[go: up one dir, main page]

EP1201881A2 - Abgasturbolader - Google Patents

Abgasturbolader Download PDF

Info

Publication number
EP1201881A2
EP1201881A2 EP01890300A EP01890300A EP1201881A2 EP 1201881 A2 EP1201881 A2 EP 1201881A2 EP 01890300 A EP01890300 A EP 01890300A EP 01890300 A EP01890300 A EP 01890300A EP 1201881 A2 EP1201881 A2 EP 1201881A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
nozzles
gas turbocharger
turbocharger according
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01890300A
Other languages
English (en)
French (fr)
Other versions
EP1201881A3 (de
EP1201881B1 (de
Inventor
Otto Blank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT18462000A external-priority patent/AT410697B/de
Priority claimed from AT0184500A external-priority patent/AT411615B/de
Priority claimed from AT19892000A external-priority patent/AT410698B/de
Application filed by Individual filed Critical Individual
Priority to AT01890300T priority Critical patent/ATE312274T1/de
Publication of EP1201881A2 publication Critical patent/EP1201881A2/de
Publication of EP1201881A3 publication Critical patent/EP1201881A3/de
Application granted granted Critical
Publication of EP1201881B1 publication Critical patent/EP1201881B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/146Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by throttling the volute inlet of radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to an exhaust gas turbocharger for an internal combustion engine Combustion according to the preamble of claim 1.
  • EP 0 196 183 B shows a turbocharger in which the flow cross section can also be changed.
  • the uneven application of the circumferential direction Impeller added which causes a one-sided mechanical load on the bearing.
  • the same applies to a solution as disclosed in US 4,512,714 A. is.
  • DE 197 17 559 A describes a turbocharger with two flows are alternately exposed to exhaust gas, with one flood surrounding the other and is connected to it via openings.
  • Such a turbocharger is due the flow losses and the premature expansion of the exhaust gas unsatisfactory efficiency.
  • DE 42 42 494 C also shows an adjustable flow guide for the Impeller of an exhaust gas turbocharger that can be switched via various floods can be formed, can be flowed to. It can thus be achieved that the Exhaust gas turbocharger is optimally operated in wide areas of the engine map. However, if individual floods are blocked off, the impeller becomes asymmetrical flowed to, which leads to an increased bearing load and a loss of efficiency leads.
  • the object of the invention is to avoid these disadvantages and an exhaust gas turbocharger to create one in a wide range of operating conditions has good efficiency.
  • an exhaust gas turbocharger to create one in a wide range of operating conditions has good efficiency.
  • Internal combustion engine to achieve the greatest possible power on the turbine, a quick response and a favorable torque curve to reach. It should be a strength solution and a long lifespan can be achieved.
  • this is achieved in that the nozzles of a first group are arranged at even angular intervals around the impeller and that between these nozzles, further nozzles are provided which are designed to be controllable are.
  • the solution according to the invention ensures that in all operating states a centrally symmetrical flow to the impeller is guaranteed, which results in a correspondingly low bearing load, so that a long service life is achieved.
  • the inflow cross-section can optimally match the respective Exhaust gas flow can be adjusted, but always the optimal flow technology Flow conditions up to the turbine wheel inlet are given. In particular all nozzles always show the optimal, i.e. generally minimal Distance to the impeller.
  • the guide device consists of at least two Groups of nozzles exist that are directly on the outer circumference of the impeller are directed, and that the volute is divided into at least two floods each of which is in flow communication with a group of nozzles stands, and that further a switching device is provided to individual or all floods of the volute with the internal combustion engine on the exhaust gas side connect to.
  • the nozzles are through fixed guide vanes educated. This makes a particularly simple, fluidically advantageous Construction reached. Since the guide device has no moving parts, one is such a solution is particularly robust and in particular for use in commercial vehicles suitable.
  • a particularly good adaptation of the turbocharger to the respective operating condition the internal combustion engine can be achieved in that the first Group of nozzles, the second group and any other groups a different one Have number of nozzles.
  • the nozzles of the first group, the nozzles of the second Group and the nozzles of any other groups a different width in Have circumferential direction.
  • a particularly simple construction of the invention is characterized in that that the switching device by a motor-operated Flap is formed.
  • the width of the nozzles is circumferential at least the circumferential distance of the blades of the impeller equivalent.
