EP1253512B1 - Method and apparatus for generating a random signal with controlled histogram and spectrum - Google Patents
Method and apparatus for generating a random signal with controlled histogram and spectrum Download PDFInfo
- Publication number
- EP1253512B1 EP1253512B1 EP02290060A EP02290060A EP1253512B1 EP 1253512 B1 EP1253512 B1 EP 1253512B1 EP 02290060 A EP02290060 A EP 02290060A EP 02290060 A EP02290060 A EP 02290060A EP 1253512 B1 EP1253512 B1 EP 1253512B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- histogram
- filtering
- random
- overshoots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001228 spectrum Methods 0.000 title description 21
- 238000001914 filtration Methods 0.000 claims abstract description 20
- 230000003595 spectral effect Effects 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 9
- 238000012886 linear function Methods 0.000 claims description 13
- 230000008901 benefit Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000238876 Acari Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06J—HYBRID COMPUTING ARRANGEMENTS
- G06J1/00—Hybrid computing arrangements
Definitions
- the present invention relates to a method and a device for generating a random signal.
- the invention applies in particular to field of digital-to-analog conversion and to the field of analog-to-digital conversion using such a random system.
- Direct digital synthesis is a technique of synthesis of Frequency which involves developing in numerical values the samples of a signal that we want to generate and to convert these samples into signals analog thanks to a digital-to-analog converter.
- the signal synthesizers obtained by this technique are very attractive in in terms of volume, weight and energy consumption, because they can benefit from significant integration. Their other advantages include a very high resolution and switching times very low from one frequency to another.
- the passage of a useful signal in the digital-to-analog converter is accompanied by the creation of spurious signals that are due to the non-linearities of these converters. These non-linearities refer to the fact that the stair steps of the function of transfer of the digital to analog converter are not equal heights and that the transition between markets produces irregular.
- this random signal must have certain characteristics. First of all, its spectrum must be controlled for that it does not encroach on the band of useful signals. Second, he appears that the quality of the linearization of the converters depends on the histogram of the temporal amplitudes of the random signal. For example, a Gaussian law produces a linearization worse than that obtained by a rectangular law. So there is a real advantage to being able to control for the random signal both the spectrum and the histogram.
- Methods are known to obtain a random signal with a given spectral envelope. Methods are also known for obtain a random signal with a law of distribution of amplitudes given. These methods are notably described in the books dealing with of the calculation of the probabilities like for example the work entitled: "Deterministic simulation of chance” by J.Maurin to Masson editions.
- FR 2 783 374 of the applicant teaches a method and a device for generating a random signal. He describes a method allowing to build a random signal where the spectral envelope and the law temporal amplitude distributions are imposed simultaneously. For this, the method uses a sequence of four steps or signal processing operations, the repetition of some of them, especially steps 3 and 4 converging the signal parameters random to the desired laws. The iteration of the steps makes it possible to approach gradually the distribution law fixed, then correct the envelope spectral.
- this iterative method is not suitable for all types of calculation, especially for time calculation real of the random signal. It involves the use of different non-linear functions to restore the histogram targeted at each iteration.
- the idea of the invention is based on a new approach that allows to calculate, in real time, a random signal with a spectral envelope predetermined and a histogram of amplitudes close to a law rectangular, that is to say equidistributed.
- the expression 'Wanted signal' means the signal which one wishes to convert without distortion by a CNA or a CAN.
- the random signal or noise that is generated by the device according to the invention is added to this useful signal so as to linearize the transfer characteristic of the NAC or CAN.
- the lift or overshoots are more or less pronounced in particular function of the shape of the final histogram.
- the non-linear function is for example a faceted function D i and the number of segments and the ratio of the slopes of the different segments are chosen according to the histogram resulting from the filtering step F 1 .
- the pseudo-random signal is for example a white noise.
- the signal generated is for example a white noise.
- Figure 1 describes a possible example of the steps implemented by the process according to the invention.
- the latter is composed in particular of a sequence of steps or signal processing that allows the calculation in real time of a random signal with a predetermined spectral envelope and a histogram of the amplitudes close to a rectangular law, that is to say equally distributed.
- the method according to the invention comprises a first step (a) in which a pseudo-random code is generated, for example by means of of a generator, 1, PRN (Abbreviated Anglo-Saxon Pseudo-Random Noise).
- PRN Abbreviated Anglo-Saxon Pseudo-Random Noise
- the PRN generator is for example built from a register to offset looped back to itself using one or more exclusive ORs. This type of generator is described in many articles or books as for example in the book entitled "Spread Spectrum Communications »Volume 1 of Simon, Omura, Scholtz and Levitt.
- the pseudo-random signal generated is for example a white noise.
- the PRN generator delivers at its output digital words on m bits, for example, whose values are equidistributed in the amplitude range [-2 m-1 , 2 m-1 -1] and whose spectral envelope is constant between the frequency 0 and the frequency F H / 2 where F H is the clock frequency which speeds the offsets of the register.
- FIG. 2 gives the block diagram of a PRN generator made from a 30-bit, 30-bit shift register.
- Bits Nos. 3 and 28 are combined by an exclusive OR, 31, the output of which is fed back to the input 32 of the register to give an operating cycle of maximum length equal to 2 28 -1 clock ticks.
- FIG. 3 represents the histogram of the amplitudes of the PRN generator of FIG. 2, the value of the amplitude in abscissa is between -4096 and +4095, the ordinate corresponds to the rate of appearance different amplitudes. It should be noted that this rate is significantly equally distributed.
- FIG. 4 represents a diagram of the spectral amplitude, expressed in dB, as a function of the frequency of the signal s (t) generated by the PRN.
- the envelope of this signal is substantially constant between 0 and F H / 2.
- One of the functions of the filters F 1 and F 2 used in the present invention is to dig the spectrum of the PRN generator in the frequency band where will be located the useful signal as defined above, namely the useful signal that one wants to convert without distortion by a CNA or a CAN.
- the characteristics of the first filter F 1 are optimized and chosen to dig the signal to a limit where the non-linearity does not destroy too much the effect of filtering and those of the second filter F 2 to regress the spectrum of the number of dB required according to the desired dynamics.
- the template for each of the filters F 1 and F 2 is determined in such a way that the noise residue remaining in the useful band is compatible with the desired dynamics for the useful signal.
- the dynamic term represents the ratio between the level of the wanted signal and the maximum level of the spurious signals in a given band where the useful signals are located.
- the spectrum of the random signal must not encroach on the band of useful signals.
- the choice of the filter mask is for example a function of the spectrum width of the random signal, the clock frequency of the CNA or CAN and the desired dynamics for the system.
- Steps (b), (c) and (d) to obtain such results are for example described below.
- a second step (b) makes it possible to filter the band of the noise or limit this band by digging a hole in the portion of the spectrum where will placed the useful signal.
