EP1279898B1 - Vormischbrenner mit hoher Flammenstabilität - Google Patents
Vormischbrenner mit hoher Flammenstabilität Download PDFInfo
- Publication number
- EP1279898B1 EP1279898B1 EP02405615A EP02405615A EP1279898B1 EP 1279898 B1 EP1279898 B1 EP 1279898B1 EP 02405615 A EP02405615 A EP 02405615A EP 02405615 A EP02405615 A EP 02405615A EP 1279898 B1 EP1279898 B1 EP 1279898B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mesh
- burner according
- premixing burner
- premixing
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 39
- 238000002156 mixing Methods 0.000 claims description 23
- 239000000446 fuel Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 150000001399 aluminium compounds Chemical class 0.000 claims 1
- 238000005524 ceramic coating Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/402—Mixing chambers downstream of the nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/72—Safety devices, e.g. operative in case of failure of gas supply
- F23D14/74—Preventing flame lift-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/36—Supply of different fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the invention relates to a premix burner for a heat generator, in particular for use in a gas turbine plant, according to the preamble of claim 1.
- Premix burners have become known in which a combustion air flow is introduced tangentially into a burner interior via a swirl generator and mixed with fuel.
- Gaseous fuels for example natural gas
- liquid fuels such as heating oil
- At the burner exit the resulting vortex flow bursts at a cross-sectional jump, inducing a return flow zone which serves to stabilize a flame during operation of the burner.
- a mixing section can be arranged downstream of the swirl generator, by means of which an improved premixing of fuels of various types is ensured.
- thermoacoustic vibrations occur, which can lead to undesirable effects, such as high mechanical stress, increased NO x emissions by inhomogeneous combustion and even extinguishment of the flame.
- an increasing proportion of air through the burner itself is passed, reduces the sound-absorbing effect of the inflowing into the combustion chamber cooling air, which is why especially in such modern gas turbines associated with undesirable vibrations problems occur more.
- the object of the present invention is to improve the stability of lean premix combustion of modern burners of the type mentioned at the outset, as used in particular in the combustion chambers of gas turbines.
- An essential increase in the combustion temperature must be avoided in order to continue to ensure low-emission operation.
- the basic idea of the invention is to equip a mixing section of a premix burner with a net-like structure extending at least approximately completely over the flow cross-section of the mixing section.
- the net-like structure consists of a wire mesh or a plurality of mutually spaced layers of wire mesh.
- the arrangement of five to 100, in particular ten to 20, at least approximately perpendicular to the longitudinal axis of the burner aligned wire mesh has proven to be advantageous.
- the net-like structure consists of a porous body integrated in the burner cavity made of a foamed material.
- the reticulated structure is preferably to be designed so that it causes no appreciable pressure loss or local vortices, which could permanently affect the flow in the mixing section. This is ensured in a wire mesh-based embodiment in that wire size and mesh size are matched in their dimensions to one another that the largest possible open screen surface, preferably in the order of more than 90%, remains.
- the reticulated structure is equipped with a catalytically active surface to assist combustion.
- thermoacoustic behavior of the material is due to a reticular structure extending over the entire flow cross section Burner is changed in a positive manner and as a result, a reduction in the vibration tendency of the burner and thus a stabilization of the flame are recorded.
- This positive effect is obviously due to the property of the mesh structure to isolate and attenuate sound waves propagating in the combustion chamber. Pressure waves from the combustion chamber in the direction of gas injection are partially damped by the structure and partly isolated, that is, transmitted or radiated again in a changed frequency. Due to the much shorter length of the reflected back into the combustion chamber sound waves, the excitation of pressure oscillations in the combustion chamber is shifted to other frequency ranges and reduced. Material and dimensioning of the network structure influence their damping and isolation behavior.
- This stabilizing effect of the network structure is additionally enhanced by the oxidation-promoting catalytic activity of its surface.
- the invention is applicable to premix burners, which are well known and familiar to those skilled in the art from the cited prior art.
- the invention can be readily combined with all disclosed in the writings cited therein and further developed from these writings, the skilled worker familiar burner types, which in the variety the possible embodiments are only partially reflected by the preferred variants specified in the subclaims.
- FIG. 1 gives in a highly schematic way the essence of the invention again.
- a swirl generator (100) is operative, which may be a prior art premix burner, as described, inter alia, in the publications cited in this disclosure.
- These exemplarily quoted burners are all based on a common principle. They have an axially extending, at least approximately rotationally symmetrical cavity (102) into which combustion air flows via inlet slots (101) extending preferably parallel to the longitudinal axis (106). Due to the tangential orientation of these more or less slit-shaped inlet openings (101), the combustion air receives a strong tangential velocity component from which, in interaction with the axial direction towards the burner port, a swirling flow (103) results through said interior space (102).
- the enrichment of the combustion air with fuel takes place alternatively or additionally via means (104) on the housing jacket near the combustion air inlet slots (101) and / or via central feed means (105) in the burner axis (106).
- these burners have in common that the flow cross-section in the direction of the burner outlet steadily widened in order to maintain approximately constant flow conditions with the increasing mass flow.
- the burners exemplified in this document are based on the described unitary principle, the invention should not be restricted to this particular type of swirl burners, but should include any type of premix burners whose flame stability is to be increased while the emission of pollutants remains consistently low.
- a net-like structure (201) is now arranged in a downstream region of the burner within the mixing section (200) of the combustion air with the fuel (s).
- This network structure (201) consists of at least one wire mesh (202) spanning the flow cross section (203).
- the wire mesh or fabrics (202) have a mesh size in a range of 250 ⁇ m to 1000 ⁇ m and a wire thickness of 100 ⁇ m to 500 ⁇ m. In order not to adversely affect the flow conditions, these parameters of the wire mesh (202) are coordinated so that the largest possible open screen surface, preferably in the order of more than 90%, remains. If a plurality of wire meshes (202) spanning the flow cross-section (203) are arranged, their spacing should correspond at least to the wire thickness.
- the network structure (201) has a positive effect on the thermoacoustic behavior of the burner.
- Known occurs in burners of the generic type, the not negligible problem of shear layer formation between located in the combustion chamber hot combustion gases and the exiting mixture of combustion air and fuels.
- These shear layers initiate the so-called Kelvin-Helmholtz waves, from which, under operating conditions, reaction rate fluctuations and, as a result, thermoacoustic oscillations of typical frequency result.
- the pressure waves propagating in the combustion chamber (300) strike the wire mesh (202) and cause it to vibrate.
- vibration energy is partially absorbed by the tissue (202) and partially reflected back to the other frequency ranges downstream in the combustion chamber (300) or forwarded upstream for gas injection.
- the wire mesh (202) may additionally have a catalytic coating promoting the combustion process according to a supplementary embodiment variant.
- Suitable catalysts are the materials known per se, such as noble metals (Pd, Pt, Rh, etc.), metal oxides (MnO 2 , NiO, etc.), alone or in admixture with a cocatalyst.
- metallic materials are the requirements in terms of vibration reduction and carrier properties for catalysts best meet. Good results have been achieved with materials based on aluminum-containing or aluminum-treated iron or steel alloys. If these materials contain a sufficiently high proportion of aluminum, oxidation on the surface forms aluminum whiskers which give rise to a rough and chemically active surface, which is very suitable as a carrier for a catalytically active coating material. According to a favorable embodiment, the steel mesh is coated with a porous ceramic material containing the catalyst material.
- connection of the net structure (201) to the surrounding housing wall (205) can be made in any suitable way. Depending on the specific conditions of the application, a number of possibilities are open to the person skilled in the art. Two favorable embodiments are based on the embodiments according to Fig. 2 and 3 explained.
- the Fig.2 and 3 show the realization of the invention with reference to a premix burner, as he from the EP 0 780 629 has become known.
- the burner consists essentially of a swirl generator (100) for a combustion air stream, which is formed from at least two conical body parts, which are arranged with their axes relative to the burner axis (106) as well as mutually laterally offset. Due to this lateral offset of the partial bodies, tangential inlet slots (101) are formed between the partial bodies. Through the tangential inlet slots (101) flows a combustion air flow substantially tangentially into the interior (102) of the swirl generator (100).
- a swirling flow (103) is formed in succession, the axial flow component of which points towards the downstream mouth of the swirl generator (100).
- the split bodies are attached to a retaining ring (107) at the downstream end of the swirl generator (100).
- a transition element (108) is further arranged in the retaining ring (107). This is provided with a number of transition channels (109) which convert the swirl flow (103) generated in the swirl generator (100) from the incoming combustion air into the mixing section (200) without sudden changes in cross section.
- This mixing section (200) is used to produce a homogeneous mixture of combustion air and fuels of various kinds.
- the mixing section (200) allows a lossless flow control, without a backflow can form.
- the mixing section (200) Over the length of the mixing section (200) can influence the mix quality for all fuel types.
- the combustion chamber (300) closes, wherein at the transition point a cross-sectional jump is present, behind which a central remindströmzone (301) is formed, which has the properties of a flame holder.
- a flame from the premixed fuel / air mixture can stabilize. Due to the good premixing of air and fuel, this flame can be operated with a fairly high excess air - usually you will find on the burner itself air figures of two and above. Due to the comparatively cool combustion temperatures, very low nitrogen oxide emissions can be achieved with such burners without expensive exhaust aftertreatment.
- the housing (205) surrounding the mixing section (200) is segmentally composed of individual tube sections (206), at the connection points (207) of which the wire meshes (202) are incorporated.
- This variant shown schematically in Fig.2 , characterized by a smooth exchange of used tissues (202).
- An alternative embodiment, shown in FIG Figure 3 consists of assembling the housing (205) of individual segments (206), wherein at least one segment (208) was equipped with the wire meshes (202) in a preceding working process.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Description
- Die Erfindung betrifft einen Vormischbrenner für einen Wärmeerzeuger, insbesondere für den Einsatz in einer Gasturbinenanlage, gemäss dem Oberbegriff des Anspruchs 1.
- Aus der
EP 0 321 809 , aus derWO 9317279 EP 0 945 677 sind Vormischbrenner bekanntgeworden, bei denen ein Verbrennungsluftstrom über einen Drallerzeuger tangential in einen Brennerinnenraum eingebracht und mit Brennstoff vermischt wird. Gasförmige Brennstoffe, beispielsweise Erdgas, werden entlang den tangentialen Lufteintrittsschlitzen in den Verbrennungsluftstrom eingedüst, wohingegen flüssige Brennstoffe, wie Heizöl, vozugsweise über eine zentrale Düse am Brennerkopf eingedüst werden. Am Brenneraustritt platzt die entstehende Wirbelströmung an einem Querschnittssprung auf, wodurch eine Rückströmzone induziert wird, welche im Betrieb des Brenners zur Stabilisierung einer Flamme dient. - Um unter den Bedingungen des Einsatzes in Gasturbinen auch bei Verwendung von Brennstoffen unterschiedlicher Provenienz und Zusammensetzung Störungen des Strömungsfeldes zu vermeiden und damit stets eine betriebssichere Flammenpositionierung zu erreichen, kann gemäss der Lehre der
EP 0 780 629 stromab des Drallerzeugers eine Mischstrecke angeordnet werden, durch welche eine verbesserte Vormischung von Brennstoffen verschiedener Art gewährleistet wird. - Wiewohl derartig konzipierte Brenner einen Betrieb mit sehr niedrigen Schadstoffemissionen ermöglichen, operieren sie oft gefährlich nahe an der Löschgrenze der Flamme: Übliche realisierte Flammentemperaturen mit den mageren Vormischflammen derartiger Brenner liegen um 1700K bis 1750K. Unter bestimmten Betriebsbedingungen kann die Löschgrenze der Flammen schon bei 1650K erreicht sein. Dieser Wert ist vergleichsweise hoch. Dies liegt in der Brennstoffarmut des Brennstoff-Luft-Gemisches begründet. Diese reduziert die Flammengeschwindigkeit, was letztlich in einer räumlich ausgedehnteren und daher instabileren Flammenfront resultiert.
- Eine stärkere Anfettung des Gemisches würde jedoch die Schadstoffemissionen nach oben treiben und den Einsatz magerer Vormischbrenner ad absurdum führen.
- Des weiteren ist es bekannt, dass in Brennkammern von Gasturbinen häufig thermoakustische Schwingungen auftreten, die zu unerwünschten Effekten, wie etwa zu einer hohen mechanischen Beanspruchung, erhöhten NOx-Emissionen durch eine inhomogene Verbrennung und sogar zum Verlöschen der Flamme führen können. Da bei modernen Gasturbinen zum Zwecke der Erzielung niedriger NOx-Emissionen ein zunehmender Anteil Luft durch die Brenner selbst geleitet wird, reduziert sich die schalldämpfende Wirkung der in die Brennkammer einströmenden Kühlluft, weshalb gerade in solchen modernen Gasturbinen die mit unerwünschten Schwingungen verbundenen Probleme verstärkt auftreten.
- Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Stabilität der mageren Vormischverbrennung moderner Brenner der eingangs genannten Art, wie sie insbesondere in den Brennkammern von Gasturbinen eingesetzt werden, zu verbessern. Dabei ist eine essentielle Anhebung der Verbrennungstemperatur zu vermeiden, um weiterhin einen schadstoffarmen Betrieb zu gewährleisten.
- Erfindungsgemäss wird diese Aufgabe durch einen Vormischbrenner der im Anspruch 1 genannten Art gelöst. Vorteilhafte Ausführungsformen eines solchen Brenners geben die abhängigen Ansprüche wieder.
- Der Grundgedanke der Erfindung besteht darin, eine Mischstrecke eines Vormischbrenners mit einer sich zumindest annähernd vollständig über den Strömungsquerschnitt der Mischstrecke erstreckenden netzartigen Struktur auszurüsten.
- Nach einer bevorzugten Ausführungsform besteht die netzartige Struktur aus einem Drahtgewebe oder einer Mehrzahl zueinander beabstandet angeordneter Lagen von Drahtgewebe.
Als vorteilhaft hat sich dabei die Anordnung von fünf bis 100, insbesondere zehn bis 20, zumindest annähernd senkrecht zur Brennerlängsachse ausgerichteter Drahtgewebe erwiesen. - Nach einer alternativen Ausführungsform besteht die netzartige Struktur aus einem in den Brennerhohlraum integrierten porösen Körper aus einem geschäumten Werkstoff.
- Das netzartige Struktur ist vorzugsweise so zu auszulegen, dass sie keinen nennenswerten Druckverlust oder lokale Wirbelbildungen verursacht, die die Strömung in der Mischstrecke nachhaltig beeinträchtigen könnten.
Dies wird bei einer auf Drahtgewebe basierenden Ausführungsform dadurch gewährleistet, dass Drahtstärke und Maschenweite in ihrer Dimensionierung so aufeinander abgestimmt werden, dass eine möglichst grosse offene Siebfläche, vorzugsweise in einer Grössenordnung von über 90%, verbleibt. - Durch eine Variation der offenen Siebfläche über den Querschnitt bietet sich die Möglichkeit, die Strömungsverhältnisse in der Mischstrecke gezielt zu beeinflussen.
In diesem Zusammenhang hat es sich als vorteilhaft erwiesen, durch eine Erhöhung der offenen Siebfläche zur Randzone hin die Randströmung zu fördern. - Eine ausreichende Widerstandsfähigkeit gegen die herrschenden thermischen und chemischen Beanspruchungen weisen Materialien auf der Basis metallischer oder keramischer Werkstoffe auf, wobei metallischen Werkstoffen, insbesondere aluminiumhaltigen oder -behandelten Eisen- oder Stahllegierungen, im Hinblick auf eine Reduzierung der Brennkammerschwingungen der Vorzug eingeräumt wird.
- In einer ergänzenden, besonders bevorzugten Ausführungsvariante ist die netzartige Struktur mit einer katalytisch wirksamen Oberfläche zur Unterstützung der Verbrennung ausgerüstet.
- Es hat sich gezeigt, dass durch eine sich über den gesamten Strömungsquerschnitt erstreckende netzartige Struktur das thermoakustische Verhalten des Brenners in positiver Weise verändert wird und in deren Folge eine Reduzierung der Schwingungsneigung des Brenners und damit eine Stabilisierung der Flamme zu verzeichnen sind. Diese positve Wirkung ist offensichtlich auf die Eigenschaft der Netzstruktur zurückzuführen, die sich in der Brennkammer ausbreitenden Schallwellen zu isolieren und zu dämpfen.
Druckwellen aus der Brennkammer in Richtung Gaseindüsung werden durch die Struktur zum Teil gedämpft und zum Teil isoliert, das heisst in einer geänderten Frequenz durchgelassen oder wieder abgestrahlt. Durch die wesentlich kürzere Lauflänge der zurück in die Brennkammer reflektierten Schallwellen wird die Anregung von Druckschwingungen in der Brennkammer zu anderen Frequenzbereichen hin verschoben und vermindert.
Material und Dimensionierung der Netzstruktur beeinflussen deren Dämpfungsund Isolationsverhalten. - Dieser Stabilisierungseffekt der Netzstruktur wird zusätzlich verstärkt durch die oxidationsfördernde katalytische Wirksamkeit ihrer Oberfläche.
- Aus den genannten Effekten resultieren Synergismen, die letztendlich die Löschgrenze zu tieferen Flammentemperaturen hin verschieben und damit bei gleicher Verbrennungstemperatur durch Vergrösserung des Abstandes zwischen Flammen- und Löschgrenzentemperatur die Flammenstabilität verbessern.
- Ein weiteres hervorzuhebendes Merkmal der Erfindung liegt darin, dass bestehende Brenner mit geringem Aufwand nachrüstbar sind.
- Die Erfindung ist anwendbar in Vormischbrennern, welche aus dem eingangs zitierten Stand der Technik dem Fachmann als solche wohlbekannt und geläufig sind. Die Erfindung kann ohne weiteres mit allen in den dort zitierten Schriften offenbarten und den aus diesen Schriften weitergebildeten, dem Fachmann an sich geläufigen Brennerbauarten kombiniert werden, welche in der Vielgestalt der möglichen Ausführungsformen durch die in den Unteransprüchen angegebenen Vorzugsvarianten nur unvollständig reflektiert werden.
- Weitere Merkmale, Vorteile und Einzelheiten der Erfindung seien nachfolgend in einem Ausführungsbeispiel anhand schematischer Zeichnungen näher erläutert. Es werden nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche oder einander entsprechende Elemente figurieren unter den gleichen Bezugszeichen.
-
Figur 1 gibt in stark schematisierter Weise das Wesen der Erfindung wieder. Anfänglich ist ein Drallerzeuger (100) wirksam, bei dem es sich um einen an sich bekannten Vormischbrenner handeln kann, wie er unter anderem in den in dieser Darlegung zitierten Veröffentlichungen beschrieben ist. Diese beispielhaft zitierten Brenner beruhen allesamt auf einem gemeinsamen Prinzip. Sie weisen einen sich axial erstreckenden, wenigstens annähernd rotationssymmetrischen Hohlraum (102) auf, in den über vorzugsweise parallel zur Längsachse (106) verlaufende Einlassschlitze (101) Verbrennungsluft einströmt. Durch die tangentiale Ausrichtung dieser mehr oder weniger schlitzförmigen Einlassöffnungen (101) erhält die Verbrennungsluft eine starke tangentiale Geschwindigkeitskomponente, aus der in Wechselwirkung mit der zur Brennermündung hin gerichteten axialen Komponente eine Drallströmung (103) durch den besagten Innenraum (102) resultiert. Die Anreicherung der Verbrennungsluft mit Brennstoff erfolgt alternativ oder ergänzend über Mittel (104) am Gehäusemantel nahe den Verbrennungslufteinlassschlitzen (101) und/oder über zentrale Zuführmittel (105) in der Brennerachse (106). - Ferner ist diesen Brennern gemein, dass sich der Strömungsquerschnitt in Richtung zum Brenneraustritt hin stetig erweitert, um mit dem zunehmenden Massenstrom annähernd konstante Strömungsbedingungen aufrechtzuerhalten.
Obgleich die in dieser Schrift beispielhaft genannten Brenner auf dem geschilderten einheitlichen Prinzip beruhen, soll die Erfindung nicht auf diese besondere Gattung von Drallbrennern beschränkt sein, sondern jegliche Art von Vormischbrennern umfassen, deren Flammenstabilität bei gleichbleibend niedriger Schadstoffemission erhöht werden soll. - Erfindungsgemäss ist nun in einem stromabwärtigen Bereich des Brenners innerhalb der Mischstrecke (200) der Verbrennungsluft mit dem oder den Brennstoffen eine netzartige Struktur (201) angeordnet. Diese Netzstruktur (201) besteht aus mindestens einem den Strömungsquerschnitt (203) überspannenden Drahtgewebe (202).
Das oder die Drahtgewebe (202) weisen dabei eine Maschenweite in einem Bereich von 250 µm bis 1000 µm und eine Drahtstärke von 100 µm bis 500 µm auf. Um die Strömungsverhältnisse nicht in nachteiliger Weise zu beeinträchtigen, sind diese Parameter des Drahtgewebes (202) dabei so aufeinander abzustimmen, dass eine möglichst grosse offene Siebfläche, bevorzugt in einer Grössenordnung von über 90%, verbleibt. Bei Anordnung mehrerer den Strömungsquerschnitt (203) überspannender Drahtgewebe (202) sollte deren Abstand mindestens der Drahtstärke entsprechen. - Wie an anderer Stelle bereits ausgeführt, übt die Netzstruktur (201) eine positive Wirkung auf das thermoakustische Verhalten des Brenners aus. Bekanntlich tritt bei Brennern der gattungsgemässen Art das nicht zu vernachlässigende Problem der Scherschichtbildung zwischen den sich in der Brennkammer befindlichen heissen Verbrennungsgasen und dem austretenden Gemisch aus Verbrennungsluft und Brennstoffen auf. Diese Scherschichten initiieren die sog. Kelvin-Helmholtz-Wellen, aus denen unter Betriebsbedingungen Reaktionsratenschwankungen und daraus resultierend thermoakustische Oszillationen von typischer Frequenz resultieren. Im Zusammenwirken mit den Eigenschwingungen des Aggregats erwachsen aus diesen thermoakustischen Oszillationen erhebliche Probleme für den Brennerbetrieb, die bis hin zum Erlöschen der mager betriebenen Flamme führen können.
Die sich in der Brennkammer (300) ausbreitenden Druckwellen treffen auf das Drahtgewebe (202) und regen es zu Schwingungen an. Dabei wird Schwingungsenergie teilweise von dem Gewebe (202) absorbiert und teilweise unter Verschiebung zu anderen Frequenzbereichen hin stromab in die Brennkammer (300) zurückgeworfen oder stromauf zur Gaseindüsung weitergeleitet.
Diese Dämpfungs- und Isolationseffekte des Gewebes (202) tragen zu einer Schwingungsstabilisierung des Verbrennungsprozesses bei. - Zur Unterstützung der Flammenstabilität kann nach einer ergänzenden Ausführungsvariante das Drahtgewebe (202) darüber hinaus eine den Verbrennungsvorgang fördernde katalytische Beschichtung aufweisen. Als Katalysator kommen die an sich bekannten Materialien in Frage, wie Edelmetalle (Pd, Pt, Rh usw.), Metalloxide (MnO2, NiO usw.), allein oder in Mischung mit einem Kokatalysator.
- Obgleich prinzipiell eine Vielzahl an sich bekannter hochtemperaturbeständiger metallischer und keramischer Werkstoffe für diesen Einsatzzweck in Frage kommen, werden metallische Werkstoffe den Anforderungen im Hinblick auf Schwingungsreduzierung und Trägereigenschaften für Katalysatoren am besten gerecht. Gute Ergebnisse wurden mit Materialien auf der Basis aluminiumhaltiger oder aluminiumbehandelter Eisen- oder Stahllegierungen erzielt. Enthalten diese Materialien einen genügend hohen Anteil an Aluminium, so bilden sich bei der Oxidation auf der Oberfläche Aluminium-Whisker aus, die eine rauhe und chemisch aktive Oberfläche entstehen lassen, welche sich sehr gut als Träger für ein katalytisch wirksames Überzugsmaterial eignet.
Nach einer günstigen Ausführungsvariante ist das Stahlgewebe mit einem porösen keramischen Material überzogen werden, welches das Katalysatormaterial enthält. - Die Verbindung der Netzstruktur (201) mit der umgebenden Gehäusewandung (205) kann in jeder geeigneten Weise erfolgen. In Abhängigkeit von den konkreten Bedingungen des Anwendungsfalls erschliesst sich dem Fachmann eine Reihe von Möglichkeiten. Zwei günstige Ausführungsvarianten sind anhand der Ausführungsformen gemäss
Fig. 2 und3 erläutert. - Die
Fig.2 und3 zeigen die Realisierung der Erfindung anhand eines Vormischbrenners, wie er aus derEP 0 780 629 bekanntgeworden ist.
Der Brenner besteht im wesentlichen aus einem Drallerzeuger (100) für einen Verbrennungsluftstrom, welcher aus wenigstens zwei kegelförmigen Teilkörpern gebildet ist, die mit ihren Achsen gegenüber der Brennerachse (106) wie auch gegenseitig lateral versetzt angeordnet sind. Aufgrund dieses lateralen Versatzes der Teilkörper sind zwischen den Teilkörpern tangentiale Einlassschlitze (101) ausgebildet. Durch die tangentialen Einlassschlitze (101) strömt ein Verbrennungsluftstrom im wesentlichen tangential in den Innenraum (102) des Drallerzeugers (100) ein. Im Inneren des Drallerzeugers (100) bildet sich in Folge eine Drallströmung (103) aus, deren axiale Strömungskomponente zur stromabwärtigen Mündung des Drallerzeugers (100) hin weist. Die Teilkörper sind am stromabwärtigen Ende des Drallerzeugers (100) auf einem Haltering (107) befestigt. In dem Haltering (107) ist weiterhin ein Übergangselement (108) angeordnet. Dieses ist mit einer Anzahl von Übergangskanälen (109) versehen, welche die im Drallerzeuger (100) aus der einströmenden Verbrennungsluft generierte Drallströmung (103) ohne plötzliche Querschnittsänderungen in die Mischstrecke (200) überführen. Diese Mischstrecke (200) dient der Herstellung eines möglichst homogenen Gemischs aus Verbrennungsluft und Brennstoffen verschiedener Art. Die Mischstrecke (200) ermöglicht eine verlustfreie Strömungsführung, ohne dass sich eine Rückströmzone ausbilden kann. Über die Länge der Mischstrecke (200) kann auf die Mischungsgüte für alle Brennstoffarten Einfluss genommen werden. Am stromabwärtigen Ende der Mischstrecke (200) schliesst sich die Brennkammer (300) an, wobei an der Übergangsstelle ein Querschnittssprung vorhanden ist, hinter welchem sich eine zentrale Rückströmzone (301) ausbildet, welche die Eigenschaften eines Flammenhalters aufweist. Im Bereich der Rückströmzone (301) kann sich eine Flamme aus dem vorgemischten Brennstoff-/Luftgemisch stabilisieren. Aufgrund der guten Vormischung von Luft und Brennstoff kann diese Flamme mit einem recht hohen Luftüberschuss - in der Regel findet man am Brenner selbst Luftzahlen von zwei und darüber - betrieben werden. Aufgrund der vergleichsweise kühlen Verbrennungstemperaturen können mit derartigen Brennern sehr geringe Stickoxidemissionen ohne aufwendige Abgasnachbehandlung erreicht werden. Aufgrund der guten Vormischung des Brennstoffs mit der Verbrennungsluft und einer guten Flammenstabilisierung durch die Rückströmzone (301) kommt es weiterhin trotz der geringen Verbrennungstemperaturen zu einem guten Ausbrand und damit auch zu geringen Emissionen an Teil- und Unverbranntem, insbesondere an Kohlenmonoxid und unverbrannten Kohlenwasserstoffen, aber auch an anderen unerwünschten organischen Verbindungen. - Über den Strömungsquerschnitt (203) der Mischstrecke (200) herrscht ein Geschwindigkeitsprofil mit einem ausgeprägten Maximum auf der Mittelachse (106). In Richtung auf die Randzone (204) ist ein signifikanter Rückgang der Axialgeschwindigkeit zu verzeichnen. Um die Gefahr einer Rückzündung auch für diesen Bereich (204) sicher auszuschliessen, sieht der Stand der Technik eine Anzahl von Durchtrittskanälen (210) vor, durch welche eine zusätzliche Luftmenge in die Mischstrecke (200) eingeführt wird, und zwar dergestalt, dass sie entlang der strömungsbegrenzenden Wand (205) filmbildend eine Erhöhung der axialen Strömungsgeschwindigkeit in dieser Randzone (204) induziert.
Gemäss einer ergänzenden Ausführungsform der Erfindung, dargestellt inFig.4b , besitzt das Drahtgewebe (202) im Bereich dieser Randzone (204) eine gegenüber dem radial inneren Bereich erhöhte offene Siebfläche. Diese Massnahme fördert die Randströmung und trägt damit zu einer Stärkung der Ringstabilisation der Rückströmzone (301) und zu einer Verringerung der Gefahr einer Rückzündung bei. - Zum Zwecke der Befestigung der Drahtgewebe (202) ist das die Mischstrecke (200) umgebende Gehäuse (205) segmentartig aus einzelnen Rohrschüssen (206) zusammengesetzt, an deren Verbindungsstellen (207) die Drahtgewebe (202) eingebunden sind. Diese Variante, schematisch wiedergegeben in
Fig.2 , zeichnet sich durch einen problemlosen Austausch verbrauchter Gewebe (202) aus.
Eine alternative Ausführungsform, dargestellt inFig.3 , besteht darin, das Gehäuse (205) aus einzelnen Segmenten (206) zusammenzusetzen, wobei wenigstens ein Segment (208) in einem vorgeschalteten Arbeitsprozess mit den Drahtgeweben (202) ausgerüstet wurde. - Die oben dargestellten Ausführungsbeispiele sind keinesfalls in einem für die Erfindung einschränkenden Sinne zu verstehen. Im Gegenteil, sind sie instruktiv und als Abriss der Mannigfaltigkeit der im Rahmen der in den Ansprüchen gekennzeichneten Erfindung möglichen Ausführungsformen zu verstehen.
- Die vorstehenden Ausführungen dienen dem Fachmann als illustrative Beispiele für die Vielzahl möglicher Ausführungsformen des erfindungsgemässen und in den Ansprüchen gekennzeichneten Brenners und für dessen vorteilhafte Betriebsweisen: Sie sind nicht beschränkend zu verstehen.
-
- 100
- Drallerzeuger
- 101
- tangentiale Einlassschlitze
- 102
- Innenraum des Drallerzeugers
- 103
- Drallströmung
- 104
- Mittel zur Brennstoffeindüsung
- 105
- zentrale Brennstoffdüse
- 106
- Brennerlängsachse
- 107
- Haltering
- 108
- Übergangselement
- 109
- Übergangskanäle
- 200
- Mischstrecke
- 201
- netzartige Struktur
- 202
- Drahtgewebe
- 203
- Strömungsquerschnitt
- 204
- Randzone
- 205
- Mischstrecke (200) umgebendes Gehäuse
- 206
- Gehäuseschuss, -segment
- 207
- Verbindungsstelle zwischen den Gehäuseschüssen
- 208
- mit netzartiger Struktur (201) ausgerüstetes Gehäusesegment
- 209
- Austrittsgeometrie der Mischstrecke (200)
- 210
- Durchtrittskanäle
- 300
- Brennkammer
- 301
- Rückströmzone
- 302
- Brennkammerwand
Claims (20)
- Vormischbrenner mit hoher Flammenstabilität zum Einsatz in einem Wärmeerzeuger, vorzugsweise einer Gasturbine, im wesentlichen bestehend aus einem Drallerzeuger (100) mit Mitteln (101) zum tangentialen Einbringen eines Verbrennungsluftstroms in einen Innenraum (102) des Drallerzeugers (100) sowie Mitteln (104) zum Einbringen wenigstens eines Brennstoffes in den Verbrennungsluftstrom unter Ausbildung einer Drallströmung mit einer axialen Bewegungskomponente hin zur Brennermündung und einer stromab des Drallerzeugers (100) positionierten Mischstrecke (200) zum Vormischen der Verbrennungsluft mit dem mindestens einen Brennstoff, dadurch gekennzeichnet, dass innerhalb der Mischstrecke (200) eine sich zumindest annähernd über den gesamten Strömungsquerschnitt (203) erstreckende netzartige Struktur (201) angeordnet ist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die netzartige Struktur (201) aus einem oder einer Mehrzahl voneinander beabstandet angeordneten Lagen einzelner Drahtgewebe (202) zusammengesetzt ist.
- Vormischbrenner nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die netzartige Struktur (201) eine Maschenweite von 250 µm bis 1000 µm und eine Drahtstärke von 100 µm bis 500 µm aufweist.
- Vormischbrenner nach Anspruch 2, dadurch gekennzeichnet, dass die netzartige Struktur (201) aus fünf bis 100, vorzugsweise 10 bis 20, voneinander beabstandeten und zumindest annähernd senkrecht zur Brennerlängsachse (106) ausgerichteten Drahtgeweben (202) besteht.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die netzartige Struktur (201) ein poröser Körper aus einem geschäumten Metall- oder aus einem geschäumten Keramikwerkstoff ist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die netzartige Struktur (201) nahe der Austrittsgeometrie (209) der Mischstrekke (200) angeordnet ist.
- Vormischbrenner nach Anspruch 2, dadurch gekennzeichnet, dass die einzelnen Drahtgewebe (202) im wesentlichen parallel und gleichmässig beabstandet angeordnet sind.
- Vormischbrenner nach Anspruch 7, dadurch gekennzeichnet, dass der axiale Abstand zwischen den einzelnen Drahtgeweben (202) mindestens der Drahtstärke entspricht.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die netzartige Struktur (201) auf einem hochtemperaturbeständigen metallischen Werkstoff basiert.
- Vormischbrenner nach Anspruch 9, dadurch gekennzeichnet, dass die netzartige Struktur (201) auf einer Stahllegierung basiert.
- Vormischbrenner nach Anspruch 10, dadurch gekennzeichnet, dass die netzartige Struktur (201) aus einer alumiumhaltigen Stahllegierung besteht.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die netzartige Struktur (201) auf einem keramischen Werkstoff basiert.
- Vormischbrenner nach Anspruch 12, dadurch gekennzeichnet, dass die netzartige Struktur (201) auf einer Silizium-, Zirkonium- oder Aluminiumverbindung basiert.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Drahtgewebe (202) der netzartigen Struktur (201) eine katalytisch wirksame Oberfläche aufweist.
- Vormischbrenner nach Anspruch 14, dadurch gekennzeichnet, dass das Drahtgewebe aus einer Stahllegierung besteht und eine mit einem katalytischen Material ausgerüstete poröse keramische Beschichtung aufweist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass das die Mischstrecke (200) umschliessende Gehäuse (205) aus einzelnen Schüssen (206) zusammengesetzt ist und eine oder mehrere Lagen Drahtgewebe (202) der Netzstruktur (201) formschlüssig oder kraftschlüssig in die Verbindungsstellen (207) zwischen den einzelnen Schüssen (206) eingebunden sind.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Netzstruktur (201) in einen austauschbaren Schuss (208) des die Mischstrecke (200) umschliessenden Gehäuses (205) integriert ist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die offene Siebfläche der netzartigen Struktur (201) über den Strömungsquerschnitt (203) der Mischstrecke (200) radial von innen nach aussen zunimmt.
- Vormischbrenner nach Anspruch 18, dadurch gekennzeichnet, dass die netzartige Struktur (201) einen ringförmigen Randbereich (204) mit einer gegenüber dem Innenbereich grösseren offenen Siebfläche aufweist.
- Vormischbrenner nach einem der Ansprüche 1 bis 19 zum Betrieb in einer Brennkammer einer Gasturbinenanlage.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10136313 | 2001-07-26 | ||
DE10136313A DE10136313A1 (de) | 2001-07-26 | 2001-07-26 | Vormischbrenner mit hoher Flammenstabilität |
DE10164097 | 2001-12-24 | ||
DE10164097A DE10164097A1 (de) | 2001-12-24 | 2001-12-24 | Vormischbrenner mit hoher Flammenstabilität |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1279898A2 EP1279898A2 (de) | 2003-01-29 |
EP1279898A3 EP1279898A3 (de) | 2003-04-16 |
EP1279898B1 true EP1279898B1 (de) | 2008-09-10 |
Family
ID=26009779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02405615A Expired - Lifetime EP1279898B1 (de) | 2001-07-26 | 2002-07-18 | Vormischbrenner mit hoher Flammenstabilität |
Country Status (3)
Country | Link |
---|---|
US (1) | US6834504B2 (de) |
EP (1) | EP1279898B1 (de) |
DE (1) | DE50212753D1 (de) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10049203A1 (de) * | 2000-10-05 | 2002-05-23 | Alstom Switzerland Ltd | Verfahren zur Brennstoffeinleitung in einen Vormischbrenner |
DE10332860A1 (de) * | 2003-07-18 | 2005-02-10 | Linde Ag | Gasbrenner |
US20050076644A1 (en) * | 2003-10-08 | 2005-04-14 | Hardwicke Canan Uslu | Quiet combustor for a gas turbine engine |
JP4324078B2 (ja) * | 2003-12-18 | 2009-09-02 | キヤノン株式会社 | 炭素を含むファイバー、炭素を含むファイバーを用いた基板、電子放出素子、該電子放出素子を用いた電子源、該電子源を用いた表示パネル、及び、該表示パネルを用いた情報表示再生装置、並びに、それらの製造方法 |
EP1614963A1 (de) | 2004-07-09 | 2006-01-11 | Siemens Aktiengesellschaft | Verfahren und Vormischverbrennungssystem |
NZ534091A (en) * | 2004-07-13 | 2007-06-29 | Fisher & Paykel Appliances Ltd | Horizontal cooking surface with rotation causing vertical motion via slots and ball slides |
EP1817526B1 (de) * | 2004-11-30 | 2019-03-20 | Ansaldo Energia Switzerland AG | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner |
US7841182B2 (en) * | 2006-08-01 | 2010-11-30 | Siemens Energy, Inc. | Micro-combustor for gas turbine engine |
DE602006010700D1 (de) * | 2006-09-06 | 2010-01-07 | Electrolux Home Prod Corp | Gasbrenner für Kochgeräte |
US8572946B2 (en) | 2006-12-04 | 2013-11-05 | Firestar Engineering, Llc | Microfluidic flame barrier |
US8230672B2 (en) * | 2006-12-04 | 2012-07-31 | Firestar Engineering, Llc | Spark-integrated propellant injector head with flashback barrier |
US8230673B2 (en) * | 2006-12-04 | 2012-07-31 | Firestar Engineering, Llc | Rocket engine injectorhead with flashback barrier |
US20080280238A1 (en) * | 2007-05-07 | 2008-11-13 | Caterpillar Inc. | Low swirl injector and method for low-nox combustor |
CN101855325A (zh) * | 2007-11-09 | 2010-10-06 | 火星工程有限公司 | 氧化亚氮燃料掺混物单元推进剂 |
EP2107313A1 (de) * | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Gestufte Brennstoffversorgung in einem Brenner |
US20110005195A1 (en) * | 2009-07-07 | 2011-01-13 | Firestar Engineering, Llc | Aluminum porous media |
EP2526277A4 (de) * | 2010-01-20 | 2014-10-29 | Firestar Engineering Llc | Isolierte brennkammer |
WO2011152912A2 (en) * | 2010-03-12 | 2011-12-08 | Firestar Engineering, Llc | Supersonic combustor rocket nozzle |
US8943830B2 (en) | 2012-02-16 | 2015-02-03 | Solar Turbines Inc. | Coated porous metallic mat |
US20140134551A1 (en) * | 2012-04-12 | 2014-05-15 | Massachusetts Institute Of Technology | Combustion Instability Suppression System Using Heat Insulating Flameholding Material |
US9366432B2 (en) | 2012-05-17 | 2016-06-14 | Capstone Turbine Corporation | Multistaged lean prevaporizing premixing fuel injector |
JP5584260B2 (ja) * | 2012-08-08 | 2014-09-03 | 日野自動車株式会社 | 排気浄化装置用バーナー |
JP6440433B2 (ja) * | 2014-09-29 | 2018-12-19 | 川崎重工業株式会社 | 燃料噴射ノズル、燃料噴射モジュール、及びガスタービン |
US11226092B2 (en) * | 2016-09-22 | 2022-01-18 | Utilization Technology Development, Nfp | Low NOx combustion devices and methods |
EP3438540A1 (de) | 2017-07-31 | 2019-02-06 | Siemens Aktiengesellschaft | Brenner mit einem schalldämpfer |
CN109210534A (zh) * | 2018-08-20 | 2019-01-15 | 江苏大学 | 一种用于可视化研究的微型燃烧器 |
CN110671700B (zh) * | 2019-11-11 | 2024-11-15 | 江苏通顺动力科技有限公司 | 一种射吸式焊炬多孔焊嘴 |
KR102469577B1 (ko) * | 2020-12-31 | 2022-11-21 | 두산에너빌리티 주식회사 | 마이크로 믹서 및 이를 포함하는 연소기 |
CN115440124A (zh) * | 2022-09-26 | 2022-12-06 | 中国人民解放军战略支援部队航天工程大学 | 研究热声不稳定的可调观测段多工作模态模型发动机 |
US20240263790A1 (en) * | 2023-02-02 | 2024-08-08 | Pratt & Whitney Canada Corp. | Combustor with fuel and air mixing plenum |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR207091A1 (es) * | 1975-09-29 | 1976-09-09 | Westinghouse Electric Corp | Disposicion de camara de combustion para turbina de gas |
US4082497A (en) * | 1976-03-29 | 1978-04-04 | Ex-Cell-O Corporation | High capacity quiet burner for hot air heating system |
CH674561A5 (de) | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
US5026273A (en) | 1988-07-15 | 1991-06-25 | W. R. Grace & Co.-Conn. | High temperature combuster |
US5440872A (en) | 1988-11-18 | 1995-08-15 | Pfefferle; William C. | Catalytic method |
US5051241A (en) | 1988-11-18 | 1991-09-24 | Pfefferle William C | Microlith catalytic reaction system |
GB2237104B (en) | 1989-10-20 | 1993-07-21 | Bowin Designs Pty Ltd | Gas burner |
WO1992000302A1 (en) | 1990-06-29 | 1992-01-09 | Gruppo Lepetit S.P.A. | Pure crystalline form of rifapentine |
US5453003A (en) | 1991-01-09 | 1995-09-26 | Pfefferle; William C. | Catalytic method |
DE4119018A1 (de) | 1991-06-09 | 1992-12-10 | Braun Ag | Beheizbares geraet des persoenlichen bedarfs |
US5307634A (en) | 1992-02-26 | 1994-05-03 | United Technologies Corporation | Premix gas nozzle |
JPH08507599A (ja) * | 1993-03-01 | 1996-08-13 | エンゲルハード・コーポレーシヨン | 分離体物体を含む改善された接触的燃焼システム |
US5879148A (en) | 1993-03-19 | 1999-03-09 | The Regents Of The University Of California | Mechanical swirler for a low-NOx, weak-swirl burner |
AU681271B2 (en) | 1994-06-07 | 1997-08-21 | Westinghouse Electric Corporation | Method and apparatus for sequentially staged combustion using a catalyst |
DE4426351B4 (de) | 1994-07-25 | 2006-04-06 | Alstom | Brennkammer für eine Gasturbine |
DE4426353A1 (de) | 1994-07-25 | 1996-02-01 | Abb Research Ltd | Brenner |
US6116014A (en) * | 1995-06-05 | 2000-09-12 | Catalytica, Inc. | Support structure for a catalyst in a combustion reaction chamber |
DE19521308A1 (de) | 1995-06-12 | 1996-12-19 | Siemens Ag | Gasturbine zur Verbrennung eines Brenngases |
DE19547913A1 (de) * | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Brenner für einen Wärmeerzeuger |
DE19640818B4 (de) | 1996-10-02 | 2006-04-27 | Siemens Ag | Vorrichtung und Verfahren zur Verbrennung eines Brennstoffs in Luft |
EP0918152A1 (de) | 1997-11-24 | 1999-05-26 | Abb Research Ltd. | Verfahren und Vorrichtung zur Kontrolle thermoakustischer Schwingungen in einem Verbrennungssystem |
DE59711378D1 (de) | 1997-11-24 | 2004-04-08 | Alstom Switzerland Ltd | Verfahren zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern |
US6178752B1 (en) | 1998-03-24 | 2001-01-30 | United Technologies Corporation | Durability flame stabilizing fuel injector with impingement and transpiration cooled tip |
DE59812944D1 (de) | 1998-09-16 | 2005-08-25 | Alstom Technology Ltd Baden | Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner |
-
2002
- 2002-07-18 EP EP02405615A patent/EP1279898B1/de not_active Expired - Lifetime
- 2002-07-18 DE DE50212753T patent/DE50212753D1/de not_active Expired - Lifetime
- 2002-07-22 US US10/199,058 patent/US6834504B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1279898A2 (de) | 2003-01-29 |
DE50212753D1 (de) | 2008-10-23 |
US6834504B2 (en) | 2004-12-28 |
EP1279898A3 (de) | 2003-04-16 |
US20030031972A1 (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1279898B1 (de) | Vormischbrenner mit hoher Flammenstabilität | |
EP0710797B1 (de) | Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners | |
EP1336800B1 (de) | Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens | |
EP1182398B1 (de) | Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens | |
DE4426351B4 (de) | Brennkammer für eine Gasturbine | |
EP0597138B1 (de) | Gasturbinen-Brennkammer | |
DE60224141T2 (de) | Gasturbine und Brennkammer dafür | |
EP1504222B1 (de) | Vormischbrenner | |
EP1251314A2 (de) | Katalytisch arbeitender Brenner | |
DE19510744A1 (de) | Brennkammer mit Zweistufenverbrennung | |
EP2257736B1 (de) | Verfahren zum erzeugen von heissgas | |
DE102005024062A1 (de) | Brennerrohr und Verfahren zum Mischen von Luft und Gas in einem Gasturbinentriebwerk | |
DE4009196A1 (de) | Flammenhalter fuer einen gasturbinentriebwerks-nachbrenner | |
DE102009003453A1 (de) | Brennrohr-Vormischer und Verfahren zur Gas/Luft-Gemischbildung in einer Gasturbine | |
EP0780631B1 (de) | Verfahren und Brenner zum Verbrennen von Wasserstoff | |
EP0995066B1 (de) | Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer | |
WO2012016748A2 (de) | Gasturbinenbrennkammer | |
WO2006040269A1 (de) | Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners | |
EP1255077B1 (de) | Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs | |
EP0276397A1 (de) | Brennkammer für Gasturbine | |
DE2902707C2 (de) | Ringbrennkammer für Gasturbinentriebwerke | |
EP1754937A2 (de) | Brennkopf und Verfahren zur Verbrennung von Brennstoff | |
DE2606704A1 (de) | Brennkammer fuer gasturbinentriebwerke | |
WO1999046540A1 (de) | Brennkammer und verfahren zum betrieb einer brennkammer | |
DE10164097A1 (de) | Vormischbrenner mit hoher Flammenstabilität |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20030816 |
|
AKX | Designation fees paid |
Designated state(s): DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50212753 Country of ref document: DE Date of ref document: 20081023 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090611 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110622 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110729 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120718 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50212753 Country of ref document: DE Effective date: 20130201 |