EP1214551B2 - Ceramic sheathed element glow plug - Google Patents
Ceramic sheathed element glow plug Download PDFInfo
- Publication number
- EP1214551B2 EP1214551B2 EP00960314A EP00960314A EP1214551B2 EP 1214551 B2 EP1214551 B2 EP 1214551B2 EP 00960314 A EP00960314 A EP 00960314A EP 00960314 A EP00960314 A EP 00960314A EP 1214551 B2 EP1214551 B2 EP 1214551B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- glow plug
- sheathed
- temperature
- element glow
- heating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
- F23Q7/001—Glowing plugs for internal-combustion engines
Definitions
- the invention relates to a ceramic glow plug for diesel engines according to the preamble of claim 1.
- a ceramic glow plug for diesel engines according to the preamble of claim 1.
- a glow plug with a ceramic heater which has a ceramic, electrically conductive, U-shaped heating layer of low electrical conductivity and ceramic lead layers of higher electrical conductivity.
- the ceramic glow plug according to the invention with the features of claim 1 has the advantage that the temperature of the glow plug is measurable. It is possible in a ceramic glow plug for the first time to measure the temperature of the glow plug directly in a selected area on the outside of the glow plug without additional equipment expense. The measurement of the temperature takes place in a small, compared to the volume of the entire glow pencil selected range, whereby the error that occurs by a temperature distribution over a large volume, can be reduced in the temperature determination. It is also advantageous that in the glow plug according to the invention, a concentration of the heating power in a selected region of the glow plug can be realized without changing the cross section of the conductive layer, so that the surface in the region in which the concentration of the heating power is to take place, constant remains and thus the interaction surface is kept constant. Another advantage is that the production of such a ceramic temperature measuring glow plug can be designed inexpensively.
- a processing of the measured temperature values by a control unit allows regulation of the temperature in the selected area of the glow plug.
- the glow plug according to the invention in passive operation, after it has fulfilled the heating function, as a temperature sensor. It can thus be determined whether the combustion takes place correctly in the respective cylinder. It is advantageous that, on the basis of this information, an influencing of parameters relevant for the combustion can take place.
- FIG. 1 schematically shows a longitudinal section through a ceramic glow plug according to the invention 1.
- the cylindrical feed line 5 is connected via a contact pin 10, wherein the cylindrical feed line 5 can also be combined with the contact pin 10 in one component, and a suitable contacting element 12, which is preferably formed as a contact spring or as an electrically conductive powder pack or as an electrically conductive tablet with an elastic spring component, preferably made of graphite, connected to the ceramic glow plug 14.
- the interior of the glow plug is sealed by means of a sealing packing 15 with respect to the combustion chamber.
- the sealing packing 15 consists of an electrically conductive carbon compound.
- the glow plug 14 consists of a ceramic heating layer 18 and ceramic lead layers 20 and 21, wherein the two lead layers 20, 21 are connected by the heating layer 18 and together with the heating layer 18 form the conductive layer.
- the lead layers 20, 21 have an arbitrary shape; the heating layer 18 can also have any desired shape.
- the conductive layer is U-shaped.
- the lead layers 20 and 21 are separated by an insulating layer 22, which is also made of ceramic material.
- the glow plug 14 is designed such that the lead layers 20 and 21 and the heating layer 18 are arranged outside of the glow plug 14.
- the lead layers 20 and 21 are located within the glow plug and are still covered by an external, ceramic, insulating layer.
- a glass layer not shown, of the other components of the glow plug 4, 8, 12, 15.
- the glass layer is interrupted at the point 24.
- the glass layer is also interrupted for electrical contact between lead layer 21 and plug housing 4 via the packing 15 at location 26.
- the heating layer 18 was placed at the tip of the glow plug. However, it is also conceivable to place this heating layer at another location of the conductive layer. The heating layer 18 should be at the point where the greatest heating effect is to be achieved.
- the ceramic heating element is shown in a view from the side.
- the embodiment in which the heating layer 18 is at the tip of the glow plug is shown.
- the lead layers 20, 21 and the insulating layer 22 can be seen.
- the operating condition in which the glow plug is heated to assist combustion in the combustion chamber which heating occurs at engine startup, during an afterglow phase, preferably over 3 minutes, and during an intermediate annealing phase when the temperature of the combustion chamber during operation the internal combustion engine drops too much, is called active operation.
- the material of the heating layer 18 is selected so that the absolute electrical resistance of the heating layer 18 is greater than the absolute electrical resistance of the feed layers 20, 21.
- the term resistance without addition understood the absolute electrical resistance In order to avoid cross-currents between the conductive layer, the resistance of the insulating layer is chosen so that it is significantly greater than the resistance of the heating layer 18 and the lead layers 20, 21.
- FIG. 3 is shown schematically, which devices communicate with the glow plug 1.
- the engine control unit 30, which includes a computer and a memory unit.
- the motor-dependent parameters of the glow plug are stored. This can be, for example, the resistance-temperature characteristics as a function of load and speed of the motor.
- the engine controller memory also includes one or more temperature reference values for proper combustion.
- the engine controller may control parameters that affect combustion, such as the duration of injection, the beginning of injection, and the end of injection of the fuel.
- the control unit 32 regulates a voltage which was predetermined by the engine control unit. This voltage represents the total voltage used for the glow plug.
- the controller 32 also houses a current meter that measures the amount of current flowing through the glow plug.
- the controller 32 includes a memory and a computing unit.
- the engine control unit 30 and the control unit 32 can also be combined in one device.
- the FIG. 4 illustrates the occurring via the glow plug resistors.
- the resistor 41 having a value R20 is the resistance of the ceramic lead layer 20.
- the resistor 43 having a value R1 includes the resistance of the heating layer.
- the resistor 45 with a value R21 includes the resistance of the ceramic lead layer 21.
- the resistors 41, 43 and 45 are connected in series. For the basis of FIG. 4 Considerations that may be taken should neglect any crossflows that may occur. Thus, the total resistance R results from the sum of the resistances R20, R1 and R21.
- the resistor R1 forms the largest summands.
