EP1278402B1 - Circuit for LED with temperature dependent current control - Google Patents
Circuit for LED with temperature dependent current control Download PDFInfo
- Publication number
- EP1278402B1 EP1278402B1 EP02011285A EP02011285A EP1278402B1 EP 1278402 B1 EP1278402 B1 EP 1278402B1 EP 02011285 A EP02011285 A EP 02011285A EP 02011285 A EP02011285 A EP 02011285A EP 1278402 B1 EP1278402 B1 EP 1278402B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- input
- output
- temperature
- temperature measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001419 dependent effect Effects 0.000 title claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 claims 3
- 238000009529 body temperature measurement Methods 0.000 abstract description 11
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
- H05B45/18—Controlling the intensity of the light using temperature feedback
Definitions
- the invention is based on a control gear for light-emitting diodes according to the preamble of claim 1. It concerns in particular the regulation of the Operating current of the LEDs as a function of the ambient temperature.
- the maximum permissible effective value of the operating current of LEDs depends on the ambient temperature, in the following briefly called temperature. So that a light-emitting diode a desired life Achieved, the following conditions must be met by light-emitting diode manufacturers are specified more precisely.
- a derating temperature the operating current remains constant. From the derating temperature begins a so-called derating; d. H. with increasing temperature the operating current decreases proportionally with increasing temperature. Above a shutdown temperature, the LED may not be operated, which is why then a shutdown must be done in the the operating current is negligibly small.
- a diode in the present case a light-emitting diode, operated in the flow direction, so falls on her from a forward voltage.
- a control circuit provides the current through the LEDs so that the forward voltage remains constant.
- the temperature of the LED is independent of the ambient temperature kept constant. Disadvantage of this solution is that under the derating temperature not a desired operating current is maintained.
- the operating current have a temperature dependence as in the section to the state The technique is described and recommended by LED manufacturers.
- Operating devices for light-emitting diodes which regulate the current through the light-emitting diodes, have In general, a control device, with a setpoint input to the one Current setting value is applied. Depending on the Stromeinstellwert the current through the LEDs are set. This can be done continuously by influencing one Operating voltage of an operating arrangement done. As for the operation of the Light emitting diodes of the effective value of the operating current is decisive, a regulation also done by means of a pulse width modulation.
- an o. G. Operating device a setpoint generator, which is at a setpoint output provides a current setpoint. As the operating current of the temperature the control gear also has a temperature measuring device, which provides a temperature measurement that is linear from the ambient temperature depends.
- the current setpoint is not directly the setpoint input of the Control device supplied. Rather, the operating device according to the invention a subtractor having first and second inputs and an output. The subtracter subtracts an electrical quantity at its second input of an electrical quantity at its first input and sets the result. ready for his exit.
- the current setpoint is inventively the first input supplied to the subtractor.
- the setpoint input of the control device is According to the invention connected to the output of the subtractor. Accordingly delivers the output of the subtractor the Stromeinstellwert.
- the second input of the subtracter is connected to a first output of an inventive Control device connected.
- This will be a deduction value that the Provides control device at its first output, supplied to the subtractor.
- the invention is caused by the fact that the Stromeinstellwert equal to Current setpoint, reduced by a temperature-dependent pull-off variable.
- a task The control device now consists of the temperature measurement variable appropriate value of the deduction size is determined. For this purpose, the temperature measured fed to a temperature input of the control device. Up to an adjustable Derating start value, the temperature measured at the derating temperature assumes a value of the trigger size that is the current setpoint not reduced to determine the current setting value. Is the value of the Temperature measured above the Deratingstartwert, so the deduction size is proportional to the temperature measurement. According to the invention we thereby the Stromeinstellwert reduced proportional to the temperature measured. The transition from the constant Current setting value for the reduced current setting value at the derating temperature continuous according to the invention.
- the operating device has a shutdown device with a Shutdown.
- the value exceeds the temperature measurement an adjustable shutdown.
- the Control device via a second output to the shutdown input a shutdown signal off, which causes the shutdown device to the Stromeinstellwert so change that the current through the light emitting diodes is negligible.
- the manufacturer gives a maximum operating current when reaching the shutdown temperature.
- the proportionality between the deduction size and the temperature measurement is inventively chosen so that when reach the shutdown temperature through the LEDs from the manufacturer for this temperature specified maximum operating current flows. This will achieve that for all Temperatures the maximum operating current is not exceeded.
- resistors by the letter R resistors by the letter R, transistors through the letter T, amplifiers through the letter A, diodes through the letter D respectively followed by a number.
- FIG. 1 shows an example of the temperature dependence of the maximum permissible operating current of a light-emitting diode. These are manufacturer specifications for a type LA E675 light-emitting diode from Osram Opto Semiconductors.
- the operating current IF in mA is plotted in a graph above the ambient temperature TA in ° C. Up to a temperature TA of 70 ° C, the operating current IF is constant 70mA. Above 70 ° C begins the so-called derating. The derating temperature is therefore in the present example 70 ° C. In a temperature range between the derating temperature and the cut-off temperature, which in the example given is 100 ° C., the operating current IF decreases linearly with increasing temperature TA. Above the shutdown temperature of 100 ° C operation of the LED is excluded.
- FIG. 2 shows a block diagram of an operating device according to the invention.
- a control device 1 supplies at its output 13 the operating current for the embrittenden LEDs 2.
- About a feedback line 3 is an actual value of the Operating current fed into an actual value input 12 of the control device 1.
- the setpoint generator 5 provides a current setpoint at its setpoint output 51. This is inventively supplied to a first input 61 of an adder 6. An output 63 of adder 6 provides a current setpoint for a setpoint input 11 of the control device 1. At the second input 62 of the adder 6 is a Deduction value fed to a controller 8 provides at its output 82. According to the invention corresponds to the Stromeinstellwert that at the output 63 of Adder 6, the current setpoint minus the trigger value. In Fig. 2 the current setting value is calculated by an adder 6 whose second input 62 is inverted. This is indicated by a minus sign at the second input 62 indicated. In the same way, it is also possible to use an inverted subtraction value at the same time provide first output 82 of the controller 8. An inversion on the second input 62 is then no longer necessary.
- the deduction value is in the control device as a function of the temperature certainly.
- a temperature measuring device 4 at its output 41 a Temperature measurement, which in the temperature input 81 of the control device. 8 is fed.
