EP1274761B1 - Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters - Google Patents
Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters Download PDFInfo
- Publication number
- EP1274761B1 EP1274761B1 EP01916986A EP01916986A EP1274761B1 EP 1274761 B1 EP1274761 B1 EP 1274761B1 EP 01916986 A EP01916986 A EP 01916986A EP 01916986 A EP01916986 A EP 01916986A EP 1274761 B1 EP1274761 B1 EP 1274761B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gaseous medium
- drops
- precursor
- process according
- drop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 229920000728 polyester Polymers 0.000 title claims abstract description 25
- 229920001634 Copolyester Polymers 0.000 title claims abstract description 12
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 6
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 6
- 239000013067 intermediate product Substances 0.000 title description 16
- 239000008187 granular material Substances 0.000 title description 7
- 238000002425 crystallisation Methods 0.000 claims abstract description 35
- 230000008025 crystallization Effects 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims abstract description 35
- 239000002243 precursor Substances 0.000 claims abstract description 33
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 17
- 239000000178 monomer Substances 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 6
- -1 oligomer Substances 0.000 claims abstract description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000008188 pellet Substances 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000006068 polycondensation reaction Methods 0.000 claims description 10
- 230000005284 excitation Effects 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 30
- 239000007789 gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/88—Post-polymerisation treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/02—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
- B01J2/04—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/30—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/10—Making granules by moulding the material, i.e. treating it in the molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/785—Preparation processes characterised by the apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/80—Solid-state polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
- B29B2009/165—Crystallizing granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
Definitions
- the invention relates to a method for dropletizing preliminary products thermoplastic polyester or copolyester as a molten monomer, Oligomer, monomer-glycol mixture or after a partial Polycondensation and melting into a molten intermediate product, whereby the dripped preliminary product is introduced into a gaseous medium, and an apparatus for performing this method.
- the method has the disadvantage that in the liquid provided, namely Water, or on the intended conveyor belt a solidification of weak polycondensed polyester such as polyethylene terephthalate, amorphous pellets as preliminary products, which are only energetically and by another economically complex step implemented in crystalline precursors Need to become. Because these precursors when converted to crystalline Intermediate products and a sticky phase in higher polymer substances can undergo further treatment and polycondensation of the pellets can only be made in complex designed fluidized bed ovens sticking of the pellets during crystallization and more To prevent polycondensation.
- weak polycondensed polyester such as polyethylene terephthalate
- amorphous pellets as preliminary products
- amorphous polyester While amorphous polyester is transparent, the crystalline phase is one Intermediate product of a polyester or copolyester on white coloring clearly visible. It is usually used to overcome stickiness of amorphous polymer the crystallization process of the precursors with the further reinforced polycondensation, which is usually between 200 and 230 ° C is carried out in a fluidized bed reactor. This will the reactor operated in such a way that initially to overcome the stickiness crystallization at an optimal crystallization temperature at about 150 ° C for several hours and then the pellets or Granules for additional hours to higher chain lengths at temperatures be condensed between 200 and 230 ° C.
- the object of the invention is a method and an apparatus for Dripping of intermediate products of thermoplastic polyester and copolyester according to the preamble of claim 1 and claim 14 specify which overcomes the disadvantages in the prior art, a Process shortening of conventional granulation processes causes and on builds previously known method steps and devices to at least surface crystallized dropletized precursors in the form of Monomers, oligomers, monomer-glycol mixtures or partially to produce polycondensed materials.
- the preliminary product is converted into a gaseous medium introduced, the gaseous medium after the entry of the droplet Preproduct in the gaseous medium the crystallization process Pre-product accelerates and the state of crystallization of the pre-product accelerated by placing the dripped intermediate product on a Temperature above 100 ° C and below its melting point for a limited Period of time until crystallization of the drop in the surface of the Intermediate product is completed.
- This solution has the advantage that by using this gaseous Medium the drop-shaped intermediate product at a temperature above 100 ° C. and is kept below its melting point, for a limited one Time so that crystallization nuclei in the form of defects due to the high surface temperature of over 100 ° C, which with increasing Release of the heat of fusion of the drop from near-surface germs Cause crystallization of the surface in the limited period so that the drop-shaped preliminary product as spheres with pre-crystallized and thus non-stick surface after passing through a drop distance can be caught without sticking, and thus for one Immediate further treatment to high polymer polycondensate used can be.
- the gaseous medium is Air.
- Air can be used for some types of monomers, oligomers or partially polycondensed precursors due to their oxygen content
- Formation of crystal nuclei contribute, however, for many the Polycondensates and their monomers when dropletized are low in oxygen Atmosphere can be made available, especially at low viscosity PET an oxidative damage during the Crystallization process can occur.
- the process therefore ensures a low-oxygen atmosphere that such damage does not occur.
- an inert gas is used.
- An inert gas then becomes Required if precursors of polyesters or copolyesters drip that are particularly sensitive to different gas atmospheres react, so that here the nuclei only by the Maintaining a high temperature, namely generated above 100 ° C, in that a as a seed on the surface of the drops sufficient density of vacancies and thermal defects becomes.
- Nitrogen can advantageously be used as a further gaseous medium the nitrogen used in many of the preliminary products to be dripped shows no chemical reactions and therefore a quasi-inert environment delivers and thus only the high temperature of the gaseous medium Nitrogen ensures the formation of nuclei.
- the gaseous medium is preferably countercurrent to one Falling distance of the dripped preliminary product led and warms up at Rise of the gas along the fall path so that it is ensured that the dripped intermediate product for a limited period of time, namely during it the falling distance against the gaseous medium passes through Maintains temperature above 100 ° C.
- the melting drop itself is above 200 ° C is hot, it heats the counter-flowing gas and heats it up so that when the gas is circulated, the heated gas of the falling section can be supplied again and possibly the heated gas energy must be withdrawn for a temperature above the limited period Do not unnecessarily enlarge 100 ° C for the dripped preliminary product while too
- the gaseous medium is to be heated to make it available tempered.
- the gaseous medium is injected into the Falling distance of the dripped preliminary product preferably at the lowest level of the falling distance and tempered beforehand.
- the tempering takes place preferably by means of a heat exchanger, each of the gaseous medium cools or heats as needed so that it remains constant Temperature as a countercurrent into the falling section of the dripped preliminary product can be introduced.
- the insertion temperature is greater than or equal to 30 ° C and less 120 ° C regulated, preferably temperatures greater than or equal to 40 ° C and maintained below 100 ° C. These partially low Inlet temperatures ensure that the dripped intermediate products at a temperature above 100 ° C during the Traversing the falling distance can be kept.
- the preliminary products are in a further embodiment of the invention melted down due to vibration excitation.
- the Vibration excitation at a frequency between 30 and 1,000 Hz, preferably between 50 and 400 Hz.
- a throughput of 5,000 up to 30,000 kg / h can be achieved.
- This throughput can be achieved by a flat Distribution of nozzles on a nozzle head plate still significantly increased become.
- the nozzle head in a preferred embodiment of the Process the intermediate product with an intrinsic viscosity in the range fed between 0.05 to 0.3 dl / g. With a given nozzle diameter the drop diameter increases and increases with increasing viscosity increasing frequency. In this respect, the diameter of the drops is one Vibration-induced droplets are relatively accurate over the Melt temperature (setting the intrinsic viscosity) and the Vibration frequency adjustable.
- the melting point of a PET monomer is 230 to 240 ° C and is therefore lower than the final PET polymer.
- the freezing point of the Dropped preliminary product can be assumed to be around 200 ° C, so that after the appearance of the drop from the nozzle and a short drop distance until the solidification point of about 200 ° C is reached, none at first Crystallization occurs and in the further cooling phase of the drop initially Crystal nuclei are formed on the surface as long as the drops are over Can be kept 100 ° C, the crystal nuclei essentially Defects and empty spaces arise.
- the preliminary product is added Droplets whose diameter is more than 80% by weight in the range of twice the nozzle diameter, and a diameter below the Nozzle diameter less than 3 wt .-% and a diameter larger than three times the nozzle diameter to less than 10 wt .-% of dripped intermediate product occurs.
- This narrow ball size division also provides a small amount of dust, which at the method according to the invention is less than 1%, with which the The advantage of a reduced electrostatic charge, a lower one Amount of rejects and a reduced risk of explosion.
- a narrow grain size spectrum as with the method according to the invention is possible for a more uniform Ensure polycondensation.
- a ball size of approximately 0.5 to 2 mm in diameter significantly accelerates the condensation of water and glycol in the Further treatment in the course of solid state polycondensation.
- Ball size of 1 to 10 mg a significant improvement over the previous one used granulate sizes that are significantly higher.
- this system has the advantage of being relatively uniform Dropletization of the molten preliminary product due to vibration excitation, on the other hand, the advantage of the relatively simple structure, which is only one provides sufficient fall distance in a drop tower to a limited residence time of the dripped intermediate in a temperature above To ensure 100 ° C, taking the heat energy from the dripped Upstream product is released to the counter-flowing gas, is used to to be reused to save energy.
- the length of the drop distance and the preheating or tempering temperature of the introduced gaseous Medium can dwell time above the critical 100 ° C in the falling distance of the drop tower.
- the device for performing the The method of the nozzle head has nozzle openings which prevent droplets from forming secure in the vertical direction.
- the vertical droplet creates in Contrary to a spray nozzle the possibility of dropping the drop run completely parallel without touching the wall through the drop tower of the system and according to the specified drop distance, which corresponds to a crystallization time, the granules or the spherical drops stick-free in a funnel to catch and lead out at the bottom of the drop tower.
- the Heat exchanger the temperature of the gaseous medium to one Insertion temperature greater than or equal to 30 ° C and less than or equal to 100 ° C, preferably regulated greater than or equal to 40 ° C and less than or equal to 100 ° C.
- a heat exchanger fluid flows through the heat exchanger separately regulated and temperature-stabilized circuit, so that the heat exchanger the circulated gaseous medium automatically cools down The insertion temperature is exceeded and automatically warmed or heated if the set insertion temperature or the temperature falls below of the heat exchanger fluid.
- a Flow rate from 0.3 to 1 m / s of the gaseous medium in the Drop tower set via a blower can be in the floor area or be arranged behind the heat exchanger and as a pressure fan Generate counterflow of the gaseous medium in the drop tower or it can as Suction fan to be designed and after the outlet opening for gaseous Medium of the plant in the area of the dripping area around the Nozzle head must be positioned.