- From the engine control unit 30 is determined based on the maps contained therein and the desired temperature of the glow plug an effective voltage, which is controlled by the controller 32. Due to the temperature dependence of the resistors 41, 43 and 45, a current I via the glow plug, so via the resistor R, which is measured in the control unit 32.
- the temperature dependence of the total resistance R R20 + R1 + R21 results mainly from the temperature dependence of the resistor R1, since this resistor has the largest value.
- the temperature dependence of the resistors R20, R1 and R21 are almost constant over the entire operating range of the glow plug between room temperature and a temperature of approx. 1400 ° C.
- the temperature of the combustion chamber is in the operating range of the glow plug.
- the measured current intensity I is converted by the control unit 32 on the basis of a stored map into a temperature, which results mainly due to the significantly higher resistance R1 against the resistors R20 and R21 from the temperature of the heating layer 18. This temperature is returned to the engine control unit 30, wherein due to the determined temperature, the effective voltage for the glow plug is redefined.
- the temperature of the heating layer 18 of the glow plug for example on a display.
- reference temperatures deduce conclusions about the quality of combustion cylinder specific.
- cylinder-specific measures can be taken by the control unit, which influence the combustion process and can thus ensure correct combustion again. For example, the duration of injection, the start of injection or the injection pressure of the fuel could then be varied.
- the temperature of the combustion chamber can be compared cylinder-specifically with one or more reference values stored in the engine control unit for correct combustion. If the temperature of the combustion chamber does not correspond to a correct combustion, as explained for the active operation of the glow plug, measures can be taken to ensure correct combustion again, for example a variation of the duration of injection, the start of injection and the injection pressure of the fuel.
- p (T) the resistivity as a function of temperature T
- ⁇ 0 the resistivity at room temperature T 0
- ⁇ (T) a temperature coefficient which is temperature dependent.
- the specific resistance of the heating layer 18 can be chosen so that ⁇ 0 of the heating layer is greater than ⁇ 0 of the supply layers.
- the temperature coefficient ⁇ of the heating layer 18 may be greater than the temperature coefficient ⁇ of the lead layers 20, 21 in the operating range of the glow plug. It is also possible to choose both ⁇ 0 and ⁇ for the heating layer 18 for the operating range of the glow plug larger than for Lead layers 20, 21.
- the composition of the heating layer 18 and the lead layers 20, 21 is selected so that the ⁇ 0 of the lead layers 20, 21 is at least 10 times smaller than the ⁇ 0 of the heating layer 18.
- the temperature coefficient ⁇ of the heating layer 18 and the lead layers 20, 21 is approximately equal.
- the specific resistance of the insulating layer 22 is at least 10 times greater than the specific resistance of the heating layer 18 over the entire operating range of the glow plug.
- the heating layer, the lead layers and the insulating layer consist of ceramic composite structures containing at least two of the compounds Al 2 O 3 , MoSi 2 , Si 3 N 4 and Y 2 O 3 . These composite structures are available by a single or multi-stage sintering process.
- the specific resistance of the layers can be determined preferably by the MoSi 2 content and / or the grain size of MoSi 2 , preferably the MoSi 2 content of the feed layers 20, 21 is higher than the MoSi 2 content of the heating layer 18, wherein the Heating layer 18 in turn has a higher MoSi 2 content than the insulating layer 22.
- heating layer 18, lead layers 20, 21 and the insulation layer 22 consist of a composite precursor ceramic with different proportions of fillers.
- the matrix of this material consists of polysiloxanes, Polysilsequioxanen, polysilanes or polysilazanes, which may be doped with boron or aluminum and which are produced by pyrolysis.
- the filler forms at least one of the compounds Al 2 O 3 , MoSi 2 and SiC for the individual layers.
- the MoSi 2 content and / or the grain size of MoSi 2 may preferably determine the specific resistance of the layers.
- the MoSi 2 content of the feed layers 20, 21 is set higher than the MoSi 2 content of the heating layer 18, wherein the heating layer 18 in turn has a higher MoSi 2 content than the insulating layer 22.
- compositions of the insulating layer, the lead layers and the heating layer are chosen in the above-mentioned embodiments so that their thermal expansion coefficients and the shrinkage occurring during the sintering or pyrolysis process of the individual supply, heating and insulating layers are the same, so that no cracks arise in the glow plug.
- FIG. 5 is a further preferred embodiment of the invention with reference to a schematic longitudinal section through a glow plug 1 according to the invention.
- Analogous to FIG. 1 has the in FIG. 5 shown glow plug on a circular connector 2, which is in electrical contact with the cylindrical feed line 5.
- the cylindrical feed line 5 is electrically connected via the contact pin 10 and the contacting element 12 with the ceramic glow plug 14.
- the cylindrical feed line 5, the contact pin 10, the contacting element 12 and the ceramic glow plug 14 are successively in this order, as in FIG. 5 represented, arranged in the direction of the combustion chamber.
- the ceramic glow plug 14 has in the in FIG. 5 illustrated preferred embodiment at the combustion chamber remote end a pin 11.
- the pin 11 forms an extension of the glow plug 14 in the direction of the combustion chamber distal end by a cylindrical lead-out of the ceramic lead layers 20, 21 and the insulating layer 22, wherein the pin 11 has a smaller outer diameter than the adjoining in the direction of the combustion chamber part of the glow plug 14, It is also not necessary that the glow plug 14 has a heating layer 18 at the combustion chamber end. In a preferred embodiment, the two feed layers 20 and 21 may be connected only at the combustion chamber end of the glow plug, as is done via the heating element 18.
- the cylindrical lead 5 and the contact pin 10 together form the connecting element, which may also be integrally formed.
- a flange is provided, which limits the contacting element 12 in the direction of the axis of the glow plug together with the pin 11.
- the contacting element 12 which consists of a tablet of electrically conductive powder, is preferably formed as graphite or a metal powder or an electrically conductive ceramic powder.