- the controller Below the derating temperature, the controller provides a deduction value that does not affect the current setpoint, causing the Stromeinstellwert is equal to the current setpoint.
- the withdrawal value Above the derating temperature rises the withdrawal value is linear with the temperature measured, so that the Stromeinstellwert decreases linearly with the temperature.
- the deduction is made by the controller 8 chosen so that the course of Stromeinstellwerts at the derating temperature is steady.
- the control device 8 is at its second Output 83 a shutdown signal to the input 71 of the shutdown device 7 off. Thereupon the shutdown device 7 influences the setpoint generator via its output 72 in the way that at the setpoint output 51, a desired value to the adder. 6 is issued, which has an operating current to follow, the negligible is.
- Fig. 2 is a temperature-dependent Operating current supplies, as shown in principle in Fig. 1.
- Fig. 3 is the circuit diagram of an embodiment of this invention given how a Stromeinstellwert is generated from the current setpoint.
- An adder is formed of an operational amplifier A1 and resistors R1, R2 and R3. Via R2, a first input of the adder with the inverting Input connected by A1. Over R1 becomes a second input of the adder connected to the inverting input of A1. R3 connects the output of A1 with its inverting input. The output of A1 forms the output of the Adder's VST. There is the sum of the two input signals, ie the current setting value, available in inverted form. Becomes a non-inverted form required, the adder is followed by an inverter. The non-inverting input from A1 is connected to a potential called Virtual Mass VM becomes. The virtual ground VM forms the reference potential for the inputs of the adder. The virtual mass VM is derived by means of a voltage divider from the resistors R4 and R5, which is between a reference voltage VR and a ground potential M is connected.
- a current setpoint VS is fed.
- a shutdown device In the present example, the Turn-off device only from an NPN bipolar transistor T1. This can be realize the shutdown device cost. It is also possible for one other electronic switch to use.
- the collector of T1 is with the Current setpoint connected while the emitter is at ground potential M.
- the base from T1 forms a turn-off input, which is connected to the output of a comparator A2 is connected.
- A2 is realized by an operational amplifier. Once A2 Shutdown signal outputs to T1, the current setpoint is set to ground potential, whereby At the output of the adder VST, a value is output which has no operating current allows more.
- a temperature measuring device is formed from the series connection of a resistor R6 and a reference diode D1 and an operational amplifier A3.
- the Series connection of R6 and D1 is between the reference voltage VR and the Ground potential M, wherein the cathode of D1 to ground potential M lies.
- the connection point of D1 and R6 is with the non-inverting input connected by A3.
- the inverting input of A3 is with the output connected by A3.
- A3 forms a voltage follower and sets at his Output the forward voltage of D1 available, which is a temperature measurement forms.
- the forward voltage of semiconductor diodes is inversely proportional to the temperature. Ie. the temperature measured variable is in inverted form. That's why In the present embodiment, an adder and no subtractor is used.
- D1 basically any semiconductor diode can be used. As it is, however it is important that the same temperature is relevant for D1 as for the ones to be operated Light emitting diodes, is advantageously used for D 1, a diode, the type of corresponding operating diodes.
- the non-inverting input is connected to a center tap of a voltage divider formed by resistors R7 and R8, which is connected between the reference voltage VR and the ground potential M.
- the ratio of the resistors R7 and R8 is chosen so that at the shutdown temperature the comparator A2 outputs a turn-off signal and T1 in a conductive state added.
- the center tap of this voltage divider is with the non-inverting Input of an operational amplifier A4 and with a first input terminal of a Switch S1 connected.
- the switch S1 can be both mechanically and be executed electronically.
- the second input pole of the switch S1 and the inverting input from A4 are connected to the virtual ground VM.
- Of the Output terminal of the switch S1 is connected to the second input of the adder.
- the output of A4 controls the switch S1.
- the ratio of resistances R9 and R10 are tuned to the potential of the virtual mass VM, that the changeover switch is switched at the derating temperature.
- the switch sets the virtual ground to the second one Input of the adder.
- the Stromeinstellwert VST at the output of the adder regardless of the temperature.
- the switch S 1 is at the output of the switch S 1 immediately after exceeding the derating temperature a potential which corresponds to the virtual mass VM.
- the course of the voltage at the output of the switch S 1 at the derating temperature is therefore steady.
- Above the derating temperature is via the switch S 1, a reverse proportional to the temperature Trigger value switched to the second input of the adder.
- the following elements can be assigned to the control device: R4, R5, R7, R8, R9, R10, A2, A4, S1 and the reference voltage VR. Following size can be defined:
- the output of A3 forms the temperature and is measured a temperature input of the control device, which is formed by the inverting input from A2 and from a terminal of R9.
- a first exit the control device forms the output pole of the switch S1. There will the deduction size provided.
- the output of A2 forms a second output the control device, which provides the shutdown signal.
Landscapes
- Led Devices (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
Die Erfindung geht aus von einem Betriebsgerät für Leuchtdioden gemäß dem Oberbegriff
des Anspruchs 1. Es handelt sich dabei insbesondere um die Regelung des
Betriebsstroms der Leuchtdioden in Abhängigkeit von der Umgebungstemperatur.The invention is based on a control gear for light-emitting diodes according to the preamble
of
Der maximal zulässige Effektivwert des Betriebsstroms von Leuchtdioden, im folgenden kurz Betriebsstrom genannt, ist abhängig von der Umgebungstemperatur, im folgenden kurz Temperatur genannt. Damit eine Leuchtdiode eine gewünschte Lebensdauer erreicht, müssen die folgenden Bedingungen, die von Leuchtdioden-Herstellern genauer spezifiziert sind, eingehalten werden. Bis zu einer Derating-Temperatur bleibt der Betriebsstrom konstant. Ab der Derating-Temperatur beginnt ein sog. Derating; d. h. mit zunehmender Temperatur sinkt der Betriebsstrom proportional mit steigender Temperatur. Über einer Abschalt-Temperatur darf die Leuchtdiode nicht betrieben werden, weshalb dann eine Abschaltung erfolgen muss, bei der der Betriebsstrom vernachlässigbar klein ist.The maximum permissible effective value of the operating current of LEDs, below short operating current, depends on the ambient temperature, in the following briefly called temperature. So that a light-emitting diode a desired life Achieved, the following conditions must be met by light-emitting diode manufacturers are specified more precisely. Up to a derating temperature the operating current remains constant. From the derating temperature begins a so-called derating; d. H. with increasing temperature the operating current decreases proportionally with increasing temperature. Above a shutdown temperature, the LED may not be operated, which is why then a shutdown must be done in the the operating current is negligibly small.