- the filter F 1 is, for example, optimized so that this hole is limited to a depth of the order of 10 to 30 dB relative to the maximum of the spectrum of the noise in a band at least equal to that of the useful signals and preferably 15 at 25 dB. Indeed, the passage in the non-linearity has the particular consequence of tending to fill this hole to a level generally around -25 dBc relative to the maximum of the noise spectrum.
- FIG. 5 shows a histogram of the noise signal after the filter F 1 , the value of the amplitude being given on the abscissa and the appearance rate indicated on the ordinate. This histogram tends to a Gaussian law.
- FIG. 6 gives the spectrum of the signal x (t) of the noise at the output of the first filter F 1 .
- the value of -20 dBc is just an example for illustrative purposes. This value may vary, depending on the application. In fact, the characteristics of the filter F 1 are chosen so that the non-linearity function does not destroy the filtering effect as it has been explained above.
- the method applies a non-linear function to the signal x (t) from the first filter F 1 so as to create feedbacks (term known as overshoots) on the edges of the histogram of the signal obtained at the output of F1.
- feedbacks term known as overshoots
- the nonlinear function is for example constituted by facets, that is to say linear segments Di having slopes of different values.
- the ratio of the slopes of the different segments creates the lifts or overshoots.
- the number of segments and the values of the slopes of the different segments depend, for example, on the histogram obtained at the output of the filter F 1 , therefore of the application.
- FIG. 7 illustrates an example of a nonlinear function comprising 5 facets, D 1 , D 2 , D 3 , D 4 and D 5 , the abscissa corresponding to the instantaneous value of the signal x (t) and the ordinate to the instantaneous value of the signal y (t) obtained by applying the nonlinear function.
- the histogram of the signal obtained after applying the function nonlinear is shown in Figure 8.
- the abscissa corresponds to the value instantaneous amplitude of the signal and the ordinate at its rate of appearance.
- the histogram presents a rectangular rather than a Gaussian shape with lifts or overshoots present on the two extreme edges of the diagram, the part central corresponding more to a form of rectangular type.
- Any non-linear function that makes it possible to perform the passage from a Gaussian probability to a rectangular law with lifts or overshoots can be used to perform the third step of the process.
- a fourth step (d) consists in filtering the signal y (t) so as to carry out the filtering part that could not be implemented in F 1, for example taking into account the constraints imposed by the non-linearity.
- the characteristics of the filter F 2 are chosen in particular to regress the spectrum of the number of dB required, in particular. depending on the desired dynamics and depending on the filling effect resulting from step (c) (application of the non-linear function).
- this step smoothes the lifts or overshoots of the histogram.
- the spectral portion suppressed by the filter F 2 represents a relatively small part of the overall power of the noise before F 2 .
- the passage in the filter F 2 mainly performs a smoothing of the histogram obtained previously in step (c).
- the fact that the deleted part represents a low power part is due to the action of F 1 which has eliminated a large part of the noise power in the useful signal band, even if it has not widened the spectrum, for example than -20 dB and that the non-linearity did not degrade this value too much.
- FIG. 10 represents the histogram of the noise after the filter F 2 . It can be seen that this histogram is close to a rectangular law.
- FIG. 11 shows in a spectral frequency-amplitude diagram expressed in dB, the noise spectrum obtained after the filter F 2 and a curve giving the theoretical response of the cascade of the two filters when the function of no is not applied. -linéar Congress. The difference between these two curves is the contribution of the non-linear function.
- the filters F 1 and F 2 used to implement the invention are preferably filters with power coefficients of 2 which do not require multiplications.
- any filter for making the desired filter templates F 1 and F 2 can be used within the scope of the invention.
- holes for others Spectrum frequencies can be generated using other functions of transfer than those mentioned above.
- filters will preferably be carried out in a Field Programmable Gate Array (FPGA) or EPLD type digital circuit or ASIC. Any digital circuit containing the known elements of the skilled person for making filters can also be used. Filters are therefore digital type filters.
- FPGA Field Programmable Gate Array
- EPLD EPLD type digital circuit
- any filter adapted to obtain the desired filter mask and any device for generating pseudo codes random or noise can be used in the present invention.
- FIG. 12 illustrates the application of the method according to the invention to a digital-to-analogue conversion system, for example contained in a digital synthesizer.
- a useful signal x (t) digital
- This useful signal x (t) is therefore added to a random signal s (t) obtained according to the process according to the invention by means of generation 20 adapted.
- the two signals x (t) and s (t) are combined by an adder 21. These two signals are digital.
- the random signal s (t) has an amplitude near or above that of the signal x (t) and a histogram and a spectral envelope obtained according to the steps implemented in the process.
- Truncation means 22 may optionally be used before passing through the converter 23.
- Figure 13 shows an example of application of the method according to the invention for an analog-to-digital conversion system.
- the useful signal x (t) and the random signal s (t) are analog signals. These two signals are added by an analog adder 30.
- the signal sum x (t) + s (t) is present at the input of an analog-to-digital converter 31 whose output is for example coded on N bits.
- the signal The random pattern has characteristics that are substantially identical to those the signal described in Figure 12. It can also be generated by means substantially the same as those described in Figure 12, and then converted to a DAC to obtain an analog signal before adding it.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Analogue/Digital Conversion (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
La présente invention concerne un procédé et un dispositif de génération d'un signal aléatoire. L'invention s'applique notamment au domaine de la conversion numérique-analogique et au domaine de la conversion analogique-numérique utilisant un tel système aléatoire.The present invention relates to a method and a device for generating a random signal. The invention applies in particular to field of digital-to-analog conversion and to the field of analog-to-digital conversion using such a random system.
Elle s'applique par exemple dans le domaine des techniques radar ou dans celui de l'instrumentation ou encore dans le domaine des communications.It applies for example in the field of radar techniques instrumentation or in the field of communications.
Les dispositifs de conversion, qu'ils soient numérique-analogique ou analogique-numérique sont très largement utilisés dans de nombreux systèmes et leurs performances constituent généralement un point critique de ces derniers, comme l'illustre la synthèse numérique directe.Conversion devices, whether digital-to-analog or analog-digital are very widely used in many systems and their performance usually constitute a critical point of these, as illustrated by the direct numerical synthesis.
La synthèse numérique directe est une technique de synthèse de fréquence qui consiste à élaborer en valeurs numériques les échantillons d'un signal que l'on veut générer et à convertir ces échantillons en signaux analogiques grâce à un convertisseur numérique-analogique. Les synthétiseurs de signaux obtenus par cette technique sont très attractifs en ce qui concerne leur volume, leur poids et leur consommation d'énergie, car ils peuvent bénéficier d'une intégration importante. Leurs autres avantages sont notamment une très grande résolution et des temps de commutation très faibles d'une fréquence à l'autre. Cependant, le passage d'un signal utile dans le convertisseur numérique-analogique s'accompagne de la création de signaux parasites qui sont dus aux non-linéarités de ces convertisseurs. Ces non-linéarités désignent le fait que les marches d'escalier de la fonction de transfert du convertisseur numérique-analogique ne sont pas d'égales hauteurs et que la transition entre marches produit des phénomènes irréguliers.Direct digital synthesis is a technique of synthesis of Frequency which involves developing in numerical values the samples of a signal that we want to generate and to convert these samples into signals analog thanks to a digital-to-analog converter. The signal synthesizers obtained by this technique are very attractive in in terms of volume, weight and energy consumption, because they can benefit from significant integration. Their other advantages include a very high resolution and switching times very low from one frequency to another. However, the passage of a useful signal in the digital-to-analog converter is accompanied by the creation of spurious signals that are due to the non-linearities of these converters. These non-linearities refer to the fact that the stair steps of the function of transfer of the digital to analog converter are not equal heights and that the transition between markets produces irregular.
Le même problème se retrouve dans des applications à base de convertisseurs analogique-numérique où le passage des signaux dans ces convertisseurs s'accompagne ici aussi de la création de signaux parasites dus aux non-linéarités.The same problem is found in applications based on analog-to-digital converters where the passage of signals in these converters is also accompanied by the creation of spurious signals due to non-linearities.
Il est connu de l'art antérieur d'ajouter un signal aléatoire au signal utile, avant le passage dans le convertisseur, afin de diminuer le niveau des signaux parasites en réduisant l'effet des non-linéarités du convertisseur évoquées précédemment. Ce signal aléatoire est désigné communément par le terme anglo-saxon « dither ». Le signal utile est généralement à bande limitée et la fréquence d'horloge du système, par exemple un synthétiseur numérique, est généralement supérieure à cette bande. Cela laisse un espace spectral vide pour placer le signal aléatoire.It is known from the prior art to add a random signal to the signal useful, before passing through the converter, in order to decrease the level of spurious signals by reducing the effect of converter non-linearities previously mentioned. This random signal is commonly referred to as the Anglo-Saxon term "dither". The useful signal is usually band limited and the clock frequency of the system, for example a synthesizer digital, is usually greater than this band. This leaves a Empty spectral space to place the random signal.
Pour être pleinement efficace, ce signal aléatoire doit posséder certaines caractéristiques. Tout d'abord, son spectre doit être maítrisé pour qu'il n'empiète pas dans la bande des signaux utiles. En second lieu, il apparaít que la qualité de la linéarisation des convertisseurs dépend de l'histogramme des amplitudes temporelles du signal aléatoire. Par exemple, une loi gaussienne produit une linéarisation moins bonne que celle obtenue par une loi rectangulaire. Il y a donc un réel avantage à pouvoir maítriser pour le signal aléatoire à la fois le spectre et l'histogramme.To be fully effective, this random signal must have certain characteristics. First of all, its spectrum must be controlled for that it does not encroach on the band of useful signals. Second, he appears that the quality of the linearization of the converters depends on the histogram of the temporal amplitudes of the random signal. For example, a Gaussian law produces a linearization worse than that obtained by a rectangular law. So there is a real advantage to being able to control for the random signal both the spectrum and the histogram.
Des méthodes sont connues pour obtenir un signal aléatoire avec une enveloppe spectrale donnée. Des méthodes sont aussi connues pour obtenir un signal aléatoire avec une loi de distribution des amplitudes donnée. Ces méthodes sont notamment décrites dans les ouvrages traitant du calcul des probabilités comme par exemple l'ouvrage intitulé: « Simulation déterministe du hasard » de J.Maurin aux éditions Masson.Methods are known to obtain a random signal with a given spectral envelope. Methods are also known for obtain a random signal with a law of distribution of amplitudes given. These methods are notably described in the books dealing with of the calculation of the probabilities like for example the work entitled: "Deterministic simulation of chance" by J.Maurin to Masson editions.
Le brevet FR 2 783 374 du demandeur enseigne un procédé et
un dispositif de génération d'un signal aléatoire. Il décrit une méthode
permettant de construire un signal aléatoire où l'enveloppe spectrale et la loi
de distribution des amplitudes temporelles sont imposées simultanément.
Pour cela, le procédé met en oeuvre une suite de quatre étapes ou
opérations de traitement du signal, la répétition d'une partie d'entre elles,
notamment les étapes 3 et 4 faisant converger les paramètres du signal
aléatoire vers les lois désirées. L'itération des étapes permet d'approcher
progressivement la loi de distribution fixée, puis de corriger l'enveloppe
spectrale.
Malgré toute son efficacité, cette méthode itérative n'est pas adaptée pour tous les types de calcul, notamment pour le calcul en temps réel du signal aléatoire. Elle implique l'utilisation de différentes fonctions non-linéaires pour restaurer l'histogramme visé à chaque itération.Despite its effectiveness, this iterative method is not suitable for all types of calculation, especially for time calculation real of the random signal. It involves the use of different non-linear functions to restore the histogram targeted at each iteration.
L'idée de l'invention repose sur une nouvelle approche qui permet de calculer, en temps réel, un signal aléatoire avec une enveloppe spectrale prédéterminée et un histogramme des amplitudes proche d'une loi rectangulaire, c'est-à-dire équirépartie.The idea of the invention is based on a new approach that allows to calculate, in real time, a random signal with a spectral envelope predetermined and a histogram of amplitudes close to a law rectangular, that is to say equidistributed.
Dans la suite de la description on désigne sous l'expression « signal utile », le signal que l'on souhaite convertir sans distorsion par un CNA ou un CAN. A cette fin, le signal aléatoire ou bruit qui est généré par le dispositif selon l'invention est additionné à ce signal utile de façon à linéariser la caractéristique de transfert du CNA ou du CAN.In the remainder of the description, the expression 'Wanted signal' means the signal which one wishes to convert without distortion by a CNA or a CAN. For this purpose, the random signal or noise that is generated by the device according to the invention is added to this useful signal so as to linearize the transfer characteristic of the NAC or CAN.
L'invention a pour objet un procédé de génération d'un signal aléatoire. Il est caractérisé en ce qu'il comporte au moins les étapes suivantes :
- une première étape (a) de génération d'un signal pseudo-aléatoire,
- une deuxième étape (b) de filtrage (F1) du signal issu de l'étape (a) pour obtenir un signal x(t) ayant une enveloppe spectrale prédéterminée H(f),
- une troisième étape (c) où une fonction non-linéaire g est appliquée au signal x(t) de façon à former un signal y(t) et pour créer des remontées ou overshoots sur les bords de l'histogramme du signal y(t),
- une quatrième étape (d) de filtrage (F2) permettant de lisser les remontées ou overshoots de l'histogramme du signal y(t), de compenser l'effet de la non-linéarité et d'effectuer un complément de filtrage à (F1).
- a first step (a) of generating a pseudo-random signal,
- a second step (b) of filtering (F 1 ) the signal from step (a) to obtain a signal x (t) having a predetermined spectral envelope H (f),
- a third step (c) where a non-linear function g is applied to the signal x (t) so as to form a signal y (t) and to create upstrokes or overshoots on the edges of the signal histogram y (t) )
- a fourth step (d) filtering (F 2 ) for smoothing the rise or overshoots of the histogram of the signal y (t), to compensate for the effect of non-linearity and to perform a filtering complement to ( F 1 ).
Les remontées ou overshoots sont plus ou moins prononcés en fonction notamment de la forme de l'histogramme final.The lift or overshoots are more or less pronounced in particular function of the shape of the final histogram.
Selon un mode de réalisation, la fonction non-linéaire est par exemple une fonction à facettes Di et le nombre des segments et le rapport des pentes des différents segments sont choisis en fonction de l'histogramme issu de l'étape de filtrage F1.According to one embodiment, the non-linear function is for example a faceted function D i and the number of segments and the ratio of the slopes of the different segments are chosen according to the histogram resulting from the filtering step F 1 .
Le signal pseudo-aléatoire est par exemple un bruit blanc.The pseudo-random signal is for example a white noise.
L'invention a également pour objet un dispositif pour la mise en
oeuvre du procédé précité comportant par exemple au moins les éléments
suivants :
Le signal généré est par exemple un bruit blanc.The signal generated is for example a white noise.
L'invention a notamment les avantages suivants :
- améliorer la non linéarité des convertisseurs analogique-numérique ou numérique-analogique,
- pouvoir s'appliquer à de nombreux systèmes,
- être économique et simple dans sa mise en oeuvre.
- improve the non-linearity of analog-to-digital or digital-to-analog converters,
- can be applied to many systems,
- to be economical and simple in its implementation.
D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit, faite en regard de dessins annexés, à titre illustratif et nullement limitatifs, qui représentent :
- la figure 1, une illustration des étapes possibles du procédé selon l'invention,
- la figure 2, un exemple détaillé d'un générateur de codes pseudo-aléatoires,
- la figure 3, un histogramme en sortie de la première étape du procédé selon l'invention,
- la figure 4 un spectre de bruit en sortie de générateur PRN,
- les figures 5 et 6, respectivement un histogramme et le spectre du signal en sortie du premier filtre,
- les figures 7, 8 et 9 une fonction de non linéarité, l'histogramme et le spectre après application de la fonction de non linéarité,
- les figures 10 et 11 un histogramme et un spectre en sortie du deuxième filtre,
- la figure 12 un mode de réalisation possible d'un système de conversion numérique-analogique utilisant un signal aléatoire généré selon l'invention,
- la figure 13 un exemple de système de conversion analogique-nuémrique utilisant un signal aléatoire généré selon l'invention.
- FIG. 1, an illustration of the possible steps of the method according to the invention,
- FIG. 2, a detailed example of a pseudo-random code generator,
- FIG. 3, a histogram at the output of the first step of the method according to the invention,
- FIG. 4 a noise spectrum at the output of the PRN generator,
- FIGS. 5 and 6, respectively a histogram and the spectrum of the signal at the output of the first filter,
- FIGS. 7, 8 and 9 a nonlinearity function, the histogram and the spectrum after application of the nonlinearity function,
- FIGS. 10 and 11 a histogram and a spectrum at the output of the second filter,
- FIG. 12 a possible embodiment of a digital-to-analog conversion system using a random signal generated according to the invention,
- FIG. 13 is an example of an analog-to-digital conversion system using a random signal generated according to the invention.
La figure 1 décrit un exemple possible des étapes mises en oeuvre par le procédé selon l'invention. Ce dernier est composé notamment d'une suite d'étapes ou de traitement du signal qui permet le calcul en temps réel d'un signal aléatoire avec une enveloppe spectrale prédéterminée et un histogramme des amplitudes proches d'une loi rectangulaire, c'est-à-dire équirépartie.Figure 1 describes a possible example of the steps implemented by the process according to the invention. The latter is composed in particular of a sequence of steps or signal processing that allows the calculation in real time of a random signal with a predetermined spectral envelope and a histogram of the amplitudes close to a rectangular law, that is to say equally distributed.
Le procédé selon l'invention comporte une première étape (a)
dans laquelle un code pseudo-aléatoire est généré, par exemple au moyen
d'un générateur, 1, PRN (abrégé en anglo-saxon de Pseudo-Random Noise).
Le générateur PRN est par exemple construit à partir d'un registre à
décalage rebouclé sur lui-même à l'aide d'un ou de plusieurs OU exclusifs.
Ce type de générateur est décrit dans de nombreux articles ou ouvrages
comme par exemple dans l'ouvrage intitulé « Spread Spectrum
Communications » Volume 1 de Simon, Omura, Scholtz et Levitt.The method according to the invention comprises a first step (a)
in which a pseudo-random code is generated, for example by means of
of a generator, 1, PRN (Abbreviated Anglo-Saxon Pseudo-Random Noise).
The PRN generator is for example built from a register to
offset looped back to itself using one or more exclusive ORs.
This type of generator is described in many articles or books
as for example in the book entitled "Spread Spectrum
Communications »
Le signal pseudo-aléatoire généré est par exemple un bruit blanc.The pseudo-random signal generated is for example a white noise.
Le générateur PRN délivre à sa sortie des mots numériques sur m
bits, par exemple, dont les valeurs sont équiréparties dans l'intervalle
d'amplitude [-2 m-1, 2 m-1-1] et dont l'enveloppe spectrale est constante entre
la fréquence 0 et la fréquence FH/2 où FH est la fréquence d'horloge qui
cadence les décalages du registre.The PRN generator delivers at its output digital words on m bits, for example, whose values are equidistributed in the amplitude range [-2 m-1 , 2 m-1 -1] and whose spectral envelope is constant between the
A titre d'exemple, la figure 2 donne le schéma synoptique d'un générateur PRN réalisé à partir d'un registre à décalage, 30, de 28 bits.By way of example, FIG. 2 gives the block diagram of a PRN generator made from a 30-bit, 30-bit shift register.
Les bits N° 3 et 28 sont combinés par un OU Exclusif, 31, dont la sortie est réinjecté à l'entrée, 32, du registre pour donner un cycle de fonctionnement de longueur maximale égale à 2 28 -1 coups d'horloge. Les 28 bits du registre sont ensuite combinés par des OU Exclusifs, 33, pour donner naissance à un signal aléatoire sur m bits avec m = 13 bits dans l'exemple de la figure 2.Bits Nos. 3 and 28 are combined by an exclusive OR, 31, the output of which is fed back to the input 32 of the register to give an operating cycle of maximum length equal to 2 28 -1 clock ticks. The 28 bits of the register are then combined by exclusive ORs, 33, to give rise to a random signal on m bits with m = 13 bits in the example of Figure 2.
La figure 3 représente l'histogramme des amplitudes du générateur PRN de la figure 2, la valeur de l'amplitude en abscisse est comprise entre -4096 et +4095, l'ordonnée correspond au taux d'apparition des différentes amplitudes. Il est à noter que ce taux est sensiblement équiréparti.FIG. 3 represents the histogram of the amplitudes of the PRN generator of FIG. 2, the value of the amplitude in abscissa is between -4096 and +4095, the ordinate corresponds to the rate of appearance different amplitudes. It should be noted that this rate is significantly equally distributed.
La figure 4 représente un diagramme de l'amplitude spectrale, exprimée en dB, en fonction de la fréquence du signal s(t) généré par le PRN. L'enveloppe de ce signal est sensiblement constante entre 0 et FH/2.FIG. 4 represents a diagram of the spectral amplitude, expressed in dB, as a function of the frequency of the signal s (t) generated by the PRN. The envelope of this signal is substantially constant between 0 and F H / 2.
L'une des fonctions des filtres F1 et F2 utilisés dans la présente invention est de creuser le spectre du générateur PRN dans la bande de fréquence où sera situé le signal utile tel que défini précédemment, à savoir le signal utile que l'on souhaite convertir sans distorsion par un CNA ou un CAN.One of the functions of the filters F 1 and F 2 used in the present invention is to dig the spectrum of the PRN generator in the frequency band where will be located the useful signal as defined above, namely the useful signal that one wants to convert without distortion by a CNA or a CAN.
Chaque filtre participe d'une façon différente, les caractéristiques du premier filtre F1 sont optimisées et choisies pour creuser le signal dans une limite où la non-linéarité ne détruise pas trop l'effet du filtrage et celles du deuxième filtre F2 pour recreuser le spectre du nombre de dB nécessaire en fonction de la dynamique recherchée.Each filter participates in a different way, the characteristics of the first filter F 1 are optimized and chosen to dig the signal to a limit where the non-linearity does not destroy too much the effect of filtering and those of the second filter F 2 to regress the spectrum of the number of dB required according to the desired dynamics.
Pour cela le gabarit pour chacun des filtres F1 et F2 est déterminé de façon telle que le résidu de bruit restant dans la bande utile soit compatible avec la dynamique recherchée pour le signal utile. Le terme dynamique représente dans ce contexte, le rapport entre le niveau du signal utile et le niveau maximum des signaux parasites dans une bande donnée où se trouvent les signaux utiles. Ainsi en fonction de l'application du générateur dans un système de conversion analogique-numérique ou numérique-analogique, le spectre du signal aléatoire ne doit pas empiéter dans la bande des signaux utiles. Le choix du gabarit de filtre est par exemple fonction de la largeur de spectre du signal aléatoire, de la fréquence d'horloge du CNA ou CAN et de la dynamique recherchée pour le système. For this, the template for each of the filters F 1 and F 2 is determined in such a way that the noise residue remaining in the useful band is compatible with the desired dynamics for the useful signal. In this context, the dynamic term represents the ratio between the level of the wanted signal and the maximum level of the spurious signals in a given band where the useful signals are located. Thus, depending on the application of the generator in an analog-to-digital or digital-to-analog conversion system, the spectrum of the random signal must not encroach on the band of useful signals. The choice of the filter mask is for example a function of the spectrum width of the random signal, the clock frequency of the CNA or CAN and the desired dynamics for the system.
De plus, afin d'obtenir un histogramme final proche d'une loi rectangulaire, une fonction de non-linéarité est appliquée entre les deux étapes de filtrage.Moreover, in order to obtain a final histogram close to a law rectangular, a non-linearity function is applied between the two filtering steps.
Les étapes (b), (c) et (d) permettant d'obtenir de tels résultats sont par exemple décrites ci-après.Steps (b), (c) and (d) to obtain such results are for example described below.
Une deuxième étape (b) permet de filtrer la bande du bruit ou de limiter cette bande en creusant un trou dans la portion du spectre où sera placé le signal utile.A second step (b) makes it possible to filter the band of the noise or limit this band by digging a hole in the portion of the spectrum where will placed the useful signal.
Le filtre F1 est par exemple optimisé pour que ce trou soit limité à une profondeur de l'ordre de 10 à 30 dB par rapport au maximum du spectre du bruit dans une bande au moins égale à celle des signaux utiles et de préférence de 15 à 25 dB. En effet, le passage dans la non-linéarité a notamment pour conséquence de tendre à reboucher ce trou à un niveau situé généralement autour de -25 dBc par rapport au maximum du spectre du bruit.The filter F 1 is, for example, optimized so that this hole is limited to a depth of the order of 10 to 30 dB relative to the maximum of the spectrum of the noise in a band at least equal to that of the useful signals and preferably 15 at 25 dB. Indeed, the passage in the non-linearity has the particular consequence of tending to fill this hole to a level generally around -25 dBc relative to the maximum of the noise spectrum.
La figure 5 montre un histogramme du signal de bruit après le filtre F1, la valeur de l'amplitude étant donnée en abscisse et le taux d'apparition indiqué en ordonnées. Cet histogramme tend vers une loi gaussienne.FIG. 5 shows a histogram of the noise signal after the filter F 1 , the value of the amplitude being given on the abscissa and the appearance rate indicated on the ordinate. This histogram tends to a Gaussian law.
La figure 6 donne le spectre du signal x(t) du bruit en sortie du premier filtre F1. On note sur cet exemple un trou creusé de l'ordre de -20 dBc par rapport au maximum du bruit autour d'une fréquence voisine de 0,15 FH. La valeur de -20 dBc n'est qu'un exemple donnée à titre illustratif. Cette valeur peut varier notamment en fonction de l'application. En fait, les caractéristiques du filtre F1 sont choisies afin que la fonction de non-linéarité ne détruise pas trop l'effet de filtrage comme il a été exposé précédemment.FIG. 6 gives the spectrum of the signal x (t) of the noise at the output of the first filter F 1 . We note in this example a hollow hole of the order of -20 dBc relative to the maximum noise around a frequency of 0.15 F H. The value of -20 dBc is just an example for illustrative purposes. This value may vary, depending on the application. In fact, the characteristics of the filter F 1 are chosen so that the non-linearity function does not destroy the filtering effect as it has been explained above.
Au cours d'une troisième étape (c), le procédé applique une fonction non-linéaire au signal x(t) issu du premier filtre F1 de façon à créer des remontées (terme connu sous le mot anglais overshoots) sur les bords de l'histogramme du signal obtenu en sortie de F1. On cherche à favoriser les amplitudes extrêmes du signal. During a third step (c), the method applies a non-linear function to the signal x (t) from the first filter F 1 so as to create feedbacks (term known as overshoots) on the edges of the histogram of the signal obtained at the output of F1. We seek to favor the extreme amplitudes of the signal.
La fonction non linéaire est par exemple constituée de facettes, c'est-à-dire de segments linéaires Di présentant des pentes de valeurs différentes. Le rapport des pentes des différents segments crée les remontées ou overshoots. Le nombre de segments et les valeurs des pentes des différents segments dépendent par exemple de l'histogramme obtenu en sortie du filtre F1, donc de l'application.The nonlinear function is for example constituted by facets, that is to say linear segments Di having slopes of different values. The ratio of the slopes of the different segments creates the lifts or overshoots. The number of segments and the values of the slopes of the different segments depend, for example, on the histogram obtained at the output of the filter F 1 , therefore of the application.
La figure 7 illustre un exemple d'une fonction non linéaire comportant 5 facettes, D1, D2, D3, D4 et D5, l'abscisse correspondant à la valeur instantanée du signal x(t) et l'ordonnée à la valeur instantanée du signal y(t) obtenu par application de la fonction non linéaire.FIG. 7 illustrates an example of a nonlinear function comprising 5 facets, D 1 , D 2 , D 3 , D 4 and D 5 , the abscissa corresponding to the instantaneous value of the signal x (t) and the ordinate to the instantaneous value of the signal y (t) obtained by applying the nonlinear function.
L'histogramme du signal obtenu après application de la fonction non-linéaire est représenté sur la figure 8. L'abscisse correspond à la valeur instantanée de l'amplitude du signal et l'ordonnée à son taux d'apparition.The histogram of the signal obtained after applying the function nonlinear is shown in Figure 8. The abscissa corresponds to the value instantaneous amplitude of the signal and the ordinate at its rate of appearance.
Par rapport à l'histogramme de la figure 5, l'histogramme présente une forme de type rectangulaire plutôt que gaussienne avec des remontées ou overshoots présents sur les deux bords extrêmes du diagramme, la partie centrale correspondant plus à une forme de type rectangulaire.With respect to the histogram of FIG. 5, the histogram presents a rectangular rather than a Gaussian shape with lifts or overshoots present on the two extreme edges of the diagram, the part central corresponding more to a form of rectangular type.
Le spectre du signal y(t) obtenu après application de la fonction non-linéaire est représenté sur la figure 9. On note que le trou obtenu autour des fréquences 0.25 FH a été « rebouché » à une valeur comprise entre -20 et -25 dBc.The spectrum of the signal y (t) obtained after application of the function nonlinear is shown in Figure 9. It is noted that the hole obtained around 0.25 FH was "plugged back" to a value between -20 and -25 dBc.
Toute fonction non-linéaire permettant d'effectuer le passage d'une probabilité gaussienne à une loi rectangulaire avec remontées ou overshoots peut être utilisée pour effectuer la troisième étape du procédé.Any non-linear function that makes it possible to perform the passage from a Gaussian probability to a rectangular law with lifts or overshoots can be used to perform the third step of the process.
Une quatrième étape (d) consiste à filtrer le signal y(t) de manière à réaliser la partie de filtrage qui n'a pas pu être mise en oeuvre dans F1 compte tenu par exemple des contraintes imposées par la non-linéarité.A fourth step (d) consists in filtering the signal y (t) so as to carry out the filtering part that could not be implemented in F 1, for example taking into account the constraints imposed by the non-linearity.
En effet, afin d'optimiser les rôles de chacun des filtres et en tenant compte des phénomènes résultant de l'application de la non-linéarité, les caractéristiques du filtre F2 sont choisies notamment pour recreuser le spectre du nombre de dB nécessaire, en fonction de la dynamique recherchée et en fonction de l'effet de rebouchage résultant de l'étape (c) (application de la fonction non-linéaire).Indeed, in order to optimize the roles of each of the filters and taking into account the phenomena resulting from the application of the non-linearity, the characteristics of the filter F 2 are chosen in particular to regress the spectrum of the number of dB required, in particular. depending on the desired dynamics and depending on the filling effect resulting from step (c) (application of the non-linear function).
De plus, cette étape permet de lisser les remontées ou overshoots de l'histogramme.In addition, this step smoothes the lifts or overshoots of the histogram.
La partie spectrale supprimée par le filtre F2 représente une partie relativement faible de la puissance globale du bruit avant F2. Ainsi le passage dans le filtre F2 effectue principalement un lissage de l'histogramme obtenu précédemment à l'étape (c). Le fait que la partie supprimée représente une partie faible en puissance est du à l'action de F1 qui a éliminé une grande partie de la puissance de bruit dans la bande de signal utile, même si il n'a creusé le spectre par exemple qu'à -20 dB et que la non-linéarité n'a pas trop dégradé cette valeur.The spectral portion suppressed by the filter F 2 represents a relatively small part of the overall power of the noise before F 2 . Thus the passage in the filter F 2 mainly performs a smoothing of the histogram obtained previously in step (c). The fact that the deleted part represents a low power part is due to the action of F 1 which has eliminated a large part of the noise power in the useful signal band, even if it has not widened the spectrum, for example than -20 dB and that the non-linearity did not degrade this value too much.
La figure 10 représente l'histogramme du bruit après le filtre F2. On constate que cet histogramme est proche d'une loi rectangulaire.FIG. 10 represents the histogram of the noise after the filter F 2 . It can be seen that this histogram is close to a rectangular law.
La figure 11 montre dans un diagramme fréquence-amplitude spectrale exprimée en dB, le spectre de bruit obtenu après le filtre F2 et une courbe donnant la réponse théorique de la cascade des deux filtres lorsque l'on n'applique pas la fonction de non-linéarité. L'écart entre ces deux courbes est la contribution de la fonction non-linéaire.FIG. 11 shows in a spectral frequency-amplitude diagram expressed in dB, the noise spectrum obtained after the filter F 2 and a curve giving the theoretical response of the cascade of the two filters when the function of no is not applied. -linéarité. The difference between these two curves is the contribution of the non-linear function.
Les filtres F1 et F2 utilisés pour mettre en oeuvre l'invention sont de préférence des filtres à coefficients en puissance de 2 qui ne nécessitent pas de multiplications.The filters F 1 and F 2 used to implement the invention are preferably filters with power coefficients of 2 which do not require multiplications.
Sans sortir du cadre de l'invention, tout filtre permettant de réaliser les gabarits de filtrage F1 et F2 désirés peuvent être utilisés dans le cadre de l'invention.Without departing from the scope of the invention, any filter for making the desired filter templates F 1 and F 2 can be used within the scope of the invention.
Le filtre F1, correspondant par exemple à la courbe obtenue à la
figure 5 a une fonction de transfert H1(z) exprimée par la relation suivante
Le filtre F2 à pour réponse :
Remarquons qu'en changeant les signes négatifs - des coefficients de H1 et de H2 en des signes positifs +, le bruit est alors spectralement situé autour de zéro avec un trou autour de FH/2. Il est également possible d'obtenir un trou autour de FH/4 en faisant travailler les quatre blocs du synoptique à une horloge égale à FH/2 et en suréchantillonnant le signal avec une horloge à FH.Note that by changing the negative signs - coefficients of H 1 and H 2 into + positive signs, the noise is then spectrally located around zero with a hole around F H / 2. It is also possible to obtain a hole around F H / 4 by making the four blocks of the synoptic work at a clock equal to F H / 2 and oversampling the signal with a clock at F H.
Sans sortir du cadre de l'invention, des trous pour d'autres fréquences du spectre peuvent être générés en utilisant d'autres fonctions de transfert que celles mentionnées ci-dessus.Without departing from the scope of the invention, holes for others Spectrum frequencies can be generated using other functions of transfer than those mentioned above.
La réalisation des filtres sera de préférence réalisée dans un circuit numérique de type FPGA (Field Programmable Gate Array) ou EPLD ou ASIC. Tout circuit numérique comportant les éléments connus de l'Homme du métier permettant de réaliser des filtres peut aussi être utilisé. Les filtres sont donc des filtres de type numérique.The realization of the filters will preferably be carried out in a Field Programmable Gate Array (FPGA) or EPLD type digital circuit or ASIC. Any digital circuit containing the known elements of the skilled person for making filters can also be used. Filters are therefore digital type filters.
Sans sortir du cadre de l'invention tout filtre adapté pour obtenir le gabarit de filtrage souhaité et tout dispositif de génération de codes pseudo aléatoires ou de bruits peuvent être utilisés dans la présente invention.Without departing from the scope of the invention, any filter adapted to obtain the desired filter mask and any device for generating pseudo codes random or noise can be used in the present invention.
La figure 12 illustre l'application du procédé selon l'invention à un
système de conversion numérique-analogique, contenu par exemple dans un
synthétiseur numérique. Dans cette application, un signal utile x(t),
numérique, doit être converti en grandeur analogique avec la meilleure
linéarité possible, c'est-à-dire en fait avec le moins de signaux parasites
possibles. Ce signal utile x(t) est donc additionné à un signal aléatoire s(t)
obtenu selon le procédé selon l'invention par des moyens de génération 20
adaptés. Les deux signaux x(t) et s(t) sont combinés par un additionneur 21.
Ces deux signaux sont numériques. Dans un mode de réalisation préférentiel
du système de conversion, le signal aléatoire s(t) possède une amplitude
voisine ou supérieure à celle du signal x(t) et un histogramme et une
enveloppe spectrale obtenus selon les étapes mises en oeuvre dans le
procédé. Des moyens de troncature 22 peuvent éventuellement être utilisés
avant le passage dans le convertisseur 23. FIG. 12 illustrates the application of the method according to the invention to a
digital-to-analogue conversion system, for example contained in a
digital synthesizer. In this application, a useful signal x (t),
digital, should be converted to analog size with the best
linearity possible, that is to say in fact with the least parasitic signals
possible. This useful signal x (t) is therefore added to a random signal s (t)
obtained according to the process according to the invention by means of
La figure 13 présente un exemple d'application du procédé selon
l'invention pour un système de conversion analogique-numérique. Dans ce
cas, le signal utile x(t) et le signal aléatoire s(t) sont des signaux analogiques.
Ces deux signaux sont additionnés par un additionneur analogique 30. Le
signal somme x(t)+s(t) est présent à l'entrée d'un convertisseur analogique-numérique
31 dont la sortie est par exemple codée sur N bits. Le signal
aléatoire présente des caractéristiques sensiblement identiques à celles du
signal décrit à la figure 12. Il peut aussi être généré par des moyens
sensiblement identiques à ceux décrits à la figure 12, puis être converti par
un CNA de manière à obtenir un signal analogique avant de l'additionner.Figure 13 shows an example of application of the method according to
the invention for an analog-to-digital conversion system. In this
In this case, the useful signal x (t) and the random signal s (t) are analog signals.
These two signals are added by an
Claims (10)
- Method for the generation of a random signal, characterized in that it comprises at least the following steps:a first step (a) for the generation of a pseudo-random signal,a second step (b) for the filtering F1 of the signal coming from the step (a) to obtain a signal x(t) having a predetermined spectral envelope H(f),a third step (c) in which a non-linear function g is applied to the signal x(t) having a Gaussian-type histogram so as to form a signal y(t) and create overshoots on the edges of the histogram of the signal y(t),a fourth filtering (F2) step (d) used to smooth the overshoots of the histogram of the signal y(t), compensate for the effect of the non-linearity and carry out an additional filtering at F1.
- Method according to Claim 1, characterized in that the non-linear function is a function with facets Di and in that the number of the segments Di and the ratio of the slopes of the different segments are chosen as a function of the histogram obtained from the filtering step F1.
- Method according to either of Claims 1 and 2, characterized in that the filter F1 generates a notch of about 10 to 30 dB, preferably 15 to 25 dB, in a band at least equal to that of the useful signals to be processed.
- Method according to one of Claims 1 to 3,
characterized in that the histogram obtained at the end of the fourth step (d) is substantially identical to a rectangular law. - Method according to one of Claims 1 to 4,
characterized in that the pseudo-random signal is white noise. - Device for generating a random signal, characterized in that it comprises at least the following devices:means for generating a pseudo-random signal,means F1 for filtering the pseudo-random signal in order to obtain a signal x(t) having a predetermined spectral envelope H(f),a means configured to generate a non-linear function to form a signal y(t) from the signal x(t) having a Gaussian-type histogram, the histogram of this signal y(t) being of a rectangular type with overshoots,means F2 configured to smooth the overshoots of the histogram of the signal y(t), compensate for the effect of the non-linearity and carry out an additional filtering at F1.
- Device according to Claim 6, characterized in that the device configured to generate a non-linear function is designed to obtain a non-linear function with facets Di.
- Device according to either of Claims 6 and 7, characterized in that at least one of the filters F1 and F2 is a filter with coefficients to the power 2.
- Device according to either of Claims 6 and 7 characterized in that the signal generated is white noise.
- Application of the method according to one of Claims 1 to 5 or of the device according to one of Claims 6 to 8 in a digital-analogue conversion system or in an analogue-digital conversion system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0100541A FR2819600B1 (en) | 2001-01-16 | 2001-01-16 | METHOD AND DEVICE FOR GENERATING A RANDOM SIGNAL WITH CONTROLLED HISTOGRAM AND SPECTRUM |
FR0100541 | 2001-01-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1253512A1 EP1253512A1 (en) | 2002-10-30 |
EP1253512B1 true EP1253512B1 (en) | 2005-08-03 |
Family
ID=8858872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02290060A Expired - Lifetime EP1253512B1 (en) | 2001-01-16 | 2002-01-10 | Method and apparatus for generating a random signal with controlled histogram and spectrum |
Country Status (6)
Country | Link |
---|---|
US (1) | US6559712B2 (en) |
EP (1) | EP1253512B1 (en) |
AT (1) | ATE301306T1 (en) |
CA (1) | CA2367278C (en) |
DE (1) | DE60205297T2 (en) |
FR (1) | FR2819600B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2860662B1 (en) * | 2003-10-03 | 2006-02-03 | Thales Sa | METHOD AND DEVICE FOR GENERATING PREDETERMINED HISTOGRAM AGITATION NOISE, AND AGITATION NOISE OBTAINED |
FR2880219B1 (en) * | 2004-12-23 | 2007-02-23 | Thales Sa | METHOD AND SYSTEM FOR DIGITAL RADIOCOMMUNICATION, IN PARTICULAR FOR MOBILE SOIL STATIONS |
EP2427771B1 (en) | 2009-05-07 | 2014-07-09 | Biomerieux, Inc | Methods for antimicrobial resistance determination |
US20110191129A1 (en) * | 2010-02-04 | 2011-08-04 | Netzer Moriya | Random Number Generator Generating Random Numbers According to an Arbitrary Probability Density Function |
US9634863B2 (en) * | 2011-11-11 | 2017-04-25 | Kollmorgen Corporation | Systems and methods for supporting two different protocols on a same physical connection |
US9311681B2 (en) | 2012-01-24 | 2016-04-12 | Facebook, Inc. | Claiming conversations between users and non-users of a social networking system |
US9331681B2 (en) * | 2013-11-05 | 2016-05-03 | STMicroelectronics International N.V | System and method for gaussian random noise generation |
US10142743B2 (en) * | 2016-01-01 | 2018-11-27 | Dean Robert Gary Anderson | Parametrically formulated noise and audio systems, devices, and methods thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2152497C (en) * | 1993-11-09 | 1999-01-12 | Lawrence Edwin Connell | Method and apparatus for detecting an input signal level |
FR2765419B1 (en) | 1997-06-27 | 1999-09-17 | Thomson Csf | DEVICE FOR GENERATING ANALOG SIGNALS FROM ANALOG-TO-DIGITAL CONVERTERS, PARTICULARLY FOR DIRECT DIGITAL SYNTHESIS |
EP0889588B1 (en) * | 1997-07-02 | 2003-06-11 | Micronas Semiconductor Holding AG | Filter combination for sample rate conversion |
FR2780831B1 (en) | 1998-07-03 | 2000-09-29 | Thomson Csf | DIGITAL SIGNAL SYNTHESIZER |
FR2783374B1 (en) * | 1998-09-11 | 2000-12-08 | Thomson Csf | METHOD AND DEVICE FOR GENERATING A RANDOM SIGNAL AND DIGITAL-ANALOG CONVERSION SYSTEMS USING SUCH A RANDOM SIGNAL |
FR2794309B1 (en) | 1999-05-28 | 2001-08-31 | Thomson Csf | COMPENSATOR FOR THE NON-LINEARITY OF AN ANALOG-TO-DIGITAL CONVERTER |
-
2001
- 2001-01-16 FR FR0100541A patent/FR2819600B1/en not_active Expired - Fee Related
-
2002
- 2002-01-10 AT AT02290060T patent/ATE301306T1/en not_active IP Right Cessation
- 2002-01-10 DE DE60205297T patent/DE60205297T2/en not_active Expired - Lifetime
- 2002-01-10 EP EP02290060A patent/EP1253512B1/en not_active Expired - Lifetime
- 2002-01-11 US US10/042,199 patent/US6559712B2/en not_active Expired - Lifetime
- 2002-01-14 CA CA2367278A patent/CA2367278C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2367278A1 (en) | 2002-07-16 |
CA2367278C (en) | 2011-06-28 |
DE60205297T2 (en) | 2006-03-30 |
US20020095449A1 (en) | 2002-07-18 |
US6559712B2 (en) | 2003-05-06 |
ATE301306T1 (en) | 2005-08-15 |
DE60205297D1 (en) | 2005-09-08 |
FR2819600A1 (en) | 2002-07-19 |
FR2819600B1 (en) | 2003-04-11 |
EP1253512A1 (en) | 2002-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1110135B1 (en) | Method and device for generating a random signal and digital-to-analog converting systems using same | |
EP1157471B1 (en) | Methods and apparatus for correction of higher order delta sigma convertors | |
FR2687522A1 (en) | FREQUENCY SYNTHESIZER WITH NUMBER N FRACTIONARY EMPLOYING SEVERAL ACCUMULATORS WITH RECOMBINATION IN SERIES, METHOD OF IMPLEMENTATION, AND RADIOTELEPHONE USING THE SAME. | |
EP0190796A1 (en) | System for signal analysis and synthesis filter banks | |
EP0887941B1 (en) | Device generating analog signals using anolog-digital converters, in particular for direct digital synthesis | |
EP2608401B1 (en) | Circuit for transmitting ASK RF signals with adaptation of the edges of the data signals | |
EP1253512B1 (en) | Method and apparatus for generating a random signal with controlled histogram and spectrum | |
EP0730363A1 (en) | Method and device for receiving multiple bit rates by unique filtering for interpolation and adaption | |
EP0969349B1 (en) | Digital signal synthesiser | |
FR2588680A1 (en) | DEVICE FOR CALCULATING A DISCRETE FOURIER TRANSFORMER, AND ITS APPLICATION TO PULSE COMPRESSION IN A RADAR SYSTEM | |
FR2511214A1 (en) | DEVICE FOR ACCOMPLISHING BINARY SUBTRACTION OF A FIRST AND A SECOND NUMBER | |
EP0635946B1 (en) | Analog to digital converter with modulated feedback | |
EP0011341A1 (en) | Differential pulse code modulation transmission system | |
EP0591813B1 (en) | Continuous phase modulator | |
FR2832568A1 (en) | SAMPLING FREQUENCY DIGITAL CONVERTER | |
WO2018115139A2 (en) | Device for generating a modulated digital signal and system for generating a modulated analog signal | |
FR2871010A1 (en) | APPARATUS AND METHOD FOR MODULATION OF CARRIER WAVE AND ENCODER FOR INFORMATION SIGNAL MODULATOR | |
EP0623867A1 (en) | Method and device for the generation of a frequency controlled signal | |
EP1261125B1 (en) | Wide dynamic range filtering method for recursive digital filter in a signal processor (DPS) operating with integer numbers | |
EP0064902A1 (en) | Digital filters | |
FR2570854A1 (en) | Signal processing method and device. | |
FR2507845A1 (en) | PERIODIC SIGNAL GENERATOR LOGIC DEVICE | |
JPH06283972A (en) | Attenuator | |
WO2005033925A1 (en) | Generation of thermal agitation noise according to a predetermined histogram | |
WO2008125403A1 (en) | Device for modulating signals by pulse width with three levels and digital amplifier implementing such a device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20030411 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60205297 Country of ref document: DE Date of ref document: 20050908 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: THALES Effective date: 20060131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171228 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180122 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60205297 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201222 Year of fee payment: 20 Ref country code: GB Payment date: 20201230 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220109 |