[go: up one dir, main page]

EP1248063A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP1248063A1
EP1248063A1 EP02006050A EP02006050A EP1248063A1 EP 1248063 A1 EP1248063 A1 EP 1248063A1 EP 02006050 A EP02006050 A EP 02006050A EP 02006050 A EP02006050 A EP 02006050A EP 1248063 A1 EP1248063 A1 EP 1248063A1
Authority
EP
European Patent Office
Prior art keywords
flat tubes
heat exchanger
exchanger according
heat
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02006050A
Other languages
German (de)
French (fr)
Other versions
EP1248063B1 (en
Inventor
Josef Kern
Christoph Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1248063A1 publication Critical patent/EP1248063A1/en
Application granted granted Critical
Publication of EP1248063B1 publication Critical patent/EP1248063B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to a heat exchanger, in particular an evaporator of a motor vehicle air conditioning system with the Features according to the preamble of claim 1.
  • Heat exchangers of the type mentioned have one essentially from parallel arranged flat tubes formed block, with the flat tubes of one easily evaporating heat medium, namely a refrigerant, are flowed through.
  • This block becomes across from it Face of a second medium, usually air, flows through, on the surface of the flat tubes Heat exchange between the first and the second heat medium takes place.
  • a second medium usually air
  • the construction volume of the heat exchanger essentially settles from the face and block depth together, the block depth being essentially the depth of the flat tubes corresponds to one or more rows of pipes.
  • To improve heat transfer are one A variety of solutions are known, essentially based on one Enlargement of the heat transfer surface based. These are on the surface of the flat tubes that the Heat medium facing the lower heat capacity is, here on the air side, enlarging the surface Devices such as lamellae, corrugated ribs or the like are provided. Such measures are however correspondingly compact Designs of the heat exchanger and high performance requirements unsatisfactory.
  • the invention has for its object a heat exchanger to create, in which the required construction volume is reduced.
  • the heat exchanger at the beginning called the flat tubes in the direction of Block depth at least over a section in one Arrange the angle to the face of the block.
  • the angle expediently lies in a range between 25 ° and 65 ° and is in particular about 45 °.
  • the between the flat tubes formed channels for the flowing Air are rotated at approximately the same angle, so that the flow direction of the air between the flat tubes has a component inclined to the end face.
  • the flat tubes have a cross section roughly in wave form, with the convex side a shaft of a flat tube in the concave side of the corresponding shaft of the adjacent flat tube at a distance intervenes. This results in the intervals undulating flow channels between the adjacent flat tubes for the air with a correspondingly extended Flow path related to the block depth.
  • the waveform is roughly angled for example in the form of a staircase. This allows cost-effective production with simple means.
  • the waveform rounded execution whereby the flow resistance for the air flowing through the block is kept low.
  • the Waveform formed such that the side surfaces of the Flat tubes in the area of at least one longitudinal edge and in particular in the area of both longitudinal edges approximately perpendicular to Face.
  • the incoming and possibly also the outgoing Air is just in the heat exchanger block introduced or let out of it, whereby a redirection only within the heat block under aerodynamic well-defined conditions with low flow losses he follows.
  • the side faces the flat tubes means to increase the heat transfer Surface and / or the flow path.
  • the flat tubes lying in the direction of their longitudinal axis Longitudinal ribs provided and arranged so offset to one another, that the longitudinal ribs of a flat tube into the Gaps between the longitudinal ribs of the adjacent flat tube intervene on the adjacent side surface.
  • the result mutual engagement of the longitudinal ribs generates another approximately wavy deflection of the Air flow along its path in the depth direction of the Heat exchanger block in connection with an enlargement the heat transfer surface.
  • the projections mentioned have expediently an aerodynamic cross section, for example in the form of an oval or an ellipse, whereby the flow resistance for the flowing Air is reduced. In an advantageous variant, it is sufficient the projections from an outside of a flat tube to the adjacent outside of the neighboring flat tube, whereby they also serve as spacers.
  • struts For simplification the manufacture and to improve the heat transfer struts can be provided which run across several Flat tubes run. A block of flat tubes is included threaded on these struts, the struts as an assembly aid serve and align the flat tubes against each other. In addition, the struts perform the function of projections described above.
  • Cross ribs may be provided. These cross ribs contribute to the surface enlargement, with the Process of peeling out the cross ribs in the material composite with the flat tube stay with an accompanying, correspondingly good heat transfer.
  • the cross ribs can improve the heat transfer Have an edge in wave form, the wave form being comparable for the serrated edge of a knife in the cross rib plane can lie.
  • the Waveform of the edge approximately perpendicular to the surface of the Cross rib, which also extends this flow path Has an effect.
  • the flat tubes are as multi-chamber pipes with individual channels for the first Heat medium trained.
  • the flat tubes are an expedient variant Made from a light metal sheet, making it an inexpensive Manufacturing also possible under large series conditions is.
  • the flat tubes are in the Extrusion process or extruded, why light alloy and especially aluminum not only because of the relatively light weight, but equally both from a manufacturing point of view as well special because of its good heat transfer properties suitable is.
  • the evaporator 1 shows a schematic overview a heat exchanger of an air conditioning system of a motor vehicle using the example of an evaporator 1. Also one for air conditioning appropriate capacitor can be be carried out in the manner described below.
  • the evaporator 1 comprises a plurality of flat tubes 4, 4 ', the lying essentially parallel to one another in the form of a Block 5 are summarized.
  • the flat tubes 4, 4 ' are at both ends with a collecting box 29, 30 connected in a flow-conducting manner.
  • the upper collecting box 29 is by a total of four partitions 31 in a total of four Sub-rooms 38 divided, while the lower collection box 30 divided into two sub-spaces 39 by means of a partition 32 is.
  • An easily evaporable first heat medium 2 flows through the flat tubes 4, 4 'along the arrows 27, the arrangement of the partition walls 31, 32 is a flow the flat tubes 4, 4 'in the form of a cross counterflow results.
  • training can also take place of the evaporator 1 with a different flow pairing, for example a pure cross-flow.
  • Perpendicular block 5 has an end face 6 or plane E. Block depth t.
  • the block 5 is a second flow medium 3 in the flow direction indicated by the arrow 7 flows through, the flow direction 7 is substantially transverse to the end face 6.
  • the second Heat medium 3 is the one to be cooled by the evaporator 5 Air. When flowing through block 5, the second occurs Heat medium 3 initially in the area of the front longitudinal edges 16 in block 5 and is then between the Flat tubes 4, 4 'on their surfaces 17, 18 for one Heat exchange passed. Then that leaves second heat medium the evaporator 1 in the area of the rear Longitudinal edges 17 of the flat tubes 4, 4 '.
  • FIG. 2 shows sections of a cross-sectional illustration through a block 5 (Fig. 1), in which a plurality in parallel flat tubes 4, 4 'arranged with respect to one another are provided is in the direction of the block depth t of one each front longitudinal edge 16 to a rear longitudinal edge 17 extend.
  • the flat tubes 4, 4 ' run in the direction of Block depth t in the area of its middle section in an angle ⁇ of approximately 45 ° to the end face of the block 5.
  • the second heat medium 3 Due to the inclination, the second heat medium 3 a deflected flow direction between the flat tubes 4, 4 ' 8, one inclined to the end face 6 and across has component lying to the longitudinal axis 10. Thereby becomes the flow path along the redirected flow direction 8 between the front longitudinal edge 6 and the rear Long edge 17 longer than the block depth t.
  • the flat tubes 4, 4 ', 4 " have an approximately angular cross-section Waveform with one wave 13 each in the area of the front and the rear longitudinal edge 16, 17.
  • the two Shafts 13 are designed such that the two side surfaces 15, 18 of the flat tubes 4, 4 ', 4 "in the area of Longitudinal edges 16, 17 are approximately perpendicular to the end face 6.
  • the flat tubes 4, 4 ', 4 " also have their two side surfaces 15, 17 approximately parallel to the longitudinal axis 10 extending longitudinal ribs 20, 20 ', 21, 21' on the intervene at a distance.
  • the resulting deflected flow direction 8 is in connection with Fig. 6 described in more detail below.
  • flat tubes 4, 4 'shown in FIG. 3 have a rounded cross-section in their shown cross-section Waveform, each with a rounded wave 13 in the area the front and rear longitudinal edges 16, 17.
  • the convex side 12 of a shaft 13 engages in each case a flat tube 4 in the concave side 14 of the corresponding Shaft 13 of the adjacent flat tube 4 'at a distance on.
  • the cross to plane E along the flow direction 7 incoming air is between the flat tubes 4, 4 'deflected in a flow direction 8 such that the Flow direction 8 a component inclined to plane E. having.
  • the variant of flat tubes 4, 4 'shown in FIG. 4 has means 19 on its side faces 15, 15 ', 18, 18' to increase the heat transfer area of the flat tubes 4, 4 'and the flow path of the second heat medium 3 on.
  • Means 19 from a number of parallel to the longitudinal axis 10 (Fig. 1, 2) arranged longitudinal ribs 20, 20 ', 21, 21'.
  • the Flat tubes 4, 4 ' have an angled wave shape each have a central shaft tip 13.
  • the waveform is symmetrical so that the front and rear longitudinal edges 16, 17 of the flat tubes on a line in the through an arrow 42 shown block depth direction.
  • the front and rear sections of the flat tubes 4, 4 'on both sides of the shaft tip 13 are with respect to the Level E is arranged so that it is mutual each have a longitudinal rib 20 ', 21 in the opposite intervening space 35 engages.
  • the flat tubes 4, 4 ' have an identical design, with the inclination with respect to the plane E despite the cost-saving identical design and in pairs opposite longitudinal ribs 20, 21 or 20 ', 21' their mutual intervention in the opposite Spaces 35 is made possible.
  • the flat tubes 4, 4 ' In addition to the flow diversion in the area of the longitudinal ribs 20, 20 ', 21, 21' and associated spaces 35 also leads to the inclination the flat tubes 4, 4 'to a combined enlargement the flow path of the second heat medium 3 and an increase in the heat transfer surface the flat tubes 4, 4 '.
  • Fig. 5 shows schematically in a perspective view a variant of the arrangement of FIG. 4 for about right-angled arrangement with respect to the end face 6 in Area of the longitudinal edges 16, 17 (Fig. 2), being comparable 5 executed rounded to the embodiment of FIG Longitudinal ribs 20, 21 or 20 ', 21' in pairs are arranged.
  • the installation position of the flat tubes 4, 4 ' is related the direction of weight 40 selected so that the Cross ribs 23 obliquely downward in the direction of the weight 40 run and thus dripping, for example from Lighten condensation.
  • FIG. 6 shows another in a cross-sectional illustration Variant of flat tubes 4, 4 ', in which the associated Longitudinal ribs 20, 21 and 20 ', 21' offset from each other are arranged.
  • the width difference is between the respective thin and thick areas 34, 36 kept low.
  • the longitudinal ribs 21, 20 'in the opposite spaces 35 creates a meandering air duct 37, in which the flow direction indicated by the arrows 8 of the second heat medium alternating with one in the plane E of the end face 6 (FIG. 1) lying component is applied. This will be an extension of the flow path and an increase in heat transfer Surface achieved.
  • Fig. 7 shows a further embodiment of a flat tube 4, from its flat side surfaces 15, 18 transverse to Longitudinal axis 10 transverse ribs 23 as means 19 for Removed enlargement of the heat transfer surface are.
  • the transverse ribs 23 have a corrugated edge 24, the waveform of the wavy edge 24 in the Plane of the transverse ribs 23 or perpendicular to it.
  • FIG. 8 shows in the embodiment of a flat tube 4 shown in FIG. 8 are on the side surfaces 15, 18 means 19 for enlargement the heat transfer surface in the form of projections 22 provided.
  • 9 shows in a Sectional view through the projections 22 that in their Gaps further projections 22 'one not closer shown, adjacent flat tube 4 'engage.
  • the projections 22, 22 'point to reduce the flow resistance an aerodynamic cross section, which is elliptical in the embodiment shown, if necessary but also be oval, diamond-shaped or the like can.
  • the projections 22, 22 ' create a mutual Division and merging of the air flow along the Arrows 8 for improved mixing and for one improved heat transfer.
  • the redirected direction of flow 8 has a component that enlarges the flow path on, which is parallel to the longitudinal axis 10.
  • FIGS. 2 to 8 of Flat tubes 4, 4 ' are made in one piece from aluminum on the Made by extrusion and as multi-chamber pipes formed with individual channels 26 for the first heat medium 2. Also come for certain cross-sectional shapes extruded flat tubes. However, it can also a version made of sheet metal may be appropriate, either as Pipe with welded longitudinal seam or as from sheet metal shells formed disc elements.
  • FIG. 10 An embodiment of the latter form is shown in Fig. 10 schematically shown in cross section.
  • the flat tubes 4, 4 ' are characterized by two half shells 43, 44 joined together Sheet formed.
  • the two half-shells 43, 44 are of this type shaped that two chambers 45 as channels 26 for Flow through the first heat medium 2 are formed.
  • training with a or more chambers 45 may be appropriate.
  • the direction of the Block depth t corresponding to FIG. 1 is indicated by arrow 42 specified.
  • the flat tubes 4, 4 ' run with respect to the Arrow 42 at an angle ⁇ of about 45 °.
  • a plurality of struts 41 are provided which the Reach through flat tubes 4, 4 '.
  • the struts 41 also projections 22, 22 'in the sense of FIGS. 8 and 9, which from one side surface 15, 18 to the adjacent side surface 18 ', 15' run.
  • the struts 41 both from the second heat medium 3 in the direction of arrows 8 according to FIG. 9 as also by the first heat medium 2 within the channels 26 flows in the direction of arrows 27 of FIG. 1.
  • the shown variants of surface and flow path enlarging Means 19 in the form of longitudinal ribs 20, 20 ', 21, 21 'and in the form of projections 22 and transverse ribs 23 are integral with the respective walls 25 of the flat tubes 4, 4 'formed.
  • the projections 22 can in particular in connection with the sheet metal shell construction shown in FIG. 10 in one piece by embossing the half-shells 43, 44 be shaped. However, it can also be manufactured separately and a subsequent attachment, for example cohesive connection be appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Heat exchanger, especially an evaporator in an air-conditioning system of a motor vehicle, used for transferring heat between a first and a second heat medium comprises a number of flat tubes (4, 4'') forming a block through which the first heat medium flows. The flat tubes are arranged in parallel so that channels for the second heat medium (3) entering at one end (6) of the block are formed in between adjacent flat tubes. The flat tubes extend in the direction of the block depth (t) at least over a partial section at an angle ( alpha ) to the end surface of the block. Preferred Features: The angle is about 25-65, preferably 45 degrees . The flat tubes have an angled or rounded undulating cross-section. The flat tubes are made by extruding a light-weight sheet metal, especially aluminum or an aluminum alloy.