In der Schrift EP 0 891 120 (Weis) wird vorgeschlagen, einen temperaturabhängigen
Widerstand (PTC) in Serie zu den Leuchtdioden zu schalten. Bei einer Temperaturerhöhung
nimmt der Widerstand des PTC zu und der Strom durch die Leuchtdioden
nimmt ab. Nachteil dieser Lösung ist, dass es keine eindeutige Derating-Temperatur
gibt, unter der der Betriebsstrom konstant ist. In the
Wird eine Diode, im vorliegenden Fall eine Leuchtdiode, in Flussrichtung betrieben, so fällt an ihr eine Flussspannung ab. In der Schrift DE 198 10 827 (Graf) wird die Temperaturabhängigkeit der Flussspannung ausgenützt. Eine Regelschaltung stellt den Strom durch die Leuchtdioden so ein, dass die Flussspannung konstant bleibt. Damit wird die Temperatur der Leuchtdiode unabhängig von der Umgebungstemperatur konstant gehalten. Nachteil dieser Lösung ist, dass unter der Derating-Temperatur nicht ein gewünschter Betriebsstrom eingehalten wird.If a diode, in the present case a light-emitting diode, operated in the flow direction, so falls on her from a forward voltage. In the document DE 198 10 827 (Graf) is the Temperature dependence of the forward voltage exploited. A control circuit provides the current through the LEDs so that the forward voltage remains constant. Thus, the temperature of the LED is independent of the ambient temperature kept constant. Disadvantage of this solution is that under the derating temperature not a desired operating current is maintained.
Es ist Aufgabe der vorliegenden Erfindung, eine Betriebsgerät für Leuchtdioden gemäß
dem Oberbegriff des Anspruchs 1 bereitzustellen, das eine temperaturabhängige
Regelung des Betriebsstroms der Leuchtdioden bewerkstelligt. Dabei soll der Betriebsstrom
eine Temperaturabhängigkeit aufweisen wie sie im Abschnitt zum Stand
der Technik beschrieben ist und von Leuchtdiodenherstellern empfohlen wird.It is an object of the present invention to provide a control device for light-emitting diodes according to
to provide the preamble of
Diese Aufgabe wird durch ein Betriebsgerät mit den Merkmalen des Oberbegriffs
des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1
gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by a control gear having the features of the preamble
of
Betriebsgeräte für Leuchtdioden, die den Strom durch die Leuchtdioden regeln, besitzen im allgemeinen eine Regeleinrichtung, mit einem Sollwerteingang an dem ein Stromeinstellwert anliegt. Abhängig vom Stromeinstellwert wird der Strom durch die Leuchtdioden eingestellt. Dies kann kontinuierlich durch Einflussnahme auf eine Betriebsspannung einer Betriebsanordnung geschehen. Da für den Betrieb der Leuchtdioden der Effektivwert des Betriebsstroms maßgeblich ist, kann eine Regelung auch mittels einer Pulsweitenmodulation geschehen.Operating devices for light-emitting diodes, which regulate the current through the light-emitting diodes, have In general, a control device, with a setpoint input to the one Current setting value is applied. Depending on the Stromeinstellwert the current through the LEDs are set. This can be done continuously by influencing one Operating voltage of an operating arrangement done. As for the operation of the Light emitting diodes of the effective value of the operating current is decisive, a regulation also done by means of a pulse width modulation.
Üblicherweise besitzt ein o. g. Betriebsgerät einen Sollwertgeber, der an einem Sollwertausgang einen Stromsollwert bereitstellt. Da der Betriebsstrom von der Temperatur abhängen soll, besitzt das Betriebsgerät auch eine Temperaturmesseinrichtung, die eine Temperaturmessgröße bereitstellt, die linear von der Umgebungstemperatur abhängt.Usually, an o. G. Operating device a setpoint generator, which is at a setpoint output provides a current setpoint. As the operating current of the temperature the control gear also has a temperature measuring device, which provides a temperature measurement that is linear from the ambient temperature depends.
Erfindungsgemäß wird nun der Stromsollwert nicht direkt dem Sollwerteingang der Regeleinrichtung zugeführt. Vielmehr besitzt das Betriebsgerät erfindungsgemäß einen Subtrahierer mit einem ersten und einem zweiten Eingang und mit einem Ausgang. Der Subtrahierer subtrahiert eine elektrische Größe an seinem zweiten Eingang von einer elektrischen Größe an seinem ersten Eingang und stellt das Ergebnis an . seinem Ausgang bereit. Der Stromsollwert wird erfindungsgemäß dem ersten Eingang des Subtrahierers zugeführt. Der Sollwerteingang der Regeleinrichtung wird erfindungsgemäß mit dem Ausgang des Subtrahierers verbunden. Demgemäss liefert der Ausgang des Subtrahierers den Stromeinstellwert.According to the invention, the current setpoint is not directly the setpoint input of the Control device supplied. Rather, the operating device according to the invention a subtractor having first and second inputs and an output. The subtracter subtracts an electrical quantity at its second input of an electrical quantity at its first input and sets the result. ready for his exit. The current setpoint is inventively the first input supplied to the subtractor. The setpoint input of the control device is According to the invention connected to the output of the subtractor. Accordingly delivers the output of the subtractor the Stromeinstellwert.