- the tablet of electrically conductive powder can also consist of at least a predominant proportion of graphite or of the metal powder or of the electrically conductive ceramic powder. Due to the formation of the contacting element 12 as an electrically conductive powder, the contacting element 12 ensures a resilient contact, which is able to carry high currents without thermal destruction. The large surface of the powder ensures a good thermal conductivity. For the same reason, a low contact resistance with good conductivity can be realized. Graphite and ceramic conductive materials are also corrosion resistant. The elastic spring portion of the tablet of electrically conductive powder ensures that the tablet compensates thermal movements of the components by different coefficients of thermal expansion.
- the tablet of electrically conductive powder is limited by a cylindrical clamping sleeve 9, which instead of the in FIG. 1 shown ceramic sleeve 8 is present as an independent component.
- the clamping sleeve 9 is provided analogously to the ceramic sleeve 8 as an insulating component, it consists in a preferred embodiment of ceramic material.
- the tablet of electrically conductive powder is pressed firmly between the flange of the connecting element on the combustion chamber remote end side, the pin 11 of the glow plug 14 on the combustion chamber side end and the clamping sleeve 9.
- the clamping between these fixed components in particular the fixed stop of the clamping sleeve 9 on the ceramic sleeve 8, ie the limited Verpreßashes prevents the surrounding clamping sleeve 9 is not torn by a too large internal pressure buildup due to the compression of the contacting element 12.
- the axial preload of the elastic spring component achieved by the clamping of the tablet of electrically conductive powder can be compensated for thermal expansions, setting behavior and vibration stress during shaking stress of the glow plug.
- a glow plug after FIG. 5 with a tablet of electrically conductive powder as the contacting element 12 is prepared as follows. First, the seal pack 15 is guided by the combustion chamber-side tip of the ceramic glow plug 14 on the ceramic glow plug 14 and introduced as a composite in the plug housing 4 from the combustion chamber remote end. Subsequently, the contacting element 12, the clamping sleeve 9, the connecting element 5, 10, the ceramic sleeve 8 and the metal ring 7 are arranged in a holding element and then also introduced from the combustion chamber remote end into the candle housing 4.
- the components contained in the plug housing is pressed, in particular the contacting element 12, which consists of a tablet of electrically conductive powder, and the sealing packing 15 is pressed.
- a force is exerted on the contacting element 12 only until the contact pin 10 of the connection element 5, 10 has completely pressed into the clamping sleeve 9 and the end face of the ceramic sleeve 8 rests on the end face of the clamping sleeve 9.
- the compression of the tablet of electrically conductive powder also ensures that the elastic spring portion of the tablet is biased.
- the metal ring 7 is caulked by means of a force applied radially from the outside to the plug housing 4.
- the seal 3 and the circular connector 2 are mounted and also caulked by means of a radially applied externally to the plug housing 4 force.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Description
Die Erfindung geht aus von einer keramischen Glühstiftkerze für Dieselmotoren nach der Gattung des Anspruchs 1. Es sind bereits Glühstiftkerzen mit außenliegendem keramischen Heizer beispielsweise aus der
Des weiteren sind z.B. aus
Weiterhin ist aus der
Ferner ist aus dem Patent Abstracts of Japan vol. 013, no. 130 (M-808) &
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße keramische Glühstiftkerze mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß die Temperatur des Glühstiftes meßbar ist. Es ist in einer keramischen Glühstiftkerze erstmals möglich, ohne zusätzlichen apparativen Aufwand die Temperatur des Glühstiftes direkt in einem ausgewählten Bereich an der Außenseite des Glühstiftes zu messen. Die Messung der Temperatur erfolgt in einem gegenüber dem Volumen des gesamten Glühstiftes kleinen, ausgewählten Bereich, wodurch der Fehler, der durch eine Temperaturverteilung über ein großes Volumen auftritt, bei der Temperaturbestimmung verringert werden kann. Es ist weiterhin vorteilhaft, daß in der erfindungsgemäßen Glühstiftkerze eine Konzentration der Heizleistung in einem ausgewählten Bereich des Glühstiftes realisiert werden kann, ohne den Querschnitt der leitfähigen Schicht zu ändern, sodaß die Oberfläche in dem Bereich, in dem die Konzentration der Heizleistung erfolgen soll, konstant bleibt und somit auch die Wechselwirkungsfläche konstant gehalten wird. Von Vorteil ist weiterhin, daß die Fertigung einer derartigen keramischen Temperaturmeß-Glühstiftkerze kostengünstig gestaltet werden kann.The ceramic glow plug according to the invention with the features of
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen keramischen Glühstiftkerze möglich.The measures listed in the dependent claims advantageous refinements and improvements of
Insbesondere ist durch eine geeignete Wahl der für die verschiedenen Bereiche der Glühstiftkerze verwendeten keramischen Materialien sichergestellt, daß die mechanische Stabilität des Heizers nicht beeinträchtigt wird. Eine Vearbeitung der gemessenen Temperaturwerte durch ein Steuergerät erlaubt eine Regelung der Temperatur in dem ausgewählten Bereich des Glühstiftes.In particular, it is ensured by a suitable choice of the ceramic materials used for the various areas of the glow plug that the mechanical stability of the heater is not impaired. A processing of the measured temperature values by a control unit allows regulation of the temperature in the selected area of the glow plug.
Es ist außerdem vorteilhaft, die erfindungsgemäße Glühstiftkerze im Passivbetrieb, nachdem sie die Aufheizfunktion erfüllt hat, als Temperatursensor zu benutzen. Es kann so festgestellt werden, ob die Verbrennung im jeweiligen Zylinder korrekt abläuft. Vorteilhaft ist, daß aufgrund dieser Informationen eine Beeinflussung von für die Verbrennung relevanten Parametern erfolgen kann.It is also advantageous to use the glow plug according to the invention in passive operation, after it has fulfilled the heating function, as a temperature sensor. It can thus be determined whether the combustion takes place correctly in the respective cylinder. It is advantageous that, on the basis of this information, an influencing of parameters relevant for the combustion can take place.
