EP1217295B1 - Burner for generating a hot gas - Google Patents
Burner for generating a hot gas Download PDFInfo
- Publication number
- EP1217295B1 EP1217295B1 EP01129165A EP01129165A EP1217295B1 EP 1217295 B1 EP1217295 B1 EP 1217295B1 EP 01129165 A EP01129165 A EP 01129165A EP 01129165 A EP01129165 A EP 01129165A EP 1217295 B1 EP1217295 B1 EP 1217295B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- outlet
- combustion chamber
- bodies
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/02—Disposition of air supply not passing through burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to the field of burner technology. It relates to a burner for the production of hot gases according to the preamble of claim 1.
- thermoacoustic Vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for low acoustic attenuation combustion systems. In order to allow high power conversion over a wide operating range with respect to pulsations and emissions, active control of the combustion vibrations may be necessary.
- EP-A1-0 918 152 it is proposed to control the thermoacoustic oscillations in a combustion system by arranging means for the acoustic excitation of the working gas in the region of the burner. However, this is associated with additional equipment and control effort.
- a similar acoustic concept (EP-A1-1 050 713) works with an active suppression by a feedback control loop with corresponding phase rotation.
- EP-A1-0 987 495 it is proposed to additionally mix an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream.
- an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream.
- EP-A1-0 985 877 further proposes to accelerate the flow in the axial direction by minimizing thermoacoustic oscillations in gas turbine combustion chambers by nozzle-like design of the burner outlet, or nozzle-like shaped attachments are attached to the burner.
- EP-A1-1 048 898 discloses a burner (double-cone burner) in which a plurality of internals projecting into the flow are provided in the burner cone for introducing axial vortical strength.
- Coherent structures play a crucial role in mixing processes between air and fuel.
- the dynamics of these structures consequently influence the combustion and thus the heat release.
- Controlling the combustion instabilities is possible by influencing the shear layer between the fresh gas mixture and the recirculated exhaust gas (see, for example, Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998)).
- Paschereit et al. "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998).
- it makes sense to influence the formation of coherent structures by influencing the outflow boundary layer at the burner outlet.
- thermoacoustic oscillations It is an object of the invention to provide a burner in which limited by very simple structural means thermoacoustic oscillations or can be completely suppressed.
- the basic idea of the invention is to influence the formation of coherent structures so that the generation of high-frequency combustion-driven vibrations is prevented.
- Coherent structures are to be understood as flow vortices that arise due to flow instabilities in the shear layers forming at the burner exit.
- the influence of coherent structures on combustion instabilities is most pronounced when the flow instability has overlapped its highest growth rate and the vortices have reached their maximum size.
- the axial position of the highest growth rate can be influenced inter alia by changing the thickness of the outflow boundary layer.
- a preferred embodiment of the invention is characterized in that the means for changing the thickness of the Abströmgrenz für comprise a shear layer fence, which extends along the exit edge of the burner outlet and protrudes with its height substantially parallel to the flow direction into the combustion chamber. Due to the shear layer fence, which preferably has a height of a few millimeters, the thickness of the outflow boundary layer is increased in a particularly simple manner and thus the vortex formation in the axial direction is displaced out of the area of the flame, so that the periodic heat release associated with the vortex formation is avoided.
- the burner is preferably designed as a double-cone burner and comprises at least two hollow, conical, nested in the flow direction part body whose center axes are offset from each other, such that adjacent walls of the body part tangential air inlet channels for the inflow of combustion air in the bounded by the partial body interior, wherein the combustion chamber side edges of the partial body form the outlet edges of the burner outlet.
- Fig. 1 the structure of a double-cone burner is shown in the plan view from the front (contrary to the flow direction), as known for example from EP-A1-1 048 898 and is particularly suitable for the realization of the invention.
- the burner 10 comprises two conical partial bodies 11 and 12, which are offset from one another in a central plane, such that adjacent walls of the partial bodies 11, 12 form tangential air inlet ducts for the inflow of combustion air into the interior 25 delimited by the partial bodies 11, 12.