- the drop distance in the drop tower is in a preferred embodiment Invention 10 to 20 m long, preferably 12 to 15 m, so that a limited An optimal crystallization time of 2.5 to 3.5 s was observed can be.
- a monomer-glycol mixture of a polyethylene terephthalate with a Viscosity number or an intrinsic viscosity of 0.2 is with a Temperature of about 260 ° C through a nozzle head for droplets and Melt discharged, the nozzle diameter is 0.75 mm, so that the emerging melt of the intermediate of a polyester Vibration excitation to drops with a diameter of about 1.5 mm is dripped.
- These essentially spherical drops pass through Falling distance of approx. 15 m, during which it is gaseous using a low-oxygen Medium are kept at a temperature above 100 ° C. During this limited fall time of approx.
- a DSC measurement (or Dynamic Scanning Calometry) gives a degree of surface crystallization of 100% for the resulting spherical granules, which on average have a Have a diameter of 1.5 mm, with over 80% of the dropped
- the intermediate product is in the range of twice the nozzle diameter and fall less than 3% by weight below the diameter of the nozzle diameter and less than 10% by weight over three times the nozzle diameter lie.
- this narrow ball size distribution ensures an extremely small proportion of fine or dust material, which is less than 1%, so that less waste arises and a low electrostatic charge in the area of the drop tower occurs, so that the area of the drop tower is protected from a dust explosion is.
- a polyester precursor drips with an intrinsic Viscosity that falls below 0.15 can reduce the fall time to no superficial crystallization in the drop tower of the embodiment are sufficient so that drops from a melt with low viscosity may remain sticky and thus clog the collecting funnel.
- the droplets with fine polyester particles fall into the droplet area covered in the surface, on the one hand, through the crystallization process to accelerate corresponding crystallization nuclei and on the other hand that Material when hitting a collecting funnel after passing through the To protect the drop tower from sticking.
- this embodiment it is possible to use low-viscosity precursors of polyesters and copolyesters even with shorter drops in the dripped state before sticking to protect.
- the feeding with fine polyester particles can be done in one another preferred embodiment of the invention with the Inlet opening for gaseous medium in counterflow from the floor area of the drop tower and the polyester particles can, as far they are not required for coating the drops over the Outlet opening for gaseous medium are discharged from the system, so that it is ensured that there is no explosive dust mixture in the drop tower accumulates.
- Figure 1 shows an apparatus for performing a method for Dripping of intermediate products of thermoplastic polyester or copolyester.
- the device has a nozzle head 1 which passes through Vibration excitation of the melt 2 by means of a vibration generator 14 forms drop-shaped pellets 3 from the preliminary product.
- the preliminary product is called Melt 2 of a monomer, an oligomer, a monomer-glycol mixture or a partially polycondensed preliminary product via the Melting device 15 fed to the nozzle head 1.
- the dripping unit 19, which is installed in the uppermost area of the plant, the following Head area 20 is able with these auxiliary devices to a low-viscosity melt to the nozzle head 1 via the melt line 21 feed and through the vertically downward nozzle openings 8th vertical drop.
- the device also has a drop tower 4, which is below the Head area is attached and has a length of 10 to 20 m and thus provides a fall path 9 for the spherical drops, which essentially consists of the height of the drop tower 4 and a drop distance in the head region 20 in the embodiment according to FIG. 1.
- a filling area 23 in which a collecting funnel on the surface as it traverses the fall path 9 crystallized spherical drops can be collected and in Filling area portioned or forwarded for further processing can.
- an entry opening 11 for a Gaseous medium arranged between an annular opening 24 between Drop tower end 25 and collecting funnel 10 is arranged and the fan 6 via the heat exchanger 5 and the return line 7 of the inlet opening is fed.
- the ring opening 24 at the drop tower end 25 ensures one uniform counterflow of the gaseous medium from the foot region 22 of the Drop tower 4 to outlet openings 12 for the gaseous medium in the Head region 20 of the device.
- a return line 7 to the Entry opening 11 is connected downstream of the exit openings 12, so that the gaseous medium can be circulated.
- the composition of the gaseous medium is the material of the adapted pre-dripped product and can vary depending on the sensitivity against oxygen air, oxygen-poor air, essentially nitrogen or be an inert gas, which is opposite to the direction of the drops in the drop tower rises at a speed between 0.3 to 1 m / s.
- the embodiment is the flow rate of the gaseous Medium 0.6 m / s.
- the gaseous medium is in this system with the help of Heat exchanger 5 preheated to a constant temperature as required, which in the foot area 22 of the drop tower 4 with a sensor 18 for the Inlet temperature of the gaseous medium is detected.
- the recorded value is fed to a control unit 13 which contains a fluid for the heat exchanger a heating and cooling device at a predetermined temperature that is monitored via a temperature sensor 17 for the heat exchanger fluid, so that the controller 13 using the temperature of the heat exchange fluid the heating and cooling device 16 can regulate.
- the control unit 13 can continue via the connection point A to the vibration generator 14 act and the oscillation frequency, which is in the range of 30 Hz to 1 kHz is adjustable, change.
- the control unit 13 can Affect connection point B on the melting device 15, on the one hand the viscosity of the melt through the melting temperature of the Melting device 15 is controlled and on the other hand, the mass flow over a corresponding pressure supply in the melting device 15 is influenced can be.
- the diameter of the drops can be changed, which is optimal about 80% by weight twice the diameter of the nozzle openings 8 corresponds and is only 3% below the diameter of the nozzle opening 8 and less than 10% by weight three times the diameter of the nozzle opening 8 equivalent.
- An optimal diameter size has been found for both 1.5mm the generation of pre-crystallized, i.e. crystallized on the surface Drop of the preliminary product, as well as for the further processing of the Pre-product to long-chain polyesters and copolyesters as optimal proved.
- control device 13 is microprocessor-controlled and is suitable for regulating both the inlet temperature of the gaseous medium, as well as the throughput of the gaseous medium and the throughput of the to control the droplets of a polyester and / or copolyester.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Vertropfung von Vorprodukten thermoplastischer Polyester oder Copolyester als schmelzflüssiges Monomer, Oligomer, Monomer-Glycol-Gemisch oder nach einer teilweisen Polykondensation und Erschmelzung zu einem schmelzflüssigen Vorprodukt, wobei das vertropfte Vorprodukt in ein gasförmiges Medium eingebracht wird, und eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for dropletizing preliminary products thermoplastic polyester or copolyester as a molten monomer, Oligomer, monomer-glycol mixture or after a partial Polycondensation and melting into a molten intermediate product, whereby the dripped preliminary product is introduced into a gaseous medium, and an apparatus for performing this method.
Aus der Druckschrift US 4,436,782 ist ein Verfahren zur Granulierung und Weiterbehandlung eines Polyethylenterephthalats (PET genannt) zu Pellets bekannt, wobei ein bei Temperaturen zwischen 260 und 280 °C gebildetes flüssiges Oligomer mit einer Viskositätszahl (bzw. intrinsischen Viskosität) zwischen 0,08 und 0,15 durch Düsen derart gepreßt wird, daß Tropfen entstehen, die durch einen Kühlbereich Inertgasatmosphäre in ein Wasserbad fallen, um die Tropfen zu amorphen Pellets erstarren zu lassen. Aus dieser Druckschrift ist auch bekannt, daß anstelle eines Wasserbades eine Trommel oder ein Transportband die Tropfen auffangen kann, um sie zu amorphen Pellets kühlen und erstarren zu lassen.From the document US 4,436,782 is a process for granulation and Further treatment of a polyethylene terephthalate (called PET) into pellets known, a formed at temperatures between 260 and 280 ° C. liquid oligomer with a viscosity number (or intrinsic viscosity) between 0.08 and 0.15 is pressed through nozzles such that drops arise through a cooling area inert gas atmosphere in a water bath drop to solidify the drops into amorphous pellets. From this Document is also known that a drum instead of a water bath or a conveyor belt can catch the drops to make them amorphous Let the pellets cool and solidify.
Das Verfahren hat den Nachteil, daß in der vorgesehenen Flüssigkeit, nämlich Wasser, bzw. auf dem vorgesehenen Transportband ein Erstarren von schwach polykondensierten Polyester wie dem Polyethylenterephthalat, amorphe Pellets als Vorprodukte entstehen, die erst durch einen weiteren energetisch und wirtschaftlich aufwendigen Schritt in kristalline Vorprodukte umgesetzt werden müssen. Da diese Vorprodukte beim Umsetzen in kristalline Vorprodukte und in höher polymere Substanzen eine klebrige Phase durchlaufen, kann die weitere Behandlung und Polykondensation der Pellets nur in aufwendig konstruierten Wirbelschichtöfen vorgenommen werden, um ein Verkleben der Pellets beim Durchkristallisieren und weiterem Polykondensieren zu verhindern.The method has the disadvantage that in the liquid provided, namely Water, or on the intended conveyor belt a solidification of weak polycondensed polyester such as polyethylene terephthalate, amorphous pellets as preliminary products, which are only energetically and by another economically complex step implemented in crystalline precursors Need to become. Because these precursors when converted to crystalline Intermediate products and a sticky phase in higher polymer substances can undergo further treatment and polycondensation of the pellets can only be made in complex designed fluidized bed ovens sticking of the pellets during crystallization and more To prevent polycondensation.
Unterschiedliche Granulierverfahren, um aus amorphen Polyesterpellets kristalline Pellets herzustellen, sind aus US-PS 5,540,868 bekannt. Dazu muß das amorphe Polyestervorprodukt auf Temperaturen über 70 °C erhitzt werden, um den Kristallisationsprozeß auszulösen. Doch hat amorphes Polyester bei Temperaturen über 70 °C den Nachteil, daß es eine klebrige Oberfläche aufweist. Um ein Verkleben oder Verklumpen des amorphen Polyesters bei Kristallisationstemperaturen über 70 °C zu verhindern, muß das Vorprodukt als Granulat vorliegen und kann dann in einem Wirbelbettreaktor durch entsprechende Heißgasströme in Bewegung gehalten werden, bis in einem mehrstündigen Prozeß zumindest die Oberfläche soweit auskristallisiert ist, daß ein Verkleben der Vorprodukte ausgeschlossen ist.Different granulation processes to make amorphous polyester pellets Producing crystalline pellets are known from US Pat. No. 5,540,868. To do this the amorphous polyester intermediate is heated to temperatures above 70 ° C, to trigger the crystallization process. But has amorphous polyester Temperatures above 70 ° C have the disadvantage that it is a sticky surface having. To stick or clump the amorphous polyester To prevent crystallization temperatures above 70 ° C, the intermediate must be Granules are present and can then in a fluidized bed reactor Corresponding hot gas flows are kept in motion until in one process lasting several hours, at least the surface has crystallized to the extent that sticking of the preliminary products is excluded.