Die Ausführungsbeispiele der Erfindung sind in Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
-
eine erfindungsgemäße Glühstiftkerze im Längsschnitt,Figur 1 -
den vorderen Abschnitt des außenliegenden keramischen Heizers als Seitenansicht,Figur 2 -
eine Verschaltung der erfindungsgemäßen Glühstiftkerze mit den Steuergeräten,Figur 3 -
die in der erfindungsgemäßen keramischen Glühstiftkerze und in den Zuleitungen auftretenden Widerstände undFigur 4 -
eine erfindungsgemäße Glühstiftkerze im Längsschnitt.Figur 5
-
FIG. 1 a glow plug according to the invention in longitudinal section, -
FIG. 2 the front portion of the external ceramic heater as a side view, -
FIG. 3 an interconnection of the glow plug according to the invention with the control units, -
FIG. 4 the resistors occurring in the inventive ceramic glow plug and in the leads and -
FIG. 5 a glow plug according to the invention in longitudinal section.
In
Der Betriebszustand, in dem der Glühstift zur Unterstützung der Verbrennung im Brennraum beheizt wird, wobei dieses Heizen beim Start der Brennkraftmaschine, während einer Nachglühphase, die sich vorzugsweise über 3 Minuten erstreckt, sowie während einer Zwischenglühphase erfolgt, wenn die Temperatur des Brennraums während des Betriebs der Brennkraftmaschine zu stark absinkt, wird Aktivbetrieb genannt.The operating condition in which the glow plug is heated to assist combustion in the combustion chamber, which heating occurs at engine startup, during an afterglow phase, preferably over 3 minutes, and during an intermediate annealing phase when the temperature of the combustion chamber during operation the internal combustion engine drops too much, is called active operation.
Bei der erfindungsgemäßen keramischen Glühstiftkerze ist das Material der Heizschicht 18 so gewählt, daß der absolute elektrische Widerstand der Heizschicht 18 größer ist als der absolute elektrische Widerstand der Zuleitungsschichten 20, 21. (Im Folgenden soll unter der Bezeichnung Widerstand ohne Zusatz der absolute elektrische Widerstand verstanden werden.) Um Querströme zwischen der Leitschicht zu vermeiden, ist der Widerstand der Isolationsschicht so gewählt, daß er deutlich größer als der Widerstand der Heizschicht 18 und der Zuleitungsschichten 20, 21 ist.In the ceramic glow plug according to the invention, the material of the
In
Die
Vom Motorsteuergerät 30 wird anhand der dort enthaltenen Kennfelder und der gewünschten Temperatur des Glühstiftes eine Effektivspannung vorgegeben, die vom Steuergerät 32 geregelt wird. Aufgrund der Temperaturabhängigkeit der Widerstände 41, 43 und 45 stellt sich ein Strom I über die Glühstiftkerze, also über den Widerstand R, ein, der im Steuergerät 32 gemessen wird. Die Temperaturabhängigkeit des Gesamtwiderstandes R = R20 + R1 + R21 ergibt sich dabei hauptsächlich aus der Temperaturabhängigkeit des Widerstandes R1, da dieser Widerstand den größten Wert besitzt. Die Temperaturabhängigkeit der Widerstände R20, R1 und R21 ist über den gesamten Betriebsbereich der Glühstiftkerze zwischen Raumtemperatur und einer Temperatur von ca. 1400°C nahezu konstant. Die Temperatur des Brennraums liegt im Betriebsbereich der Glühstiftkerze.From the
Die gemessene Stromstärke I wird vom Steuergerät 32 anhand eines gespeicherten Kennfeldes in eine Temperatur umgerechnet, die sich aufgrund des deutlich höheren Widerstandes R1 gegenüber den Widerständen R20 und R21 hauptsächlich aus der Temperatur der Heizschicht 18 ergibt. Diese Temperatur wird an das Motorsteuergerät 30 zurückgegeben, wobei aufgrund der ermittelten Temperatur die Effektivspannung für die Glühstiftkerze neu vorgegeben wird.The measured current intensity I is converted by the
Es ist ebenfalls möglich, die Temperatur der Heizschicht 18 des Glühstiftes anderweitig auszugeben, beispielsweise auf einem Display. Weiterhin ist es möglich, anhand der ermittelten Temperatur beispielsweise unter Berücksichtigung von einer oder mehreren, im Motorsteuergerät 30 gespeicherten, Referenztemperaturen Schlußfolgerungen über die Qualität der Verbrennung zylinderspezifisch herzuleiten. Im Falle einer nicht korrekten Verbrennung können vom Steuergerät zylinderspezifische Maßnahmen ergriffen werden, die den Verbrennungsvorgang beeinflussen und so wieder für eine korrekte Verbrennung sorgen können. Es könnte dann beispielsweise die Einspritzdauer, der Einspritzbeginn oder der Einspritzdruck des Kraftstoffs variiert werden.It is also possible to otherwise output the temperature of the
In einem weiteren Ausführungsbeispiel ist es möglich, auch im Passivbetrieb der Glühstiftkerze, d.h. nach der Nachglühzeit, wenn sich die Glühstiftkerze nicht mehr im Aktivbetrieb befindet, eine Messung der Temperatur des Brennraums vorzunehmen. Hier wird eine entsprechend niedrigere Effektivspannung vorgegeben und, analog zum Aktivbetrieb der sich über den Widerstand R einstellende Strom I gemessen und so auf die Temperatur des Heizbereichs geschlossen, der dann der Temperatur des Brennraums entspricht. Ebenso wie im Aktivbetrieb kann die Temperatur des Brennraums zylinderspezifisch mit einem oder mehreren im Motorsteuergerät gespeicherten Referenzwerten für eine korrekte Verbrennung verglichen werden. Sollte die Temperatur des Brennraums nicht einer korrekten Verbrennung entsprechen, können, wie für den aktiven Betrieb der Glühstiftkerze erläutert, Maßnahmen ergriffen werden, die wieder für eine korrekte Verbrennung sorgen, beispielsweise eine Variation der Einspritzdauer, des Einspritzbeginns und des Einspritzdrucks des Kraftstoffes.In a further embodiment, it is possible, even in the passive mode of the glow plug, i. After the afterglow time, when the glow plug is no longer in active mode, make a measurement of the temperature of the combustion chamber. Here, a correspondingly lower rms voltage is given and, analogously to the active operation of the current I, which adjusts itself via the resistor R, is measured and thus closed to the temperature of the heating region, which then corresponds to the temperature of the combustion chamber. As in active operation, the temperature of the combustion chamber can be compared cylinder-specifically with one or more reference values stored in the engine control unit for correct combustion. If the temperature of the combustion chamber does not correspond to a correct combustion, as explained for the active operation of the glow plug, measures can be taken to ensure correct combustion again, for example a variation of the duration of injection, the start of injection and the injection pressure of the fuel.