- Of the Interior 25 opens with a burner outlet 22 to a subsequent combustion chamber 23 (Fig. 2).
- the combustion chamber side edges of the body parts 11, 12 form the outlet edges 16, 17 of the burner outlet 22.
- Around the burner outlet 22 around a transverse to the flow direction extending front plate 14 is attached, which is provided with a plurality of distributed holes 15 is provided.
- the axial position of the highest growth rate of the coherent structures can be influenced inter alia by changing the thickness of the outflow boundary layer 18. According to a preferred embodiment of the invention, this is achieved in that, according to FIG. 3, a shear layer fence 21, for example in the form of a sheet metal strip, is provided, which extends along the exit edge 16, 17 of the burner outlet 22 and with its height substantially parallel to the flow direction in FIG the combustion chamber 23 protrudes.
- FIG. 3 shows the effect of the invention on the suppression of a pressure oscillation in the 1000 Hz range.
- FIG. 3 shows the pressure amplitudes (Amp) measured with two transducers as a function of the thermal output (power) of a burner with shear layer fence 21 (solid circles and rectangles) and without shear layer fence (empty circles and rectangles). It is clearly evident from FIG. 3 that the occurrence of vibrations above a certain power point can be largely prevented with the aid of the shear layer fence.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Description
Die vorliegende Erfindung bezieht sich auf das Gebiet der Brennertechnik. Sie betrifft einen Brenner zur Erzeugung von Heissgasen gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of burner technology. It relates to a burner for the production of hot gases according to the preamble of
Die strömungsmechanische Stabilität eines Gasturbinenbrenners ist von entscheidender Bedeutung für das Auftreten thermoakustischer Schwingungen. Strömungsmechanische Instabilitätswellen, die am Brenner entstehen, führen zur Ausbildung von Wirbeln (kohärente Strukturen), die die Verbrennung beeinflussen und zu periodischer Wärmefreisetzung mit den damit verbundenen Druckschwankungen (thermoakustischen Schwingungen) führen können. Thermoakustische Schwingungen stellen eine Gefahr für jede Art von Verbrennungsanwendungen dar. Sie führen zu Druckschwingungen hoher Amplitude, zu einer Einschränkung des Betriebsbereiches und können die Schadstoffemissionen erhöhen. Dieses trifft insbesondere für Verbrennungssysteme mit geringer akustischer Dämpfung zu. Um in bezug auf Pulsationen und Emissionen eine hohe Leistungskonversion über einen weiten Betriebsbereich zu ermöglichen, kann eine aktive Kontrolle der Verbrennungsschwingungen notwendig sein.The fluid mechanical stability of a gas turbine burner is of crucial importance for the occurrence of thermoacoustic vibrations. Fluid-mechanical instability waves, which arise at the burner, lead to the formation of vortices (coherent structures), which influence the combustion and can lead to periodic heat release with the associated pressure fluctuations (thermoacoustic oscillations). The thermoacoustic Vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for low acoustic attenuation combustion systems. In order to allow high power conversion over a wide operating range with respect to pulsations and emissions, active control of the combustion vibrations may be necessary.
In der Vergangenheit sind bereits eine Vielzahl von Vorschlägen gemacht und Möglichkeiten aufgezeigt worden, wie man die unerwünschten thermoakustischen Schwingungen bei derartigen Brennern, insbesondere auch den sogenannten Doppelkegelbrennern, wie sie beispielsweise in der EP-A2-0 881 432 beschrieben sind, dämpfen oder ganz unterdrücken kann.In the past, a large number of proposals have already been made and possibilities shown how to damp or completely suppress the undesired thermoacoustic oscillations in such burners, in particular also the so-called double-cone burners, as described, for example, in EP-A2-0 881 432 can.