  • electromotive support of the turbine is provided.
  • an electric motor directly into the connection between the impeller and the turbine be integrated.
  • the guide device has a plurality of fixed nozzles, which are immediate are directed to the outer periphery of the impeller, as well as several pivoting guide vanes, which are arranged around the impeller and which in can be brought into a position in which the volute almost exclusively through the fixed nozzles are in flow connection with the impeller.
  • This Solution stands out compared to known turbochargers with variable turbine geometry characterized by the fact that even with a small gas throughput optimal flow conditions are given for the impeller, because the nozzles in terms of distance to the impeller, the flow angle and the cross-sectional area are optimized. This allows the internal combustion engine to operate even at low speeds high turbine speeds and thus high boost pressures can be achieved. With higher gas throughput, the guide vanes are opened to allow larger flow cross-sections to reach.
  • a further preferred embodiment variant looks downstream of the switching device in the area of a flood a blow-off valve in front of the predetermined pressure in the flood opens. This ensures that additional to the possible power levels of the turbine by switching the individual Floods are given, an additional stage for highest exhaust gas flows is created the blow-off valve, the so-called waste gate, is opened is. Therefore, it is not necessary to set the turbine to the highest possible exhaust gas flow to be designed, so that with a somewhat smaller turbine found the sufficiency can be. This enables an additional improvement in the response behavior and the possibility of a finer gradation of the turbine performance.
  • a particular advantage is that only a partial flow of the exhaust gas is influenced by the waste gate.
  • each corresponding Impact sectors of the impeller e.g. a situation with kick-down achieved that the flood with waste gate through the switching device is not applied, and in the other flood or the other floods higher exhaust gas pressure can be achieved than the opening pressure of the waste gate pretends.
  • the switching device has a predetermined position, in the high Gas throughput the pressure in both floods is approximately the same.
  • Position of the switching device can be by a catch or a preprogrammed Setting must be specified.
  • the blow-off device When the blow-off device is closed the switching device is in a central position when there is a high gas throughput, to apply both floods evenly.
  • the blow off device i.e. the waste gate opens, it is advantageous to slightly favor the gas flows to redirect the flood in which the waste gate is located. To this Even with the waste gate open, even application can occur the turbine can be guaranteed.
  • the exhaust gas turbocharger generally has a turbine 1, which also has a shaft 2 is connected to a compressor 3 and drives it.
  • a Impeller 4 is provided, which has a guide device 5, which consists of guide vanes 6 exists, with the exhaust gas of an internal combustion engine, not shown becomes. After flowing through the impeller 4, the exhaust gas flows in one axial opening 7 from.
  • the exhaust gas becomes a guide device via a spiral housing 8 5 guided, in which two floods 9, 10 arranged side by side in the axial direction are separated from each other by a partition 14.
  • the turbine 1 is connected upstream of an adapter 21 which, in addition to the flap 13, has a relief valve 20 records.
  • This relief valve 20 is shown as a flap valve that as mechanically actuated or as electromagnetic actuated by the engine control Valve can be executed. It is also possible in a known way Way to provide mechanical control over the boost pressure, or simply use a pressure relief valve.
  • the gas flow from the blow-off valve 20 opens into an exhaust pipe 22 downstream of the turbine 1.
  • FIG. 2 It can be seen from FIG. 2 that a total of nine stationary guide blades 6 are arranged at uniform angular intervals around the impeller 4, so that 6 nozzles 11, 12 are formed between these guide vanes, which on the Impeller 4 are directed.
  • the nozzles 11 of the first group stand with the first Flood 9 in fluid communication.
  • the impeller 4 depending on the operating state the internal combustion engine via three nozzles 11 of the first group, over six Nozzles 12 of the second group or applied to all nine nozzles 11, 12 become. This allows a high speed even with a low exhaust gas flow the impeller 4 and thus a favorable boost pressure and a quick response can be achieved.
  • control ratio 1: 2: 3 can be changed as required, for example can that between the nozzles 11 of the first group, for example three nozzles 12 of the second group can be arranged.
  • width of each Nozzles are designed differently in the circumferential direction. It is essential that all guide blades 6 have an optimal gap width s to the outer circumference of the impeller 4.
  • a motor-driven flap 13 can be seen schematically from FIG. 3, with which the exhaust gas flow in the first flood 9 or in the second flood 10 or in the Middle position in both floods 9, 10 can be steered.