Der Wert der Widerstände R20, R1 und R21 sowie deren Temperaturabhängigkeit wird wegen
durch die Temperaturabhängigkeit des spezifischen Widerstandes ρ eingestellt. Dabei ergibt sich die Temperaturabhängigkeit aus
adjusted by the temperature dependence of the specific resistance ρ. This results in the temperature dependence
Es bezeichnet p(T) den spezifischen Widerstand als Funktion der Temperatur T, ρ0 den spezifischen Widerstand bei der Raumtemperatur T0 und α(T) einen Temperaturkoeffizienten, der temperaturabhängig ist.It denotes p (T) the resistivity as a function of temperature T, ρ 0 the resistivity at room temperature T 0 and α (T) a temperature coefficient which is temperature dependent.
Um eine unterschiedliche Temperaturabhängigkeit der Widerstände der Zuleitungen R20 und R21 gegenüber dem Widerstand R1 zu erreichen, kann der spezifische Widerstand der Heizschicht 18 so gewählt werden, daß ρ0 der Heizschicht größer ist als ρ0 der Zuleitungsschichten. Oder aber der Temperaturkoeffizient α der Heizschicht 18 kann im Betriebsbereich der Glühstiftkerze größer sein als der Temperaturkoeffizient α der Zuleitungsschichten 20, 21. Es ist auch möglich, sowohl ρ0 als auch α für die Heizschicht 18 für den Betriebsbereich der Glühstiftkerze größer zu wählen als für Zuleitungsschichten 20, 21.In order to achieve a different temperature dependence of the resistances of the supply lines R20 and R21 with respect to the resistor R1, the specific resistance of the
In einem bevorzugten Ausführungsbeispiel wird die Zusammensetzung der Heizschicht 18 und der Zuleitungsschichten 20, 21 so gewählt, daß das ρ0 der Zuleitungsschichten 20, 21 mindestens 10 mal kleiner als das ρ0 der Heizschicht 18 ist. Der Temperaturkoeffizient α der Heizschicht 18 und der Zuleitungsschichten 20, 21 ist näherungsweise gleich. Somit ist eine Genauigkeit der Temperaturmessung von 20 Kelvin im gesamten Betriebsbereich der Glühstiftkerze realisiert.In a preferred embodiment, the composition of the
In einem bevorzugten Ausführungsbeispiel ist der spezifische Widerstand der Isolationsschicht 22 im gesamten Betriebsbereich der Glühstiftkerze mindestens 10 mal größer als der spezifische Widerstand der Heizschicht 18.In a preferred embodiment, the specific resistance of the insulating
In einem bevorzugten Ausführungsbeispiel bestehen Heizschicht, die Zuleitungsschichten und die Isolationsschicht aus keramischen Verbundgefügen, die mindestens zwei der Verbindungen Al2O3, MoSi2, Si3N4 und Y2O3 enthält. Diese Verbundgefüge sind durch einen ein- oder mehrstufigen Sinterprozeß erhältlich. Der spezifische Widerstand der Schichten kann dabei vorzugsweise durch den MoSi2-Gehalt und/oder die Korngröße von MoSi2 bestimmt werden, vorzugsweise ist der MoSi2-Gehalt der Zuleitungsschichten 20, 21 höher als der MoSi2-Gehalt der Heizschicht 18, wobei die Heizschicht 18 wiederum einen höheren MoSi2-Gehalt als die Isolationsschicht 22 aufweist.In a preferred embodiment, the heating layer, the lead layers and the insulating layer consist of ceramic composite structures containing at least two of the compounds Al 2 O 3 , MoSi 2 , Si 3 N 4 and Y 2 O 3 . These composite structures are available by a single or multi-stage sintering process. The specific resistance of the layers can be determined preferably by the MoSi 2 content and / or the grain size of MoSi 2 , preferably the MoSi 2 content of the feed layers 20, 21 is higher than the MoSi 2 content of the
In einem weiteren Ausführungsbeispiel bestehen Heizschicht 18, Zuleitungsschichten 20, 21 und die Isolationsschicht 22 aus einer Komposit-Precursor-Keramik mit unterschiedlichen Anteilen an Füllstoffen. Die Matrix dieses Materials besteht dabei aus Polysiloxanen, Polysilsequioxanen, Polysilanen oder Polysilazanen, die mit Bor oder Aluminium dotiert sein können und die durch Pyrolyse hergestellt werden. Den Füllstoff bilden für die einzelnen Schichten mindestens eine der Verbindungen Al2O3, MoSi2 und SiC. Analog zu dem obengenannten Verbundgefüge kann vorzugsweise der MoSi2-Gehalt und/oder die Korngröße von MoSi2 den spezifischen Widerstand der Schichten bestimmen. Vorzugsweise wird der MoSi2-Gehalt der Zuleitungsschichten 20, 21 höher als der MoSi2-Gehalt der Heizschicht 18 eingestellt, wobei die Heizschicht 18 wiederum einen höheren MoSi2-Gehalt als die Isolationsschicht 22 aufweist.In a further embodiment,
Die Zusammensetzungen der Isolationsschicht, der Zuleitungsschichten und der Heizschicht werden in den oben angegebenen Ausführungsbeispielen so gewählt, daß ihre thermischen Ausdehnungskoeffizienten und die während des Sinter- bzw. Pyrolyseprozesses auftretenden Schrumpfungen der einzelnen Zuleitungs-, Heiz- und Isolationsschichten gleich sind, so daß keine Risse im Glühstift entstehen.The compositions of the insulating layer, the lead layers and the heating layer are chosen in the above-mentioned embodiments so that their thermal expansion coefficients and the shrinkage occurring during the sintering or pyrolysis process of the individual supply, heating and insulating layers are the same, so that no cracks arise in the glow plug.