Der zweite Eingang des Subtrahierers wird mit einem ersten Ausgang einer erfindungsgemäßen Steuereinrichtung verbunden. Dadurch wird ein Abzugswert, den die Steuereinrichtung an ihrem ersten Ausgang bereitstellt, dem Subtrahierer zugeführt. Erfindungsgemäß wird dadurch bewirkt, dass der Stromeinstellwert gleich dem Stromsollwert, reduziert um eine temperaturabhängige Abzugsgröße ist. Eine Aufgabe der Steuereinrichtung besteht nun darin, dass aus der Temperaturmessgröße ein geeigneter Wert der Abzugsgröße ermittelt wird. Dazu wird die Temperaturmessgröße einem Temperatureingang der Steuereinrichtung zugeführt. Bis zu einem einstellbaren Derating-Startwert, den die Temperaturmessgröße bei der Derating-Temperatur annimmt, wird ein Wert der Abzugsgröße ausgegeben, der den Stromsollwert zur Ermittlung des Stromeinstellwerts nicht reduziert. Liegt der Wert der Temperaturmessgröße über dem Deratingstartwert, so ist die Abzugsgröße proportional zur Temperaturmessgröße. Erfindungsgemäß wir dadurch der Stromeinstellwert proportional zur Temperaturmessgröße reduziert. Der Übergang vom konstanten Stromeinstellwert zum reduzierten Stromeinstellwert bei der Derating-Temperatur ist erfindungsgemäß stetig.The second input of the subtracter is connected to a first output of an inventive Control device connected. This will be a deduction value that the Provides control device at its first output, supplied to the subtractor. According to the invention is caused by the fact that the Stromeinstellwert equal to Current setpoint, reduced by a temperature-dependent pull-off variable. A task The control device now consists of the temperature measurement variable appropriate value of the deduction size is determined. For this purpose, the temperature measured fed to a temperature input of the control device. Up to an adjustable Derating start value, the temperature measured at the derating temperature assumes a value of the trigger size that is the current setpoint not reduced to determine the current setting value. Is the value of the Temperature measured above the Deratingstartwert, so the deduction size is proportional to the temperature measurement. According to the invention we thereby the Stromeinstellwert reduced proportional to the temperature measured. The transition from the constant Current setting value for the reduced current setting value at the derating temperature continuous according to the invention.
Damit ein Betrieb der Leuchtdiode oberhalb der Abschalt-Temperatur vermieden wird, besitzt das Betriebsgerät erfindungsgemäß eine Abschalteinrichtung mit einem Abschalteingang. Bei Überschreiten der Abschalt-Temperatur überschreitet der Wert der Temperaturmessgröße einen einstellbaren Abschaltwert. In diesem Fall gibt die Steuereinrichtung über einen zweiten Ausgang an den Abschalteingang ein Abschaltsignal aus, das die Abschalteinrichtung dazu veranlasst den Stromeinstellwert so zu verändern, dass der Strom durch die Leuchtdioden vernachlässigbar klein wird.This prevents operation of the LED above the shutdown temperature is, the operating device according to the invention has a shutdown device with a Shutdown. When the shutdown temperature is exceeded, the value exceeds the temperature measurement an adjustable shutdown. In this case, the Control device via a second output to the shutdown input a shutdown signal off, which causes the shutdown device to the Stromeinstellwert so change that the current through the light emitting diodes is negligible.
Für die Leuchtdioden gibt der Hersteller einen maximalen Betriebsstrom bei erreichen der Abschalt-Temperatur an. Die Proportionalität zwischen der Abzugsgröße und der Temperaturmessgröße ist erfindungsgemäß so gewählt, dass bei erreichen der Abschalt-Temperatur durch die Leuchtdioden der vom Hersteller für diese Temperatur angegebene maximale Betriebsstrom fließt. Damit wird erreicht, dass für alle Temperaturen der maximale Betriebsstrom nicht überschritten wird.For the light-emitting diodes, the manufacturer gives a maximum operating current when reaching the shutdown temperature. The proportionality between the deduction size and the temperature measurement is inventively chosen so that when reach the shutdown temperature through the LEDs from the manufacturer for this temperature specified maximum operating current flows. This will achieve that for all Temperatures the maximum operating current is not exceeded.
Im folgenden soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. Es zeigen:
Figur 1- die Temperaturabhängigkeit des maximal zulässigen Betriebsstroms einer Leuchtdiode
Figur 2- ein Blockdiagramm eines erfindungsgemäßen Betriebsgeräts
Figur 3- ein Ausführungsbeispiel für die erfindungsgemäße Erzeugung des Stromeinstellwerts
- FIG. 1
- the temperature dependence of the maximum allowable operating current of a light emitting diode
- FIG. 2
- a block diagram of a control gear according to the invention
- FIG. 3
- an embodiment of the inventive generation of Stromeinstellwerts
Im folgenden werden Widerstände durch den Buchstaben R, Transistoren durch den Buchstaben T, Verstärker durch den Buchstaben A, Dioden durch den Buchstaben D jeweils gefolgt von einer Zahl bezeichnet.The following are resistors by the letter R, transistors through the letter T, amplifiers through the letter A, diodes through the letter D respectively followed by a number.
In Fig. 1 ist ein Beispiel für die Temperaturabhängigkeit des maximal zulässigen Betriebsstroms einer Leuchtdiode dargestellt. Es handelt sich um Herstellerangaben zu einer Leuchtdiode vom Typ LA E675 der Firma Osram Opto Semiconductors. Der Betriebsstrom IF in mA ist in einem Diagramm über der Umgebungstemperatur TA in °C aufgetragen. Bis zu einer Temperatur TA von 70°C ist der Betriebsstrom IF konstant 70mA. Oberhalb von 70°C beginnt das sog. Derating. Die Derating-Temperatur beträgt demnach im vorliegenden Beispiel 70°C. In einem Temperatur bereich zwischen der Derating-Temperatur und der Abschalt-Temperatur, die im verliegenden Beispiel 100°C beträgt, fällt der Betriebsstrom IF linear mit steigender Temperatur TA. Oberhalb der Abschalt-Temperatur von 100°C ist ein Betrieb der Leuchtdiode ausgeschlossen.FIG. 1 shows an example of the temperature dependence of the maximum permissible operating current of a light-emitting diode. These are manufacturer specifications for a type LA E675 light-emitting diode from Osram Opto Semiconductors. The operating current IF in mA is plotted in a graph above the ambient temperature TA in ° C. Up to a temperature TA of 70 ° C, the operating current IF is constant 70mA. Above 70 ° C begins the so-called derating. The derating temperature is therefore in the present example 70 ° C. In a temperature range between the derating temperature and the cut-off temperature, which in the example given is 100 ° C., the operating current IF decreases linearly with increasing temperature TA. Above the shutdown temperature of 100 ° C operation of the LED is excluded.
In Fig. 2 ist ein Blockdiagramm eines erfindungsgemäßen Betriebsgeräts abgebildet.