In der EP-A1-0 918 152 wird vorgeschlagen, die thermoakustischen Schwingungen in einem Verbrennungssystem dadurch zu kontrollieren, dass im Bereich des Brenners Mittel zur akustischen Anregung des Arbeitsgases angeordnet werden. Dies ist allerdings mit einem zusätzlichen apparativen und Regelaufwand verbunden. Ein ähnliches akustisches Konzept (EP-A1-1 050 713) arbeitet mit einer aktiven Unterdrückung durch eine rückgekoppelte Regelschleife mit entsprechender Phasendrehung.In EP-A1-0 918 152 it is proposed to control the thermoacoustic oscillations in a combustion system by arranging means for the acoustic excitation of the working gas in the region of the burner. However, this is associated with additional equipment and control effort. A similar acoustic concept (EP-A1-1 050 713) works with an active suppression by a feedback control loop with corresponding phase rotation.
In der EP-A1-0 987 495 wird vorgeschlagen, zur Minimierung von thermoakustischen Schwingungen in Gasturbinenbrennkammern zu dem Brennstoffstrom zusätzlich ein inertes Gas wie z.B. N2, CO2 oder dgl. zuzumischen. Dies bedeutet jedoch ein zusätzliches Versorgungs- und Leitungssystem für das zugemischte Inertgas.In EP-A1-0 987 495 it is proposed to additionally mix an inert gas such as N 2 , CO 2 or the like for minimizing thermoacoustic oscillations in gas turbine combustors to the fuel stream. However, this means an additional supply and piping system for the mixed inert gas.
Andere Lösungen modifizieren die Geometrie des Brenners, insbesondere am Brenneraustritt: In der EP-A1-1 002 992 wird vorgeschlagen, zur Kontrolle von Strömungsinstabilitäten im Brenner an der Innenseite des Brenneraustritts entlang dem Umfang eine Mehrzahl von Düsen anzuordnen, die durch Eindüsung von Luft unter einem Winkel zur Strömungsrichtung axiale Wirbelstärke in die Strömung einbringen.Other solutions modify the geometry of the burner, in particular at the burner outlet: In EP-A1-1 002 992 it is proposed to arrange a plurality of nozzles for controlling flow instabilities in the burner on the inside of the burner outlet along the circumference, which are injected by injection of air introduce axial vorticity into the flow at an angle to the flow direction.
Die EP-A1-0 985 877 schlägt weiterhin vor, zur Minimierung von thermoakustischen Schwingungen in Gasturbinenbrennkammern die Strömung in axialer Richtung zu beschleunigen, indem der Brenneraustritt düsenartig ausgebildet wird, oder düsenartig geformte Anbauten am Brenner angebracht werden.EP-A1-0 985 877 further proposes to accelerate the flow in the axial direction by minimizing thermoacoustic oscillations in gas turbine combustion chambers by nozzle-like design of the burner outlet, or nozzle-like shaped attachments are attached to the burner.
In der EP-A1-1 048 898 schliesslich wird ein Brenner (Doppelkegelbrenner) offenbart, bei dem zum Einbringen axialer Wirbelstärke im Brennerkegel eine Mehrzahl von in die Strömung hineinragenden Einbauten vorgesehen werden.Finally, EP-A1-1 048 898 discloses a burner (double-cone burner) in which a plurality of internals projecting into the flow are provided in the burner cone for introducing axial vortical strength.
Die vorliegende Erfindung geht demgegenüber von der folgenden Ueberlegung aus: Kohärente Strukturen spielen eine entscheidende Rolle bei Mischungsvorgängen zwischen Luft und Brennstoff. Die Dynamik dieser Strukturen beeinflusst demzufolge die Verbrennung und damit die Wärmefreisetzung. Durch Beeinflussung der Scherschicht zwischen dem Frischgasgemisch und dem rezirkulierten Abgas ist eine Kontrolle der Verbrennungsinstabilitäten möglich (siehe z. B. Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Sclence & Technology, Vol. 138, p. 213-232 (1998)). Insbesondere bietet es sich dabei an, die Ausbildung kohärenter Strukturen durch die Beeinflussung der Abströmgrenzschicht am Brenneraustritt zu beeinflussen.In contrast, the present invention is based on the following consideration: Coherent structures play a crucial role in mixing processes between air and fuel. The dynamics of these structures consequently influence the combustion and thus the heat release. Controlling the combustion instabilities is possible by influencing the shear layer between the fresh gas mixture and the recirculated exhaust gas (see, for example, Paschereit et al., "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner, Combustion, Slicing & Technology, Vol. 138, pp. 213-232 (1998)). In particular, it makes sense to influence the formation of coherent structures by influencing the outflow boundary layer at the burner outlet.