In
Die zylindrische Zuleitung 5 und der Kontaktstift 10 bilden zusammen das Anschlußelement, das auch einstückig ausgebildet sein kann. Am brennraumseitigen Ende des Anschlußelements ist ein Flansch vorgesehen, der zusammen mit dem Zapfen 11 das Kontaktierungselement 12 in Richtung der Achse der Glühstiftkerze begrenzt.The
Das Kontaktierungselement 12, das aus einer Tablette aus elektrisch leitfähigem Pulver besteht, ist vorzugsweise als Graphit oder einem Metallpulver oder einem elektrisch leitenden Keramikpulver ausgebildet. In einer weiteren bevorzugten Ausführungsform kann die Tablette aus elektrisch leitfähigem Pulver auch mindestens aus einem überwiegenden Anteil aus Graphit oder aus dem Metallpulver oder aus dem elektrisch leitenden Keramikpulver bestehen. Aufgrund der Ausbildung des Kontaktierungselements 12 als elektrisch leitfähiges Pulver gewährleistet das Kontaktierungselement 12 eine federnde Kontaktierung, die in der Lage ist, hohe Ströme ohne thermische Zerstörung zu tragen. Die große Oberfläche des Pulvers stellt eine gute Wärmeleitfähigkeit sicher. Aus dem gleichen Grund kann auch ein geringer Kontaktwiderstand bei guter Leitfähigkeit realisiert werden. Graphit und keramische leitfähige Materialen sind außerdem korrosionsbeständig. Der elastische Federanteil der Tablette aus elektrisch leitfähigem Pulver gewährleistet, daß die Tablette thermische Bewegungen der Bauteile durch unterschiedliche Wärmeausdehnungskoeffizienten ausgleicht.The contacting
Seitlich wird die Tablette aus elektrisch leitfähigem Pulver durch eine zylindrische Spannhülse 9 begrenzt, die hier anstelle der in
Eine Glühstiftkerze nach
Claims (12)
- Sheathed-element glow plug with a ceramic heating device, which has a ceramic, electrically conducting conductive layer and a ceramic, electrically insulating insulating layer, the conductive layer comprising feed layers (20, 21), which are connected by a heating layer (18), the electrical resistivity of the material of the heating layer (18) in the operating temperature range of the sheathed-element glow plug being temperature-dependent and being higher than the electrical resistivity of the material of the feed layers (20, 21) and lower than the electrical resistivity of the insulating layer (22), characterized in that the temperature coefficient of the feed layers (20, 21) is lower than the temperature coefficient of the heating layer (18) over the entire operating range of the sheathed-element glow plug.
- Sheathed-element glow plug according to Claim 1, characterized in that the electrical resistivity of the heating layer (18) at room temperature is higher than the electrical resistivity of the feed layers (20, 21) at room temperature.
- Sheathed-element glow plug according to Claim 1, characterized in that the electrical resistivity at room temperature and the temperature coefficient of the feed layers (20, 21) is lower than the electrical resistivity at room temperature and the temperature coefficient of the heating layer (18).
- Sheathed-element glow plug according to Claim 1, characterized in that the electrical resistivity of the material of the heating layer at room temperature is at least 10 times higher than the higher of the electrical resistivities of the feed layers (20, 21) at room temperature.
- Sheathed-element glow plug according to one of Claims 1 to 4, characterized in that the heating layer is situated at the tip of the sheathed element.
- Sheathed-element glow plug according to one of Claims 1 to 5, characterized in that the heating layer (18), the feed layers (20, 21) and the insulating layer (22) are composed of ceramic composite structures which can be obtained by a single- or multi-stage sintering process from at least two of the following compounds: Al2O3, MoSi2, Si3N4 and Y2O3.
- Sheathed-element glow plug according to one of Claims 1 to 5, characterized in that the heating layer (18), the feed layers (20, 21) and the insulating layer (22) are composed of a composite precursor ceramic, the matrix material being composed of polysiloxanes, polysilsequioxanes, polysilanes or polysilazanes, which can be doped with boron or aluminium and have been produced by pyrolysis, the filler being formed by at least one of the following compounds: Al2O3, MoSi2 and SiC.
- Sheathed-element glow plug according to one of Claims 1 to 7, characterized in that the temperature of the heating layer (18) is determined on the basis of its resistance R1.
- Sheathed-element glow plug according to Claim 8, characterized in that the temperature value determined is passed to an engine control unit (30), whereupon the engine control unit (30) compares the temperature value with a reference value and performs readjustment of the voltage specified by the control unit (32) for the sheathed-element glow plug.
- Sheathed-element glow plug according to Claim 8, characterized in that the temperature value determined is passed to an engine control unit (30), whereupon the engine control unit (30) compares the temperature value with one or more reference values for correct combustion and performs readjustment of variables that are relevant to combustion.
- Sheathed-element glow plug according to Claim 8, characterized in that temperature measurement, comparison with one or more reference values for correct combustion and readjustment of variables that are relevant to combustion take place in the passive mode of the sheathed-element glow plug.