Description

Die Erfindung betrifft einen Wärmeübertrager, insbesondere einen Verdampfer einer Kraftfahrzeug-Klimaanlage mit den Merkmalen nach dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger, in particular an evaporator of a motor vehicle air conditioning system with the Features according to the preamble of claim 1.

Im Kraftfahrzeugen werden zunehmend komplexere Systeme eingesetzt, wodurch von dem insgesamt vorhandenen Bauraum für die einzelnen Komponenten ein immer kleinerer Anteil zur Verfügung steht. Dies betrifft insbesondere auch die Klimaanlagen, von denen einerseits eine hohe Leistung abverlangt wird, während andererseits der für die erforderlichen Wärmeübertrager zur Verfügung stehende Bauraum zunehmend eingeschränkt ist. Dies wirkt sich insbesondere bei Verdampfern begrenzter Blocktiefe nachteilig auf die Übertragungsleistung aus.Systems are becoming increasingly complex in motor vehicles used, whereby of the total available space an ever smaller proportion for the individual components is available. This applies in particular to the Air conditioning systems that demand high performance on the one hand while, on the other hand, that required for Heat exchanger available space increasingly is restricted. This affects in particular with evaporators of limited block depth disadvantageously on the Transmission power.

Wärmeübertrager der eingangs genannten Gattung weisen einen im wesentlichen aus parallel angeordneten Flachrohren gebildeten Block auf, wobei die Flachrohre von einem leicht verdampfenden Wärmemedium, nämlich einem Kältemittel, durchströmt sind. Dieser Block wird quer zu seiner Stirnfläche von einem zweiten Medium, im Regelfall Luft, durchströmt, wobei an der Oberfläche der Flachrohre ein Wärmeaustausch zwischen dem ersten und dem zweiten Wärmemedium stattfindet. Bei Verdampfern wird dabei die durch den Verdampfungsprozeß des ersten Wärmemediums entstehende Kälte durch die metallische Wandung der Flachrohre an die äußere Oberfläche geleitet und an die vorbeiströmende Luft übertragen, wodurch diese abgekühlte Luft zur Klimatisierung des Fahrzeuginnenraumes dient.Heat exchangers of the type mentioned have one essentially from parallel arranged flat tubes formed block, with the flat tubes of one easily evaporating heat medium, namely a refrigerant, are flowed through. This block becomes across from it Face of a second medium, usually air, flows through, on the surface of the flat tubes Heat exchange between the first and the second heat medium takes place. In the case of evaporators, the the evaporation process of the first heat medium Cold through the metallic wall of the flat tubes to the guided to the outside surface and to the air flowing past transmitted, causing this cooled air for air conditioning of the vehicle interior.

Das Bauvolumen des Wärmeübertragers setzt sich im wesentlichen aus der Stirnfläche und der Blocktiefe zusammen, wobei die Blocktiefe im wesentlichen der Tiefe der Flachrohre einer oder mehrerer Rohrreihen entspricht. Eine Möglichkeit der Reduktion des Bauvolumens besteht in der Verringerung der Blocktiefe, wodurch der Weg der den Block in Richtung der Blocktiefe durchströmenden Luft verkürzt wird. Zur Verbesserung der Wärmeübertragung sind eine Vielzahl von Lösungen bekannt, die im wesentlichen auf einer Vergrößerung der wärmeübertragenden Oberfläche basieren. Dazu sind auf der Oberfläche der Flachrohre, die dem Wärmemedium mit der geringeren Wärmekapazität zugewandt ist, hier also auf der Luftseite, oberflächenvergrößernde Einrichtungen wie Lamellen, Wellrippen oder dgl. vorgesehen. Derartige Maßnahmen sind jedoch bei entsprechend kompakten Bauformen des Wärmeübertragers und hoher Leistungsanforderung nicht ausreichend.The construction volume of the heat exchanger essentially settles from the face and block depth together, the block depth being essentially the depth of the flat tubes corresponds to one or more rows of pipes. A possibility the reduction in the construction volume consists in the reduction the block depth, making the path of the block in Air flowing through the direction of the block depth is shortened becomes. To improve heat transfer are one A variety of solutions are known, essentially based on one Enlargement of the heat transfer surface based. These are on the surface of the flat tubes that the Heat medium facing the lower heat capacity is, here on the air side, enlarging the surface Devices such as lamellae, corrugated ribs or the like are provided. Such measures are however correspondingly compact Designs of the heat exchanger and high performance requirements unsatisfactory.

Der Erfindung liegt die Aufgabe zugrunde, einen Wärmeübertrager zu schaffen, bei dem das erforderliche Bauvolumen verringert ist.The invention has for its object a heat exchanger to create, in which the required construction volume is reduced.

Diese Aufgabe wird durch einen Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst.This task is accomplished with a heat exchanger Features of claim 1 solved.

Dazu wird vorgeschlagen, in einem Wärmeübertrager der eingangs genannten Gattung die Flachrohre in Richtung der Blocktiefe mindestens über einen Teilabschnitt in einem Winkel zur Stirnfläche des Blockes anzuordnen. Der Winkel liegt dabei zweckmäßig etwa in einem Bereich zwischen 25° und 65° und beträgt insbesondere etwa 45°. Die zwischen den Flachrohren gebildeten Kanäle für die durchströmende Luft sind dabei etwa in gleichem Winkel gedreht, so daß die Strömungsrichtung der Luft zwischen den Flachrohren eine zur Stirnfläche geneigte Komponente aufweist. Durch die gegenüber der Anströmrichtung erfolgende Umlenkung der Strömungsrichtung im Bereich der Flachrohre wird dem Luftstrom innerhalb des Wärmeübertragerblocks ein Umweg aufgezwungen, in dessen Folge der Luftstrom mit einem verlängerten Weg an den Oberflächen der Flachrohre vorbeistreift. Durch die Wegverlängerung und der damit einhergehenden längeren Kontaktzeit kann der Luft bei einem Verdampfer mehr Wärme entzogen werden. Bei einer durch die Systemanforderungen vorgegebenen Wärmeübertragungsleistung kann deshalb der verfügbare Bauraum besser genutzt und insbesondere die Blocktiefe verringert werden.For this purpose, it is proposed that the heat exchanger at the beginning called the flat tubes in the direction of Block depth at least over a section in one Arrange the angle to the face of the block. The angle expediently lies in a range between 25 ° and 65 ° and is in particular about 45 °. The between the flat tubes formed channels for the flowing Air are rotated at approximately the same angle, so that the flow direction of the air between the flat tubes has a component inclined to the end face. By the deflection of the The direction of flow in the area of the flat tubes becomes the air flow a detour is forced inside the heat exchanger block, as a result the air flow with an extended Slides past the surfaces of the flat tubes. Through the extension of the path and the accompanying Air can have a longer contact time with an evaporator more heat is removed. At one by the System requirements given heat transfer performance can therefore use the available space better in particular the block depth can be reduced.

In einer vorteilhaften Variante oder auch in Kombination mit einer Schrägstellung weisen die Flachrohre einen Querschnitt etwa in Wellenform auf, wobei die konvexe Seite einer Welle eines Flachrohres in die konkave Seite der entsprechenden Welle des benachbarten Flachrohres mit Abstand eingreift. Dadurch ergeben sich in den Abständen zwischen den benachbarten Flachrohren wellenförmige Strömungskanäle für die Luft mit einem entsprechend verlängerten Strömungsweg bezogen auf die Blocktiefe. In einer vorteilhaften Variante ist die Wellenform etwa winklig, also beispielsweise in Treppenform ausgebildet. Dies erlaubt eine kostengünstige Fertigung mit einfachen Mitteln. In einer weiteren zweckmäßigen Variante ist die Wellenform gerundet ausgeführt, wodurch der Strömungswiderstand für die den Block durchströmende Luft gering gehalten ist. Zur weiteren Verringerung des Strömungswiderstandes ist die Wellenform derart ausgebildet, dass die Seitenflächen der Flachrohre im Bereich mindestens einer Längskante und insbesondere im Bereich beider Längskanten etwa senkrecht zur Stirnfläche stehen. Die anströmende und ggf. auch die abströmende Luft wird dadurch gerade in den Wärmetauscherblock hineingeführt bzw. aus ihm herausgelassen, wobei eine Umlenkung erst innerhalb des Wärmeblocks unter aerodynamisch gut definierten Bedingungen mit geringen Strömungsverlusten erfolgt.In an advantageous variant or in combination with an inclined position, the flat tubes have a cross section roughly in wave form, with the convex side a shaft of a flat tube in the concave side of the corresponding shaft of the adjacent flat tube at a distance intervenes. This results in the intervals undulating flow channels between the adjacent flat tubes for the air with a correspondingly extended Flow path related to the block depth. In an advantageous Variant, the waveform is roughly angled for example in the form of a staircase. This allows cost-effective production with simple means. In Another useful variant is the waveform rounded execution, whereby the flow resistance for the air flowing through the block is kept low. to further reduction in flow resistance is the Waveform formed such that the side surfaces of the Flat tubes in the area of at least one longitudinal edge and in particular in the area of both longitudinal edges approximately perpendicular to Face. The incoming and possibly also the outgoing Air is just in the heat exchanger block introduced or let out of it, whereby a redirection only within the heat block under aerodynamic well-defined conditions with low flow losses he follows.

In einer vorteilhaften Weiterbildung weisen die Seitenflächen der Flachrohre Mittel zur Vergrößerung der wärmeübertragenden Oberfläche und/oder des Strömungsweges auf. In einer zweckmäßigen Variante dazu sind auf den Seitenflächen der Flachrohre in Richtung ihrer Längsachse liegende Längsrippen vorgesehen und derart versetzt zueinander angeordnet, dass die Längsrippen eines Flachrohres in die Zwischenräume der Längsrippen des benachbarten Flachrohres auf dessen angrenzender Seitenfläche eingreifen. Der dadurch entstehende wechselseitige Eingriff der Längsrippen erzeugt eine weitere etwa wellenförmige Umlenkung des Luftstromes entlang seines Weges in Tiefenrichtung des Wärmeübertragerblockes in Verbindung mit einer Vergrößerung der wärmeübertragenden Fläche. Dadurch ist eine weitere Verbesserung der Wärmeübertagungsleistung und damit bezogen auf eine vorgegebene Wärmeübertagungsleistung eine weitere Verringerung des Bauraumes ermöglicht.In an advantageous development, the side faces the flat tubes means to increase the heat transfer Surface and / or the flow path. In A practical variant of this are on the side surfaces the flat tubes lying in the direction of their longitudinal axis Longitudinal ribs provided and arranged so offset to one another, that the longitudinal ribs of a flat tube into the Gaps between the longitudinal ribs of the adjacent flat tube intervene on the adjacent side surface. The result mutual engagement of the longitudinal ribs generates another approximately wavy deflection of the Air flow along its path in the depth direction of the Heat exchanger block in connection with an enlargement the heat transfer surface. This is another Improvement in heat transfer performance and thus based on a given heat transfer performance enables further reduction of the installation space.

In einer zweckmäßigen Variante sind auf den Seitenflächen der Flachrohre diskrete Vorsprünge angeordnet, die ebenfalls wechselseitig in die Zwischenräume zwischen den Vorsprüngen des benachbarten Rohres eingreifen. Die Vorsprünge müssen außenseitig von der Luft umströmt werden. In a practical variant are on the side surfaces the flat tubes arranged discrete protrusions, which also alternately into the spaces between the protrusions of the neighboring pipe. The tabs the air must flow around the outside.

Dadurch entsteht eine vielfache Teilung und Zusammenführung des Luftstromes. Die Bildung einer laminaren Strömung wird verhindert und eine gute Durchmischung mit einem einhergehenden guten Wärmeübergang erzielt. Die Vorsprünge vergrößern darüber hinaus durch ihre Geome-trie bedingt die wärmeübertragende Oberfläche. Des weiteren erfolgt eine Strömungsumlenkung und damit eine Strömungswegverlängerung mit einer Komponente, die parallel zur Längsachse der Flachrohre liegt. Die genannten Vorsprünge weisen dabei zweckmäßig einen aerodynamischen Querschnitt beispielsweise in Form eines Ovales oder einer Ellipse auf, wodurch der Strömungswiderstand für die durchströmende Luft reduziert ist. In einer vorteilhaften Variante reichen die Vorsprünge von einer Außenseite eines Flachrohres zur benachbarten Außenseite des Nachbarflachrohres, wodurch sie auch als Abstandhalter dienen. Zur Vereinfachung der Fertigung und zur Verbesserung des Wärmeüberganges können Streben vorgesehen sein, die quer durch mehrere Flachrohre verlaufen. Ein Block von Flachrohren ist dabei auf diese Streben aufgefädelt, wobei die Streben als Montagehilfe dienen und die Flachrohre gegeneinander ausrichten. Darüber hinaus erfüllen die Streben die Funktion der oben beschriebenen Vorsprünge.This creates a multiple division and merging of the air flow. The formation of a laminar flow is prevented and good mixing with an accompanying good heat transfer achieved. The tabs enlarge due to their geometry the heat transfer surface. Furthermore is done a flow deflection and thus a flow path extension with a component that is parallel to the longitudinal axis the flat tubes lies. The projections mentioned have expediently an aerodynamic cross section, for example in the form of an oval or an ellipse, whereby the flow resistance for the flowing Air is reduced. In an advantageous variant, it is sufficient the projections from an outside of a flat tube to the adjacent outside of the neighboring flat tube, whereby they also serve as spacers. For simplification the manufacture and to improve the heat transfer struts can be provided which run across several Flat tubes run. A block of flat tubes is included threaded on these struts, the struts as an assembly aid serve and align the flat tubes against each other. In addition, the struts perform the function of projections described above.

Die genannten Varianten der oberflächen- und strömungswegvergrößernden Mittel sind zweckmäßig einteilig mit einer Wand des Flachrohres ausgeführt.The mentioned variants of the surface and flow path enlarging Means are expediently in one piece with one Wall of the flat tube executed.

Zur weiteren Verbesserung der Wärmeübertagung können an den Seitenflächen des Flachrohres aus dessen Material herausgeschälte Querrippen vorgesehen sein. Diese Querrippen tragen zur Oberflächenvergrößerung bei, wobei durch den Prozeß des Herausschälens die Querrippen im Materialverbund mit dem Flachrohr bleiben mit einem einhergehenden, entsprechend guten Wärmeübergang. Als weitere Maßnahme zur Verbesserung des Wärmeübergangs können die Querrippen eine Kante in Wellenform aufweisen, wobei die Wellenform vergleichbar zum Wellenschliff eines Messers in der Querrippenebene liegen kann. In einer weiteren Variante liegt die Wellenform der Kante etwa senkrecht zur Oberfläche der Querrippe, wodurch auch diese eine strömungswegverlängernde Wirkung hat.To further improve heat transfer, you can peeled the side surfaces of the flat tube out of its material Cross ribs may be provided. These cross ribs contribute to the surface enlargement, with the Process of peeling out the cross ribs in the material composite with the flat tube stay with an accompanying, correspondingly good heat transfer. As a further measure to The cross ribs can improve the heat transfer Have an edge in wave form, the wave form being comparable for the serrated edge of a knife in the cross rib plane can lie. In a further variant, the Waveform of the edge approximately perpendicular to the surface of the Cross rib, which also extends this flow path Has an effect.

In einer vorteilhaften Weiterbildung sind die Flachrohre als Mehrkammerrohre mit einzelnen Kanälen für das erste Wärmemedium ausgebildet. Durch die Anordnung einer Vielzahl einzelner Kanäle ist einerseits die relative Oberfläche in Berührung mit dem ersten Wärmemedium vergrößert, wodurch auch in diesem Bereich ein verbesserter Wärmeübergang ermöglicht ist. Andererseits ist durch die Vielzahl voneinander getrennter Kanäle auch eine komplexe Strömungsführung innerhalb des Wärmeübertragerblocks ermöglicht. In einer zweckmäßigen Variante sind die Flachrohre aus einem Leichtmetall-Blech gefertigt, wodurch eine kostengünstige Fertigung auch unter Großserienbedingungen ermöglicht ist. Alternativ hierzu sind die Flachrohre im Extrusionsverfahren oder durch Fließpressen hergestellt, wozu Leichtmetall und insbesondere Aluminium nicht nur wegen des relativ geringen Gewichts, sondern gleichermaßen sowohl aus fertigungstechnischen Gesichtspunkten als auch wegen seiner guten Wärmeübertragungseigenschaften besonderes geeignet ist.In an advantageous development, the flat tubes are as multi-chamber pipes with individual channels for the first Heat medium trained. By arranging a variety of individual channels is on the one hand the relative surface enlarged in contact with the first heat medium, which also improves heat transfer in this area is possible. On the other hand, due to the large number separate channels also a complex flow within the heat exchanger block. The flat tubes are an expedient variant Made from a light metal sheet, making it an inexpensive Manufacturing also possible under large series conditions is. Alternatively, the flat tubes are in the Extrusion process or extruded, why light alloy and especially aluminum not only because of the relatively light weight, but equally both from a manufacturing point of view as well special because of its good heat transfer properties suitable is.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
in einer schematischen Übersichtsdarstellung einen Wärmeübertrager am Beispiel eines Verdampfers;
Fig. 2
eine Querschnittsdarstellung durch einen Verdampfer mit wellenförmigen Flachrohren und Längsrippen;
Fig. 3
eine schematische Querschnittsdarstellung von Flachrohren mit gerundeter Wellenform;
Fig. 4
eine Variante der Anordnung nach Fig. 3 mit paarweise gegenüberliegenden Längsrippen;
Fig. 5
in einer perspektivischen Darstellung eine weitere Variante von Flachrohren mit Längsrippen und geschälten Querrippen;
Fig. 6
eine schematische Querschnittsdarstellung durch Rohre mit gegeneinander versetzt angeordneten Längsrippen;
Fig. 7
in einer perspektivischen Darstellung ein Flachrohr mit aus seiner Oberfläche geschälten, gewellten Querrippen;
Fig. 8
eine Variante der Anordnung nach Fig. 7 mit einer Vielzahl von strömungsumleitenden Vorsprüngen;
Fig. 9
eine Querschnittsdarstellung durch ineinandergreifende Vorsprünge nach Fig. 8 zweier benachbarter Flachrohre;
Fig. 10
eine Prinzipdarstellung eines Querschnittes durch Flachrohre in Blechschalenbauweise mit durchlaufenden Streben.
Embodiments of the invention are explained in more detail below with reference to the drawing. Show it:
Fig. 1
a schematic overview of a heat exchanger using the example of an evaporator;
Fig. 2
a cross-sectional view through an evaporator with wavy flat tubes and longitudinal ribs;
Fig. 3
is a schematic cross-sectional view of flat tubes with a rounded waveform;
Fig. 4
a variant of the arrangement of Figure 3 with pairs of opposite longitudinal ribs.
Fig. 5
a perspective view of a further variant of flat tubes with longitudinal ribs and peeled transverse ribs;
Fig. 6
a schematic cross-sectional view through pipes with longitudinal ribs offset from one another;
Fig. 7
a perspective view of a flat tube with peeled, corrugated transverse ribs from its surface;
Fig. 8
a variant of the arrangement of Figure 7 with a plurality of flow-diverting projections.
Fig. 9
a cross-sectional view through interlocking projections of Figure 8 two adjacent flat tubes.
Fig. 10
a schematic representation of a cross section through flat tubes in sheet metal shell construction with continuous struts.

Fig. 1 zeigt in einer schematischen Übersichtsdarstellung einen Wärmeübertrager einer Klimaanlage eines Kraftfahrzeuges am Beispiel eines Verdampfers 1. Auch ein zur Klimaanlage gehöriger Kondensator kann in erfindungsgemäßer, nachfolgend beschriebener Weise ausgeführt sein. Der Verdampfer 1 umfaßt eine Vielzahl von Flachrohren 4, 4', die im wesentlichen parallel zueinander liegend in Form eines Blockes 5 zusammengefaßt sind. Die Flachrohre 4, 4' sind an ihren beiden Enden jeweils mit einem Sammelkasten 29, 30 strömungsleitend verbunden. Der obere Sammelkasten 29 ist durch insgesamt vier Trennwände 31 in insgesamt vier Teilräume 38 aufgeteilt, während der untere Sammelkasten 30 mittels einer Trennwand 32 in zwei Teilräume 39 aufgeteilt ist. Ein leicht verdampfliches erstes Wärmemedium 2 durchströmt die Flachrohre 4, 4' entlang der Pfeile 27, wobei die Anordnung der Trennwände 31, 32 eine Durchströmung der Flachrohre 4, 4' in Form eines Kreuzgegenstromes ergibt. Je nach Anwendungsfall kann auch eine Ausbildung des Verdampfers 1 mit anderer Strömungspaarung, beispielsweise einem reinen Kreuzstrom zweckmäßig sein.1 shows a schematic overview a heat exchanger of an air conditioning system of a motor vehicle using the example of an evaporator 1. Also one for air conditioning appropriate capacitor can be be carried out in the manner described below. The evaporator 1 comprises a plurality of flat tubes 4, 4 ', the lying essentially parallel to one another in the form of a Block 5 are summarized. The flat tubes 4, 4 'are at both ends with a collecting box 29, 30 connected in a flow-conducting manner. The upper collecting box 29 is by a total of four partitions 31 in a total of four Sub-rooms 38 divided, while the lower collection box 30 divided into two sub-spaces 39 by means of a partition 32 is. An easily evaporable first heat medium 2 flows through the flat tubes 4, 4 'along the arrows 27, the arrangement of the partition walls 31, 32 is a flow the flat tubes 4, 4 'in the form of a cross counterflow results. Depending on the application, training can also take place of the evaporator 1 with a different flow pairing, for example a pure cross-flow.

Die blockförmige Anordnung der Flachrohre 4, 4' ergibt im Bereich ihrer Längskanten 16 eine Stirnfläche 6, die in einer gestrichelt angedeuteten Ebene E liegt. Senkrecht zur Stirnfläche 6 bzw. zur Ebene E weist der Block 5 eine Blocktiefe t auf. Der Block 5 wird von einem zweiten Strömungsmedium 3 in der durch den Pfeil 7 angedeuteten Strömungsrichtung durchströmt, wobei die Strömungsrichtung 7 im wesentlichen quer zur Stirnfläche 6 liegt. Das zweite Wärmemedium 3 ist die durch den Verdampfer 5 zu kühlende Luft. Beim Durchströmen des Blockes 5 tritt das zweite Wärmemedium 3 zunächst im Bereich der vorderen Längskanten 16 in den Block 5 ein und wird anschließend zwischen den Flachrohren 4, 4' an deren Oberflächen 17, 18 für einen Wärmeaustausch vorbeigeführt. Anschließend verlässt das zweite Wärmemedium den Verdampfer 1 im Bereich der hinteren Längskanten 17 der Flachrohre 4, 4'.The block-shaped arrangement of the flat tubes 4, 4 'results in Area of their longitudinal edges 16 an end face 6, which in a dashed plane E lies. Perpendicular block 5 has an end face 6 or plane E. Block depth t. The block 5 is a second flow medium 3 in the flow direction indicated by the arrow 7 flows through, the flow direction 7 is substantially transverse to the end face 6. The second Heat medium 3 is the one to be cooled by the evaporator 5 Air. When flowing through block 5, the second occurs Heat medium 3 initially in the area of the front longitudinal edges 16 in block 5 and is then between the Flat tubes 4, 4 'on their surfaces 17, 18 for one Heat exchange passed. Then that leaves second heat medium the evaporator 1 in the area of the rear Longitudinal edges 17 of the flat tubes 4, 4 '.

Fig. 2 zeigt ausschnittsweise eine Querschnittsdarstellung durch einen Block 5 (Fig. 1), bei dem eine Vielzahl parallel zueinander angeordneter Flachrohre 4, 4' vorgesehen ist, die sich in Richtung der Blocktiefe t jeweils von einer vorderen Längskante 16 zu einer hinteren Längskante 17 erstrecken. Die Flachrohre 4, 4' verlaufen in Richtung der Blocktiefe t im Bereich ihres mittleren Teilabschnittes in einem Winkel α von etwa 45° zur Stirnfläche des Blockes 5. Durch die Schrägstellung erhält das zweite Wärmemedium 3 zwischen den Flachrohren 4, 4' eine umgelenkte Strömungsrichtung 8, die eine geneigt zur Stirnfläche 6 und quer zur Längsachse 10 liegende Komponente aufweist. Dadurch wird der Strömungsweg entlang der umgelenkten Strömungsrichtung 8 zwischen der vorderen Längskante 6 und der hinteren Längskante 17 länger als die Blocktiefe t. Durch die Anordnung eines Füllkörpers 28 seitlich des äußersten Flachrohres 4" wird auch am äußersten Flachrohr eine anliegende Strömung sichergestellt. Die Flachrohre 4, 4', 4" weisen in ihrem Querschnitt eine etwa eckig ausgebildete Wellenform mit jeweils einer Welle 13 im Bereich der vorderen und der hinteren Längskante 16, 17 auf. Die beiden Wellen 13 sind derart ausgebildet, dass die beiden Seitenflächen 15, 18 der Flachrohre 4, 4', 4" im Bereich der Längskanten 16, 17 etwa senkrecht zur Stirnfläche 6 stehen. Die Flachrohre 4, 4', 4" weisen des weiteren auf ihren beiden Seitenflächen 15, 17 etwa parallel zur Längsachse 10 verlaufende Längsrippen 20, 20', 21, 21' auf, die mit Abstand ineinander eingreifen. Die dadurch entstehende umgelenkte Strömungsrichtung 8 ist im Zusammenhang mit Fig. 6 weiter unten näher beschrieben.2 shows sections of a cross-sectional illustration through a block 5 (Fig. 1), in which a plurality in parallel flat tubes 4, 4 'arranged with respect to one another are provided is in the direction of the block depth t of one each front longitudinal edge 16 to a rear longitudinal edge 17 extend. The flat tubes 4, 4 'run in the direction of Block depth t in the area of its middle section in an angle α of approximately 45 ° to the end face of the block 5. Due to the inclination, the second heat medium 3 a deflected flow direction between the flat tubes 4, 4 ' 8, one inclined to the end face 6 and across has component lying to the longitudinal axis 10. Thereby becomes the flow path along the redirected flow direction 8 between the front longitudinal edge 6 and the rear Long edge 17 longer than the block depth t. Through the Arrangement of a packing 28 on the side of the outermost Flat tube 4 "will also be in contact with the outermost flat tube Flow ensured. The flat tubes 4, 4 ', 4 " have an approximately angular cross-section Waveform with one wave 13 each in the area of the front and the rear longitudinal edge 16, 17. The two Shafts 13 are designed such that the two side surfaces 15, 18 of the flat tubes 4, 4 ', 4 "in the area of Longitudinal edges 16, 17 are approximately perpendicular to the end face 6. The flat tubes 4, 4 ', 4 "also have their two side surfaces 15, 17 approximately parallel to the longitudinal axis 10 extending longitudinal ribs 20, 20 ', 21, 21' on the intervene at a distance. The resulting deflected flow direction 8 is in connection with Fig. 6 described in more detail below.

Bei der in Fig. 3 gezeigten Variante von Flachrohren 4, 4' weisen diese in ihrem gezeigten Querschnitt eine gerundete Wellenform mit jeweils einer gerundeten Welle 13 im Bereich der vorderen und hinteren Längskanten 16, 17 auf. Dabei greift jeweils die konvexe Seite 12 einer Welle 13 eines Flachrohres 4 in die konkave Seite 14 der entsprechenden Welle 13 des benachbarten Flachrohres 4' mit Abstand ein. Die quer zur Ebene E entlang der Strömungsrichtung 7 einströmende Luft wird zwischen den Flachrohren 4, 4' in eine Strömungsrichtung 8 derart umgelenkt, dass die Strömungsrichtung 8 eine Komponente geneigt zur Ebene E aufweist.In the variant of flat tubes 4, 4 'shown in FIG. 3 have a rounded cross-section in their shown cross-section Waveform, each with a rounded wave 13 in the area the front and rear longitudinal edges 16, 17. The convex side 12 of a shaft 13 engages in each case a flat tube 4 in the concave side 14 of the corresponding Shaft 13 of the adjacent flat tube 4 'at a distance on. The cross to plane E along the flow direction 7 incoming air is between the flat tubes 4, 4 'deflected in a flow direction 8 such that the Flow direction 8 a component inclined to plane E. having.

Die in Fig. 4 gezeigte Variante von Flachrohren 4, 4' weist an ihren Seitenflächen 15, 15', 18, 18' Mittel 19 zur Vergrößerung der wärmeübertragenden Fläche der Flachrohre 4, 4' und des Strömungsweges des zweiten Wärmemediums 3 auf. Im gezeigten Ausführungsbeispiel bestehen die Mittel 19 aus einer Anzahl von parallel zur Längsachse 10 (Fig. 1, 2) angeordneten Längsrippen 20, 20', 21, 21'. Im gezeigten Ausführungsbeispiel sind die Längsrippen 20, 21 bzw. die Längsrippen 20', 21' des entsprechenden Flachrohres 4, 4' paarweise gegenüber liegend angeordnet. Dadurch entsteht im Bereich der Längsrippen 20, 21, bzw. 20', 21' ein dicker Bereich 36, während die Flachrohre 4, 4' im Bereich dazwischen einen dünnen Bereich 34 aufweisen. Die Flachrohre 4, 4' weisen eine abgewinkelte Wellenform mit jeweils einer mittigen Wellenspitze 13 auf. Die Wellenform ist symmetrisch, so daß die vorderen und hinteren Längskanten 16, 17 der Flachrohre auf einer Linie in der durch einen Pfeil 42 dargestellten Blocktiefenrichtung liegen. Die vorderen und hinteren Teilabschnitte der Flachrohre 4, 4' beiderseitig der Wellenspitze 13 sind bezüglich der Ebene E derart schräg gestellt angeordnet, dass wechselseitig jeweils eine Längsrippe 20', 21 in den gegenüber liegenden Zwischenraum 35 eingreift.The variant of flat tubes 4, 4 'shown in FIG. 4 has means 19 on its side faces 15, 15 ', 18, 18' to increase the heat transfer area of the flat tubes 4, 4 'and the flow path of the second heat medium 3 on. In the exemplary embodiment shown there are Means 19 from a number of parallel to the longitudinal axis 10 (Fig. 1, 2) arranged longitudinal ribs 20, 20 ', 21, 21'. in the The exemplary embodiment shown are the longitudinal ribs 20, 21 or the longitudinal ribs 20 ', 21' of the corresponding flat tube 4, 4 'arranged in pairs opposite one another. Thereby arises in the area of the longitudinal ribs 20, 21 or 20 ', 21' a thick area 36, while the flat tubes 4, 4 'in the area have a thin area 34 therebetween. The Flat tubes 4, 4 'have an angled wave shape each have a central shaft tip 13. The waveform is symmetrical so that the front and rear longitudinal edges 16, 17 of the flat tubes on a line in the through an arrow 42 shown block depth direction. The front and rear sections of the flat tubes 4, 4 'on both sides of the shaft tip 13 are with respect to the Level E is arranged so that it is mutual each have a longitudinal rib 20 ', 21 in the opposite intervening space 35 engages.

Zur Verringerung des Strömungswiderstandes für das eintretende zweite Wärmemedium 3 entlang der Strömungsrichtung 7 weisen die Flachrohre 4, 4' im Bereich ihrer Längskante 16 einen dünnen Bereich 34 auf. Durch den wechselseitigen Eingriff der Längsrippen 20', 21 in die gegenüberliegenden Zwischenräume 35 entsteht ein den Strömungsweg verlängernder, in Zusammenhang mit Fig. 6 näher beschriebener mäanderförmiger Strömungsweg.To reduce the flow resistance for the entering second heat medium 3 along the flow direction 7 have the flat tubes 4, 4 'in the region of their longitudinal edge 16 a thin area 34. By the mutual Engagement of the longitudinal ribs 20 ', 21 in the opposite Gaps 35 result in a flow path lengthening 6 meandering in more detail in connection with FIG Flow path.

Die Flachrohre 4, 4' weisen eine identische Bauform auf, wobei durch die Schrägstellung bezüglich der Ebene E trotz der kostensparenden identischen Ausführung und der paarweise gegenüberliegenden Längsrippen 20, 21 bzw. 20', 21' ihr wechselseitiger Eingriff in die gegenüberliegenden Zwischenräume 35 ermöglicht ist. Neben der Strömungsumlenkung im Bereich der Längsrippen 20, 20', 21, 21' und den zugehörigen Zwischenräumen 35 führt auch die Schrägstellung der Flachrohre 4, 4' zu einer kombinierten Vergrößerung des Strömungsweges des zweiten Wärmemediums 3 und zu einer Vergrößerung der wärmeübertragenden Oberfläche an den Flachrohren 4, 4'. The flat tubes 4, 4 'have an identical design, with the inclination with respect to the plane E despite the cost-saving identical design and in pairs opposite longitudinal ribs 20, 21 or 20 ', 21' their mutual intervention in the opposite Spaces 35 is made possible. In addition to the flow diversion in the area of the longitudinal ribs 20, 20 ', 21, 21' and associated spaces 35 also leads to the inclination the flat tubes 4, 4 'to a combined enlargement the flow path of the second heat medium 3 and an increase in the heat transfer surface the flat tubes 4, 4 '.

Fig. 5 zeigt in einer perspektivischen Darstellung schematisch eine Variante der Anordnung nach Fig. 4 zur etwa rechtwinkligen Anordnung bezüglich der Stirnfläche 6 im Bereich der Längskanten 16, 17 (Fig. 2), wobei ver-gleichbar zum Ausführungsbeispiel nach Fig. 5 gerundet ausgeführte Längsrippen 20, 21 bzw. 20', 21' jeweils paarweise angeordnet sind. Um ihren wechselseitigen Eingriff in die gegenüberliegenden Zwischenräume 35 zu ermöglichen, weisen die Flachrohre 4, 4' im Bereich ihrer vorderen Längskanten 16 abwechselnd jeweils einen dicken und einen dünnen Bereich 36, 34 auf. An den Längsrippen 20, 20', 21, 21' sind in Richtung der Längsachse 10 verteilt aus dem Material der Flachrohre 4, 4' herausgeschälte Querrippen 23 vorgesehen. Die Einbaulage der Flachrohre 4, 4' ist dabei bezüglich der Gewichtskraftrichtung 40 so gewählt, dass die Querrippen 23 schräg nach unten in Gewichtskraftrichtung 40 verlaufen und damit ein Abtropfen beispielsweise von Kondenswasser erleichtern.Fig. 5 shows schematically in a perspective view a variant of the arrangement of FIG. 4 for about right-angled arrangement with respect to the end face 6 in Area of the longitudinal edges 16, 17 (Fig. 2), being comparable 5 executed rounded to the embodiment of FIG Longitudinal ribs 20, 21 or 20 ', 21' in pairs are arranged. To their mutual interference in the to allow opposite gaps 35 have the flat tubes 4, 4 'in the area of their front longitudinal edges 16 alternately a thick and a thin area 36, 34 on. On the longitudinal ribs 20, 20 ', 21, 21' distributed in the direction of the longitudinal axis 10 from the material of the flat tubes 4, 4 'provided with transverse ribs 23. The installation position of the flat tubes 4, 4 'is related the direction of weight 40 selected so that the Cross ribs 23 obliquely downward in the direction of the weight 40 run and thus dripping, for example from Lighten condensation.

Fig. 6 zeigt in einer Querschnittsdarstellung eine weitere Variante von Flachrohren 4, 4', bei denen die zugehörigen Längsrippen 20, 21 bzw. 20', 21' gegeneinander versetzt angeordnet sind. Bei dieser Variante ist der Breitenunterschied zwischen den jeweiligen dünnen und dicken Bereichen 34, 36 gering gehalten. Durch den wechselseitigen Eingriff der Längsrippen 21, 20' in die gegenüberliegenden Zwischenräume 35 entsteht ein mäanderförmiger Luftkanal 37, in dem die durch die Pfeile 8 gekennzeichnete Strömungsrichtung des zweiten Wärmemediums wechselnd mit einer in der Ebene E der Stirnfläche 6 (Fig. 1) liegenden Komponente beaufschlagt wird. Dadurch wird eine Verlängerung des Strömungsweges und eine Vergrößerung der wärmeübertragenden Oberfläche erzielt.6 shows another in a cross-sectional illustration Variant of flat tubes 4, 4 ', in which the associated Longitudinal ribs 20, 21 and 20 ', 21' offset from each other are arranged. In this variant, the width difference is between the respective thin and thick areas 34, 36 kept low. Through the mutual intervention the longitudinal ribs 21, 20 'in the opposite spaces 35 creates a meandering air duct 37, in which the flow direction indicated by the arrows 8 of the second heat medium alternating with one in the plane E of the end face 6 (FIG. 1) lying component is applied. This will be an extension of the flow path and an increase in heat transfer Surface achieved.

Fig. 7 zeigt ein weiteres Ausführungsbeispiel eines Flachrohres 4, aus dessen ebenen Seitenflächen 15, 18 quer zur Längsachse 10 verlaufende Querrippen 23 als Mittel 19 zur Vergrößerung der wärmeübertragenden Oberfläche herausgeschält sind. Die Querrippen 23 weisen eine gewellte Kante 24 auf, wobei die Wellenform der gewellten Kante 24 in der Ebene der Querrippen 23 oder senkrecht dazu liegen kann.Fig. 7 shows a further embodiment of a flat tube 4, from its flat side surfaces 15, 18 transverse to Longitudinal axis 10 transverse ribs 23 as means 19 for Removed enlargement of the heat transfer surface are. The transverse ribs 23 have a corrugated edge 24, the waveform of the wavy edge 24 in the Plane of the transverse ribs 23 or perpendicular to it.

Bei der in Fig. 8 gezeigten Ausführung eines Flachrohres 4 sind auf dessen Seitenflächen 15, 18 Mittel 19 zur Vergrößerung der wärmeübertragenden Oberfläche in Form von Vorsprüngen 22 vorgesehen. Fig. 9 zeigt dazu in einer Schnittdarstellung durch die Vorsprünge 22, dass in deren Zwischenräume weitere Vorsprünge 22' eines nicht näher dargestellten, benachbarten Flachrohres 4' ein-greifen. Die Vorsprünge 22, 22' weisen zur Verringerung des Strömungswiderstandes einen aerodynamischen Querschnitt auf, der im gezeigten Ausführungsbeispiel elliptisch ist, bedarfsweise aber auch oval, rautenförmig oder dgl. sein kann. Die Vorsprünge 22, 22' erzeugen eine wechselseitige Teilung und Zusammenführung des Luftstromes entlang der Pfeile 8 für eine verbesserte Durchmischung und für eine verbesserte Wärmeübertragung. Die umgelenkte Strömungsrichtung 8 weist eine den Strömungsweg vergrößernde Komponente auf, die parallel zur Längsachse 10 liegt. In Verbindung mit einer Schrägstellung der Flachrohre 4, 4', oder einer wellenförmigen Ausbildung entsprechend den zuvor gezeigten Ausführungsbeispielen kann die Strömungsrichtung 8 Komponenten aufweisen, die in beliebiger Richtung bezüglich der Ebene E liegen, und wodurch eine angepasste Verlängerung des Strömungsweges für das Wärmemedium 3 ermöglicht ist.In the embodiment of a flat tube 4 shown in FIG. 8 are on the side surfaces 15, 18 means 19 for enlargement the heat transfer surface in the form of projections 22 provided. 9 shows in a Sectional view through the projections 22 that in their Gaps further projections 22 'one not closer shown, adjacent flat tube 4 'engage. The projections 22, 22 'point to reduce the flow resistance an aerodynamic cross section, which is elliptical in the embodiment shown, if necessary but also be oval, diamond-shaped or the like can. The projections 22, 22 'create a mutual Division and merging of the air flow along the Arrows 8 for improved mixing and for one improved heat transfer. The redirected direction of flow 8 has a component that enlarges the flow path on, which is parallel to the longitudinal axis 10. In connection with an inclined position of the flat tubes 4, 4 ', or a wave-like formation corresponding to that previously The exemplary embodiments shown can be the direction of flow Have 8 components in any direction lie with respect to the plane E, and thereby an adapted Extension of the flow path for the heat medium 3 is possible.

Die in den Fig. 2 bis 8 gezeigten Ausführungsbeispiele von Flachrohren 4, 4' sind einteilig aus Aluminium auf dem Wege des Fließpressens hergestellt und als Mehrkammerrohre mit einzelnen Kanälen 26 für das erste Wärmemedium 2 ausgebildet. Für bestimmte Querschnittsformen kommen auch extrudierte Flachrohre in Betracht. Es kann jedoch auch eine Ausführung aus Blech zweckmäßig sein, entweder als Rohr mit geschweißter Längsnaht oder als aus Blechschalen gebildete Scheibenelemente.The embodiments shown in FIGS. 2 to 8 of Flat tubes 4, 4 'are made in one piece from aluminum on the Made by extrusion and as multi-chamber pipes formed with individual channels 26 for the first heat medium 2. Also come for certain cross-sectional shapes extruded flat tubes. However, it can also a version made of sheet metal may be appropriate, either as Pipe with welded longitudinal seam or as from sheet metal shells formed disc elements.

Ein Ausführungsbeispiel zu letztgenannter Form ist in Fig. 10 schematisch im Querschnitt gezeigt. Die Flachrohre 4, 4' sind durch zwei zusammengefügte Halbschalen 43, 44 aus Blech gebildet. Die beiden Halbschalen 43, 44 sind derart geformt, daß jeweils zwei Kammern 45 als Kanäle 26 zur Durchströmung durch das erste Wärmemedium 2 gebildet sind. Je nach Anwendungsfall können auch Ausbildungen mit einer oder mehreren Kammern 45 zweckmäßig sein. Die Richtung der Blocktiefe t entsprechend Fig. 1 ist durch den Pfeil 42 angegeben. Die Flachrohre 4, 4' verlaufen bezüglich des Pfeiles 42 in einem Winkel α von etwa 45°. Als Abstandhalter und Montagehilfe für die Flachrohre 4, 4' sowie als Mittel 19 zur Vergrößerung der wärmeübertragenden Fläche sind eine Vielzahl von Streben 41 vorgesehen, die die Flachrohre 4, 4' durchgreifen. Dabei bilden die Streben 41 auch Vorsprünge 22, 22' im Sinne der Fig. 8 und 9, welche von einer Seitenfläche 15, 18 bis zur benachbarten Seitenfläche 18', 15' verlaufen. Zur Verbesserung des Wärmeüberganges werden die Streben 41 sowohl vom zweiten Wärmemedium 3 in Richtung der Pfeile 8 entsprechend Fig. 9 als auch durch das erste Wärmemedium 2 innerhalb der Kanäle 26 in Richtung der Pfeile 27 nach Fig. 1 umströmt.An embodiment of the latter form is shown in Fig. 10 schematically shown in cross section. The flat tubes 4, 4 'are characterized by two half shells 43, 44 joined together Sheet formed. The two half-shells 43, 44 are of this type shaped that two chambers 45 as channels 26 for Flow through the first heat medium 2 are formed. Depending on the application, training with a or more chambers 45 may be appropriate. The direction of the Block depth t corresponding to FIG. 1 is indicated by arrow 42 specified. The flat tubes 4, 4 'run with respect to the Arrow 42 at an angle α of about 45 °. As a spacer and assembly aid for the flat tubes 4, 4 'and as Means 19 for increasing the heat transfer area a plurality of struts 41 are provided which the Reach through flat tubes 4, 4 '. The struts 41 also projections 22, 22 'in the sense of FIGS. 8 and 9, which from one side surface 15, 18 to the adjacent side surface 18 ', 15' run. To improve heat transfer the struts 41 both from the second heat medium 3 in the direction of arrows 8 according to FIG. 9 as also by the first heat medium 2 within the channels 26 flows in the direction of arrows 27 of FIG. 1.

Die gezeigten Varianten von oberflächen- und strömungswegvergrößernden Mitteln 19 in Form von Längsrippen 20, 20', 21, 21' sowie in Form von Vorsprüngen 22 und Querrippen 23 sind einteilig mit den jeweiligen Wänden 25 der Flachrohre 4, 4' ausgebildet. Die Vorsprünge 22 können insbesondere in Verbindung mit der in Fig. 10 gezeigten Blechschalenbauweise einteilig durch Prägung der Halbschalen 43, 44 geformt sein. Es kann jedoch auch eine separate Fertigung und eine anschließende Befestigung beispielsweise durch stoffschlüssige Verbindung zweckmäßig sein.The shown variants of surface and flow path enlarging Means 19 in the form of longitudinal ribs 20, 20 ', 21, 21 'and in the form of projections 22 and transverse ribs 23 are integral with the respective walls 25 of the flat tubes 4, 4 'formed. The projections 22 can in particular in connection with the sheet metal shell construction shown in FIG. 10 in one piece by embossing the half-shells 43, 44 be shaped. However, it can also be manufactured separately and a subsequent attachment, for example cohesive connection be appropriate.

Claims (16)

Wärmeübertrager, insbesondere Verdampfer (1) einer Klimaanlage in einem Kraftfahrzeug zur Übertragung von Wärme zwischen einem ersten und einem zweiten Wärmemedium (2, 3) mit einer Anzahl von einen Block (5) bildenden Flachrohren (4, 4'), durch die das erste Wärmemedium (2) strömt und die im wesentlichen parallel zueinander angeordnet sind, so daß zwischen den jeweils benachbarten Flachrohren (4, 4') Kanäle für das an einer Stirnfläche (6) des Blockes (5) eintretende zweite Wärmemedium (3) gebildet sind,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') in Richtung der Blocktiefe (t) mindestens über einen Teilabschnitt in einem Winkel (α) zur Stirnfläche (6) des Blockes (5) verlaufen.
Heat exchanger, in particular evaporator (1) of an air conditioning system in a motor vehicle for transferring heat between a first and a second heat medium (2, 3) with a number of flat tubes (4, 4 ') forming a block (5) through which the first Heat medium (2) flows and which are arranged essentially parallel to one another, so that channels are formed between the respectively adjacent flat tubes (4, 4 ') for the second heat medium (3) entering an end face (6) of the block (5),
characterized in that the flat tubes (4, 4 ') run in the direction of the block depth (t) at least over a partial section at an angle (α) to the end face (6) of the block (5).
Wärmeübertrager nach Anspruch 1,
dadurch gekennzeichnet, daß der Winkel (α) etwa in einem Bereich zwischen 25° und 65° liegt und insbesondere etwa 45° beträgt.
Heat exchanger according to claim 1,
characterized in that the angle (α) is approximately in a range between 25 ° and 65 ° and in particular is approximately 45 °.
Wärmeübertrager nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') im Querschnitt (11) etwa eine Wellenform aufweisen.
Heat exchanger according to claim 1 or 2,
characterized in that the flat tubes (4, 4 ') have approximately a wave shape in cross section (11).
Wärmeübertrager nach Anspruch 3,
dadurch gekennzeichnet, daß die Wellenform etwa winklig ausgebildet ist.
Heat exchanger according to claim 3,
characterized in that the waveform is approximately angular.
Wärmeübertrager nach Anspruch 3,
dadurch gekennzeichnet, daß die Wellenform gerundet ausgeführt ist.
Heat exchanger according to claim 3,
characterized in that the waveform is rounded.
Wärmeübertrager nach einem der Ansprüche 3 bis 5,
dadurch gekennzeichnet, daß die Wellenform derart ausgebildet ist, daß Seitenflächen (15, 18) des Flachrohres (4) benachbart einer Längskante (16, 17) und insbesondere im unmittelbaren Anschluß beider Längskanten (16, 17) etwa senkrecht zur Stirnfläche (6) stehen.
Heat exchanger according to one of claims 3 to 5,
characterized in that the waveform is designed such that side surfaces (15, 18) of the flat tube (4) are adjacent to one longitudinal edge (16, 17) and in particular in the direct connection of both longitudinal edges (16, 17) are approximately perpendicular to the end surface (6) ,
Wärmeübertrager nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß an den Seitenflächen (15, 15', 18, 18') der Flachrohre (4, 4') Mittel (19) zur Vergrößerung der wärmeübertragenden Oberfläche und/oder des Strömungsweges des zweiten Wärmemediums (3) aufweisen.
Heat exchanger according to one of claims 1 to 6,
characterized in that on the side surfaces (15, 15 ', 18, 18') of the flat tubes (4, 4 ') have means (19) for enlarging the heat-transferring surface and / or the flow path of the second heat medium (3).
Wärmeübertrager nach Anspruch 7,
dadurch gekennzeichnet, daß die Mittel (19) einteilig mit einer Wand (25) des Flachrohres (4) ausgeführt sind.
Heat exchanger according to claim 7,
characterized in that the means (19) are made in one piece with a wall (25) of the flat tube (4).
Wärmeübertrager nach Anspruch 7 oder 8,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') auf zwei aneinander angrenzenden Seitenflächen (15', 18) gegeneinander versetzte Längsrippen (20, 20', 21, 21') aufweisen.
Heat exchanger according to claim 7 or 8,
characterized in that the flat tubes (4, 4 ') have longitudinal ribs (20, 20', 21, 21 ') offset from one another on two adjoining side surfaces (15', 18).
Wärmeübertrager nach einem der Anspruch 7 bis 9,
dadurch gekennzeichnet, daß an der Seitenfläche (15, 15', 18, 18') Vorsprünge (22, 22'), insbesondere mit einem aerodynamischen Querschnitt vorgesehen sind.
Heat exchanger according to one of claims 7 to 9,
characterized in that projections (22, 22 '), in particular with an aerodynamic cross section, are provided on the side surface (15, 15', 18, 18 ').
Wärmeübertrager nach Anspruch 10,
dadurch gekennzeichnet, daß die Vorsprünge (22, 22') von einer Seitenfläche (18, 15) bis zur benachbarten Seitenfläche (15', 18') des jeweils folgenden Flachrohres (4, 4') verlaufen und insbesondere als mehrere Flachrohre (4, 4') durchgreifende Streben (41) ausgebildet sind.
Heat exchanger according to claim 10,
characterized in that the projections (22, 22 ') run from one side surface (18, 15) to the adjacent side surface (15', 18 ') of the following flat tube (4, 4') and in particular as a plurality of flat tubes (4, 4 ') struts (41) are formed.
Wärmeübertrager nach Anspruch 8 oder 9,
dadurch gekennzeichnet, daß an der Seitenfläche (15, 18) aus dem Material des Flachrohres (4) herausgeschälte Querrippen (23) vorgesehen sind.
Heat exchanger according to claim 8 or 9,
characterized in that transverse ribs (23) peeled out of the material of the flat tube (4) are provided on the side surface (15, 18).
Wärmeübertrager nach Anspruch 12,
dadurch gekennzeichnet, daß die Querrippen (23) eine gewellte Kante (24) aufweisen.
Heat exchanger according to claim 12,
characterized in that the transverse ribs (23) have a corrugated edge (24).
Wärmeübertrager nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') als Mehrkammerrohre mit einzelnen Kanälen (26) für das erste Wärmemedium (2) ausgebildet sind.
Heat exchanger according to one of claims 1 to 13,
characterized in that the flat tubes (4, 4 ') are designed as multi-chamber tubes with individual channels (26) for the first heat medium (2).
Wärmeübertrager nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') aus einem Leichtmetall-Blech gefertigt sind.
Heat exchanger according to one of claims 1 to 14,
characterized in that the flat tubes (4, 4 ') are made of a light metal sheet.
Wärmeübertrager nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet, daß die Flachrohre (4, 4') durch Extrusion und/oder Fließpressen eines Leichtmetalls, insbesondere Aluminium oder einer Aluminiumlegierung hergestellt sind.
Heat exchanger according to one of claims 1 to 14,
characterized in that the flat tubes (4, 4 ') are produced by extrusion and / or extrusion of a light metal, in particular aluminum or an aluminum alloy.
EP02006050A 2001-03-28 2002-03-16 Heat exchanger Expired - Lifetime EP1248063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10115513 2001-03-28
DE10115513A DE10115513A1 (en) 2001-03-28 2001-03-28 Heat exchanger

Publications (2)

Publication Number Publication Date
EP1248063A1 true EP1248063A1 (en) 2002-10-09
EP1248063B1 EP1248063B1 (en) 2006-06-28

Family

ID=7679518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02006050A Expired - Lifetime EP1248063B1 (en) 2001-03-28 2002-03-16 Heat exchanger

Country Status (3)

Country Link
EP (1) EP1248063B1 (en)
AT (1) ATE331928T1 (en)
DE (2) DE10115513A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073655A1 (en) * 2004-01-29 2005-08-11 Calsonic Kansei Corporation Heat exchanger and air-conditioning system employing same
EP2407743A3 (en) * 2010-07-14 2018-07-04 Erbslöh Aluminium GmbH Hollow profile for heat exchanger
WO2019026239A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2021116577A1 (en) * 2019-12-13 2021-06-17 Valeo Systemes Thermiques Heat exchanger, and process for manufacturing such an exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2788705B1 (en) * 2011-12-08 2017-03-01 Carrier Corporation Method of forming heat exchanger tubes
DE102018131026A1 (en) 2018-12-05 2020-06-10 Volkswagen Aktiengesellschaft Heat exchanger for a vehicle, in particular an electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE166135C (en) *
FR685849A (en) * 1929-11-30 1930-07-17 Radiator for automobile engines
US4024623A (en) * 1973-06-21 1977-05-24 Union Carbide Corporation Manufacture of isostress contoured dies
JPS6341791A (en) * 1986-08-06 1988-02-23 Komatsu Ltd Skived-finned heat exchanger
DE3813339A1 (en) * 1988-04-21 1989-11-09 Happel Gmbh & Co Tubular heat exchanger and method for its production
FR2709816A1 (en) * 1993-09-07 1995-03-17 Valeo Thermique Moteur Sa Brazed heat exchanger, useful in particular as air-conditioning condenser for a vehicle
DE19740114A1 (en) * 1997-09-12 1999-03-18 Behr Gmbh & Co Heat exchanger, e.g. for motor vehicles
WO2002016834A2 (en) * 2000-08-21 2002-02-28 Engineered Dynamics Corporation Heat exchanger assembly and a method for efficiently transferring heat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7202072A (en) * 1972-02-17 1973-08-21
NL7314930A (en) * 1973-10-31 1975-05-02 Philips Nv HEAT EXCHANGER.
DE19719260C1 (en) * 1997-05-07 1998-09-24 Valeo Klimatech Gmbh & Co Kg Extruded flat form heat exchanger for motor vehicle
DE19845336A1 (en) * 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE166135C (en) *
FR685849A (en) * 1929-11-30 1930-07-17 Radiator for automobile engines
US4024623A (en) * 1973-06-21 1977-05-24 Union Carbide Corporation Manufacture of isostress contoured dies
JPS6341791A (en) * 1986-08-06 1988-02-23 Komatsu Ltd Skived-finned heat exchanger
DE3813339A1 (en) * 1988-04-21 1989-11-09 Happel Gmbh & Co Tubular heat exchanger and method for its production
FR2709816A1 (en) * 1993-09-07 1995-03-17 Valeo Thermique Moteur Sa Brazed heat exchanger, useful in particular as air-conditioning condenser for a vehicle
DE19740114A1 (en) * 1997-09-12 1999-03-18 Behr Gmbh & Co Heat exchanger, e.g. for motor vehicles
WO2002016834A2 (en) * 2000-08-21 2002-02-28 Engineered Dynamics Corporation Heat exchanger assembly and a method for efficiently transferring heat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 260 (M - 720) 21 July 1988 (1988-07-21) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073655A1 (en) * 2004-01-29 2005-08-11 Calsonic Kansei Corporation Heat exchanger and air-conditioning system employing same
EP2407743A3 (en) * 2010-07-14 2018-07-04 Erbslöh Aluminium GmbH Hollow profile for heat exchanger
WO2019026239A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
US11662148B2 (en) 2017-08-03 2023-05-30 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2021116577A1 (en) * 2019-12-13 2021-06-17 Valeo Systemes Thermiques Heat exchanger, and process for manufacturing such an exchanger
FR3104690A1 (en) * 2019-12-13 2021-06-18 Valeo Systemes Thermiques Heat exchanger and method of manufacturing such an exchanger

Also Published As

Publication number Publication date
DE10115513A1 (en) 2002-10-10
DE50207351D1 (en) 2006-08-10
EP1248063B1 (en) 2006-06-28
ATE331928T1 (en) 2006-07-15

Similar Documents

Publication Publication Date Title
DE19719252C2 (en) Double-flow and single-row brazed flat tube evaporator for a motor vehicle air conditioning system
EP1036296B1 (en) Flat tube with transversally offset u-bend section and heat exchanger configured using same
DE60011616T2 (en) HEAT EXCHANGER WITH MULTICHANNEL TUBES
EP0401752B1 (en) Refrigerant condensor for a vehicle air conditioner
DE69315281T2 (en) Plate heat exchanger and process for its manufacture
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
EP0990828A2 (en) Flat pipe with multichannel arrangement
DE112005003151T5 (en) Evaporator
EP0519334A2 (en) Flat tube heat exchanger, process for manufacturing same, applications and flat tubes for heat exchanger
DE112006000179T5 (en) heat exchangers
DE4026988A1 (en) Heat exchanger in vehicle - comprises assembly of flat pipes and corrugated rib units
DE112005001295T5 (en) heat exchangers
EP1203922A2 (en) Condenser and tube therefor
DE10257767A1 (en) Heat exchanger for condenser or gas cooler for air conditioning installations has two rows of channels for coolant with manifolds at ends and has ribs over which air can flow
EP1411310B1 (en) Heat exhanger with serpentine structure
DE19719256A1 (en) Multi-flow flat tube heat exchanger for motor vehicles with a deflecting base and manufacturing process
DE19933913A1 (en) Evaporator of an automotive air conditioning system
EP0582835A1 (en) Heat-exchanger
EP1588115B1 (en) Heat exchanger, especially gas cooler
EP1664655B1 (en) Heat exchanger
DE202007017501U1 (en) Heat exchange element and thus produced heat exchanger
EP1934545B1 (en) Heating body, cooling circuit, air conditioning unit for a motor vehicle air conditioning system, and air conditioning system for a motor vehicle
EP1248063B1 (en) Heat exchanger
DE19719261C2 (en) Double-flow flat tube evaporator of a motor vehicle air conditioning system
EP0268831B1 (en) Plate fin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030401

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20050309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060628

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060628

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207351

Country of ref document: DE

Date of ref document: 20060810

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061009

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070329

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080326

Year of fee payment: 7

Ref country code: IT

Payment date: 20080318

Year of fee payment: 7

Ref country code: SE

Payment date: 20080320

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080319

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060628

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090316

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100323

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207351

Country of ref document: DE

Effective date: 20111001