Während amorphes Polyester transparent ist, ist die kristalline Phase eines Vorproduktes eines Polyesters oder Copolyesters an der weißen Einfärbung deutlich zu erkennen. Üblicherweise wird zur Überwindung der Klebrigkeit von amorphem Polymer der Kristallisationsvorgang der Vorprodukte mit der weiteren verstärkten Polykondensation, die üblicherweise zwischen 200 und 230 °C in einem Wirbelbettreaktor durchgeführt wird, verbunden. Dazu wird der Reaktor derart gefahren, daß zunächst zur Überwindung der Klebrigkeit eine Kristallisation bei einer optimalen Kristallisationstemperatur bei ungefähr 150 °C für mehrere Stunden gefahren wird und danach die Pellets oder Granulate für weitere Stunden zu höheren Kettenlängen bei Temperaturen zwischen 200 und 230 °C kondensiert werden. While amorphous polyester is transparent, the crystalline phase is one Intermediate product of a polyester or copolyester on white coloring clearly visible. It is usually used to overcome stickiness of amorphous polymer the crystallization process of the precursors with the further reinforced polycondensation, which is usually between 200 and 230 ° C is carried out in a fluidized bed reactor. This will the reactor operated in such a way that initially to overcome the stickiness crystallization at an optimal crystallization temperature at about 150 ° C for several hours and then the pellets or Granules for additional hours to higher chain lengths at temperatures be condensed between 200 and 230 ° C.
Aus der gleichen obigen Druckschrift (US 5,540,868) ist bekannt, daß die Kristallisation von Pellets auch durch einen Thermoschock ausgelöst werden, indem heiße Pellets auf eine kalte Oberfläche prasseln oder umgekehrt kalte amorphe Pellets auf eine heiße Oberfläche prasseln. Eine derartige Schockkristallisation hat den Nachteil, daß die Reproduktion äußerst schwierig ist, da die Temperaturen einer heißen Platte zwischen 300 und 800 °C in Abhängigkeit von der Verweildauer der Pellets auf der Platte variieren. Bei Verwendung von Rotationsplatten wird im Temperaturbereich zwischen 30 und 200 °C gearbeitet, was wiederum von der Verweildauer der Pellets auf den heißen Rotationsplatten abhängig ist. Neben den rein thermischen Problemen, die sich bei einem derartigen Verfahren zur Kristallisation der Pellets einstellen, sind auch erhebliche mechanische Probleme zu überwinden.From the same above publication (US 5,540,868) it is known that the Crystallization of pellets can also be triggered by a thermal shock, by hitting hot pellets on a cold surface or vice versa Pound amorphous pellets on a hot surface. Such one Shock crystallization has the disadvantage that reproduction is extremely difficult is because the temperature of a hot plate is between 300 and 800 ° C in Vary depending on how long the pellets stay on the plate. at Rotary plates are used in the temperature range between 30 and 200 ° C, which in turn depends on how long the pellets stay on the hot rotary plates. In addition to the purely thermal problems, which are in such a process for crystallizing the pellets considerable mechanical problems have to be overcome.
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zur Vertropfung von Vorprodukten thermoplastischer Polyester und Copolyester entsprechend dem Oberbegriff des Anspruchs 1 und des Anspruchs 14 anzugeben, welche die Nachteile im Stand der Technik überwindet, eine Verfahrensverkürzung herkömmlicher Granulierverfahren bewirkt und auf bisher bekannten Verfahrensschritten und Vorrichtungen aufbaut, um zumindest oberflächenkristallisierte vertropfte Vorprodukte in Form von Monomeren, Oligomeren, Monomer-Glycol-Gemischen oder von teilweise polykondensierten Materialien herzustellen.The object of the invention is a method and an apparatus for Dripping of intermediate products of thermoplastic polyester and copolyester according to the preamble of claim 1 and claim 14 specify which overcomes the disadvantages in the prior art, a Process shortening of conventional granulation processes causes and on builds previously known method steps and devices to at least surface crystallized dropletized precursors in the form of Monomers, oligomers, monomer-glycol mixtures or partially to produce polycondensed materials.
Diese Aufgabe wird mit den Merkmalen des Gegenstands der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.This task is carried out with the characteristics of the subject of the independent Claims resolved. Advantageous further developments of the invention result from the dependent claims.
Dazu wird erfindungsgemäß das Vorprodukt in ein gasförmiges Medium eingebracht, wobei das gasförmige Medium nach dem Eintritt des vertropften Vorprodukts in das gasförmige Medium den Kristallisationsvorgang des Vorproduktes beschleunigt und den Kristallisationszustand des Vorproduktes beschleunigt herbeiführt, indem es das vertropfte Vorprodukt auf einer Temperatur über 100 °C und unter seinem Schmelzpunkt für einen begrenzten Zeitraum hält, bis eine Kristallisation des Tropfens in der Oberfläche des Vorprodukts abgeschlossen ist.For this purpose, according to the invention, the preliminary product is converted into a gaseous medium introduced, the gaseous medium after the entry of the droplet Preproduct in the gaseous medium the crystallization process Pre-product accelerates and the state of crystallization of the pre-product accelerated by placing the dripped intermediate product on a Temperature above 100 ° C and below its melting point for a limited Period of time until crystallization of the drop in the surface of the Intermediate product is completed.
Diese Lösung hat den Vorteil, daß durch Einsetzen dieses gasförmigen Mediums das tropfenförmige Vorprodukt auf einer Temperatur über 100 °C und unter seinem Schmelzpunkt gehalten wird, und zwar für eine begrenzte Zeit, so daß sich Kristallisationskeime in Form von Defekten aufgrund der hohen Oberflächentemperatur von über 100 °C bilden, die mit zunehmender Abgabe der Schmelzwärme des Tropfens von oberflächennahen Keimen eine Kristallisation der Oberfläche in dem begrenzten Zeitraum bewirken, so daß das tropfenförmige Vorprodukt als Kugeln mit vorkristallisierter und damit nichtklebender Oberfläche nach dem Durchlaufen einer Fallstrecke aufgefangen werden können, ohne zu verkleben, und somit für eine unmittelbare Weiterbehandlung zu hochpolymerem Polykondensat eingesetzt werden können. Dadurch wird vorteilhaft die lange herkömmliche Vorbereitungsphase in einem Wirbelbettreaktor vermieden, in dem, wie oben erwähnt, zunächst der amorphe Zustand der Pellets über eine klebrige Phase in den Pellets innerhalb mehrerer Stunden zu überwinden ist.This solution has the advantage that by using this gaseous Medium the drop-shaped intermediate product at a temperature above 100 ° C. and is kept below its melting point, for a limited one Time so that crystallization nuclei in the form of defects due to the high surface temperature of over 100 ° C, which with increasing Release of the heat of fusion of the drop from near-surface germs Cause crystallization of the surface in the limited period so that the drop-shaped preliminary product as spheres with pre-crystallized and thus non-stick surface after passing through a drop distance can be caught without sticking, and thus for one Immediate further treatment to high polymer polycondensate used can be. This makes the long conventional one advantageous Preparation phase avoided in a fluidized bed reactor in which, as above mentioned, first the amorphous state of the pellets via a sticky phase in the pellets can be overcome within several hours.
In einer bevorzugten Durchführung des Verfahrens ist das gasförmige Medium Luft. Die Luft kann für einige Arten der Monomere, der Oligomere oder der teilweise polykondensierten Vorprodukte durch ihren Sauerstoffanteil zur Bildung von Kristallkeimen beitragen, jedoch muß für viele der Polykondensate und deren Monomere beim Vertropfen eine sauerstoffarme Atmosphäre zur Verfügung gestellt werden, da insbesondere bei niedrigviskosem PET eine oxidative Schädigung während des Kristallisationsvorgangs auftreten kann. In einer bevorzugten Ausführungsform des Verfahrens wird deshalb für eine sauerstoffarme Atmosphäre gesorgt, so daß derartige Schädigungen nicht auftreten. In a preferred embodiment of the method, the gaseous medium is Air. Air can be used for some types of monomers, oligomers or partially polycondensed precursors due to their oxygen content Formation of crystal nuclei contribute, however, for many the Polycondensates and their monomers when dropletized are low in oxygen Atmosphere can be made available, especially at low viscosity PET an oxidative damage during the Crystallization process can occur. In a preferred embodiment The process therefore ensures a low-oxygen atmosphere that such damage does not occur.
In einer weiteren bevorzugten Durchführung des Verfahrens wird als gasförmiges Medium ein Inertgas eingesetzt. Ein Inertgas wird dann erforderlich, wenn Vorprodukte von Polyestern oder Copolyestern vertropft werden, die besonders empfindlich auf verschiedene Gasatmosphären reagieren, so daß hier die Kristallisationskeime lediglich durch die Beibehaltung einer hohen Temperatur, nämlich über 100 °C erzeugt werden, indem daß als Kristallisationskeime an der Oberfläche der Tropfen eine ausreichende Dichte von Leerstellen und thermisch bedingten Defekten erzeugt wird.In a further preferred implementation of the method, an inert gas is used. An inert gas then becomes Required if precursors of polyesters or copolyesters drip that are particularly sensitive to different gas atmospheres react, so that here the nuclei only by the Maintaining a high temperature, namely generated above 100 ° C, in that a as a seed on the surface of the drops sufficient density of vacancies and thermal defects becomes.
Als weiteres gasförmiges Medium kann in vorteilhafter Weise Stickstoff eingesetzt werden, der Stickstoff bei vielen der zu vertropfenden Vorprodukte keine chemischen Reaktionen zeigt und somit eine quasi inerte Umgebung liefert und somit lediglich die hohe Temperatur des gasförmigen Mediums Stickstoff für die Bildung von Kristallisationskeimen sorgt.Nitrogen can advantageously be used as a further gaseous medium the nitrogen used in many of the preliminary products to be dripped shows no chemical reactions and therefore a quasi-inert environment delivers and thus only the high temperature of the gaseous medium Nitrogen ensures the formation of nuclei.
Das gasförmige Medium wird vorzugsweise im Gegenstrom zu einer Fallstrecke des vertropften Vorproduktes geführt und erwärmt sich beim Aufsteigen des Gases entlang der Fallstrecke, so daß dafür gesorgt wird, daß das vertropfte Vorprodukt für einen begrenzten Zeitraum, nämlich während es die Fallstrecke entgegen dem gasförmigen Medium, durchläuft eine Temperatur über 100 °C beibehält. Da der Schmelztropfen selbst über 200 °C heiß ist, erwärmt er das entgegenströmende Gas und heizt dieses auf, so daß bei einer Kreisprozeßführung des Gases das aufgeheizte Gas der Fallstrecke wieder zugeführt werden kann und eventuell dem aufgeheizten Gas Energie entzogen werden muß, um den begrenzten Zeitraum für eine Temperatur über 100 °C für das vertropfte Vorprodukt nicht unnötig zu vergrößern, während zu Beginn des Vertropfungsvorgangs das gasförmige Medium aufzuheizen ist, um es temperiert zur Verfügung zu stellen. The gaseous medium is preferably countercurrent to one Falling distance of the dripped preliminary product led and warms up at Rise of the gas along the fall path so that it is ensured that the dripped intermediate product for a limited period of time, namely during it the falling distance against the gaseous medium passes through Maintains temperature above 100 ° C. Because the melting drop itself is above 200 ° C is hot, it heats the counter-flowing gas and heats it up so that when the gas is circulated, the heated gas of the falling section can be supplied again and possibly the heated gas energy must be withdrawn for a temperature above the limited period Do not unnecessarily enlarge 100 ° C for the dripped preliminary product while too At the beginning of the dropletization process, the gaseous medium is to be heated to make it available tempered.
Zum Erzeugen des Gegenstromes wird das gasförmige Medium in die Fallstrecke des vertropften Vorproduktes vorzugsweise am untersten Niveau der Fallstrecke eingeführt und vorher temperiert. Die Temperierung erfolgt dabei vorzugsweise mittels Wärmetauscher, der das gasförmige Medium je nach Bedarf kühlt oder aufheizt, so daß es mit einer gleichbleibenden Temperatur als Gegenstrom in die Fallstrecke des vertropften Vorproduktes eingeführt werden kann.To generate the counterflow, the gaseous medium is injected into the Falling distance of the dripped preliminary product preferably at the lowest level of the falling distance and tempered beforehand. The tempering takes place preferably by means of a heat exchanger, each of the gaseous medium cools or heats as needed so that it remains constant Temperature as a countercurrent into the falling section of the dripped preliminary product can be introduced.
Die Einführtemperatur ist dabei auf größer gleich 30 °C und kleiner gleich 120 °C geregelt, vorzugsweise werden Temperaturen größer gleich 40 °C und kleiner gleich 100°C eingehalten. Diese teilweise niedrigen Einlauftemperaturen sorgen dafür, daß für einen begrenzten Zeitraum die vertropften Vorprodukte auf einer Temperatur über 100 °C während des Durchlaufens der Fallstrecke gehalten werden.The insertion temperature is greater than or equal to 30 ° C and less 120 ° C regulated, preferably temperatures greater than or equal to 40 ° C and maintained below 100 ° C. These partially low Inlet temperatures ensure that the dripped intermediate products at a temperature above 100 ° C during the Traversing the falling distance can be kept.
Die Vorprodukte werden in einer weiteren Ausführungsform der Erfindung schmelzflüssig durch Schwingungsanregung vertropft. Dabei liegen die Schwingungsanregungen bei einer Frequenz zwischen 30 und 1.000 Hz, vorzugsweise zwischen 50 und 400 Hz. Dabei kann ein Durchsatz von 5.000 bis 30.000 kg/h erreicht werden. Dieser Durchsatz kann durch eine flächige Verteilung von Düsen auf einer Düsenkopfplatte noch wesentlich erhöht werden. Dazu wird dem Düsenkopf in einer bevorzugten Ausführungsform des Verfahrens das Vorprodukt mit einer intrinsischen Viskosität im Bereich zwischen 0,05 bis 0,3 dl/g zugeführt. Bei vorgegebenem Düsendurchmesser nimmt der Tropfendurchmesser mit zunehmender Viskosität zu und mit zunehmender Frequenz ab. Insofern ist der Durchmesser der Tropfen bei einer schwingungsangeregten Vertropfung relativ genau über die Schmelzentemperatur (Einstellung der intrinsischen Viskosität) und die Schwingfrequenz einstellbar. The preliminary products are in a further embodiment of the invention melted down due to vibration excitation. Here are the Vibration excitation at a frequency between 30 and 1,000 Hz, preferably between 50 and 400 Hz. A throughput of 5,000 up to 30,000 kg / h can be achieved. This throughput can be achieved by a flat Distribution of nozzles on a nozzle head plate still significantly increased become. For this purpose, the nozzle head in a preferred embodiment of the Process the intermediate product with an intrinsic viscosity in the range fed between 0.05 to 0.3 dl / g. With a given nozzle diameter the drop diameter increases and increases with increasing viscosity increasing frequency. In this respect, the diameter of the drops is one Vibration-induced droplets are relatively accurate over the Melt temperature (setting the intrinsic viscosity) and the Vibration frequency adjustable.
Der Schmelzpunkt eines PET-Monomers liegt bei 230 bis 240 °C und ist damit niedriger als bei dem endgültigen PET-Polymer. Der Erstarrungspunkt des vertropften Vorproduktes kann mit ungefähr 200 °C angenommen werden, so daß nach dem Auftritt des Tropfens aus der Düse und einer kurzen Fallstrecke bis zum Erreichen des Erstarrungspunktes von etwa 200 °C zunächst keine Kristallisation eintritt und in der weiteren Abkühlphase des Tropfens zunächst an der Oberfläche Kristallkeime gebildet werden, solange die Tropfen über 100 °C gehalten werden, wobei die Kristallkeime im wesentlichen aus Defekten und Leerstellen entstehen. Von den Kristallkeimen geht dann eine Kristallisation der Tropfenoberfläche aus, die schließlich dafür sorgt, daß der Tropfen am Ende der Fallstrecke keine klebrigen Eigenschaften mehr besitzt, wie das bei amorphen Pellets über 70 °C der Fall sein würde. Für diese Kristallisationsphase bei einem gasförmigen Gegenstrom, in der der Tropfen des Vorproduktes über 100 °C gehalten wird, hat sich eine Fallhöhe von 8 bis 15 m, je nach Durchmesser des Tropfens, bewährt. Somit ist ein wesentlicher Parameter des Verfahrens die Reproduzierbarkeit und die Gleichmäßigkeit der Tropfendurchmesser.The melting point of a PET monomer is 230 to 240 ° C and is therefore lower than the final PET polymer. The freezing point of the Dropped preliminary product can be assumed to be around 200 ° C, so that after the appearance of the drop from the nozzle and a short drop distance until the solidification point of about 200 ° C is reached, none at first Crystallization occurs and in the further cooling phase of the drop initially Crystal nuclei are formed on the surface as long as the drops are over Can be kept 100 ° C, the crystal nuclei essentially Defects and empty spaces arise. One of the crystal seeds then goes out Crystallization of the droplet surface, which ultimately ensures that the Drops at the end of the fall no longer have any sticky properties, as would be the case with amorphous pellets above 70 ° C. For this Crystallization phase in a gaseous countercurrent in which the drop the preliminary product is kept above 100 ° C, has a fall height of 8 to 15 m, depending on the diameter of the drop. So is an essential one Parameters of the process the reproducibility and the uniformity of the Droplet diameter.
In einer bevorzugten Durchführung des Verfahrens wird das Vorprodukt zu Tropfen vertropft, deren Durchmesser zu mehr als 80 Gew.-% im Bereich des doppelten Düsendurchmessers liegt, und ein Durchmesser unterhalb des Düsendurchmessers zu weniger als 3 Gew.-% und ein Durchmesser größer als dem Dreifachen des Düsendurchmessers zu weniger als 10 Gew.-% des vertropften Vorproduktes auftritt. Mit dieser hohen Gleichförmigkeit der Vertropfung der schwingungsangeregten Schmelze eines Vorproduktes eines Polyesters oder Copolyesters sind die Vorteile einer gleichmäßigen Kristallisation, einer gleichförmigen Abkühlung und einer erreichbaren geringen Adhäsionsneigung der Tropfen verbunden.In a preferred implementation of the method, the preliminary product is added Droplets whose diameter is more than 80% by weight in the range of twice the nozzle diameter, and a diameter below the Nozzle diameter less than 3 wt .-% and a diameter larger than three times the nozzle diameter to less than 10 wt .-% of dripped intermediate product occurs. With this high uniformity of Dripping of the vibration-excited melt of an intermediate product Polyesters or copolyesters are the advantages of a uniform Crystallization, a uniform cooling and an achievable low tendency of the drops to adhere.
Diese enge Kugelgrößenteilung liefert auch einen geringen Staubanteil, der bei dem erfindungsgemäßen Verfahren bei weniger als 1 % liegt, womit der Vorteil einer verminderten elektrostatischen Aufladung, einer geringeren Menge an Ausschuß und einer verminderten Explosionsgefahr verbunden ist. Schließlich wird bei der Weiterverarbeitung in der Festkörper-Polykondensation (SSP genannt) ein enges Korngrößenspektrum, wie es mit dem erfindungsgemäßen Verfahren möglich ist, für eine gleichmäßigere Polykondensation sorgen. Eine Kugelgröße von ca. 0,5 bis 2 mm Durchmesser beschleunigt deutlich die Kondensation von Wasser und Glycol bei der Weiterbehandlung im Zuge der Festkörperpolykondensation. Dabei ist eine Kugelgröße von 1 bis 10 mg eine deutliche Verbesserung gegenüber den bisher eingesetzten Granulatgrößen, die wesentlich darüber liegen.This narrow ball size division also provides a small amount of dust, which at the method according to the invention is less than 1%, with which the The advantage of a reduced electrostatic charge, a lower one Amount of rejects and a reduced risk of explosion. Finally, in further processing in solid state polycondensation (Called SSP) a narrow grain size spectrum, as with the method according to the invention is possible for a more uniform Ensure polycondensation. A ball size of approximately 0.5 to 2 mm in diameter significantly accelerates the condensation of water and glycol in the Further treatment in the course of solid state polycondensation. There is one Ball size of 1 to 10 mg a significant improvement over the previous one used granulate sizes that are significantly higher.
Schließlich ist es von besonderem Vorteil, wenn als Vorprodukt ein vorkristallisierter Monomertropfen eingesetzt werden kann, da bei der nachfolgenden Weiterverarbeitung weniger unerwünschte Zwischen- oder Spaltprodukte entstehen, als bei den herkömmlichen Verarbeitungsverfahren.Finally, it is of particular advantage if as a preliminary product Precrystallized monomer drops can be used because the subsequent further processing less unwanted intermediate or Fission products arise than with conventional processing methods.
Eine Vorrichtung zur Durchführung des Vertropfungsverfahrens weist
folgende Merkmale auf:
Diese Anlage hat einerseits den Vorteil einer relativ gleichförmigen Vertropfung des schmelzflüssigen Vorprodukts durch Schwingungsanregung, andererseits den Vorteil des relativ einfachen Aufbaus, der lediglich eine ausreichende Fallstrecke in einem Fallturm zur Verfügung stellt, um eine begrenzte Verweilzeit des vertropften Vorprodukts in einer Temperatur über 100 °C zu gewährleisten, wobei die Wärmeenergie, die von dem vertropften Vorprodukt an das entgegenströmende Gas abgegeben wird, genutzt wird, um energiesparend wiederverwendet zu werden. Durch die Länge der Fallstrecke und die Vorwärm- oder Temperiertemperatur des eingeführten gasförmigen Mediums kann die Verweilzeit über den kritischen 100 °C in der Fallstrecke des Fallturms eingestellt werden. Insgesamt bestimmen Schwingungsfrequenz der Vertropfungseinrichtung, Düsendurchmesser des Düsenkopfes, Viskosität und damit Temperatur des Vorproduktes im Düsenkopf und Temperierung des gasförmigen Mediums den Durchmesser und den Kristallisationsfortschritt des vertropften Vorprodukts. Der Grad der Kristallisation kann grob über die milchige Trübung der Tropfung bestimmt werden, so daß auch hier eine verläßliche Stichprobenüberprüfung der Funktionsweise der Vorrichtung und des Verfahrens durchführbar ist.On the one hand, this system has the advantage of being relatively uniform Dropletization of the molten preliminary product due to vibration excitation, on the other hand, the advantage of the relatively simple structure, which is only one provides sufficient fall distance in a drop tower to a limited residence time of the dripped intermediate in a temperature above To ensure 100 ° C, taking the heat energy from the dripped Upstream product is released to the counter-flowing gas, is used to to be reused to save energy. By the length of the drop distance and the preheating or tempering temperature of the introduced gaseous Medium can dwell time above the critical 100 ° C in the falling distance of the drop tower. Overall determine vibration frequency the dropletizer, nozzle diameter of the nozzle head, viscosity and thus temperature of the preliminary product in the nozzle head and temperature control of the gaseous medium the diameter and the crystallization progress of the dripped intermediate product. The degree of crystallization can be roughly above that milky cloudiness of the drip can be determined, so that here too reliable sample check of the functioning of the device and the procedure is feasible.
In einer bevorzugten Ausführungsform der Vorrichtung zur Durchführung des Verfahrens weist der Düsenkopf Düsenöffnungen auf, die eine Vertropfung in vertikaler Richtung sichern. Durch die vertikale Vertropfung entsteht im Gegensatz zu einer Sprühdüse die Möglichkeit, die Fallstrecke der Tropfen völlig parallel ohne Wandberührung durch den Fallturm der Anlage zu führen und nach der vorgegebenen Fallstrecke, die einer Kristallisationszeit entspricht, das Granulat oder die kugelförmigen Tropfen klebefrei in einem Trichter aufzufangen und am Boden des Fallturms herauszuführen. In a preferred embodiment of the device for performing the The method of the nozzle head has nozzle openings which prevent droplets from forming secure in the vertical direction. The vertical droplet creates in Contrary to a spray nozzle the possibility of dropping the drop run completely parallel without touching the wall through the drop tower of the system and according to the specified drop distance, which corresponds to a crystallization time, the granules or the spherical drops stick-free in a funnel to catch and lead out at the bottom of the drop tower.
In einer weiteren bevorzugten Ausführungsform der Erfindung wird mittels des Wärmetauschers die Temperatur des gasförmigen Mediums auf eine Einführtemperatur von größer gleich 30 °C und kleiner gleich 100 °C, vorzugsweise größer gleich 40 °C und kleiner gleich 100 °C geregelt. Dazu durchfließt den Wärmetauscher ein Wärmetauscherfluid in einem getrennt geregelten und temperaturstabilisierten Kreislauf, so daß der Wärmetauscher das im Kreis geführte gasförmige Medium automatisch kühlt bei Überschreitung der Einführtemperatur und automatisch erwärmt oder erhitzt bei Unterschreiten der eingestellten Einführtemperatur bzw. der Temperatur des Wärmetauscherfluids.In a further preferred embodiment of the invention, the Heat exchanger the temperature of the gaseous medium to one Insertion temperature greater than or equal to 30 ° C and less than or equal to 100 ° C, preferably regulated greater than or equal to 40 ° C and less than or equal to 100 ° C. To A heat exchanger fluid flows through the heat exchanger separately regulated and temperature-stabilized circuit, so that the heat exchanger the circulated gaseous medium automatically cools down The insertion temperature is exceeded and automatically warmed or heated if the set insertion temperature or the temperature falls below of the heat exchanger fluid.
In einer weiteren bevorzugten Ausführungsform der Erfindung wird eine Strömungsgeschwindigkeit von 0,3 bis 1 m/s des gasförmigen Mediums in dem Fallturm über ein Gebläse eingestellt. Das Gebläse kann im Bodenbereich vor oder hinter dem Wärmetauscher angeordnet sein und als Druckgebläse den Gegenstrom des gasförmigen Mediums im Fallturm erzeugen oder es kann als Sauggebläse ausgebildet sein und nach der Austrittsöffnung für gasförmiges Medium der Anlage im Bereich des Vertropfungsraumes rund um den Düsenkopf positioniert sein.In a further preferred embodiment of the invention, a Flow rate from 0.3 to 1 m / s of the gaseous medium in the Drop tower set via a blower. The blower can be in the floor area or be arranged behind the heat exchanger and as a pressure fan Generate counterflow of the gaseous medium in the drop tower or it can as Suction fan to be designed and after the outlet opening for gaseous Medium of the plant in the area of the dripping area around the Nozzle head must be positioned.
Die Fallstrecke im Fallturm ist in einer bevorzugten Ausführungsform der
Erfindung 10 bis 20 m lang, vorzugsweise 12 bis 15 m, so daß eine begrenzte
Zeitspanne einer optimalen Kristallisationszeit von 2,5 bis 3,5 s eingehalten
werden kann.The drop distance in the drop tower is in a
Ein Monomer-Glycol-Gemisch eines Polyethylenterephthalats mit einer Viskositätszahl bzw. einer intrinsischen Viskosität von 0,2 wird mit einer Temperatur von ungefähr 260 °C durch einen Düsenkopf zum Vertropfen und Schmelzen ausgetragen, der Düsendurchmesser beträgt dabei jeweils 0,75 mm, so daß die austretende Schmelze des Vorproduktes eines Polyesters durch Schwingungsanregung zu Tropfen mit einem Durchmesser von etwa 1,5 mm vertropft wird. Diese im wesentlichen kugelförmigen Tropfen durchlaufen eine Fallstrecke von ca. 15 m, bei der sie mittels eines sauerstoffarmen gasförmigen Mediums auf einer Temperatur über 100 °C gehalten werden. Während dieser begrenzten Fallzeit von ca. 3 s durch die begrenzte Fallstrecke bilden sich an der Oberfläche der Tropfen Kristallisationskeime und kristallisieren die Oberfläche derart, daß kein klebriger amorpher Zustand beim Durchlaufen von Temperaturen unter 100 °C auftritt. Auf der Fallstrecke des Fallturms von einer Höhe von etwa 15 m kühlt das auf der Oberfläche kristallisierte Granulat auf eine Weiterbearbeitungstemperatur von etwa 70 °C ab und wird in einem Trichter am Boden der Fallstrecke gesammelt. Eine DSC-Messung (bzw. Dynamic Scanning Calometry) ergibt einen Oberflächenkristallisationsgrad von 100 % für die entstandenen kugelförmigen Granulate, die im Mittel einen Durchmesser von 1,5 mm aufweisen, wobei über 80 % des getropften Vorproduktes im Bereich des doppelten Düsendurchmessers liegen und weniger als 3 Gew.-% unter dem Durchmesser des Düsendurchmessers fallen und weniger als 10 Gew.-% über dem Dreifachen des Düsendurchmessers liegen. Mit dieser engen Kugelgrößenverteilung von weniger als 3 % der Kugeln mit einem Durchmesser kleiner als die Düsenbohrung und weniger als 10 % der Kugeln mit einem Durchmesser größer als dem dreifachen Düsenbohrungsdurchmesser wird vorteilhaft eine gleichmäßige Materialqualität durch gleichmäßige Abkühlbedingungen und eine gleichmäßige Materialqualität durch gleichmäßige Kristallisationsbedingungen erreicht, woraus eine gleichmäßige und geringe Adhäsionsneigung der vertropften Kugeln resultiert. Weiterhin hat diese geringe und enge Kugelgrößenverteilung den Vorteil einer gleichmäßigen Materialqualität bei der nachfolgenden Weiterverarbeitung. Bei der Polykondensation im festen Zustand, dem sogenannten SSP-Vorgang, herrschen gleichmäßige Bedingungen, und somit wird ein Material erreicht mit einem relativ homogenen Molekulargewicht der Polykondensationsketten. Außerdem gewährleistet diese enge Kugelgrößenverteilung einen äußerst geringen Anteil an Fein- oder Staubmaterial, der unter 1 % liegt, so daß weniger Ausschuß entsteht und eine geringe elektrostatische Aufladung im Bereich des Fallturms auftritt, so daß der Bereich des Fallturms vor einer Staubexplosion geschützt ist.A monomer-glycol mixture of a polyethylene terephthalate with a Viscosity number or an intrinsic viscosity of 0.2 is with a Temperature of about 260 ° C through a nozzle head for droplets and Melt discharged, the nozzle diameter is 0.75 mm, so that the emerging melt of the intermediate of a polyester Vibration excitation to drops with a diameter of about 1.5 mm is dripped. These essentially spherical drops pass through Falling distance of approx. 15 m, during which it is gaseous using a low-oxygen Medium are kept at a temperature above 100 ° C. During this limited fall time of approx. 3 s due to the limited fall distance the surface of the drops of crystallization nuclei and crystallize the Surface such that no sticky amorphous state when passing through Temperatures below 100 ° C occurs. On the fall of the drop tower of one At a height of around 15 m, the granules crystallized on the surface cool a processing temperature of about 70 ° C and is in one Funnel collected at the bottom of the drop line. A DSC measurement (or Dynamic Scanning Calometry) gives a degree of surface crystallization of 100% for the resulting spherical granules, which on average have a Have a diameter of 1.5 mm, with over 80% of the dropped The intermediate product is in the range of twice the nozzle diameter and fall less than 3% by weight below the diameter of the nozzle diameter and less than 10% by weight over three times the nozzle diameter lie. With this narrow sphere size distribution of less than 3% of the Balls with a diameter smaller than the nozzle bore and less than 10% of the balls with a diameter larger than three times Nozzle bore diameter will advantageously be uniform Material quality through uniform cooling conditions and a uniform material quality due to uniform crystallization conditions achieved, from which a uniform and low adhesion tendency of the dripped balls results. Furthermore, this has low and narrow Ball size distribution the advantage of a uniform material quality the subsequent processing. In solid polycondensation Condition, the so-called SSP process, prevail evenly Conditions, and thus a material is achieved with a relative homogeneous molecular weight of the polycondensation chains. Moreover this narrow ball size distribution ensures an extremely small proportion of fine or dust material, which is less than 1%, so that less waste arises and a low electrostatic charge in the area of the drop tower occurs, so that the area of the drop tower is protected from a dust explosion is.
Bei einem Vertropfen eines Polyestervorproduktes mit einer intrinsischen Viskosität, die den Wert von 0,15 unterschreitet, kann die Fallzeit zum oberflächlichen Kristallisieren in dem Fallturm des Ausführungsbeispiels nicht ausreichen, so daß Tropfen aus einer Schmelze mit niedrigen Viskosität eventuell klebrig bleiben und damit den Auffangtrichter verstopfen. In diesem Fall werden im Vertropfungsbereich die Tropfen mit feinen Polyesterpartikeln in der Oberfläche bedeckt, um einerseits den Kristallisationsvorgang durch entsprechende Kristallisationskeime zu beschleunigen und andererseits das Material beim Auftreffen auf einen Auffangtrichter nach Durchlaufen des Fallturms vor einem Verkleben zu schützen. Mit diesem Ausführungsbeispiel ist es möglich, niederviskose Vorprodukte von Polyestern und Copolyestern selbst bei kürzeren Fallstrecken im vertropften Zustand vor einem Verkleben zu schützen. Die Zuführung mit feinen Polyesterpartikeln kann in einem weiteren bevorzugten Ausführungsbeispiel der Erfindung mit der Eintrittsöffnung für gasförmiges Medium im Gegenstrom vom Bodenbereich des Fallturms aus zugeführt werden und die Polyesterpartikel können, soweit sie nicht für die Beschichtung der Tropfen erforderlich sind, über die Austrittsöffnung für gasförmiges Medium aus der Anlage ausgetragen werden, so daß gewährleistet ist, daß sich kein explosives Staubgemisch im Fallturm anreichert.If a polyester precursor drips with an intrinsic Viscosity that falls below 0.15 can reduce the fall time to no superficial crystallization in the drop tower of the embodiment are sufficient so that drops from a melt with low viscosity may remain sticky and thus clog the collecting funnel. In this The droplets with fine polyester particles fall into the droplet area covered in the surface, on the one hand, through the crystallization process to accelerate corresponding crystallization nuclei and on the other hand that Material when hitting a collecting funnel after passing through the To protect the drop tower from sticking. With this embodiment it is possible to use low-viscosity precursors of polyesters and copolyesters even with shorter drops in the dripped state before sticking to protect. The feeding with fine polyester particles can be done in one another preferred embodiment of the invention with the Inlet opening for gaseous medium in counterflow from the floor area of the drop tower and the polyester particles can, as far they are not required for coating the drops over the Outlet opening for gaseous medium are discharged from the system, so that it is ensured that there is no explosive dust mixture in the drop tower accumulates.
Die Erfindung wird nun anhand der Figur 1 näher erläutert. The invention will now be explained in more detail with reference to FIG. 1.
Figur 1 zeigt eine Vorrichtung zur Durchführung eines Verfahrens zur
Vertropfung von Vorprodukten thermoplastischer Polyester oder Copolyester.
Die Vorrichtung weist dazu einen Düsenkopf 1 auf, der durch
Schwingungsanregung der Schmelze 2 durch einen Schwingungsgenerator 14
tropfenförmige Pellets 3 aus dem Vorprodukt bildet. Das Vorprodukt wird als
Schmelze 2 eines Monomers, eines Oligomers, einen Monomer-Glycol-Gemisches
oder eines teilweise polykondensierten Vorproduktes über die
Schmelzeinrichtung 15 dem Düsenkopf 1 zugeführt. Die Vertropfungseinheit
19, die im obersten Bereich der Anlage angebracht ist, der im folgenden
Kopfbereich 20 genannt wird, ist mit diesen Hilfseinrichtungen in der Lage,
eine niedrig-viskose Schmelze dem Düsenkopf 1 über die Schmelzleitung 21
zuzuführen und über die senkrecht nach unten gerichteten Düsenöffnungen 8
vertikal zu vertropfen.Figure 1 shows an apparatus for performing a method for
Dripping of intermediate products of thermoplastic polyester or copolyester.
For this purpose, the device has a nozzle head 1 which passes through
Vibration excitation of the
Die Vorrichtung weist darüber hinaus einen Fallturm 4 auf, der unterhalb des
Kopfbereiches angebracht ist und der eine Länge von 10 bis 20 m aufweist und
somit eine Fallstrecke 9 für die kugelförmigen Tropfen zur Verfügung stellt,
die sich im wesentlichen aus der Höhe des Fallturmes 4 und einer Falldistanz
im Kopfbereich 20 in der Ausführungsform nach Figur 1 zusammensetzt. Im
Fußbereich 22 des Fallturms 4 befindet sich ein Abfüllbereich 23, in dem durch
einen Auffangtrichter die an der Oberfläche beim Durchlaufen der Fallstrecke
9 kristallisierten kugelförmigen Tropfen aufgefangen werden und im
Abfüllbereich portioniert oder zur Weiterverarbeitung weitergeleitet werden
können.The device also has a drop tower 4, which is below the
Head area is attached and has a length of 10 to 20 m and
thus provides a
Im Fußbereich 22 des Fallturms 4 ist eine Eintrittsöffnung 11 für ein
gasförmiges Medium angeordnet, das über eine Ringöffnung 24 zwischen
Fallturmende 25 und Auffangtrichter 10 angeordnet ist und die vom Gebläse 6
über den Wärmetauscher 5 und die Rückführleitung 7 der Eintrittsöffnung
zugeführt wird. Die Ringöffnung 24 am Fallturmende 25 sorgt für einen
gleichförmigen Gegenstrom des gasförmigen Mediums vom Fußbereich 22 des
Fallturms 4 zu Austrittsöffnungen 12 für das gasförmige Medium im
Kopfbereich 20 der Vorrichtung. Eine Rückführleitung 7 zu der
Eintrittsöffnung 11 ist den Austrittsöffnungen 12 nachgeschaltet, so daß das
gasförmige Medium im Kreis geführt werden kann.In the
Das gasförmige Medium ist in seiner Zusammensetzung dem Material des
vertropften Vorproduktes angepaßt und kann je nach der Empfindlichkeit
gegenüber Sauerstoff Luft, sauerstoffarme Luft, im wesentlichen Stickstoff
oder ein Inertgas sein, das entgegen der Fallrichtung der Tropfen im Fallturm
mit einer Geschwindigkeit zwischen 0,3 bis 1 m/s aufsteigt. In einem
Ausführungsbeispiel ist die Strömungsgeschwindigkeit des gasförmigen
Mediums 0,6 m/s. Das gasförmige Medium wird in dieser Anlage mit Hilfe des
Wärmetauschers 5 je nach Bedarf auf eine konstante Temperatur vorgeheizt,
die im Fußbereich 22 des Fallturms 4 mit einem Sensor 18 für die
Einlauftemperatur des gasförmigen Mediums erfaßt wird. Der erfaßte Wert
wird einem Steuergerät 13 zugeführt, das ein Fluid für den Wärmetauscher in
einer Heiz- und Kühleinrichtung auf einer vorgegebenen Temperatur hält, die
über einen Temperatursensor 17 für das Wärmetauscherfluid überwacht wird,
so daß das Steuergerät 13 die Temperatur des Wärmetauscherfluids mit Hilfe
der Heiz- und Kühleinrichtung 16 regeln kann. Das Steuergerät 13 kann
weiterhin über den Anschlußpunkt A auf den Schwingungsgenerator 14
einwirken und die Schwingfrequenz, die im Bereich von 30 Hz bis 1 kHz
einstellbar ist, verändern. Ferner kann das Steuergerät 13 über den
Anschlußpunkt B auf die Schmelzeinrichtung 15 einwirken, indem einerseits
die Viskosität der Schmelze durch die Schmelztemperatur der
Schmelzeinrichtung 15 gesteuert wird und andererseits der Massenstrom über
eine entsprechende Druckversorgung in der Schmelzeinrichtung 15 beeinflußt
werden kann. The composition of the gaseous medium is the material of the
adapted pre-dripped product and can vary depending on the sensitivity
against oxygen air, oxygen-poor air, essentially nitrogen
or be an inert gas, which is opposite to the direction of the drops in the drop tower
rises at a speed between 0.3 to 1 m / s. In one
The embodiment is the flow rate of the gaseous
Medium 0.6 m / s. The gaseous medium is in this system with the help of
Mit der Steuerung des Druckes und der Temperatur der Schmelze kann
gleichzeitig der Durchmesser der Tropfen verändert werden, der optimal zu
etwa 80 Gew.-% dem doppelten Durchmesser der Düsenöffnungen 8
entspricht und nur zu 3 % unter dem Durchmesser der Düsenöffnung 8 liegt
und weniger als 10 Gew.-% dem Dreifachen Durchmesser der Düsenöffnung 8
entspricht. Eine optimale Durchmessergröße hat sich für 1,5 mm sowohl für
die Erzeugung von vorkristallisierten, d.h. an der Oberflächen kristallisierten
Tropfen des Vorproduktes, als auch für die Weiterverarbeitung des
Vorproduktes zu langkettigen Polyestern und Copolyestern als optimal
erwiesen.With the control of the pressure and the temperature of the melt can
At the same time the diameter of the drops can be changed, which is optimal
about 80% by weight twice the diameter of the
Das Steuergerät 13 ist in dieser Ausführungsform mikroprozessorgesteuert und
ist geeignet, sowohl die Einlaßtemperatur des gasförmigen Mediums zu regeln,
als auch den Durchsatz des gasförmigen Mediums sowie den Durchsatz des
vertropften Vorproduktes eines Polyesters und/oder Copolyesters zu steuern.
Dabei wird gewährleistet, daß auf der Fallstrecke 9 die aus dem Düsenkopf
austretenden Schmelztropfen der auf einer Temperatur von 240 bis 290 °C
aufgeheizten Schmelze auf eine Erstarrungstemperatur um 200 °C im
Kopfbereich 20 der Vorrichtung abgekühlt werden und durch den temperierten
gasförmigen Gegenstrom für eine Zeitspanne von 2,5 bis 3,5 s auf einer
Temperatur über 100 °C gehalten werden, so daß sich an der Oberfläche der
Tropfen beim Erstarren Keimkristalle bilden, die sich zu einer
oberflächennahen Kristallisationsschicht verdichten, bis die Tropfen mit einer
Temperatur unter 100 °C im Fußbereich 22 des Fallturms durch den
Auffangtrichter 10 aufgefangen und abgeführt werden. Zur Verbesserung der
Energiebilanz der Vorrichtung ist der Fallturm 4 sowie der Fußbereich des
Fallturms 4 wärmeisolierend ausgeführt und das gasförmige Medium wird in
einem Kreisprozeß zur teilweisen Rückgewinnung der Schmelzwärme geführt. In this embodiment, the control device 13 is microprocessor-controlled and
is suitable for regulating both the inlet temperature of the gaseous medium,
as well as the throughput of the gaseous medium and the throughput of the
to control the droplets of a polyester and / or copolyester.
This ensures that the falling
- 11
- Düsenkopfnozzle head
- 22
- Schmelzemelt
- 33
- Pelletspellets
- 44
- FallturmFallturm
- 55
- Wärmetauscherheat exchangers
- 66
- Gebläsefan
- 77
- RückführleitungReturn line
- 88th
- Düsenöffnungnozzle opening
- 99
- Fallstreckefall distance
- 1010
- Auffangtrichterreceiving hopper
- 1111
- Eintrittsöffnung für gasförmiges MediumInlet opening for gaseous medium
- 1212
- Austrittsöffnung für gasförmiges MediumOutlet opening for gaseous medium
- 1313
- Steuergerätcontrol unit
- 1414
- Schwingungsgeneratorvibration generator
- 1515
- Schmelzeinrichtungmelting device
- 1616
- Heiz- und KühleinrichtungHeating and cooling device
- 1717
- Temperatursensor für WärmetauscherfluidTemperature sensor for heat exchanger fluid
- 1818
- Temperatursensor für Einlauftemperatur des gasförmigen MediumsTemperature sensor for inlet temperature of the gaseous medium
- 1919
- VertropfungseinheitVertropfungseinheit
- 2020
- Kopfbereichhead area
- 2121
- Schmelzleitungmelting line
- 2222
- Fußbereichfooter
- 2323
- Abfüllbereichfilling area
- 2424
- Ringöffnungring opening
- 2525
- FallturmendeFallturm end
Claims (18)
- Process for forming drops of precursors of thermoplastic polyesters or copolyesters as molten monomer, oligomer, monomer/glycol mixture or after partial polycondensation and melting to give a molten precursor, wherein the precursor formed into drops is introduced into a gaseous medium, characterized in that the gaseous medium, after entry of the precursor formed into drops having a diameter of from 0.3 to 3 mm into the gaseous medium, accelerates the crystallization process of the precursor and brings about the crystallization state of the precursor in an accelerated manner by holding the drop-form precursor at a temperature above 100°C and below its melting point for a limited time until crystallization of the drop at the surface of the precursor is complete.
- Process according to Claim 1, characterized in that the gaseous medium employed is air.
- Process according to Claim 1, characterized in that the gaseous medium employed is a low-oxygen atmosphere.
- Process according to Claim 1, characterized in that the gaseous medium employed is an inert gas.
- Process according to Claim 1, characterized in that the gaseous medium employed is essentially nitrogen.
- Process according to one of the preceding claims, characterized in that the gaseous medium is passed in countercurrent to a fall zone of the precursor formed into drops.
- Process according to Claim 6, characterized in that the gaseous medium is introduced under temperature control into the fall zone of the precursor formed into drops at the lowest level of the fall zone.
- Process according to Claim 7, characterized in that the temperature control of the gaseous medium takes place by means of a heat exchanger, and the gaseous medium is circulated.
- Process according to one of the preceding claims, characterized in that the precursor in molten form is formed into drops by vibration excitation.
- Process according to one of the preceding claims, characterized in that the precursor having an intrinsic viscosity in the range from 0.05 to 0.3 dl/g is formed into drops.
- Process according to one of the preceding claims, characterized in that the precursor is formed into drops whose diameter is to the extent of greater than 80% by weight in the region of twice the nozzle diameter, and a diameter less than the nozzle diameter occurs to the extent of less than 3% by weight and a diameter greater than three times the nozzle diameter occurs to the extent of less than 10% by weight of the precursor formed into drops.
- Process according to one of the preceding claims, characterized in that a dust-particle content of less than 1% by weight of the precursor formed into drops occurs during drop formation.
- Process according to one of the preceding claims, characterized in that a low-viscosity precursor having an intrinsic viscosity of less than 0.15 is formed into drops in an environment with fine polyester particles, resulting in coating of the drops at the surface with polyester particles, which promotes crystallization and prevents the solidified drops from sticking together.
- Apparatus for carrying out the process according to one of Claims 1 to 14, said apparatus comprising:a nozzle head (1) which forms drop-form pellets (3) from the precursor by vibration excitation of the melt (2),a fall tower (4), in which the temperature of the precursor formed into drops can be controlled in a countercurrent of the gaseous medium,a heat exchanger (5), which is arranged in the base region of the fall tower (4) and heats or cools the gaseous medium in order to regulate it to a uniformly high inflow temperature,a fan (6), which accelerates the gaseous medium in the fall tower (4) to a given flow rate, anda return line (7), which feeds the gaseous medium to the heat exchanger (5) after leaving the fall tower (4).
- Apparatus according to Claim 14, characterized in that the nozzle head (1) has nozzle apertures (8) which are vertically facing and ensure drop formation in the vertical direction by means of vibration excitation of the melt (2).
- Apparatus according to Claim 14 or 15, characterized in that the heat exchanger (5) regulates the temperature of the gaseous medium to a feed temperature of greater than or equal to 30°C and less than or equal to 120°C, preferably greater than or equal to 40°C and less than or equal to 100°C.
- Apparatus according to one of Claims 14 to 16, characterized in that the fan (6) can be adjusted to a flow rate of from 0.3 to 1 m/s of the gaseous medium in the fall tower (4).
- Apparatus according to one of Claims 14 to 17, characterized in that the fall tower (4) has a fall zone (9) of from 10 to 20 m, preferably from 12 to 15 m, for the precursor formed into drops.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10019508 | 2000-04-19 | ||
DE10019508A DE10019508A1 (en) | 2000-04-19 | 2000-04-19 | Process and device for the dropletization of precursors of thermoplastic polyester or copolyester |
PCT/EP2001/001530 WO2001081450A1 (en) | 2000-04-19 | 2001-02-12 | Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1274761A1 EP1274761A1 (en) | 2003-01-15 |
EP1274761B1 true EP1274761B1 (en) | 2004-07-21 |
Family
ID=7639386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01916986A Expired - Lifetime EP1274761B1 (en) | 2000-04-19 | 2001-02-12 | Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters |
Country Status (12)
Country | Link |
---|---|
US (1) | US6858167B2 (en) |
EP (1) | EP1274761B1 (en) |
JP (1) | JP2003531259A (en) |
KR (1) | KR20020030750A (en) |
CN (1) | CN1200960C (en) |
AT (1) | ATE271576T1 (en) |
AU (1) | AU4413301A (en) |
DE (2) | DE10019508A1 (en) |
ES (1) | ES2220744T3 (en) |
MX (1) | MXPA01013150A (en) |
TW (1) | TW574271B (en) |
WO (1) | WO2001081450A1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003000741A1 (en) * | 2001-06-22 | 2003-01-03 | Sekisui Chemical Co., Ltd. | Method for preparing resin particles, resin particles and apparatus for preparing resin particles |
DE10230533A1 (en) * | 2002-07-05 | 2004-01-22 | Inprotec Ag | Crystallization of a wide range of difficult-to-crystallizable materials involves converting a melt to a finely-divided form and contacting it with a crystalline powder |
US20050167876A1 (en) * | 2002-10-04 | 2005-08-04 | Jan-Udo Kreyenborg | Method for granulating plastics |
DE10259694A1 (en) * | 2002-12-18 | 2004-07-01 | Bühler AG | Production of a polyester perform with reduced acetaldehyde content |
US7204945B2 (en) * | 2003-09-16 | 2007-04-17 | Eastman Chemical Company | Direct coupling of melt polymerization and solid state processing for PET |
US7329723B2 (en) * | 2003-09-18 | 2008-02-12 | Eastman Chemical Company | Thermal crystallization of polyester pellets in liquid |
CA2482056A1 (en) | 2003-10-10 | 2005-04-10 | Eastman Chemical Company | Thermal crystallization of a molten polyester polymer in a fluid |
DE10349016B4 (en) * | 2003-10-17 | 2005-10-20 | Bkg Bruckmann & Kreyenborg Granuliertechnik Gmbh | Process for the heat treatment of pellets made of PET |
DE102004010680A1 (en) | 2004-03-04 | 2005-10-06 | Zimmer Ag | Process for the preparation of highly condensed polyesters in the solid phase |
US20060047102A1 (en) | 2004-09-02 | 2006-03-02 | Stephen Weinhold | Spheroidal polyester polymer particles |
US8079158B2 (en) * | 2004-09-02 | 2011-12-20 | Grupo Petrotemex, S.A. De C.V. | Process for separating and drying thermoplastic particles under high pressure |
DE102005018949A1 (en) | 2005-04-18 | 2006-10-19 | Ami-Agrolinz Melamine International Gmbh | Urea particles, process for its preparation and its use |
DE202006020876U1 (en) | 2005-04-18 | 2010-09-16 | Treibacher Industrie Ag | Solid particles |
BRPI0609874B1 (en) * | 2005-04-27 | 2018-02-27 | Polymetrix Ag | Process for Polyester Particle Production |
DE102006027176B4 (en) | 2005-08-26 | 2015-08-06 | Lurgi Zimmer Gmbh | Process and apparatus for reducing the acetaldehyde content of polyester granules and polyester granules |
US7875184B2 (en) * | 2005-09-22 | 2011-01-25 | Eastman Chemical Company | Crystallized pellet/liquid separator |
DE102006012587B4 (en) | 2006-03-16 | 2015-10-29 | Lurgi Zimmer Gmbh | Process and apparatus for the crystallization of polyester material |
DE102006024200A1 (en) * | 2006-05-23 | 2007-11-29 | Rieter Automatik Gmbh | Process for producing a granulate from a low-viscosity polyester (PET) plastic melt |
US7790840B2 (en) * | 2006-05-24 | 2010-09-07 | Eastman Chemical Company | Crystallizing conveyor |
US7638596B2 (en) * | 2006-05-24 | 2009-12-29 | Eastman Chemical Company | Crystallizer temperature control via jacketing/insulation |
US7638593B2 (en) * | 2006-05-24 | 2009-12-29 | Eastman Chemical Company | Crystallizer temperature control via fluid control |
LT5394B (en) | 2006-06-14 | 2007-01-25 | Zimmer Aktiengesellschaft | Method for the production of highly condensed polyester |
US8748512B2 (en) | 2007-02-06 | 2014-06-10 | Basf Se | Method for producing polymer particles by the polymerization of liquid droplets in a gas phase |
DE102010007163A1 (en) * | 2010-02-08 | 2011-08-11 | Automatik Plastics Machinery GmbH, 63762 | Process for the preparation of granules of polyethylene terephthalate |
US8444887B2 (en) * | 2010-07-22 | 2013-05-21 | Conocophillips Company | Methods and systems for conversion of molten sulfur to powder sulfur |
ITMI20121733A1 (en) * | 2012-10-15 | 2014-04-16 | Saipem Spa | TOWER AND PRILLING PROCESS, IN PARTICULAR FOR THE PRODUCTION OF UREA |
DE102013015190A1 (en) * | 2013-09-11 | 2015-03-12 | Automatik Plastics Machinery Gmbh | Process for the preparation of superficially crystalline spherical granules by means of dry hot-cutting and apparatus for carrying out the process |
CN104338486B (en) * | 2014-11-06 | 2016-05-11 | 四川旭华制药有限公司 | A kind of electrostatic shockproof spray-drying pelleting machine |
CN112092235A (en) * | 2020-09-07 | 2020-12-18 | 江西理工大学南昌校区 | Polymer powder spheroidizing device and method for preparing spherical powder material |
CN116214766B (en) * | 2023-05-06 | 2023-07-21 | 江苏阿科米科技有限公司 | Modified resin particle preparation device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1837869A (en) * | 1931-01-31 | 1931-12-22 | Selden Co | Phthalic anhydride shot-like pellet |
US3274642A (en) * | 1965-05-12 | 1966-09-27 | Armour & Co | Apparatus for prilling ammonium nitrate |
US3463842A (en) * | 1967-06-13 | 1969-08-26 | Grace W R & Co | Microsphere process |
JPS49128051A (en) | 1973-04-09 | 1974-12-07 | ||
US4076773A (en) * | 1974-11-25 | 1978-02-28 | W. R. Grace & Co. | Process for prilling ammonium nitrate |
US4165420A (en) * | 1977-11-10 | 1979-08-21 | The Goodyear Tire & Rubber Company | Solid state polymerization of polyester prepolymer |
US4436782A (en) | 1980-11-24 | 1984-03-13 | E. I. Du Pont De Nemours And Company | Oligomer pellets of ethylene terephthalate |
FR2657257B1 (en) | 1990-01-19 | 1994-09-02 | Rhone Poulenc Sante | PROCESS FOR THE PREPARATION OF DRUGS IN THE FORM OF PEARLS. |
US5236466A (en) * | 1991-08-30 | 1993-08-17 | Chilean Nitrate Corporation | Fast cooling of partially solidified granules of low melting, subliming substances obtained by prilling |
FR2720631B1 (en) | 1994-06-03 | 1996-07-12 | Rhone Poulenc Rorer Sa | Preparation process and beads obtained containing an active ingredient having an undefined melting point. |
IT1271073B (en) * | 1994-11-21 | 1997-05-26 | M & G Ricerche Spa | PROCEDURE FOR THE CRYSTALLIZATION OF POLYESTER RESINS |
US5540868A (en) * | 1995-01-20 | 1996-07-30 | E. I. Du Pont De Nemours And Company | Process for pellet formation from amorphous polyester |
DE19849485B9 (en) | 1998-10-27 | 2006-09-14 | Uhde Gmbh | Process and plant for producing granules of polyfunctional carboxylic acids and alcohols, in particular PET granules |
-
2000
- 2000-04-19 DE DE10019508A patent/DE10019508A1/en not_active Withdrawn
-
2001
- 2001-02-12 MX MXPA01013150A patent/MXPA01013150A/en active IP Right Grant
- 2001-02-12 WO PCT/EP2001/001530 patent/WO2001081450A1/en active IP Right Grant
- 2001-02-12 ES ES01916986T patent/ES2220744T3/en not_active Expired - Lifetime
- 2001-02-12 JP JP2001578533A patent/JP2003531259A/en not_active Withdrawn
- 2001-02-12 EP EP01916986A patent/EP1274761B1/en not_active Expired - Lifetime
- 2001-02-12 AU AU44133/01A patent/AU4413301A/en not_active Abandoned
- 2001-02-12 KR KR1020017016324A patent/KR20020030750A/en not_active Withdrawn
- 2001-02-12 AT AT01916986T patent/ATE271576T1/en not_active IP Right Cessation
- 2001-02-12 US US10/018,462 patent/US6858167B2/en not_active Expired - Fee Related
- 2001-02-12 DE DE50102927T patent/DE50102927D1/en not_active Expired - Fee Related
- 2001-02-12 CN CNB01800976XA patent/CN1200960C/en not_active Expired - Fee Related
- 2001-03-19 TW TW090106361A patent/TW574271B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE10019508A1 (en) | 2001-10-31 |
AU4413301A (en) | 2001-11-07 |
EP1274761A1 (en) | 2003-01-15 |
TW574271B (en) | 2004-02-01 |
DE50102927D1 (en) | 2004-08-26 |
ATE271576T1 (en) | 2004-08-15 |
WO2001081450A1 (en) | 2001-11-01 |
CN1200960C (en) | 2005-05-11 |
CN1366533A (en) | 2002-08-28 |
JP2003531259A (en) | 2003-10-21 |
ES2220744T3 (en) | 2004-12-16 |
MXPA01013150A (en) | 2002-06-21 |
US6858167B2 (en) | 2005-02-22 |
KR20020030750A (en) | 2002-04-25 |
US20020171159A1 (en) | 2002-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1274761B1 (en) | Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters | |
EP2180987B1 (en) | Method for the production of polyester granules low in hydrolysis made of high-viscosity polyester melts, and device for the production of the polyester granules, and polyester granules low in hydrolysis | |
EP2029267B1 (en) | Process and apparatus for continuous polymerization of polymer in solid phase | |
EP1453890B1 (en) | Production of spherical particles from a melted mass of plastic | |
DE102006027176B4 (en) | Process and apparatus for reducing the acetaldehyde content of polyester granules and polyester granules | |
EP0407876B1 (en) | Method of and apparatus for drying and heating of polyamide granules | |
EP1313599B1 (en) | Method and device for producing spherical particles from a polymer melt | |
DE1905677A1 (en) | Process for crystallizing polyesters | |
DE2918675A1 (en) | PROCESS FOR THE SOLID PHASE POLYMERIZATION OF POLYESTERS | |
DE19848245A1 (en) | Process for the granulation and crystallization of thermoplastic polyesters or copolyesters | |
EP2712881A1 (en) | Method and apparatus for directly crystallisation of polymers under inert gas | |
EP2101972B1 (en) | Method for producing homogeneously crystallized polycondensate pellets | |
DE102013015190A1 (en) | Process for the preparation of superficially crystalline spherical granules by means of dry hot-cutting and apparatus for carrying out the process | |
DE2232304A1 (en) | CONTINUOUS SOLID PHASE POLYMERIZATION OF POLYAMIDE CORES | |
WO2006128408A1 (en) | Method for thermally treating polyester pellets to obtain a partial crystallization | |
DE4338212A1 (en) | Method and device for producing plastic particles | |
DE102007042636B4 (en) | Method and device for producing a polyester granulate according to the latent heat crystallization method | |
DE102004050356A1 (en) | Method and apparatus for producing crystalline PET granules | |
EP1373360B1 (en) | Method and device for the continuous polycondensation of polyester material in the solid phase | |
EP3650186B1 (en) | Method and device for direct crystallisation of polycondensates | |
EP2014355A1 (en) | Device and method for producing prills | |
DE10259694A1 (en) | Production of a polyester perform with reduced acetaldehyde content | |
DE60211153T2 (en) | IMPROVED REMOVAL OF VOLATILE SUBSTANCES IN THE NYLON-6 SOLID PHASE HARDENING PROCESS IN TEMPERATURE PROGRAMMING | |
DE19781525B4 (en) | Process for the preparation of granules of a thermolabile material and apparatus for carrying out this process | |
EP0002717B1 (en) | Process for removing linear polymers in granular form from a treatment zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040721 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040721 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040721 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040721 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50102927 Country of ref document: DE Date of ref document: 20040826 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041021 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041021 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041021 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2220744 Country of ref document: ES Kind code of ref document: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050212 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050212 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLAR | Examination of admissibility of opposition: information related to receipt of reply deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE4 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
ET | Fr: translation filed | ||
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: BUEHLER AG Effective date: 20050421 |
|
R26 | Opposition filed (corrected) |
Opponent name: BUEHLER AG Effective date: 20050421 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BUEHLER AG |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BUEHLER AG |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLBD | Termination of opposition procedure: decision despatched |
Free format text: ORIGINAL CODE: EPIDOSNOPC1 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION PROCEDURE CLOSED |
|
27C | Opposition proceedings terminated |
Effective date: 20060515 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20060515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080219 Year of fee payment: 8 Ref country code: GB Payment date: 20080220 Year of fee payment: 8 Ref country code: IT Payment date: 20080223 Year of fee payment: 8 Ref country code: NL Payment date: 20080214 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080214 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080327 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: *RIETER AUTOMATIK G.M.B.H. Effective date: 20090228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090212 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 |