- Sheathed-element glow plug according to either of Claims 10 or 11, characterized in that the parameters relevant to combustion are: the duration of injection, the start of injection and the injection pressure of the fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200030550T SI1214551T1 (en) | 1999-08-27 | 2000-07-25 | Ceramic sheathed element glow plug |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19940668 | 1999-08-27 | ||
DE19940668 | 1999-08-27 | ||
DE10020329 | 2000-04-26 | ||
DE10020329A DE10020329A1 (en) | 1999-08-27 | 2000-04-26 | Ceramic glow plug |
PCT/DE2000/002418 WO2001016528A1 (en) | 1999-08-27 | 2000-07-25 | Ceramic sheathed element glow plug |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1214551A1 EP1214551A1 (en) | 2002-06-19 |
EP1214551B1 EP1214551B1 (en) | 2004-10-27 |
EP1214551B2 true EP1214551B2 (en) | 2010-09-08 |
Family
ID=26005465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00960314A Expired - Lifetime EP1214551B2 (en) | 1999-08-27 | 2000-07-25 | Ceramic sheathed element glow plug |
Country Status (9)
Country | Link |
---|---|
US (1) | US6660970B1 (en) |
EP (1) | EP1214551B2 (en) |
JP (1) | JP2003508712A (en) |
AT (1) | ATE280928T1 (en) |
CZ (1) | CZ300980B6 (en) |
ES (1) | ES2231250T3 (en) |
HU (1) | HUP0202789A2 (en) |
PL (1) | PL195123B1 (en) |
WO (1) | WO2001016528A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10136596B4 (en) * | 2001-07-30 | 2005-09-15 | Beru Ag | A method for connecting a rod-shaped heating element with a tubular housing of a glow plug and glow plug produced by this method |
DE10339641A1 (en) * | 2003-08-28 | 2005-03-24 | Robert Bosch Gmbh | Pencil-type glow plug for an internal combustion engine comprises a connecting pin and a contact element that are partly surrounded by an electrically insulating plastic sleeve within the plug housing |
DE102004002485A1 (en) * | 2004-01-17 | 2005-08-11 | Robert Bosch Gmbh | Glow plug with integrated temperature detection |
US7115836B2 (en) * | 2004-06-29 | 2006-10-03 | Ngk Spark Plug Co., Ltd. | Glow plug |
US7607206B2 (en) * | 2005-12-29 | 2009-10-27 | Federal Mogul World Wide, Inc. | Method for forming layered heating element for glow plug |
US20090139972A1 (en) * | 2007-10-23 | 2009-06-04 | Psion Teklogix Inc. | Docking connector |
DE102008008205A1 (en) * | 2008-02-07 | 2009-08-13 | Robert Bosch Gmbh | Metallic glow plug with temperature measurement |
US20100082219A1 (en) * | 2008-09-30 | 2010-04-01 | Gm Global Technology Operations, Inc. | Engine Using Glow Plug Resistance For Estimating Combustion Temperature |
DE102009028952A1 (en) * | 2009-08-27 | 2011-03-03 | Robert Bosch Gmbh | Glow plug i.e. sheathed-element glow plug, for cold-starting diesel engine in vehicle, has temperature sensor and heating element connected by bonding material, and filling material filled in undercut portion of heating element |
DE102009045273A1 (en) * | 2009-10-02 | 2011-04-07 | Robert Bosch Gmbh | Heater plug manufacturing method for e.g. diesel engine, involves partly surrounding connecting area by solid ceramic element with electrically insulating characteristics, and partially cutting solid ceramic element in cutting process |
US8901467B2 (en) * | 2010-12-09 | 2014-12-02 | Surface Igniter Llc | Multi-layer ceramic heater and/or igniter and method for making the same |
FR3025153B1 (en) * | 2014-09-01 | 2016-12-09 | Bosch Gmbh Robert | GLOW PLUG |
DE102014220036A1 (en) * | 2014-10-02 | 2016-04-07 | Robert Bosch Gmbh | glow plug |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297923A (en) † | 1987-05-29 | 1988-12-05 | Hitachi Metals Ltd | Glow plug for diesel engine |
JPH04268112A (en) † | 1991-02-20 | 1992-09-24 | Jidosha Kiki Co Ltd | Ceramic heater type glow plug |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1966664A1 (en) * | 1969-12-17 | 1973-09-20 | Adolf Linka | Forming sheds on circular knitting machines |
JPS54159530A (en) * | 1978-06-07 | 1979-12-17 | Ngk Spark Plug Co Ltd | Temperature controller of glow plug |
DE2937884A1 (en) | 1979-09-19 | 1981-04-09 | Siemens AG, 1000 Berlin und 8000 München | Diesel engine with incandescent plug - measures operating temp. of cylinder during cold-starting |
US4449039A (en) * | 1981-09-14 | 1984-05-15 | Nippondenso Co., Ltd. | Ceramic heater |
DE3502525C2 (en) * | 1985-01-25 | 1993-11-11 | Beru Werk Ruprecht Gmbh Co A | Glow element |
JPS61217623A (en) * | 1985-03-22 | 1986-09-27 | Jidosha Kiki Co Ltd | Self-temperature control type glow plug |
US4682008A (en) | 1985-03-22 | 1987-07-21 | Jidosha Kiki Co., Ltd. | Self-temperature control type glow plug |
JPS63297924A (en) | 1987-05-29 | 1988-12-05 | Jidosha Kiki Co Ltd | Glow plug for diesel engine |
ES2048187T3 (en) * | 1987-11-09 | 1994-03-16 | Siemens Ag | PROCEDURE FOR THE REGULATION OF THE TEMPERATURE OF STARTER SPARK PLUGS IN DIESEL ENGINES AND CIRCUIT PROVISION FOR THE PERFORMANCE OF THE PROCEDURE. |
DE3825012A1 (en) * | 1988-07-22 | 1990-01-25 | Beru Werk Ruprecht Gmbh Co A | MATERIAL FOR AN ELECTRICAL RESISTANCE ELEMENT WITH POSITIVE TEMPERATURE COEFFICIENT |
DE3825013A1 (en) * | 1988-07-22 | 1990-01-25 | Beru Werk Ruprecht Gmbh Co A | Heater plug |
DE3914446A1 (en) * | 1989-05-02 | 1990-11-08 | Bosch Gmbh Robert | METHOD AND DEVICE FOR CONTROLLING THE TEMPERATURE OF A GLOW PLUG |
JPH03175210A (en) | 1989-09-11 | 1991-07-30 | Jidosha Kiki Co Ltd | Glow plug of ceramic heater type |
DE4014356A1 (en) * | 1990-05-04 | 1991-11-07 | Beru Werk Ruprecht Gmbh Co A | GLOW PLUG |
JP3251937B2 (en) * | 1990-08-02 | 2002-01-28 | ランクサイド・テクノロジー・カンパニー・エルピー | Manufacturing method of sintered ceramic compact |
JPH05256449A (en) * | 1992-03-16 | 1993-10-05 | Matsushita Electric Ind Co Ltd | Ignition heater control device |
US5750958A (en) * | 1993-09-20 | 1998-05-12 | Kyocera Corporation | Ceramic glow plug |
DE4335292A1 (en) * | 1993-10-15 | 1995-04-20 | Beru Werk Ruprecht Gmbh Co A | Glow plug |
AU1669695A (en) | 1994-02-18 | 1995-09-04 | Morgan Matroc S.A. | Hot surface igniter |
JPH07293417A (en) * | 1994-04-22 | 1995-11-07 | Isuzu Ceramics Kenkyusho:Kk | Self temperature control type glow plug |
