[go: up one dir, main page]

EP1266423B1 - Cavity resonator having an adjustable resonance frequency - Google Patents

Cavity resonator having an adjustable resonance frequency Download PDF

Info

Publication number
EP1266423B1
EP1266423B1 EP01915592A EP01915592A EP1266423B1 EP 1266423 B1 EP1266423 B1 EP 1266423B1 EP 01915592 A EP01915592 A EP 01915592A EP 01915592 A EP01915592 A EP 01915592A EP 1266423 B1 EP1266423 B1 EP 1266423B1
Authority
EP
European Patent Office
Prior art keywords
cavity
parts
cavity resonator
resonator
internal thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01915592A
Other languages
German (de)
French (fr)
Other versions
EP1266423A1 (en
Inventor
Konstantin Beis
Uwe Rosenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson AB
Original Assignee
Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson AB filed Critical Ericsson AB
Publication of EP1266423A1 publication Critical patent/EP1266423A1/en
Application granted granted Critical
Publication of EP1266423B1 publication Critical patent/EP1266423B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • the present invention relates to a cavity resonator with tunable resonant frequency, which has a round cross-section and in which the Hlln-wave type (n is an integer positive number) exists as a resonant mode, wherein the distance between the two end faces of the cylindrical cavity is variable, the cavity with respect a cross-sectional plane is divided into two parts, both cavity parts against each other in the direction of their common longitudinal axis are displaceable and a cavity part with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts with a variable distance of their end faces are screwed into one another.
  • a cavity resonator of this kind is in the JP-A-10303478 described.
  • Microwave filters with low losses are usually realized from a plurality of coupled cavity resonators.
  • means are required with which the individual cavity resonators are tunable in their resonance frequency.
  • the resonant frequency of a cavity resonator is tuned by changing its length. This is done according to the cited document in that a complete end face of the cylindrical cavity is slidably mounted.
  • Such a construction of frequency tunable cavity resonators also works " Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Matthaei, Young, Jones, McGraw-Hill, 1964, 921-923 out.
  • the displaceable end face of the cavity resonator is electrically connected via sliding contacts with the cavity wall.
  • a resonant cavity having such straightening devices has a relatively high insertion loss; this means that with such a cavity resonator no high quality can be achieved.
  • the invention is therefore based on the object of specifying a cavity resonator of the type mentioned, which has a large frequency sweeping range and thereby has the highest possible quality in order to realize filters with very low insertion loss, which can be tuned over a wide frequency range.
  • a cross-sectional plane is selected as the separating plane between the two cavity parts, which is approximately in the range of a maximum of the electric field strength of the H11n wave type, wherein the gap required in the parting plane between the two cavity parts as laid and is dimensioned that it is symmetrical to the maximum of the electric field strength, when the depth of engagement of the externally threaded cavity portion corresponds to a vote of the cavity on its average frequency position.
  • the two mutually displaceable in the axial direction cavity parts affect the quality of the cavity resonator only insignificantly.
  • a resonant frequency tunable resonator can be realized, which has a very high quality and thus allows the realization of a filter with a very low insertion loss.
  • a cavity part with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts with a variable distance of their end faces are screwed together, creates an advantageous mechanical and electrical connection between the two cavity parts.
  • the cavity part provided with the internal thread in the region of the parting plane has a shoulder with an enlarged inner diameter, on the inside of which the internal thread is located. With this measure it is achieved that the inner cross sections of both cavity parts are the same size.
  • a longitudinal section through a cylindrical cavity resonator is shown.
  • the cavity resonator with respect to its cross-sectional dimensions is dimensioned so that in him the H112-wave type exists as a resonance wave type.
  • the cavity part 1 is the first end face 3 of the cylindrical cavity resonator and the cavity part 2 has the opposite end face 4 of the cavity resonator.
  • Frequency tuning of the cavity resonator is made possible by the distance between the two end faces 3 and 4 in the direction of the cavity resonator longitudinal axis z is variable.