Es ist Aufgabe der Erfindung, einen Brenner zu schaffen, bei dem mit sehr einfachen konstruktiven Mitteln thermoakustische Schwingungen begrenzt bzw. ganz unterdrückt werden können.It is an object of the invention to provide a burner in which limited by very simple structural means thermoacoustic oscillations or can be completely suppressed.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst.The object is solved by the entirety of the features of
Der Grundgedanke der Erfindung ist, die Ausbildung kohärenter Strukturen so zu beeinflussen, daß die Entstehung von hochfrequenten verbrennungsgetriebenen Schwingungen verhindert wird. Kohärente Strukturen sind hierbei als Strömungswirbel zu verstehen, die durch Strömungsinstabilitäten in den sich am Brenneraustritt bildenden Scherschichten entstehen. Der Einfluß kohärenter Strukturen auf die Verbrennungsinstabilitäten ist am ausgeprägtesten, wenn die Strömungsinstabilität ihre höchste Wachstumsrate überschnitten hat und die Wirbel ihre maximale Größe erreicht haben. Die axiale Position der höchsten Wachstumsrate läßt sich unter anderem durch Änderung der Dicke der Abströmgrenzschicht beeinflussen. Durch die Verhinderung der Entstehung von Wirbelstrukturen im Bereich der Flamme wird eine periodische Wärmefreisetzung unterbunden. Eine periodische Wärmefreisetzung wäre jedoch die Grundlage für das Auftreten thermoakustischer Schwingungen, was somit verhindert wird.The basic idea of the invention is to influence the formation of coherent structures so that the generation of high-frequency combustion-driven vibrations is prevented. Coherent structures are to be understood as flow vortices that arise due to flow instabilities in the shear layers forming at the burner exit. The influence of coherent structures on combustion instabilities is most pronounced when the flow instability has overlapped its highest growth rate and the vortices have reached their maximum size. The axial position of the highest growth rate can be influenced inter alia by changing the thickness of the outflow boundary layer. By preventing the formation of vortex structures in the region of the flame, a periodic heat release is prevented. However, a periodic heat release would be the basis for the occurrence of thermoacoustic vibrations, which is thus prevented.
Eine bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Mittel zur Aenderung der Dicke der Abströmgrenzschicht einen Scherschichtzaun umfassen, welcher entlang der Austrittskante des Brenneraustritts verläuft und mit seiner Höhe im wesentlichen parallel zur Strömungsrichtung in den Brennraum hineinragt. Durch den Scherschichtzaun, der vorzugsweise eine Höhe von wenigen Millimetern aufweist, wird auf besonders einfache Weise die Dicke der Abströmgrenzschicht vergrössert und damit die Wirbelbildung in axialer Richtung aus dem Bereich der Flamme heraus verlagert, so dass die mit der Wirbelbildung verbundenen periodischen Wärmefreisetzungen unterbleiben.A preferred embodiment of the invention is characterized in that the means for changing the thickness of the Abströmgrenzschicht comprise a shear layer fence, which extends along the exit edge of the burner outlet and protrudes with its height substantially parallel to the flow direction into the combustion chamber. Due to the shear layer fence, which preferably has a height of a few millimeters, the thickness of the outflow boundary layer is increased in a particularly simple manner and thus the vortex formation in the axial direction is displaced out of the area of the flame, so that the periodic heat release associated with the vortex formation is avoided.
Der Brenner ist vorzugsweise als Doppelkegelbrenner ausgebildet und umfasst wenigstens zwei hohle, kegelförmige, in Strömungsrichtung ineinandergeschachtelte Teilkörper, deren Mittelachsen zueinander versetzt verlaufen, derart, dass benachbarte Wandungen der Teilkörper tangentiale Lufteintrittskanäle für das Einströmen von Verbrennungsluft in den von den Teilkörpern begrenzten Innenraum bilden, wobei die brennraumseitigen Ränder der Teilkörper die Austrittskanten des Brenneraustritts bilden.The burner is preferably designed as a double-cone burner and comprises at least two hollow, conical, nested in the flow direction part body whose center axes are offset from each other, such that adjacent walls of the body part tangential air inlet channels for the inflow of combustion air in the bounded by the partial body interior, wherein the combustion chamber side edges of the partial body form the outlet edges of the burner outlet.
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
- Fig. 1
- in der Draufsicht von vorn (entgegen der Strömungsrichtung) die Struktur eines an sich bekannten Doppelkegelbrenners, wie er zur Verwirklichung der Erfindung besonders geeignet ist;
- Fig. 2
- im Längsschnitt entlang der Ebene II-II aus Fig. 1 den Doppelkegelbrenner aus Fig. 1 in der herkömmlichen Ausgestaltung;
- Fig. 3
- in einer zu Fig. 2 analogen Darstellung einen Doppelkegelbrenner gemäss einem bevorzugten Ausführungsbeispiel der Erfindung mit einem Scherschichtzaun an der Austrittskante des Brenneraustritts; und
- Fig. 4
- ein Diagramm von gemessenen Druckamplituden in Abhängigkeit von der thermischen Leistung eines beispielhaften Brenners mit und ohne Scherschichtzaun.
- Fig. 1
- in the plan view from the front (opposite to the flow direction), the structure of a conventional double-cone burner, as it is particularly suitable for implementing the invention;
- Fig. 2
- in a longitudinal section along the plane II-II of Figure 1 the double-cone burner of Figure 1 in the conventional embodiment.
- Fig. 3
- in a representation analogous to Fig. 2 a double-cone burner according to a preferred embodiment of the invention with a shear layer fence at the exit edge of the burner outlet; and
- Fig. 4
- a diagram of measured pressure amplitudes as a function of the thermal performance of an exemplary burner with and without shear layer fence.
In Fig. 1 ist in der Draufsicht von vorn (entgegen der Strömungsrichtung) die Struktur eines Doppelkegelbrenners dargestellt, wie er z.B. aus der EP-A1-1 048 898 bekannt und zur Verwirklichung der Erfindung besonders geeignet ist. Der Brenner 10 umfasst zwei kegelförmige Teilkörper 11 und 12, die in einer Mittelebene gegeneinander versetzt sind, derart, dass benachbarte Wandungen der Teilkörper 11, 12 tangentiale Lufteintrittskanäle für das Einströmen von Verbrennungsluft in den von den Teilkörpern 11, 12 umgrenzten Innenraum 25 bilden. Der Innenraum 25 öffnet sich mit einem Brenneraustritt 22 zu einem nachfolgenden Brennraum 23 (Fig. 2). Die brennraumseitigen Ränder der Teilkörper 11, 12 bilden dabei die Austrittskanten 16, 17 des Brenneraustritts 22. Um den Brenneraustritt 22 herum ist eine sich quer zur Strömungsrichtung erstreckende Frontplatte 14 angebracht, die mit einer Mehrzahl von verteilt angeordneten Bohrungen 15 versehen ist.In Fig. 1, the structure of a double-cone burner is shown in the plan view from the front (contrary to the flow direction), as known for example from EP-A1-1 048 898 and is particularly suitable for the realization of the invention. The
In den Innenraum 25 des Brenners 10 wird durch eine zentrale Brennstoffdüse 13 Brennstoff eingedüst und mit der tangential einströmenden Luft zu einem Brennstoff-Luft-Gemisch verwirbelt. Parallel zu dem aus dem Brenneraustritt 22 austretenden Brennstoff-Luft-Gemisch strömt durch die Bohrungen 15 Luft. Das Brennstoff-Luft-Gemisch verbrennt im Brennraum 23 mit einer Flamme 20. An den Austrittskanten 16, 17 des Brenneraustritts 22 bilden sich zwischen dem ausströmenden Brennstoff-Luft-Gemisch und der umgebenden Luft eine Abströmgrenzschicht 18. In der Abströmgrenzschicht 18 bilden sich Scherschichten mit Strömungsinstabilitäten, die zur Bildung von kohärenten Strukturen in Form von Strömungswirbeln führen. Der Einfluß dieser kohärenten Strukturen auf die Verbrennungsinstabilitäten im Brennraum 23 ist am ausgeprägtesten, wenn die Strömungsinstabilität ihre höchste Wachstumsrate überschnitten hat und die Wirbel 19 ihre maximale Größe erreicht haben (Fig. 2)In the
Liegt die Position der Wirbel maximaler Grösse 19 im Bereich der Flamme 20, wie dies in Fig. 2 gezeigt ist, kommt zu periodischen Wärmefreisetzungen, die zu den unerwünschten thermoakustischen Schwingungen führen. Die axiale Position der höchsten Wachstumsrate der kohärenten Strukturen läßt sich jedoch unter anderem durch Änderung der Dicke der Abströmgrenzschicht 18 beeinflussen. Gemäss einer bevorzugten Ausgestaltung der Erfindung wird dies dadurch erreicht, dass gemäss Fig. 3 ein Scherschichtzaun 21, z.B. in Form eines Blechstreifens, vorgesehen wird, welcher entlang der Austrittskante 16, 17 des Brenneraustritts 22 verläuft und mit seiner Höhe im wesentlichen parallel zur Strömungsrichtung in den Brennraum 23 hineinragt. Durch den vorzugsweise einige Millimeter, z.B. 5 mm hohen Scherschichtzaun 21, wird die Entstehung von Wirbelstrukturen im Bereich der Flamme 20 und damit eine periodische Wärmefreisetzung unterbunden (die Wirbel maximaler Grösse 19 verschieben sich in einen Bereich ausserhalb der Flamme 20). Eine periodische Wärmefreisetzung wäre jedoch die Grundlage für das Auftreten thermoakustischer Schwingungen, was somit verhindert wird.If the position of the maximum size swirls 19 in the region of the
In Fig. 3 ist die Wirkung der Erfindung auf die Unterdrückung einer Druckschwingung im 1000 Hz-Bereich dargestellt. In Fig. 3 sind die mit zwei Aufnehmern gemessenen Druckamplituden (Amp) in Abhängigkeit von der thermischen Leistung (Power) eines Brenners mit Scherschichtzaun 21 (volle Kreise und Rechtecke) und ohne Scherschichtzaun (leere Kreise und Rechtecke) wiedergegeben. Man erkennt aus der Fig. 3 deutlich, dass das Auftreten der Schwingungen ab einem bestimmtem Leistungspunkt mit Hilfe des Scherschichtzauns weitgehend verhindert werden kann.FIG. 3 shows the effect of the invention on the suppression of a pressure oscillation in the 1000 Hz range. FIG. 3 shows the pressure amplitudes (Amp) measured with two transducers as a function of the thermal output (power) of a burner with shear layer fence 21 (solid circles and rectangles) and without shear layer fence (empty circles and rectangles). It is clearly evident from FIG. 3 that the occurrence of vibrations above a certain power point can be largely prevented with the aid of the shear layer fence.
- 1010
- Brenner (Doppelkegelbrenner)Burner (double cone burner)
- 11,1211.12
- kegelförmiger Teilkörperconical part body
- 1313
- Brennstoffdüsefuel nozzle
- 1414
- Frontplattefront panel
- 1515
- Bohrung (Frontplatte)Bore (front panel)
- 16,1716.17
- Austrittskante (Brenneraustritt)Exit edge (burner exit)
- 18,18'18.18 '
- Abströmgrenzschichtoutflow boundary
- 1919
- Wirbel maximaler GrösseWhirl of maximum size
- 2020
- Flammeflame
- 2121
- ScherschichtzaunShear layer fence
- 2222
- Brenneraustrittburner outlet
- 2323
- Brennraumcombustion chamber
- 2424
- Mittelebenemidplane
- 2525
- Innenrauminner space
Claims (4)
- Burner (10) for generating a hot gas, which burner (10) opens out, by way of a burner outlet (22) delimited by an outlet edge (16, 17), into a combustion chamber (23), in which a fuel/air mixture which flows out of the burner outlet (22), forming an outflow boundary layer (18, 18'), after ignition of the burner (10), forms a flame (20), characterized in that to prevent the periodic release of heat and associated thermo-acoustic oscillations in the combustion chamber (23), means (21) for altering the thickness of the outflow boundary layer (18, 18') are arranged at the burner outlet (22).
- Burner according to Claim 1, characterized in that the means for altering the thickness of the outflow boundary layer (18, 18') comprise a shearing layer fence (21) which runs along the outlet edge (16, 17) of the burner outlet (22) and the height of which projects into the combustion chamber (23) substantially parallel to the direction of flow.
- Burner according to Claim 2, characterized in that the height of the shearing layer fence (21) is a few millimetres, preferably about 5 mm.
- Burner according to one of Claims 1 to 3, characterized in that the burner (10) is designed as a double-cone burner and comprises at least two hollow, conical part-bodies (11, 12) which are offset with respect to one another in a centre plane (24) in such a manner that adjacent walls of the part-bodies (11, 12) form tangential air inlet passages for combustion air to flow into the interior (25) delimited by the part-bodies (11, 12), the combustion chamber edges of the part-bodies (11, 12) forming the outlet edges (16, 17) of the burner outlet (22).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10065206 | 2000-12-23 | ||
DE10065206 | 2000-12-23 | ||
DE10120960 | 2001-04-27 | ||
DE10120960 | 2001-04-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1217295A2 EP1217295A2 (en) | 2002-06-26 |
EP1217295A3 EP1217295A3 (en) | 2002-11-20 |
EP1217295B1 true EP1217295B1 (en) | 2006-08-23 |
Family
ID=26008099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01129165A Expired - Lifetime EP1217295B1 (en) | 2000-12-23 | 2001-12-08 | Burner for generating a hot gas |
Country Status (3)
Country | Link |
---|---|
US (1) | US6773257B2 (en) |
EP (1) | EP1217295B1 (en) |
DE (1) | DE50110801D1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100119984A1 (en) * | 2008-11-10 | 2010-05-13 | Fox Allen G | Abatement system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4330083A1 (en) * | 1993-09-06 | 1995-03-09 | Abb Research Ltd | Method of operating a premix burner |
DE19547912A1 (en) * | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Burners for a heat generator |
DE19548853A1 (en) * | 1995-12-27 | 1997-07-03 | Abb Research Ltd | Cone burner |
US5865609A (en) * | 1996-12-20 | 1999-02-02 | United Technologies Corporation | Method of combustion with low acoustics |
DE19721937B4 (en) | 1997-05-26 | 2008-12-11 | Alstom | Premix burner for operating a unit for generating a hot gas |
WO1999006767A1 (en) * | 1997-07-31 | 1999-02-11 | Siemens Aktiengesellschaft | Burner |
DE19736902A1 (en) | 1997-08-25 | 1999-03-04 | Abb Research Ltd | Burners for a heat generator |
EP0918152A1 (en) | 1997-11-24 | 1999-05-26 | Abb Research Ltd. | Method and apparatus for controlling thermo-acoustic vibratins in combustion chambers |
DE19757189B4 (en) * | 1997-12-22 | 2008-05-08 | Alstom | Method for operating a burner of a heat generator |
EP0931979A1 (en) | 1998-01-23 | 1999-07-28 | DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- | Method and apparatus for supressing flame and pressure fluctuations in a furnace |
DE19831933C1 (en) * | 1998-07-16 | 2000-01-27 | Viessmann Werke Kg | Process and burner for avoiding thermoacoustic flame or pressure vibrations in furnaces operated with fan-assisted burners |
EP0985877A1 (en) | 1998-09-10 | 2000-03-15 | Abb Research Ltd. | Device and method for minimizing thermoacoustic oscillations in gas turbine combustion chambers |
DE59810033D1 (en) | 1998-09-16 | 2003-12-04 | Alstom Switzerland Ltd | Process for minimizing thermoacoustic vibrations in gas turbine combustors |
EP1048898B1 (en) | 1998-11-18 | 2004-01-14 | ALSTOM (Switzerland) Ltd | Burner |
DE59812039D1 (en) | 1998-11-18 | 2004-11-04 | Alstom Technology Ltd Baden | burner |
DE19928226A1 (en) | 1999-05-07 | 2001-02-01 | Abb Alstom Power Ch Ag | Process for suppressing or controlling thermoacoustic vibrations in a combustion system and combustion system for carrying out the process |
-
2001
- 2001-12-08 DE DE50110801T patent/DE50110801D1/en not_active Expired - Lifetime
- 2001-12-08 EP EP01129165A patent/EP1217295B1/en not_active Expired - Lifetime
- 2001-12-10 US US10/006,222 patent/US6773257B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE50110801D1 (en) | 2006-10-05 |
US20020182553A1 (en) | 2002-12-05 |
US6773257B2 (en) | 2004-08-10 |
EP1217295A3 (en) | 2002-11-20 |
EP1217295A2 (en) | 2002-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10205839B4 (en) | Premix burner for reducing combustion-driven vibrations in combustion systems | |
EP1199516B1 (en) | Burner | |
EP1182398B1 (en) | Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process | |
DE19839085C2 (en) | Burner arrangement with primary and secondary pilot burner | |
EP0675322B1 (en) | Premix burner | |
DE60224141T2 (en) | Gas turbine and combustion chamber for it | |
DE60007946T2 (en) | A combustion chamber | |
EP0733861A2 (en) | Combustor for staged combustion | |
DE10064259B4 (en) | Burner with high flame stability | |
WO2005095863A1 (en) | Burner | |
EP0931979A1 (en) | Method and apparatus for supressing flame and pressure fluctuations in a furnace | |
EP0694740A2 (en) | Combustion chamber | |
EP2257736B1 (en) | Method for the production of hot gas | |
EP0687860A2 (en) | Self igniting combustion chamber | |
DE4411623A1 (en) | Premix burner | |
EP1279898A2 (en) | Premix burner with high flame stability | |
DE102008016931A1 (en) | System for reducing combustion chamber dynamics | |
EP0851172B1 (en) | Burner and method for operating a combustion chamber with a liquid and/or gaseous fuel | |
WO1999004196A1 (en) | Arrangement of burners for heating installation, in particular a gas turbine combustion chamber | |
EP0742411B1 (en) | Air supply for a premix combustor | |
DE19939235B4 (en) | Method for producing hot gases in a combustion device and combustion device for carrying out the method | |
EP1002992B1 (en) | Burner | |
EP1217295B1 (en) | Burner for generating a hot gas | |
WO1999056060A1 (en) | Combustion chamber assembly | |
EP0730121A2 (en) | Premix burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 23R 3/16 A, 7F 23D 14/46 B, 7F 23C 7/00 B |
|
17P | Request for examination filed |
Effective date: 20030505 |
|
AKX | Designation fees paid |
Designated state(s): DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50110801 Country of ref document: DE Date of ref document: 20061005 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061016 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101230 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50110801 Country of ref document: DE Effective date: 20120703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170727 AND 20170802 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171208 |