Eine Regeleinrichtung 1 liefert an ihrem Ausgang 13 den Betriebsstrom für die zu
bereibenden Leuchtdioden 2. Über eine Rückkoppelleitung 3 wird ein Istwert des
Betriebsstroms in einen Istwerteingang 12 der Regeleinrichtung 1 eingespeist.FIG. 2 shows a block diagram of an operating device according to the invention.
A
Der Sollwertgeber 5 stellt an seinem Sollwertausgang 51 einen Stromsollwert bereit.
Dieser wird erfindungsgemäß einem ersten Eingang 61 eines Addierers 6 zugeführt.
Ein Ausgang 63 des Addierers 6 liefert einen Stromeinstellwert für einen Sollwerteingang
11 der Regeleinrichtung 1. Am zweiten Eingang 62 des Addierers 6 wird ein
Abzugswert eingespeist, den eine Steuereinrichtung 8 an ihrem Ausgang 82 bereitstellt.
Erfindungsgemäß entspricht der Stromeinstellwert, der am Ausgang 63 des
Addierers 6 ausgegeben wird, dem Stromsollwert minus dem Abzugswert. In Fig. 2
wird der Stromeinstellwert durch einen Addierer 6 berechnet, dessen zweiter Eingang
62 invertiert wird. Dies wird durch ein Minuszeichen am zweiten Eingang 62
angedeutet. Genauso ist es auch möglich, einen invertierten Abzugswert gleich am
ersten Ausgang 82 der Steuereinrichtung 8 bereitzustellen. Eine Invertierung am
zweiten Eingang 62 ist dann nicht mehr nötig.The
Es ist auch möglich den Stromsollwert und den Stromeinstellwert zu invertieren, während der Abzugswert nicht invertiert wird.It is also possible to invert the current setpoint and the current setting value, while the deduction value is not inverted.
Eine weitere Möglichkeit zur Berechnung des Stromeinstellwerts besteht darin, dass
der Addierer 6 durch einen Subtrahierer ersetzt wird. Am ersten Eingang 61 wird der
Minuend, am zweiten Eingang 62 wird der Subtrahend eingespeist. Die Invertierung
eines Werts ist in diesem Fall nicht nötig. Another way to calculate the Stromeinstellwerts is that
the
Der Abzugswert wird in der Steuereinrichtung in Abhängigkeit von der Temperatur
bestimmt. Dazu gibt eine Temperaturmesseinrichtung 4 an ihrem Ausgang 41 eine
Temperaturmessgröße aus, die in den Temperatureingang 81 der Steuereinrichtung 8
eingespeist wird. Unterhalb der Derating-Temperatur stellt die Steuereinrichtung
einen Abzugswert ein, der den Stromsollwert nicht beeinflusst, wodurch der Stromeinstellwert
gleich dem Stromsollwert ist. Oberhalb der Derating-Temperatur steigt
der Abzugswert linear mit der Temperaturmessgröße an, so dass der Stromeinstellwert
linear mit der Temperatur abfällt. Der Abzugswert wird von der Steuereinrichtung
8 so gewählt, dass der Verlauf des Stromeinstellwerts bei der Derating-Temperatur
stetig ist.The deduction value is in the control device as a function of the temperature
certainly. For this purpose, a
Wird die Abschalttemperatur erreicht, so gibt die Steuereinrichtung 8 an ihrem zweiten
Ausgang 83 ein Abschaltsignal an den Eingang 71 der Abschalteinrichtung 7 aus.
Daraufhin beeinflusst die Abschalteinrichtung 7 über ihren Ausgang 72 den Sollwertgeber
in der Art, dass am Sollwertausgang 51 ein Sollwert an den Addierer 6
ausgegeben wird, der einen Betriebsstrom zur folge hat, der vernachlässigbar klein
ist.If the shutdown temperature is reached, the
Damit ist in Fig. 2 ein erfindungsgemäßes Betriebsgerät beschrieben, das einen temperaturabhängigen Betriebsstrom liefert, wie er prinzipiell in Fig. 1 dargestellt ist.Thus, an inventive operating device is described in Fig. 2, which is a temperature-dependent Operating current supplies, as shown in principle in Fig. 1.
In Fig. 3 ist der Schaltplan eines erfindungsgemäßen Ausführungsbeispiels dafür gegeben, wie aus dem Stromsollwert ein Stromeinstellwert erzeugt wird.In Fig. 3 is the circuit diagram of an embodiment of this invention given how a Stromeinstellwert is generated from the current setpoint.
Ein Addierer wird gebildet aus einem Operationsverstärker A1 und Widerständen R1, R2 und R3. Über R2 wird ein erster Eingang des Addierers mit dem invertierenden Eingang von A1 verbunden. Über R1 wird ein zweiter Eingang des Addierers mit dem invertierenden Eingang von A1 verbunden. R3 verbindet den Ausgang von A1 mit seinem invertierenden Eingang. Der Ausgang von A1 bildet den Ausgang des Addierers VST. Dort steht die Summe der beiden Eingangssignale, also der Stromeinstellwert, in invertierter Form zur Verfügung. Wird eine nicht invertierte Form benötigt, ist dem Addierer ein Inverter nachzuschalten. Der nicht invertierende Eingang von A1 ist mit einem Potenzial verbunden, das mit virtueller Masse VM bezeichnet wird. Die virtuelle Masse VM bildet das Bezugspotenzial für die Eingänge des Addierers. Hergeleitet wird die virtuelle Masse VM mit Hilfe eines Spannungsteilers aus den Widerständen R4 und R5, der zwischen einer Referenzspannung VR und einem Massepotenzial M geschaltet ist.An adder is formed of an operational amplifier A1 and resistors R1, R2 and R3. Via R2, a first input of the adder with the inverting Input connected by A1. Over R1 becomes a second input of the adder connected to the inverting input of A1. R3 connects the output of A1 with its inverting input. The output of A1 forms the output of the Adder's VST. There is the sum of the two input signals, ie the current setting value, available in inverted form. Becomes a non-inverted form required, the adder is followed by an inverter. The non-inverting input from A1 is connected to a potential called Virtual Mass VM becomes. The virtual ground VM forms the reference potential for the inputs of the adder. The virtual mass VM is derived by means of a voltage divider from the resistors R4 and R5, which is between a reference voltage VR and a ground potential M is connected.
Am ersten Eingang des Addierers wird ein Stromsollwert VS eingespeist. Dort ist auch eine Abschalteinrichtung angeschlossen. Im vorliegenden Beispiel besteht die Abschalteinrichtung lediglich aus einem NPN Bipolartransistor T1. Damit lässt sich die Abschalteinrichtung kostengünstig realisieren. Es ist auch möglich, dafür einen anderen elektronischen Schalter einzusetzen. Der Kollektor von T1 ist mit dem Stromsollwert verbunden, während der Emitter auf Massepotenzial M liegt. Die Basis von T1 bildet einen Abschalteingang, der mit dem Ausgang eines Komparators A2 verbunden ist. A2 wird durch einen Operationsverstärker realisiert. Sobald A2 ein Abschaltsignal an T1 abgibt wird der Stromsollwert auf Massepotenzial gelegt, wodurch am Ausgang des Addierers VST ein Wert ausgegeben wird, der keinen Betriebsstrom mehr zulässt.At the first input of the adder a current setpoint VS is fed. There is also connected a shutdown device. In the present example, the Turn-off device only from an NPN bipolar transistor T1. This can be realize the shutdown device cost. It is also possible for one other electronic switch to use. The collector of T1 is with the Current setpoint connected while the emitter is at ground potential M. The base from T1 forms a turn-off input, which is connected to the output of a comparator A2 is connected. A2 is realized by an operational amplifier. Once A2 Shutdown signal outputs to T1, the current setpoint is set to ground potential, whereby At the output of the adder VST, a value is output which has no operating current allows more.
Eine Temperaturmesseinrichtung wird gebildet aus der Serienschaltung eines Widerstands
R6 und einer Referenzdiode D1 und aus einem Operationsverstärker A3. Die
Serienschaltung von R6 und D1 ist zwischen die Referenzspannung VR und das
Massepotenzial M geschaltet, wobei die Kathode von D1 auf Massepotenzial M
liegt. Der Verbindungspunkt von D1 und R6 ist mit dem nicht invertierenden Eingang
von A3 verbunden. Der invertierende Eingang von A3 ist mit dem Ausgang
von A3 verbunden. Damit bildet A3 einen Spannungsfolger und stellt an seinem
Ausgang die Flussspannung von D1 zur Verfügung, die eine Temperaturmessgröße
bildet. Die Flussspannung von Halbleiterdioden ist umgekehrt proportional zur Temperatur.
D. h. die Temperaturmessgröße liegt in invertierter Form vor. Deshalb wird
im vorliegenden Ausführungsbeispiel ein Addierer und kein Subtrahierer verwendet.
Für D1 kann grundsätzlich jede Halbleiterdiode eingesetzt werden. Da es jedoch
wichtig ist, dass für D1 die gleiche Temperatur relevant ist wie für die zu betreibenden
Leuchtdioden, wird vorteilhaft für D 1 eine Diode verwendet, die dem Typ der zu
betreibenden Leuchtdioden entspricht. A temperature measuring device is formed from the series connection of a resistor
R6 and a reference diode D1 and an operational amplifier A3. The
Series connection of R6 and D1 is between the reference voltage VR and the
Ground potential M, wherein the cathode of D1 to ground potential M
lies. The connection point of D1 and R6 is with the non-inverting input
connected by A3. The inverting input of A3 is with the output
connected by A3. Thus, A3 forms a voltage follower and sets at his
Output the forward voltage of D1 available, which is a temperature measurement
forms. The forward voltage of semiconductor diodes is inversely proportional to the temperature.
Ie. the temperature measured variable is in inverted form. That's why
In the present embodiment, an adder and no subtractor is used.
For D1, basically any semiconductor diode can be used. As it is, however
it is important that the same temperature is relevant for D1 as for the ones to be operated
Light emitting diodes, is advantageously used for
Der Ausgang von A3, an dem die Temperaturmessgröße anliegt, wird dem invertierenden Eingang von A2 zugeführt. Der nicht invertierende Eingang ist verbunden mit einem Mittelabgriff eines Spannungsteilers, gebildet aus Widerständen R7 und R8, der zwischen der Referenzspannung VR und dem Massepotenzial M geschaltet ist. Das Verhältnis der Widerstände R7 und R8 ist so gewählt, dass bei der Abschalttemperatur der Komparator A2 ein Abschaltsignal ausgibt und T1 in einen leitenden Zustand versetzt.The output of A3, to which the temperature variable is applied, becomes the inverting one Input from A2 supplied. The non-inverting input is connected to a center tap of a voltage divider formed by resistors R7 and R8, which is connected between the reference voltage VR and the ground potential M. The ratio of the resistors R7 and R8 is chosen so that at the shutdown temperature the comparator A2 outputs a turn-off signal and T1 in a conductive state added.
Der Ausgang von A3, an dem die Temperaturmessgröße anliegt, speist einen auf
dem Massepotenzial M liegenden Spannungsteiler bestehend aus Widerständen R9
und R10. Der Mittelabgriff dieses Spannungsteilers ist mit dem nicht invertierenden
Eingang eines Operationsverstärkers A4 und mit einem ersten Eingangspol eines
Umschalters S1 verbunden. Der Umschalter S1 kann sowohl mechanisch als auch
elektronisch ausgeführt sein. Der zweite Eingangspol des Umschalters S1 und der
invertierende Eingang von A4 sind mit der virtuellen Masse VM verbunden. Der
Ausgangspol des Umschalters S1 ist mit dem zweiten Eingang des Addierers verbunden.
Der Ausgang von A4 steuert den Umschalter S1. Das Verhältnis der Widerstände
R9 und R10 ist auf die Höhe des Potenzials der virtuellen Masse VM so abgestimmt,
dass der Umschalter bei der Derating-Temperatur umgeschaltet wird. Unterhalb
der Derating-Temperatur legt der Umschalter die virtuelle Masse an den zweiten
Eingang des Addierers. Damit ist der Stromeinstellwert VST am Ausgang des Addierers
unabhängig von der Temperatur. Erfindungsgemäß liegt am Ausgang des Umschalters
S 1 unmittelbar nach Überschreiten der Derating-Temperatur ein Potenzial
an, das der virtuellen Masse VM entspricht. Der Verlauf der Spannung am Ausgang
des Schalters S 1 bei der Derating-Temperatur ist demnach stetig. Oberhalb der Derating-Temperatur
wird über den Umschalter S 1 ein umgekehrt zur Temperatur proportionaler
Abzugswert auf den zweiten Eingang des Addierers geschaltet.The output of A3, to which the temperature measurement is applied, feeds one
the ground potential M lying voltage divider consisting of resistors R9
and R10. The center tap of this voltage divider is with the non-inverting
Input of an operational amplifier A4 and with a first input terminal of a
Switch S1 connected. The switch S1 can be both mechanically and
be executed electronically. The second input pole of the switch S1 and the
inverting input from A4 are connected to the virtual ground VM. Of the
Output terminal of the switch S1 is connected to the second input of the adder.
The output of A4 controls the switch S1. The ratio of resistances
R9 and R10 are tuned to the potential of the virtual mass VM,
that the changeover switch is switched at the derating temperature. Below
At the derating temperature, the switch sets the virtual ground to the second one
Input of the adder. Thus, the Stromeinstellwert VST at the output of the adder
regardless of the temperature. According to the invention is at the output of the
Folgende Elemente können der Steuereinrichtung zugeordnet werden: R4, R5, R7, R8, R9, R10, A2, A4, S1 und die Referenzspannung VR. Folgende Größe können definiert werden: Der Ausgang von A3 bildet die Temperaturmessgröße und wird einem Temperatureingang der Steuereinrichtung eingespeist, die gebildet wird vom invertierenden Eingang von A2 und von einem Anschluss von R9. Einen ersten Ausgang der Steuereinrichtung bildet der Ausgangspol des Umschalters S1. Dort wird die Abzugsgröße bereit gestellt. Der Ausgang von A2 bildet einen zweiten Ausgang der Steuereinrichtung, die das Abschaltsignal bereit stellt.The following elements can be assigned to the control device: R4, R5, R7, R8, R9, R10, A2, A4, S1 and the reference voltage VR. Following size can be defined: The output of A3 forms the temperature and is measured a temperature input of the control device, which is formed by the inverting input from A2 and from a terminal of R9. A first exit the control device forms the output pole of the switch S1. There will the deduction size provided. The output of A2 forms a second output the control device, which provides the shutdown signal.
Claims (6)
- Operating device for operating light-emitting diodes having the following features:regulating device (1) for regulating the operating current (IF) of the light-emitting diodes (2) having a desired value input (11), to which a current set value (VST) can be fed,desired value transmitter (5), which outputs a current desired value (VS) at a desired value output (51),temperature measuring device (4) which provides a temperature measured variable which is linearly dependent on an ambient temperature (TA),subtractor having a first (61) and a second input (62) and an output (63) which subtracts an electrical variable at its second input (62) from an electrical variable at its first input (61) and makes the result available at its output (63), the current desired value (VS) being fed to the first input (61), and the output (63) being connected to the desired value input (11) of the regulating device (1),disconnection device (7) having a disconnection input (71) which alters the current set value (VST) when a disconnection signal is applied to the disconnection input (71) such that the current through the light-emitting diodes is negligible,control device (8) which has the following connections:temperature input (81), to which the temperature measured variable is fed,first output (82) which makes available a subtraction variable whose value is fed to the second input (62) of the subtractor, the value of the subtraction variable being set such that, for the case in which the value of the temperature measured variable is below a derating start value which can be set, the current desired value is present at the output of the subtractor and, for the case in which the value of the temperature measured variable is above the derating start value, the value of the subtraction variable is proportional to the value of the temperature measured variable, the value of the variable at the output of the subtractor having a continuous profile in the case of the derating start value,second output (83) which is connected to the disconnection input (71) of the disconnection device (7) and outputs a disconnection signal for the case in which the value of the temperature measured variable is above a disconnection value which can be set.
- Operating device according to Claim 1, characterized in that the temperature measured variable is derived from a forward voltage across a light-emitting diode.
- Operating device according to Claim 1, characterized in that the disconnection device contains an electronic switch (T1) which closes when a disconnection signal is applied to the disconnection input (71) and thus connects the desired value output to an earth potential (M).
- Operating device according to Claim 1, characterized by the following features:the subtractor has a connection for a virtual earth (VM) which forms a reference potential for the inputs (61, 62) of the subtractor,the connection for the virtual earth (VM) of the subtractor is connected to a reference voltage (VR) which can be set,the control device (8) has a changeover switch (S1) which may also be in the form of an electronic switch by means of which the first output (82) of the control device (8) can be switched over between two potentials,the position of the changeover switch (S1) is dependent on a comparison between the level of the potential of the virtual earth (VM) and a fraction, which can be set, of the temperature measured variable,for the case in which the fraction, which can be set, of the temperature measured variable is smaller than the level of the potential of the virtual earth (VM), the changeover switch (S1) is brought into a position in which the first output (82) of the control device (8) is connected to the virtual earth (VM),for the case in which the fraction, which can be set, of the temperature measured variable is greater than the level of the potential of the virtual earth (VM), the changeover switch is brought into a position in which the first output of the control device is connected to the fraction, which can be set, of the temperature measured variable,the fraction, which can be set, of the temperature measured variable is set such that it corresponds to the potential of the virtual earth if the temperature measured variable assumes the derating start value.
- Operating device according to Claim 1, characterized in that a proportionality factor, which determines the value of the subtraction variable as a function of the value of the temperature measured variable, is selected such that, when the disconnection value of the temperature measured variable is reached, the subtractor outputs a current set value (VST) which induces an operating current in the light-emitting diodes (2) which corresponds to a maximum permissible operating current given a maximum permissible operating temperature for the light-emitting diodes (2).
- Operating device according to one of Claims 1 to 5, characterized in that the subtractor is replaced by - an adder (6) and the temperature measured variable is fed in inverted form to this adder (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10134246A DE10134246A1 (en) | 2001-07-18 | 2001-07-18 | Control gear for LEDs with temperature-dependent current control |
DE10134246 | 2001-07-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1278402A1 EP1278402A1 (en) | 2003-01-22 |
EP1278402B1 true EP1278402B1 (en) | 2005-05-11 |
Family
ID=7691766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02011285A Expired - Lifetime EP1278402B1 (en) | 2001-07-18 | 2002-05-22 | Circuit for LED with temperature dependent current control |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1278402B1 (en) |
JP (1) | JP2003046132A (en) |
AT (1) | ATE295676T1 (en) |
DE (2) | DE10134246A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1874097A1 (en) | 2006-06-28 | 2008-01-02 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | LED circuit with current control |
DE102009003632A1 (en) | 2009-03-17 | 2010-09-30 | Lear Corporation Gmbh | Method and circuit arrangement for controlling a load |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3984214B2 (en) | 2003-10-21 | 2007-10-03 | ローム株式会社 | Light emission control device |
US8733966B2 (en) * | 2004-08-20 | 2014-05-27 | Mag Instrument, Inc. | LED flashlight |
US7414370B2 (en) * | 2006-02-03 | 2008-08-19 | Honeywell International Inc. | Increasing reliability of operation of light emitting diode arrays at higher operating temperatures and its use in the lamps of automobiles |
DE102006033233A1 (en) * | 2006-07-18 | 2008-01-24 | Austriamicrosystems Ag | Light emitting diode operating method involves determining temperature of diode representing temperature signal by measuring and evaluating flux voltage of diode in activated operating condition for lighting or signaling purposes |
DE102008017483A1 (en) * | 2008-04-03 | 2009-10-08 | Steinel Gmbh | A lighting device |
BG110405A (en) * | 2009-06-12 | 2010-12-30 | "Еколайт" Ад | Method for temperature protection and control of a light source and device implementing the method |
DE102010041987A1 (en) * | 2010-10-05 | 2012-04-05 | Tridonic Gmbh & Co. Kg | Operating device with adjustable critical temperature |
EP2845290B1 (en) | 2012-05-03 | 2018-08-29 | Powermat Technologies Ltd. | System and method for triggering power transfer across an inductive power coupling and non resonant transmission |
US9081555B2 (en) * | 2012-07-13 | 2015-07-14 | Qualcomm Incorporated | Method and apparatus for current derating with integrated temperature sensing |
DE102014114389A1 (en) * | 2014-10-02 | 2016-04-07 | Osram Opto Semiconductors Gmbh | Method for operating an optoelectronic semiconductor chip and optoelectronic component |
CN108521692B (en) * | 2018-03-21 | 2024-08-02 | 富满微电子集团股份有限公司 | Temperature control method of LED lighting system and LED lighting system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01166578A (en) * | 1987-12-23 | 1989-06-30 | Nec Corp | Led driving circuit with temperature control function |
JPH0635189B2 (en) * | 1988-05-20 | 1994-05-11 | 三菱電機株式会社 | Drive circuit |
DE19810827A1 (en) * | 1998-03-12 | 1999-09-16 | Siemens Ag | Circuit for temperature dependent current supply to LED |
US6285139B1 (en) * | 1999-12-23 | 2001-09-04 | Gelcore, Llc | Non-linear light-emitting load current control |
-
2001
- 2001-07-18 DE DE10134246A patent/DE10134246A1/en not_active Withdrawn
-
2002
- 2002-05-22 AT AT02011285T patent/ATE295676T1/en active
- 2002-05-22 DE DE50203055T patent/DE50203055D1/en not_active Expired - Lifetime
- 2002-05-22 EP EP02011285A patent/EP1278402B1/en not_active Expired - Lifetime
- 2002-07-16 JP JP2002207265A patent/JP2003046132A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1874097A1 (en) | 2006-06-28 | 2008-01-02 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | LED circuit with current control |
DE102009003632A1 (en) | 2009-03-17 | 2010-09-30 | Lear Corporation Gmbh | Method and circuit arrangement for controlling a load |
DE102009003632B4 (en) * | 2009-03-17 | 2013-05-16 | Lear Corporation Gmbh | Method and circuit arrangement for controlling a load |
Also Published As
Publication number | Publication date |
---|---|
JP2003046132A (en) | 2003-02-14 |
EP1278402A1 (en) | 2003-01-22 |
DE10134246A1 (en) | 2003-02-06 |
DE50203055D1 (en) | 2005-06-16 |
ATE295676T1 (en) | 2005-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2123130B1 (en) | Drive device and method for operating at least one series circuit of light-emitting diodes | |
EP1278402B1 (en) | Circuit for LED with temperature dependent current control | |
DE102009003632B4 (en) | Method and circuit arrangement for controlling a load | |
DE102010045389B4 (en) | Power supply arrangement and method for supplying power to an electrical load | |
DE2139999A1 (en) | Status sensor circuit in bridge arrangement | |
DE2234121C2 (en) | Circuit arrangement for controlling the current in a coil, preferably the actuating coil of a fuel supply regulator in a fuel pump | |
DE102009050812B4 (en) | Hall effect circuit enabling low voltage operation | |
EP0098460B1 (en) | Control device for an electrical actuator | |
DE4113258A1 (en) | Analog power control circuitry - has short circuit protection circuit limiting control output signal for each voltage value | |
EP1659831B1 (en) | Automobil lighting device incorporating LEDs | |
DE10161760A1 (en) | Circuit arrangement for current measurement or current detection | |
EP3474632A1 (en) | Circuit assembly for generating a reference voltage for the power supply of a led arrangement | |
EP0810505B1 (en) | Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit | |
DE112017000328T5 (en) | Linear solenoid driving device | |
DE2849153C2 (en) | Circuit arrangement for generating a constant auxiliary DC voltage | |
EP0779702B1 (en) | Electric circuit for converting an input voltage | |
DE10020927C2 (en) | Circuit arrangement for limiting the current of a voltage-controlled load | |
EP2595457A2 (en) | Method and device for operating a fan via a pulse-width-modulated signal of a ballast device | |
DE102016007752A1 (en) | Protection circuit, lighting arrangement and operating method | |
DE3512563C2 (en) | ||
DE3733889C2 (en) | ||
DE4317154B4 (en) | Circuit for driving a switching transistor | |
WO2023104520A1 (en) | Circuit arrangement for preventing overcurrent pulses during pwm operation of led strings | |
DE102014225769B4 (en) | Circuit for an analog sensor | |
DE1788007C (en) | Circuit arrangement for limiting high DC voltages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030217 |
|
AKX | Designation fees paid |
Designated state(s): AT DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50203055 Country of ref document: DE Date of ref document: 20050616 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050726 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20060214 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20110408 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110526 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50203055 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111128 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 295676 Country of ref document: AT Kind code of ref document: T Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50203055 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50203055 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130822 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140521 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140527 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150522 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180522 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50203055 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191203 |