  • the distribution of the electric field strength of the H112 wave type in the cavity resonator with respect to its longitudinal axis z is shown.
  • the parting plane 5 between the two cavity parts 1 and 2 has been placed in such a cross-sectional plane of the cavity resonator, in which there is a maximum of the electric field strength E.
  • this division of the cavity resonator of the lower cavity part 1 forms about 3/4 and the upper cavity part 2 about 1/4 of the entire cavity.
  • a mutual axial displacement of the two cavity parts 1 and 2 for the purpose of frequency tuning is achieved in that one of the two cavity parts, here the cavity part 1 on the inside of its open end with an internal thread 6 and the other cavity part 2 at its open end on the outside is provided with an external thread 7.
  • the cavity part 1 has at its open end a paragraph 8 with an opposite the normal cavity cross-section enlarged inner diameter, and on the inside of this paragraph 8 is the internal thread 6.
  • the waveguide part 2 in-this paragraph 8 are screwed into, so that Cavity part 2 can retain the same dimensions of its inner cross section as the cavity part 1.
  • the required in the parting plane 5 between the two cavity parts 1 and 2 gap is so laid and dimensioned that it is symmetrical to the maximum of the electric field strength E, when the depth of engagement of the cavity part 2 corresponds to a vote of the cavity on its average frequency position.
  • the separation gap would be nearly closed, while it is greatest when tuning to the lowest frequency position.
  • the resonance mode H11n can be tuned over a frequency range of about 10%.
  • the separation gap can be up to about 0.1 times the corresponding waveguide wavelength of the resonant mode, without an effect on the quality can be seen, since at this separation gap size almost no wall currents flow through the separation point and thus no energy coupled into the gap becomes.
  • the cavity part 2 has at the bottom, in the cavity part 1 projecting end an undercut 9, which serves to compensate for tolerances between the two parts. An electric meaning has this undercut 9 not.
  • a coupling opening 10 is embedded with an inductive coupling diaphragm 11, via which the coupling of a further cavity resonator can take place.
  • Other coupling devices are possible, for. B. in the cavity resonating probes, which couple the electric field components.
  • inductive coupling diaphragms and on Scope of the cavity resonator existing inductive coupling diaphragms, which couple the transverse magnetic field components (Hr and / or H ⁇ ) and are arranged at positions with almost maximum field strength of the corresponding field component, are possible.
  • the resonant mode H11n used here is degenerate at 90 °, two resonant circuits can be realized by the degenerate modes of a geometric cavity and simultaneously tuned with the device described above. As a result, the overall size of a filter as well as the cost of an active Bacabstimmvorraum is substantially reduced.
  • the coupling of the dual modes in the cavity can be performed in a known manner with discontinuities - usually screws, which are made at 45 ° with respect to the orientation of the electric field components of the dual modes on the circumference of the cylindrical cavity.
  • a basic correction of the frequency positions of the two wave types are performed to each other, which is usually necessary in a filter realization due to different coupling loads.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Die vorliegende Erfindung betrifft einen Hohlraumresonator mit abstimmbarer Resonanzfrequenz, der einen runden Querschnitt aufweist und in dem der Hlln-Wellentyp (n ist eine ganzzahlige positive Zahl) als Resonanzwellentyp existent ist, wobei der Abstand der beiden Stirnseiten des zylinderförmigen Hohlraums veränderbar ist, der Hohlraum bezüglich einer Querschnittsebene zweigeteilt ist, beide Hohlraumteile gegeneinander in Richtung ihrer gemeinsamen Längsachse verschiebbar sind und ein Hohlraumteil mit einem Außengewinde und der andere Hohlraumteil mit einem Innengewinde versehen ist, sodass beide Hohlraumteile mit einem veränderbaren Abstand ihrer Stirnseiten ineinander verschraubbar sind.The present invention relates to a cavity resonator with tunable resonant frequency, which has a round cross-section and in which the Hlln-wave type (n is an integer positive number) exists as a resonant mode, wherein the distance between the two end faces of the cylindrical cavity is variable, the cavity with respect a cross-sectional plane is divided into two parts, both cavity parts against each other in the direction of their common longitudinal axis are displaceable and a cavity part with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts with a variable distance of their end faces are screwed into one another.

Ein Hohlraumresonator dieser Art ist in der JP-A-10303478 beschrieben.A cavity resonator of this kind is in the JP-A-10303478 described.

Mikrowellenfilter mit geringen Verlusten werden üblicherweise aus mehreren miteinander gekoppelten Hohlraumresonatoren realisiert. Um das Filter auf einen gewünschten Frequenzbereich abstimmen zu können, sind Mittel erforderlich, mit denen die einzelnen Hohlraumresonatoren in ihrer Resonanzfrequenz durchstimmbar sind. Wie z.B. aus " The Dual-Mode Filter - A Realization", R.V. Snyder, The Microwave Journal, Dezember 1974, Seite 31-33 hervorgeht, wird die Resonanzfrequenz eines Hohlraumresonators dadurch abgestimmt, dass seine Länge verändert wird. Das geschieht gemäß der genannten Druckschrift dadurch, dass eine komplette Stirnseite des zylinderförmigen Hohlraumresonators verschiebbar gelagert ist. Eine derartige Konstruktion von frequenz-abstimmbaren Hohlraumresonatoren geht auch aus " Microwave Filters, Impedance-Matching Networks, and Coupling Structures", Matthaei, Young, Jones, McGraw-Hill Verlag, 1964, Seite 921-923 hervor. Hier ist die verschiebbare Stirnseite des Hohlraumresonators über schleifende Kontakte mit der Hohlraumwand elektrisch verbunden. Ein Hohlraumresonator mit derartigen Abstirnmvorrichtungen besitzt eine relativ hohe Einfügungsdämpfung; das bedeutet, dass mit einem solchen Hohlraumresonator keine hohe Güte erreicht werden kann.Microwave filters with low losses are usually realized from a plurality of coupled cavity resonators. To be able to tune the filter to a desired frequency range, means are required with which the individual cavity resonators are tunable in their resonance frequency. Such as " The Dual-Mode Filter - A Realization ", RV Snyder, The Microwave Journal, December 1974, pages 31-33 As can be seen, the resonant frequency of a cavity resonator is tuned by changing its length. This is done according to the cited document in that a complete end face of the cylindrical cavity is slidably mounted. Such a construction of frequency tunable cavity resonators also works " Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Matthaei, Young, Jones, McGraw-Hill, 1964, 921-923 out. Here, the displaceable end face of the cavity resonator is electrically connected via sliding contacts with the cavity wall. A resonant cavity having such straightening devices has a relatively high insertion loss; this means that with such a cavity resonator no high quality can be achieved.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Hohlraumresonator der eingangs genannten Art anzugeben, der einen großen Frequenzdurchstimmbereich hat und dabei eine möglichst hohe Güte aufweist, um damit Filter mit sehr geringer Einfügungsdämpfung realisieren zu können, welche über einen großen Frequenzbereich abstimmbar sind.The invention is therefore based on the object of specifying a cavity resonator of the type mentioned, which has a large frequency sweeping range and thereby has the highest possible quality in order to realize filters with very low insertion loss, which can be tuned over a wide frequency range.

Die genannte Aufgabe wird erfindungsgemäß dadurch gelöst, dass als Trennebene zwischen den beiden Hohlraumteilen eine Querschnittsebene gewählt ist, welche in etwa im Bereich eines Maximums der elektrischen Feldstärke des H11n-Wellentyps liegt, wobei der in der Trennebene zwischen den beiden Hohlraumteilen erforderliche Spalt so gelegt und dimensioniert ist, dass er symmetrisch zum Maximum der elektrischen Feldstärke liegt, wenn die Einschraubtiefe des mit dem Außengewinde versehenen Hohlraumteils einer Abstimmung des Hohlraumresonators auf seine mittlere Frequenzlage entspricht. Die beiden in axialer Richtung gegeneinander verschiebbaren Hohlraumteile beeinträchtigen die Güte des Hohlraumresonators nur unwesentlich. So lässt sich ein in seiner Frequenz abstimmbarer Hohlraumresonator verwirklichen, der eine sehr hohe Güte aufweist und damit die Realisierung eines Filters mit einer sehr geringen Einfügungsdämpfung ermöglicht.The above object is achieved in that a cross-sectional plane is selected as the separating plane between the two cavity parts, which is approximately in the range of a maximum of the electric field strength of the H11n wave type, wherein the gap required in the parting plane between the two cavity parts as laid and is dimensioned that it is symmetrical to the maximum of the electric field strength, when the depth of engagement of the externally threaded cavity portion corresponds to a vote of the cavity on its average frequency position. The two mutually displaceable in the axial direction cavity parts affect the quality of the cavity resonator only insignificantly. Thus, a resonant frequency tunable resonator can be realized, which has a very high quality and thus allows the realization of a filter with a very low insertion loss.

Da als Trennebene zwischen den beiden Hohlraumteilen eine Querschnittsebene gewählt wird, welche in etwa im Bereich eines Maximums der elektrischen Feldstärke des H11n-Wellentyps liegt, kommt es kaum zu einer Beeinträchtigung der Güte des Hohlraumresonators.Since a cross-sectional plane which is approximately in the region of a maximum of the electric field strength of the H11n wave type is chosen as the separating plane between the two cavity parts, the quality of the cavity resonator is hardly impaired.

Indem ein Hohlraumteil mit einem Außengewinde und der andere Hohlraumteil mit einem Innengewinde versehen ist, sodass beide Hohlraumteile mit einem veränderbaren Abstand ihrer Stirnseiten ineinander verschraubbar sind, entsteht eine vorteilhafte mechanische und elektrische Verbindung zwischen den beiden Hohlraumteilen. Dabei ist es zweckmäßig, dass der mit dem Innengewinde versehene Hohlraumteil im Bereich der Trennebene einen Absatz mit vergrößertem Innendurchmesser aufweist, an dessen Innenseite sich das Innengewinde befindet. Mit dieser Maßnahme wird erreicht, dass die Innenquerschnitte beider Hohlraumteile gleich groß sind.By a cavity part with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts with a variable distance of their end faces are screwed together, creates an advantageous mechanical and electrical connection between the two cavity parts. It is expedient that the cavity part provided with the internal thread in the region of the parting plane has a shoulder with an enlarged inner diameter, on the inside of which the internal thread is located. With this measure it is achieved that the inner cross sections of both cavity parts are the same size.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

In der einzigen Figur der Zeichnung ist ein Längsschnitt durch einen zylinderförmigen Hohlraumresonator dargestellt. Dabei ist der Hohlraumresonator bezüglich seiner Querschnittabmessungen so dimensioniert, dass in ihm der H112-Wellentyp als Resonanzwellentyp existent ist. Um eine Abstimmung der Resonanzfrequenz des Hohlraumresonators durchführen zu können, ist er in zwei Hohlraumteile 1 und 2 aufgetrennt. Im Hohlraumteil 1 befindet sich die erste Stirnseite 3 des zylinderförmigen Hohlraumresonators und der Hohlraumteil 2 hat die gegenüberliegende Stirnseite 4 des Hohlraumresonators. Eine Frequenzabstimmung des Hohlraumresonators wird dadurch möglich, dass der Abstand zwischen den beiden Stirnseiten 3 und 4 in Richtung der Hohlraumresonator-Längsachse z veränderbar ist.In the single figure of the drawing, a longitudinal section through a cylindrical cavity resonator is shown. In this case, the cavity resonator with respect to its cross-sectional dimensions is dimensioned so that in him the H112-wave type exists as a resonance wave type. In order to carry out a tuning of the resonant frequency of the cavity resonator, it is separated into two cavity parts 1 and 2. In the cavity part 1 is the first end face 3 of the cylindrical cavity resonator and the cavity part 2 has the opposite end face 4 of the cavity resonator. Frequency tuning of the cavity resonator is made possible by the distance between the two end faces 3 and 4 in the direction of the cavity resonator longitudinal axis z is variable.

Neben dem Längsschnitt durch den Hohlraumresonator ist die Verteilung der elektrischen Feldstärke des H112-Wellentyps im Hohlraumresonator bezüglich seiner Längsachse z dargestellt. Die Trennebene 5 zwischen den beiden Hohlraumteilen 1 und 2 ist in eine solche Querschnittsebene des Hohlraumresonators gelegt worden, in der sich ein Maximum der elektrischen Feldstärke E befindet. Bei dieser Zweiteilung des Hohlraumresonators bildet der untere Hohlraumteil 1 etwa 3/4 und der obere Hohlraumteil 2 etwa 1/4 des gesamten Hohlraumes.In addition to the longitudinal section through the cavity resonator, the distribution of the electric field strength of the H112 wave type in the cavity resonator with respect to its longitudinal axis z is shown. The parting plane 5 between the two cavity parts 1 and 2 has been placed in such a cross-sectional plane of the cavity resonator, in which there is a maximum of the electric field strength E. In this division of the cavity resonator of the lower cavity part 1 forms about 3/4 and the upper cavity part 2 about 1/4 of the entire cavity.

Eine gegenseitige axiale Verschiebung der beiden Hohlraumteile 1 und 2 zum Zwecke der Frequenzabstimmung wird dadurch erreicht, dass eine der beiden Hohlraumteile, hier der Hohlraumteil 1 an der Innenseite seines offenen Endes mit einem Innengewinde 6 und der andere Hohlraumteil 2 an seinem offenen Ende an der Außenseite mit einem Außengewinde 7 versehen ist. So ist es möglich, beide Hohlraumteile 1 und 2 ineinander zu verschrauben und über die Einschraubtiefe den die Resonanzfrequenz des Hohlraumresonators beeinflussenden Abstand zwischen den beiden Stirnseiten 3 und 4 einzustellen. Vorzugsweise besitzt der Hohlraumteil 1 an seinem offenen Ende einen Absatz 8 mit einem gegenüber dem normalen Hohlraumquerschnitt vergrößerten Innendurchmesser, und an der Innenseite dieses Absatzes 8 befindet sich das Innengewinde 6. Dann kann nämlich der Hohlleiterteil 2 in-diesen Absatz 8 hineingeschraubt werden, womit der Hohlraumteil 2 die gleichen Abmessungen seines Innenquerschnitts wie der Hohlraumteil 1 behalten kann.A mutual axial displacement of the two cavity parts 1 and 2 for the purpose of frequency tuning is achieved in that one of the two cavity parts, here the cavity part 1 on the inside of its open end with an internal thread 6 and the other cavity part 2 at its open end on the outside is provided with an external thread 7. Thus, it is possible to screw both cavity parts 1 and 2 into one another and adjust the depth of engagement of the resonant frequency of the cavity influencing distance between the two end faces 3 and 4. Preferably, the cavity part 1 has at its open end a paragraph 8 with an opposite the normal cavity cross-section enlarged inner diameter, and on the inside of this paragraph 8 is the internal thread 6. Then, namely, the waveguide part 2 in-this paragraph 8 are screwed into, so that Cavity part 2 can retain the same dimensions of its inner cross section as the cavity part 1.

Der in der Trennebene 5 zwischen beiden Hohlraumteilen 1 und 2 erforderliche Spalt wird so gelegt und dimensioniert, dass er symmetrisch zum Maximum der elektrischen Feldstärke E liegt, wenn die Einschraubtiefe des Hohlraumteils 2 einer Abstimmung des Hohlraumresonators auf seine mittlere Frequenzlage entspricht. Bei einer Abstimmung auf die obere bzw. untere Frequenzlage gibt es gewisse Symmetrieabweichungen des Trennspalts gegenüber dem Maximum der elektrischen Feldstärke E, die aber sehr gering sind und keinen merkbaren Einfluss auf die Güte des Hohlraumresonators haben. Bei einer hohen Abstimmfrequenz wäre der Trennspalt nahezu geschlossen, während er bei einer Abstimmung auf die tiefste Frequenzlage am größten ist. Bei der gewählten Lage des Trennspaltes zwischen den Hohlraumteilen 1 und 2 kann der Resonanzwellentyp H11n über einen Frequenzbereich von ca. 10 % abgestimmt werden. Der Trennspalt kann dabei bis zu etwa dem 0,1-fachen der entsprechenden Hohlleiterwellenlänge des Resonanzwellentyps groß werden, ohne dass eine Auswirkung auf die Güte erkennbar ist, da bei dieser Trennspaltgröße nahezu keine Wandströme über die Trennstelle fließen und damit keine Energie in den Spalt eingekoppelt wird.The required in the parting plane 5 between the two cavity parts 1 and 2 gap is so laid and dimensioned that it is symmetrical to the maximum of the electric field strength E, when the depth of engagement of the cavity part 2 corresponds to a vote of the cavity on its average frequency position. When tuning to the upper or lower frequency position, there are certain differences in the symmetry of the separation gap with respect to the maximum of the electric field strength E, but they are very small and have no appreciable influence on the quality of the cavity resonator. At a high tuning frequency, the separation gap would be nearly closed, while it is greatest when tuning to the lowest frequency position. In the selected position of the separating gap between the cavity parts 1 and 2, the resonance mode H11n can be tuned over a frequency range of about 10%. The separation gap can be up to about 0.1 times the corresponding waveguide wavelength of the resonant mode, without an effect on the quality can be seen, since at this separation gap size almost no wall currents flow through the separation point and thus no energy coupled into the gap becomes.

Der Hohlraumteil 2 weist am unteren, in den Hohlraumteil 1 hineinragenden Ende einen Freistich 9 auf, der dazu dient, Toleranzen zwischen beiden Teilen auszugleichen. Eine elektrische Bedeutung hat dieser Freistich 9 nicht.The cavity part 2 has at the bottom, in the cavity part 1 projecting end an undercut 9, which serves to compensate for tolerances between the two parts. An electric meaning has this undercut 9 not.

In dem gezeigten Ausführungsbeispiel ist im unteren Hohlraumteil 1 im Bereich des unteren Feldstärkemaximums eine Koppelöffnung 10 mit einer induktiven Koppelblende 11 eingelassen, über die die Ankoppelung eines weiteren Hohlraumresonators erfolgen kann. Auch andere Ankopplungsvorrichtungen sind möglich, z. B. in den Hohlraumresonator hineinragende Sonden, welche die elektrischen Feldkomponenten ankoppeln. Auch an den Stirnseiten angeordnete induktive Koppelblenden und am Umfang des Hohlraumresonators vorhandene induktive Koppelblenden, welche die transversalen magnetischen Feldkomponenten (Hr und/oder Hϕ) ankoppeln und dafür an Positionen mit nahezu maximaler Feldstärke der entsprechenden Feldkomponente angeordnet sind, sind möglich.In the embodiment shown, in the lower cavity part 1 in the region of the lower field strength maximum, a coupling opening 10 is embedded with an inductive coupling diaphragm 11, via which the coupling of a further cavity resonator can take place. Other coupling devices are possible, for. B. in the cavity resonating probes, which couple the electric field components. Also on the front sides arranged inductive coupling diaphragms and on Scope of the cavity resonator existing inductive coupling diaphragms, which couple the transverse magnetic field components (Hr and / or Hφ) and are arranged at positions with almost maximum field strength of the corresponding field component, are possible.

Da der hier verwendete Resonanzwellentyp H11n unter 90° entartet ist, können zwei Resonanzkreise durch die entarteten Wellentypen eines geometrischen Hohlraums realisiert und mit der oben beschriebenen Vorrichtung simultan abgestimmt werden. Dadurch wird die Gesamtgröße eines Filters als auch der Aufwand für eine aktive Gesamtabstimmvorrichtung wesentlich reduziert. Die Kopplung der dualen Wellentypen im Hohlraum kann in bekannter Weise mit Diskontinuitäten - üblicherweise Schrauben, die unter 45° bezogen auf die Orientierung der elektrischen Feldkomponenten der dualen Wellentypen auf dem Umfang des zylindischen Hohlraums - durchgeführt werden. Zudem kann auch in bekannter Weise durch zusätzliche Abstimmschrauben auf dem Umfang des Hohlraums eine Grundkorrektur der Frequenzlagen der zwei Wellentypen zueinander durchgeführt werden, die bei einer Filterrealisierung aufgrund unterschiedlicher Koppelbelastungen in der Regel notwendig ist.Since the resonant mode H11n used here is degenerate at 90 °, two resonant circuits can be realized by the degenerate modes of a geometric cavity and simultaneously tuned with the device described above. As a result, the overall size of a filter as well as the cost of an active Gesamtabstimmvorrichtung is substantially reduced. The coupling of the dual modes in the cavity can be performed in a known manner with discontinuities - usually screws, which are made at 45 ° with respect to the orientation of the electric field components of the dual modes on the circumference of the cylindrical cavity. In addition, in a known manner by additional tuning screws on the circumference of the cavity, a basic correction of the frequency positions of the two wave types are performed to each other, which is usually necessary in a filter realization due to different coupling loads.

Claims (2)

  1. A cavity resonator with a tunable resonance frequency having a round cross section and in which the H 11 n wave type exists as a resonance wave type, wherein the spacing of the two end faces of the cylindrical cavity is variable, the cavity is divided into two parts with reference to a cross-sectional plane (5), both cavity parts (1, 2) can be moved relative to each other in the direction of their common longitudinal axis (z) and one cavity part (2) is provided with an external thread (7) and the other cavity part (1) is provided with an internal thread (6) so that both cavity parts (1, 2) can be screwed into one other with a variable spacing of their end faces (3, 4),
    characterised in that
    a cross-sectional plane that is disposed approximately in the region of a maximum of the electrical field strength (E) of the H 11n wave type is chosen as a dividing plane (5) between the two cavity parts (1, 2), with the gap required between the two cavity parts (1, 2) in the dividing plane being disposed and dimensioned such that it is symmetrical to the maximum of the electrical field strength (E) when the screw-in depth of the cavity part (2) provided with the external thread (7) corresponds to a tuning of the cavity resonator at its middle frequency position.
  2. A cavity resonator according to claim 1, characterized by the fact that the cavity part (1) provided with the internal thread (6) has a shoulder (8) having an enlarged inside diameter in the region of the dividing plane (5) and on whose inner side the internal thread (6) is disposed.
EP01915592A 2000-03-07 2001-02-23 Cavity resonator having an adjustable resonance frequency Expired - Lifetime EP1266423B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010967 2000-03-07
DE10010967A DE10010967A1 (en) 2000-03-07 2000-03-07 Cavity resonator with tunable resonance frequency
PCT/IB2001/000431 WO2001067543A1 (en) 2000-03-07 2001-02-23 Cavity resonator having an adjustable resonance frequency

Publications (2)

Publication Number Publication Date
EP1266423A1 EP1266423A1 (en) 2002-12-18
EP1266423B1 true EP1266423B1 (en) 2008-07-23

Family

ID=7633763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01915592A Expired - Lifetime EP1266423B1 (en) 2000-03-07 2001-02-23 Cavity resonator having an adjustable resonance frequency

Country Status (6)

Country Link
US (1) US7012488B2 (en)
EP (1) EP1266423B1 (en)
CN (1) CN1416605A (en)
AU (1) AU2001242674A1 (en)
DE (2) DE10010967A1 (en)
WO (1) WO2001067543A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516862C2 (en) * 2000-07-14 2002-03-12 Allgon Ab Reconciliation screw device and method and resonator
AU2008291895A1 (en) * 2007-08-31 2009-03-05 Bae Systems Plc Low vibration dielectric resonant oscillators
EP2410823B1 (en) * 2010-07-22 2012-11-28 Ion Beam Applications Cyclotron for accelerating at least two kinds of particles
RU2483386C2 (en) * 2011-08-29 2013-05-27 Открытое акционерное общество "Научно-производственное предприятие "Контакт" Powerful wideband klystron
US9178256B2 (en) 2012-04-19 2015-11-03 Qualcomm Mems Technologies, Inc. Isotropically-etched cavities for evanescent-mode electromagnetic-wave cavity resonators
US8884725B2 (en) * 2012-04-19 2014-11-11 Qualcomm Mems Technologies, Inc. In-plane resonator structures for evanescent-mode electromagnetic-wave cavity resonators
CN111903000A (en) 2018-05-04 2020-11-06 瑞典爱立信有限公司 Tunable waveguide resonator
EP3660977B1 (en) 2018-11-30 2023-12-13 Nokia Solutions and Networks Oy Resonator for radio frequency signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771074A (en) * 1972-03-20 1973-11-06 Nasa Tunable cavity resonator with ramp shaped supports
US5712605A (en) * 1994-05-05 1998-01-27 Hewlett-Packard Co. Microwave resonator
JPH10303478A (en) * 1997-04-30 1998-11-13 Nec Corp Cavity for rubidium atomic oscillator
US6118356A (en) * 1998-09-16 2000-09-12 Hughes Electronics Corporation Microwave cavity having a removable end wall

Also Published As

Publication number Publication date
US7012488B2 (en) 2006-03-14
DE50114148D1 (en) 2008-09-04
WO2001067543A1 (en) 2001-09-13
US20030102943A1 (en) 2003-06-05
AU2001242674A1 (en) 2001-09-17
CN1416605A (en) 2003-05-07
EP1266423A1 (en) 2002-12-18
DE10010967A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
DE3688375T2 (en) TRIPLE MODE WITH BAND PASS FILTERS LOADED WITH DIELECTRIC RESONATORS.
DE818384C (en) Filter for the transmission of a band in waveguides of guided electrical micro waves
DE2805965A1 (en) INTERDIGITAL BANDPASS FILTER
DE69712802T2 (en) Dielectric filter
DE68911031T2 (en) Microwave multiplex filter.
EP1266423B1 (en) Cavity resonator having an adjustable resonance frequency
DE3706965A1 (en) DOUBLE FASHION FILTER
DE2811070C2 (en) Filter arrangement made up of several cavity resonator band-pass filters
DE2841754A1 (en) MICROWAVE FILTER
EP0751579B1 (en) Microwavefilter
DE68917373T2 (en) Magnetically tunable bandpass filter.
DE3111106C2 (en)
DE2828047C2 (en) Frequency-dependent coupling system
DE69818326T2 (en) Dielectric filter, dielectric duplexer and process for their manufacture
DE4291983C2 (en) Tunable maximum frequency bandstop filter device
DE19615854C1 (en) Method for producing a coupling for connecting two electromagnetic waveguides
DE3011301A1 (en) MICROWAVE FILTER
DE19602815A1 (en) Microwave band pass filter with cross coupling
DE68915134T2 (en) Microwave bandpass filter in the form of a comb line.
DE2327912C2 (en) Capacitively coupled cavity filter
DE2008584A1 (en) Waveguide circulator
DE3204863C2 (en) Tunable or retunable filter
EP2991158B1 (en) Generic channel filter
DE4014541C2 (en)
DE2912650C2 (en) Crossover

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERICSSON AB

17Q First examination report despatched

Effective date: 20070601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114148

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160226

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160217

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114148

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901