JP3411498B2 (en) * | 1997-04-23 | 2003-06-03 | 日本特殊陶業株式会社 | Ceramic heater, method of manufacturing the same, and ceramic glow plug |
DE19844347A1 (en) | 1998-09-28 | 2000-03-30 | Bosch Gmbh Robert | Ceramic glow plug |
DE19860919C1 (en) * | 1998-12-04 | 2000-02-10 | Bosch Gmbh Robert | Ceramic heater, especially a sintered heater rod e.g. a heater plug, has interior insulation and exterior conductor layers formed from different starting compositions comprising silicon nitride, molybdenum disilicide, alumina and yttria |
-
2000
- 2000-07-25 WO PCT/DE2000/002418 patent/WO2001016528A1/en active IP Right Grant
- 2000-07-25 PL PL00353309A patent/PL195123B1/en not_active IP Right Cessation
- 2000-07-25 ES ES00960314T patent/ES2231250T3/en not_active Expired - Lifetime
- 2000-07-25 EP EP00960314A patent/EP1214551B2/en not_active Expired - Lifetime
- 2000-07-25 AT AT00960314T patent/ATE280928T1/en not_active IP Right Cessation
- 2000-07-25 JP JP2001520043A patent/JP2003508712A/en active Pending
- 2000-07-25 HU HU0202789A patent/HUP0202789A2/en unknown
- 2000-07-25 US US10/069,898 patent/US6660970B1/en not_active Expired - Fee Related
- 2000-07-25 CZ CZ20020629A patent/CZ300980B6/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63297923A (en) † | 1987-05-29 | 1988-12-05 | Hitachi Metals Ltd | Glow plug for diesel engine |
JPH04268112A (en) † | 1991-02-20 | 1992-09-24 | Jidosha Kiki Co Ltd | Ceramic heater type glow plug |
Also Published As
Publication number | Publication date |
---|---|
JP2003508712A (en) | 2003-03-04 |
CZ2002629A3 (en) | 2002-10-16 |
CZ300980B6 (en) | 2009-09-30 |
ES2231250T3 (en) | 2005-05-16 |
PL195123B1 (en) | 2007-08-31 |
EP1214551B1 (en) | 2004-10-27 |
PL353309A1 (en) | 2003-11-17 |
HUP0202789A2 (en) | 2003-01-28 |
ATE280928T1 (en) | 2004-11-15 |
EP1214551A1 (en) | 2002-06-19 |
US6660970B1 (en) | 2003-12-09 |
WO2001016528A1 (en) | 2001-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1125086B1 (en) | Ceramic sheathed element glow plug | |
EP1214551B2 (en) | Ceramic sheathed element glow plug | |
DE3342753C2 (en) | ||
DE69819583T2 (en) | Ceramic heater | |
DE3237628A1 (en) | OXYGEN SENSOR WITH CERAMIC HEATING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF | |
DE19737396A1 (en) | Glow-plug for diesel engine | |
DE19738915A1 (en) | Glow/heater plug for IC diesel engine | |
DE10020328A1 (en) | Ceramic glow plug | |
DE3416948A1 (en) | OXYGEN SENSOR WITH HEATING DEVICE | |
DE3607888A1 (en) | TEMPERATURE CONTROLLED GLOW PLUG | |
EP2088373A1 (en) | Metallic pencil-type glow plug with temperature measurement | |
CA1089640A (en) | Cobalt-magnesium monoxide alloy ceramic partial pressure of oxygen sensor | |
DE3417170A1 (en) | OXYGEN SENSOR WITH HEATING DEVICE | |
DE19959766A1 (en) | Glow plug | |
DE3147291A1 (en) | SENSOR | |
DE3871686T2 (en) | ELECTROCHEMICAL CELL, WITH INTEGRATED STRUCTURE, FOR MEASURING THE RELATIVE CONCENTRATIONS OF REACTIVE SUBSTANCES. | |
DE3843863C2 (en) | ||
EP0908721A1 (en) | Method of determining exhaust gas temperature and the air/fuel ratio lambda and sensor arrangement for carrying out the method | |
WO2021197752A1 (en) | Method for determining a state parameter of an exhaust gas sensor | |
DE3318458C2 (en) | ||
DE2637464A1 (en) | Glow plug, using powdered resistance heating element - for rapid starting of diesel engines | |
DE3429262A1 (en) | Glow plug | |
WO2017102279A1 (en) | Sensor for use in an exhaust gas system | |
WO2000011459A1 (en) | Electrochemical detector | |
DE69900064T2 (en) | Spark plug and ignition arrangement for use in an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020327 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: SI PAYMENT 20020327 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DRESSLER, WOLFGANG Inventor name: HALUSCHKA, CHRISTOPH Inventor name: REISSNER, ANDREAS Inventor name: LINDNER, FRIEDERIKE Inventor name: OTTERBACH, WOLFGANG Inventor name: GEISSINGER, ALBRECHT Inventor name: LINDEMANN, GERT Inventor name: KERN, CHRISTOPH |
|
17Q | First examination report despatched |
Effective date: 20040217 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: SI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041027 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041027 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041027 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCINTILLA AG, DIREKTION Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50008441 Country of ref document: DE Date of ref document: 20041202 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050127 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050207 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2231250 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050725 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050725 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
ET | Fr: translation filed | ||
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: NGK SPARK PLUG CO., LTD. Effective date: 20050727 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
BERE | Be: lapsed |
Owner name: ROBERT *BOSCH G.M.B.H. Effective date: 20050731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090724 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090727 Year of fee payment: 10 Ref country code: GB Payment date: 20090724 Year of fee payment: 10 Ref country code: SE Payment date: 20090727 Year of fee payment: 10 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20100908 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: SI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20110311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100725 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100726 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140724 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150725 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180723 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180928 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50008441 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |