5 ci-dessus ont été choisies afin de pouvoir effectuer des comparaisons de quantités de charges d'espace injectées, et ce indépendamment de leur conductivité électrique.Here again, it is important to emphasize that compositions 3 to 5 above have been chosen in order to make comparisons of quantities of injected space charges, independently of their electrical conductivity.

Le Tableau 3 ci-dessous donne les résultats obtenus hors champ appliqué, après polarisation des échantillons durant 4 heures sous une tension électrique continue de +40 kV à température ambiante (25°C). Tableau 3 Echantillon D+ (C/m3) D- (C/m3) QT (nC) D 0,09 0,04 5 E 1,05 0,21 43 F 1,95 0,69 80 G 1,68 0,85 235 Table 3 below gives the results obtained outside the applied field, after polarization of the samples during 4 hours under a continuous electrical voltage of +40 kV at ambient temperature (25 ° C.). <b><u> Table 3 </ u></b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) D 0.09 0.04 5 E 1.05 0.21 43 F 1.95 0.69 80 BOY WUT 1.68 0.85 235

Les résultats montrés au Tableau 3 amènent aux mêmes conclusions qualitatives que ceux du Tableau 1.The results shown in Table 3 lead to the same qualitative conclusions as those in Table 1.

Le Tableau 4 ci-dessous donne les résultats obtenus après polarisation des échantillons durant 4 heures sous une tension électrique continue de +40 kV à 70°C. Tableau 4 Echantillon D+ (C/m3) D- (C/m3) QT (nC) D 0,52 0,3 53 E 1,25 0,65 102 F 2,82 1,91 422 G 1,15 0,98 205 Table 4 below gives the results obtained after polarization of the samples for 4 hours under a DC voltage of +40 kV at 70 ° C. <b><u> Table 4 </ u></b> Sample D + (C / m 3 ) D - (C / m 3 ) Q T (nC) D 0.52 0.3 53 E 1.25 0.65 102 F 2.82 1.91 422 BOY WUT 1.15 0.98 205

Les résultats montrés au Tableau 4 amènent aux mêmes conclusions qualitatives que ceux du Tableau 2.The results shown in Table 4 lead to the same qualitative conclusions as those in Table 2.

On ne rentrera pas ici dans les détails du procédé de fabrication d'un câble selon l'invention. On indique simplement qu'un écran selon l'invention peut être obtenu par co-extrusion de ses deux couches constitutives dans un dispositif adapté, bien connu de l'homme de l'art.We will not go into the details of the method of manufacturing a cable according to the invention. It is simply stated that a screen according to the invention can be obtained by coextrusion of its two constituent layers in a suitable device, well known to those skilled in the art.

Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit.Of course, the invention is not limited to the embodiment just described.

De même, la structure de câble d'énergie décrite ne l'est qu'à titre d'exemple, et un câble d'énergie selon l'invention peut ne comprendre qu'un écran semi-conducteur selon l'invention, par exemple l'écran semi-conducteur intérieur seulement ou l'écran semi-conducteur extérieur seulement. En outre, le câble selon l'invention peut comprendre d'autres types d'écrans métalliques de protection, par exemple un écran en aluminium contrecollé ou soudé.Similarly, the energy cable structure described is only exemplary, and an energy cable according to the invention may comprise only a semiconductor screen according to the invention, for example the inner semiconductor screen only or the outer semiconductor display only. In addition, the cable according to the invention may comprise other types of metal shields, for example a laminated or welded aluminum screen.

En outre, la structure de protection qui comporte l'écran métallique et la gaine extérieure peut également comporter d'autres éléments de protection tels que notamment une bande de protection gonflante en présence d'eau. Une telle bande de protection peut être interposée entre l'écran semi-conducteur extérieur et l'écran métallique de protection. Elle assure elle-même ou est associée à des moyens conducteurs assurant la continuité électrique entre l'écran semi-conducteur extérieur et l'écran métallique.In addition, the protective structure which comprises the metal screen and the outer sheath may also include other protective elements such as in particular a swelling protective band in the presence of water. Such a protective strip may be interposed between the outer semiconductor screen and the metal shield. It ensures itself or is associated with conductive means ensuring electrical continuity between the outer semiconductor screen and the metal screen.

Par ailleurs, les matériaux indiqués pour les différents éléments des câbles selon l'invention le sont à titre indicatif, et peuvent bien entendu être remplacés par des matériaux équivalents qui sont à la portée de l'homme de l'art.Furthermore, the materials indicated for the various elements of the cables according to the invention are indicative, and may of course be replaced by equivalent materials that are within the reach of ordinary skill in the art.

Ainsi notamment, l'homme du métier pourra faire varier les compositions données plus haut à titre d'exemple, de la manière suivante :

  • la teneur massique en styrène dans la matrice polymère peut être de 0,1 à 20 %, préférentiellement de 1 à 10 %,
  • la charge conductrice peut être du noir de carbone, de préférence du type « acétylène » qui est plus propre que les noirs de carbone du type « furnace » (ou noirs au four),
  • la teneur massique en noir de carbone (par rapport à la matrice) peut être de 15 à 40% préférentiellement de 20 à 30 %,
  • l'anti-oxydant utilisé est l'Irganox 1010 ; la teneur massique en antioxydant est de 0,1 à 0,2 %, préférentiellement de 0,15 %.
Thus, in particular, those skilled in the art can vary the compositions given above by way of example, as follows:
  • the mass content of styrene in the polymer matrix may be from 0.1 to 20%, preferably from 1 to 10%,
  • the conductive filler may be carbon black, preferably of the "acetylene" type which is cleaner than "furnace" type carbon blacks (or furnace blacks),
  • the mass content of carbon black (relative to the matrix) may be from 15 to 40%, preferably from 20 to 30%,
  • the antioxidant used is Irganox 1010; the mass content of antioxidant is 0.1 to 0.2%, preferably 0.15%.

Enfin, on pourra remplacer tout moyen par un moyen équivalent sans sortir du cadre de l'invention.Finally, any means can be replaced by equivalent means without departing from the scope of the invention.

Claims (14)

  1. A semiconductor shield (3, 5) for a power cable, comprising two layers (31, 32; 51, 52), each of said layers comprising a polymer matrix wherein a conductive filler is dispersed, a first one of said layers (31, 51) having a longitudinal volume electrical conductivity of more than 0.1 S/m between 20 and 90 °C,
    characterized in that the second one of said layers (32, 52) is contacted with an electric insulating layer (4) of said power cable and is such that the amount of space charges, which can be injected from said second layer (32, 52) into said electric insulating layer (4) is low, so that the amount of space charges, which can be injected from said semiconductor shield (3, 5) into said insulating layer (4) is less than the quantity of space charges, which can be injected from said second layer (32, 52) only into said electric insulating layer (4), with said second layer (32, 52) being a barrier limiting the injection of space charges into said electric insulating layer (4).
  2. The shield according to claim 1, characterized in that the amount of space charges, which can be injected from said semiconductor shield (3, 5) into said insulating layer (4) is less than 200 nC between 25 and 70 °C.
  3. The shield according to any of claims 1 or 2, characterized in that the amount of space charges, which can be injected from said second layer (32, 52) only into said electric insulating layer (4) is less than 250 nC between 25 and 70 °C.
  4. The shield according to any of claims 1 to 3, characterized in that the volume electrical conductivity of the second layer (31, 51) is more than 5 S/m between 20 and 90 °C.
  5. The shield according to any of claims 1 to 4, characterized in that the longitudinal volume electrical conductivity of said second layer (32, 52) is comprised between 10-4 and 10-1 S/m between 20 and 90 °C.
  6. The shield according to any of claims 1 to 5, characterized in that said first layer (31, 51) includes a matrix chosen from ethylene and alkyl acrylate copolymers or blends of such copolymers with polyolefins, and a conductive filler dispersed in said matrix.
  7. The shield according to any of claims 1 to 6, characterized in that said second layer (32, 52) includes a polymer matrix chosen from polyethylene, polypropylene, polystyrene, and copolymers thereof, polymer alloys chosen from polyethylene, polypropylene, polystyrene, and copolymers thereof, and the blends of compounds chosen from polyethylene, polypropylene, polystyrene, copolymers thereof, and the preceding alloys, and a conductive filler dispersed in said matrix.
  8. The shield according to any of claims 1 to 6, characterized in that said second layer (32, 52) includes a polymer matrix chosen from polyolefin thermoplastic elastomers and blends thereof, and a conductive filler dispersed in said matrix.
  9. The shield according to claim 7, characterized in that said polymer matrix of the second layer (32, 52) is composed of a blend including polyethylene and a hydrogenated styrene block copolymer, chosen from styrene butadiene and styrene isoprene copolymers.
  10. The shield according to any of claims 1 to 9, characterized in that said filler is chosen from carbon blacks, such as acetylene black.
  11. A power cable, characterized in that it comprises a shield (3, 5) according to any of claims 1 to 10.
  12. The power cable according to claim 11, characterized in that it comprises, arranged coaxially and from the inside to the outside:
    - a conductive core (1),
    - an internal semiconductor shield (3),
    - an electric insulating layer (4),
    - an external semiconductor shield (5),
    - an external protective sheath (7),
    said first layer (31) of said internal semiconductor shield (3) contacting said conductive core (1), and
    said second layers (32, 52) of said internal and external semiconductor shields (3, 5) contacting said electric insulating layer (4).
  13. The cable according to claim 12, characterized in that it comprises, between said external semiconductor shield (5) and said external protective sheath (7), a protective metal shield (6).
  14. The cable according to any of claims 11 to 13, characterized in that it is designed for direct current operation.
EP02291796A 2001-07-25 2002-07-17 Semiconductive screen for power cable Expired - Lifetime EP1280167B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0110045 2001-07-25
FR0110045A FR2827999B1 (en) 2001-07-25 2001-07-25 SEMICONDUCTOR SCREEN FOR ENERGY CABLE

Publications (2)

Publication Number Publication Date
EP1280167A1 EP1280167A1 (en) 2003-01-29
EP1280167B1 true EP1280167B1 (en) 2009-01-07

Family

ID=8865972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02291796A Expired - Lifetime EP1280167B1 (en) 2001-07-25 2002-07-17 Semiconductive screen for power cable

Country Status (7)

Country Link
EP (1) EP1280167B1 (en)
JP (1) JP4630519B2 (en)
AT (1) ATE420443T1 (en)
DE (1) DE60230698D1 (en)
DK (1) DK1280167T3 (en)
ES (1) ES2320202T3 (en)
FR (1) FR2827999B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032152A1 (en) * 2004-07-02 2006-01-26 Ticona Gmbh Composite comprising at least one hard component and at least one soft component
KR101161360B1 (en) * 2010-07-13 2012-06-29 엘에스전선 주식회사 DC Power Cable Having Reduced Space Charge Effect
FR2991808B1 (en) 2012-06-08 2015-07-17 Nexans DEVICE COMPRISING A TRAPPER LAYER OF SPACE LOADS
CN103093868A (en) * 2013-01-28 2013-05-08 东莞市瀛通电线有限公司 Alloy filler tensile earphone wire
CN103915201A (en) * 2013-09-25 2014-07-09 安徽省高沟电缆有限公司 Control power cable used for petrochemical industry
MX2017004949A (en) * 2014-10-17 2017-07-05 3M Innovative Properties Co Dielectric material with enhanced breakdown strength.
CN105023637B (en) * 2015-08-15 2017-05-31 国网新疆电力公司塔城供电公司 The high-tension cable of electromagnetism interference

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116983A (en) * 1974-02-28 1975-09-12
JPS53137676U (en) * 1977-04-05 1978-10-31
JPS6063813A (en) * 1983-09-19 1985-04-12 日立電線株式会社 Semiconductive composition for power cable
GB8425377D0 (en) * 1984-10-08 1984-11-14 Ass Elect Ind High voltage cables
JPS636707A (en) * 1986-06-27 1988-01-12 昭和電線電纜株式会社 Crosslinked polyolefin insulated cable
JPS6424307A (en) * 1987-07-21 1989-01-26 Fujikura Ltd Dc power cable
JPS6424308A (en) * 1987-07-21 1989-01-26 Fujikura Ltd Dc power cable
GB9100034D0 (en) * 1991-01-03 1991-02-20 Phillips Cables Ltd An improved flexible electrically insulated electric conductor
ATE138240T1 (en) * 1991-04-02 1996-06-15 Alcatel Cable MATERIAL FOR SEMICONDUCTOR SHIELDING
FR2710183B3 (en) * 1993-09-17 1995-10-13 Alcatel Cable Power cable with improved dielectric strength.
JPH08306243A (en) * 1995-05-08 1996-11-22 Fujikura Ltd Power cable and connecting tape
JPH1079205A (en) * 1996-09-04 1998-03-24 Fujikura Ltd Power cable and power equipment
JPH10255561A (en) * 1997-03-06 1998-09-25 Showa Electric Wire & Cable Co Ltd Dc power cable
JPH11260158A (en) * 1998-03-09 1999-09-24 Showa Electric Wire & Cable Co Ltd Dc power cable

Also Published As

Publication number Publication date
DE60230698D1 (en) 2009-02-26
ES2320202T3 (en) 2009-05-20
JP2003051218A (en) 2003-02-21
EP1280167A1 (en) 2003-01-29
JP4630519B2 (en) 2011-02-09
ATE420443T1 (en) 2009-01-15
FR2827999B1 (en) 2003-10-17
DK1280167T3 (en) 2009-05-04
FR2827999A1 (en) 2003-01-31

Similar Documents

Publication Publication Date Title
EP1128395B1 (en) High and extra-high voltage d.c. power cable
EP2224459B1 (en) High voltage electrical cable
EP2483894B1 (en) Medium- or high-voltage electric cable
EP0264315B1 (en) Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves
FR2501897A1 (en) HIGH VOLTAGE ISOLATED CABLE
EP2765581B1 (en) Electric cable resistant to partial discharges
EP1280167B1 (en) Semiconductive screen for power cable
EP0660483B1 (en) Device for joining power cables
FR2980622A1 (en) ELECTRIC ELEMENT COMPRISING A LAYER OF A POLYMERIC MATERIAL WITH A GRADIENT OF ELECTRICAL CONDUCTIVITY
EP3443563A1 (en) Electrical cable with improved resistance to galvanic corrosion
EP2136376B1 (en) High-voltage power cable
EP4092689A1 (en) Electric cable limiting partial discharges
EP0644558B1 (en) Câble insulative structure
EP0645781B1 (en) Power cable with improved dielectric strength
EP3764372A1 (en) Cable comprising a fire-resistant layer
EP3544025A1 (en) Electric cable including an easily peelable polymer layer
EP3704719A1 (en) Cable end and corresponding manufacturing method
EP2535901B1 (en) Medium- or high-voltage cable with polyolefin sheath containing mineral fillers
EP2498264B1 (en) Medium- or high-voltage electrical cable
FR2654867A1 (en) Electrical cable capable of providing a minimum electrical service during a fire, even when directly exposed to a flame
FR3012250A1 (en) ENERGY AND / OR TELECOMMUNICATION CABLE COMPRISING A POLYMERIC LAYER RESISTANT TO SCRATCHES
EP3503125A1 (en) Cable comprising at least one metallic layer of carbon material
FR2710184A1 (en) Power cable with improved dielectric strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030729

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60230698

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2320202

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

26N No opposition filed

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

BERE Be: lapsed

Owner name: NEXANS

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110726

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130719

Year of fee payment: 12

Ref country code: DK

Payment date: 20130719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130719

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150727

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60230698

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160717