  • 3 is with solid lines show a position of the flap 13 in which the exhaust gas flow into the first flood 9 to act on the first group of nozzles 11 is set.
  • Another position is shown with broken lines, in the the exhaust gas flow into the second flood 10 to act on the second group of Nozzles 12 is directed.
  • the flap 13 can be arranged directly in the housing of the turbine 1 be, also be provided in a special adapter housing that to the flue gas turbocharger according to the invention is flanged or in the exhaust manifold of the internal combustion engine.
  • the upstream side of the flap 13 is in two Channels 15, 16 divided into different groups of not shown Guide cylinders of the internal combustion engine.
  • the two channels 15, 16 are combined in the first flood 9.
  • the channels 15, 16 are separated from one another with the Floods 9, 10 connected, which additionally has a gas dynamic effect double-flow turbine housings can be used.
  • FIG. 5 essentially corresponds to FIG. 3, but with the flap 13 in is shown in a position in which it is at the highest exhaust gas flow and open Blow-off valve is located.
  • the exhaust gas flow becomes the first flood 9 somewhat throttled and an additional exhaust gas stream redirected to the second flood 10. Downstream of the waste gate, which is not shown in FIG. 5, therefore results approximately a uniform pressure level in both floods 9, 10.
  • FIG. 6 shows an embodiment in which the locking body 30 is in the axial direction can be inserted into the first nozzles 11 in order to largely close them.
  • the strength of the engine braking effect can also be continuously adjusted by that the blocking bodies 30 are immersed at different depths in the nozzles 11.
  • An optimal engine braking effect is achieved when the switching device 13 directs the entire exhaust gas flow onto the first nozzles 11 and thus the nozzles 12 switches off the second group. In this way, the relief valve 20 deactivated.
  • Turbine 7 has a Turbine 1, which is connected via a shaft 2 to a compressor, not shown and drives it.
  • An impeller 4 is provided in the turbine 1, that via a guide device 5, which consists of pivotable guide vanes 6, with the exhaust gas of an internal combustion engine, not shown.
  • a total of twelve guide blades 6 are provided, arranged in groups of three blades around the impeller 4 are.
  • Nozzles 11 are arranged between the individual groups of guide blades 6, which are formed from fixed guide vanes 6a.
  • volute casing 8 In the position of the pivoting guide vanes drawn with solid lines 6, the volute casing 8 is only connected to the impeller 4 via the nozzles 11 in connection, since the guide blades seal against one another and at the nozzles 11 issue.
  • the impeller 4 is therefore flowed only through the nozzles 11, the radial gap s and the inflow angle are optimized.
  • With higher gas throughput are the pivotable guide vanes 6 simultaneously or one after the other opened, as shown partly by broken lines, to one to provide the corresponding flow cross-section.
  • the present invention makes it possible, even at low engine speeds and thus a low exhaust gas flow a high turbine speed and thus a good one To achieve responsiveness and optimal charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Abgasturbolader für eine Brennkraftmaschine mit innerer Verbrennung, mit einer Turbine (1), die ein Laufrad (4), ein Spiralgehäuse (8) und eine Leitvorrichtung (5) aufweist, um den Abgasstrom auf das Laufrad (4) zu lenken, welche Leitvorrichtung (8) aus mindestens zwei Gruppen von Düsen (11, 12) besteht, die unmittelbar auf den äußeren Umfang des Laufrades (4) gerichtet sind. Eine optimale Anpassung in einem großen Kennfeldbereich wird dadurch erreicht, dass die Düsen (11) einer ersten Gruppe in gleichmäßigen Winkelabständen um das Laufrad (4) angeordnet sind und dass zwischen diesen Düsen (11) weitere Düsen (12) vorgesehen sind, die regelbar ausgebildet sind. <IMAGE>

Description

Die Erfindung betrifft einen Abgasturbolader für eine Brennkraftmaschine mit innerer Verbrennung gemäß dem Oberbegriff von Patentanspruch 1.
Es ist bekannt, dass die Leistung, die Verbrauchs- und Abgaswerte von Brennkraftmaschinen mit innerer Verbrennung mit Abgasturboladern verbessert werden können. Es hat sich jedoch herausgestellt, dass nicht einfach ist, einen solchen Abgasturbolader so auszulegen, dass in allen Betriebsbereichen zufriedenstellende Ergebnisse erzielt werden. Um diesen Nachteil zu beheben, sind Turbolader mit variabler Turbinengeometrie vorgeschlagen worden, bei denen der Anströmquerschnitt vor dem Turbinenlaufrad verändert werden kann. Obgleich damit eine wesentliche Verbesserung erreicht werden kann, ist die Wirkung solcher Turbolader besonders im Teillastbereich (geringer Massendurchsatz bei niedriger Motordrehzahl) nach wie vor unbefriedigend. Ein Grund dafür ist, dass durch die verstellbaren Leitschaufeln zwangsläufig ein Kompromiss hinsichtlich der Abgasenergieformung (Druck/Geschwindigkeit) beim Durchströmen der engen Leitschaufelspalte bis zum Turbinenrad eingegangen werden muss. Das axiale Spiel der Leitschaufeln im Turbinengehäuse ergibt zusätzliche Verluste. Weiters ist die Standzeit solcher Turbolader beschränkt, da insbesondere bei enggestellter Leitvorrichtung eine große Belastung durch Gaskräfte gegeben ist.
Aus der DE 39 07 504 A ist eine Abgasturbine bekannt, die ein zweiflutiges Spiralgehäuse aufweist. Durch eine Klappe ist eine Flut abschaltbar. Beide Fluten münden jedoch in einen gemeinsamen Anströmquerschnitt, der sich über den gesamten Umfang des Laufrades erstreckt. Dadurch treten insbesondere im Teillastbereich erhebliche Verluste auf, die durch eine vorzeitige Entspannung des Abgasstroms bedingt sind.
Die EP 0 196 183 B zeigt einen Turbolader, bei dem der Anströmquerschnitt ebenfalls verändert werden kann. Neben den obenbeschriebenen Nachteilen kommt hier noch die in Umfangsrichtung ungleichmäßige Beaufschlagung des Laufrades hinzu, die eine einseitige mechanische Belastung der Lagerung bewirkt. Ähnliches gilt auch für eine Lösung, wie sie in der US 4,512,714 A offenbart ist.
Weiters beschreibt die DE 197 17 559 A einen Turbolader mit zwei Fluten, die wechselweise mit Abgas beaufschlagbar sind, wobei eine Flut die andere umgibt und über Öffnungen mit dieser verbunden ist. Ein solcher Turbolader hat aufgrund der Strömungsverluste und der vorzeitigen Entspannung des Abgases einen nicht zufriedenstellenden Wirkungsgrad.
Die DE 42 42 494 C zeigt ferner einen verstellbaren Strömungsleitapparat für das Laufrad eines Abgasturboladers, das über verschiedene Fluten, die schaltbar ausgebildet sein können, anströmbar ist. Damit kann erreicht werden, dass der Abgasturbolader in weiten Bereichen des Motorkennfelds optimal betrieben wird. Wenn jedoch einzelne Fluten abgesperrt werden, wird das Laufrad unsymmetrisch angeströmt, was zu einer verstärkten Lagerbelastung und zu einem Effizienzverlust führt.
Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und einen Abgasturbolader zu schaffen, der in einem weiten Bereich von Betriebszuständen einen guten Wirkungsgrad hat. Insbesondere soll im Bereich kleiner Drehzahlen der Brennkraftmaschine eine möglichst große Leistung an der Turbine erreicht werden, um ein schnelles Ansprechverhalten und einen günstigen Drehmomentverlauf zu erreichen. Dabei soll eine festigkeitstechnisch günstige Lösung und eine lange Lebensdauer erzielt werden.
Erfindungsgemäß wird dies dadurch erreicht, dass die Düsen einer ersten Gruppe in gleichmäßigen Winkelabständen um das Laufrad angeordnet sind und dass zwischen diesen Düsen weitere Düsen vorgesehen sind, die regelbar ausgebildet sind.
Durch die erfindungsgemäße Lösung wird erreicht, dass in allen Betriebszuständen eine zentralsymmetrische Anströmung des Laufrades gewährleistet ist, was in einer entsprechend geringen Lagerbelastung resultiert, so dass eine hohe Lebensdauer erreicht wird. Der Anströmquerschnitt kann optimal an den jeweiligen Abgasstrom angepasst werden, wobei jedoch stets die strömungstechnisch optimalen Anströmbedingungen bis hin zum Turbinenradeintritt gegeben sind. Insbesondere weisen alle Düsen stets den optimalen, d.h. im Allgemeinen minimalen Abstand zum Laufrad auf.
Vorzugsweise ist vorgesehen, dass die Leitvorrichtung aus mindestens zwei Gruppen von Düsen besteht, die unmittelbar auf den äußeren Umfang des Laufrades gerichtet sind, und dass das Spiralgehäuse in mindestens zwei Fluten unterteilt ist, von denen jede mit jeweils einer Gruppe von Düsen in Strömungsverbindung steht, und dass weiters eine Schalteinrichtung vorgesehen ist, um einzelne oder alle Fluten des Spiralgehäuses mit der Brennkraftmaschine abgasseitig zu verbinden. Insbesondere sind die Düsen durch feststehende Leitschaufeln gebildet. Dadurch wird ein besonders einfacher, strömungstechnisch vorteilhafter Aufbau erreicht. Da die Leitvorrichtung keine beweglichen Teile aufweist, ist eine solche Lösung besonders robust und insbesondere für den Einsatz in Nutzfahrzeugen geeignet.
Ein optimaler Wirkungsgrad ist gegeben, wenn die Breite der Düsen in Axialrichtung der des Laufrades an seinem Umfang entspricht. Auf diese Weise findet die Entspannung des Abgases praktisch ausschließlich als thermodynamischer Prozess im Laufrad statt, so dass keine Querschnittssprünge auftreten.
Eine besonders gute Anpassung des Turboladers an den jeweiligen Betriebszustand der Brennkraftmaschine kann dadurch erreicht werden, dass die erste Gruppe von Düsen, die zweite Gruppe und allfällige weitere Gruppen eine unterschiedliche Anzahl von Düsen aufweisen. Alternativ oder zusätzlich dazu kann auch vorgesehen sein, dass die Düsen der ersten Gruppe, die Düsen der zweiten Gruppe und die Düsen allfälliger weiterer Gruppen eine unterschiedliche Breite in Umfangsrichtung aufweisen.
Eine konstruktiv besonders einfach Ausführung der Erfindung ist dadurch gekennzeichnet, dass die Schalteinrichtung durch eine motorisch betätigbare Klappe gebildet ist.
Es hat sich ferner als günstig herausgestellt, wenn die Breite der Düsen in Umfangsrichtung mindestens dem Umfangsabstand der Schaufeln des Laufrades entspricht.
Weiters ist es von Vorteil, wenn im Teillastbereich bei geringen Massendurchsätzen eine elektromotorische Unterstützung der Turbine vorgesehen ist. Beispielsweise kann ein Elektromotor direkt in die Verbindung zwischen Laufrad und Turbine integriert sein.
In einer besonders bevorzugten Ausführungsvariante der Erfindung ist vorgesehen, dass die Leitvorrichtung mehrere feststehende Düsen aufweist, die unmittelbar auf den äußeren Umfang des Laufrades gerichtet sind, sowie mehrere schwenkbare Leitschaufeln, die rund um das Laufrad angeordnet sind und die in eine Stellung bringbar sind, in der das Spiralgehäuse nahezu ausschließlich durch die feststehenden Düsen mit dem Laufrad in Strömungsverbindung steht. Diese Lösung zeichnet sich gegenüber bekannten Turboladern mit variabler Turbinengeometrie dadurch aus, dass auch bei kleinem Gasdurchsatz optimale Anströmbedingungen für das Laufrad gegeben sind, da die Düsen hinsichtlich des Abstands zum Laufrad, des Anströmwinkels und hinsichtlich der Querschnittsfläche optimiert sind. Dadurch können auch bei niedrigen Drehzahlen der Brennkraftmaschine hohe Turbinendrehzahlen und damit hohe Ladedrücke erreicht werden. Bei höherem Gasdurchsatz werden die Leitschaufeln geöffnet, um größere Strömungsquerschnitte zu erreichen.
Eine optimale Anströmung des Laufrades im untersten Bereich des Gasdurchsatzes kann erreicht werden, wenn die schwenkbare Leitschaufeln in eine Stellung bringbar sind, in der sie aneinander und/oder an den feststehenden Düsen dichtend anliegen. Die Anströmung erfolgt dann ausschließlich durch die Düsen.
Es ist bekannt, dass es in Abhängigkeit der Zylinderanzahl der Brennkraftmaschine aus gasdynamischen Gründen günstig sein kann, die Abgase von Gruppen von Zylindern getrennt voneinander zum Turbolader zu führen. So können bei Sechszylindermaschinen Gruppen von jeweils drei Zylindern mit gleichen Zündabständen zusammengefasst werden, oder bei Fünfzylindermaschinen können zwei Gruppen jeweils zwei Zylinder und eine weitere Gruppe aus einem Zylinder bestehen. Somit ist es bevorzugt, wenn die Schalteinrichtung in mindestens einer Stellung jede der Fluten mit einer Gruppe von Zylindern der Brennkraftmaschine verbindet. Auf diese Weise werden die Gasströme nicht nur bis zum Turbolader sondern letztlich bis unmittelbar vor dem Laufradeintritt voneinander getrennt. Bei niedrigem Gasdurchsatz werden jedoch die Abgasströme aller Zylinder in eine Flut zusammengefasst, da hier die Erreichung einer möglichst hohen Turbinendrehzahl im Vordergrund steht.
Eine weitere bevorzugte Ausführungsvariante sieht stromabwärts der Schalteinrichtung im Bereich einer Flut ein Abblaseventil vor, das bei Überschreiten eines vorbestimmten Drucks in der Flut öffnet. Dadurch wird erreicht, dass zusätzlich zu den möglichen Leistungsstufen der Turbine, die durch Umschalten der einzelnen Fluten gegeben sind, eine zusätzliche Stufe für höchste Abgasströme geschaffen wird, bei der das Abblaseventil, das sogenannte Waste-Gate, geöffnet ist. Daher ist es nicht erforderlich, die Turbine auf den höchst möglichen Abgasstrom auszulegen, so dass mit einer etwas kleineren Turbine das Auslangen gefunden werden kann. Dies ermöglicht eine zusätzliche Verbesserung des Ansprechverhaltens und die Möglichkeit einer feineren Abstufung der Turbinenleistung. Ein besonderer Vorteil besteht darin, dass nur ein Teilstrom des Abgases durch das Waste-Gate beeinflusst wird. Durch die strikte Trennung der Abgasströme der einzelnen Fluten bis zu den zugeordneten Düsen, die jeweils entsprechende Sektoren des Laufrades beaufschlagen, kann z.B. bei Kick-Down eine Situation erreicht werden, dass die Flut mit Waste-Gate durch die Schalteinrichtung nicht beaufschlagt ist, und in der anderen Flut bzw. den anderen Fluten ein höherer Abgasstaudruck erreicht werden kann, als der Öffnungsdruck des Waste-Gate vorgibt.
Eine optimale Beaufschlagung der Turbine wird dadurch erreicht, dass vorzugsweise die Schalteinrichtung eine vorbestimmte Stellung aufweist, in der bei hohem Gasdurchsatz der Druck in beiden Fluten etwa gleich groß ist. Eine solche Stellung der Schalteinrichtung kann durch eine Raste oder eine vorprogrammierte Einstellung vorgegeben sein. Bei geschlossener Abblaseeinrichtung wird sich die Schalteinrichtung bei hohem Gasdurchsatz in einer Mittelstellung befinden, um beide Fluten gleichmäßig zu beaufschlagen. Sobald die Abblaseeinrichtung, d.h. das Waste-Gate öffnet, ist es vorteilhaft, die Gasströme etwas zugunsten der Flut umzulenken, in der sich das Waste-Gate befindet. Auf diese Weise kann auch bei geöffnetem Waste-Gate eine gleichmäßige Beaufschlagung der Turbine gewährleistet werden.
In der Folge wird die Erfindung anhand der in den Figuren dargestellten Ausführungsvarianten näher erläutert. Es zeigen:
Fig. 1
einen Längsschnitt durch einen erfindungsgemäßen Abgasturbolader; Fig. 2 schematisch einen Schnitt nach Linie II-II in Fig. 1;
Fig. 3 bis 5
Details von erfindungsgemäßen Abgasturboladern;
Fig. 6
eine Ausführungsvariante der Erfindung in einem Schnitt entsprechend der Fig. 2; und
Fig. 7
eine weitere Ausführungsvariante der Erfindung im Schnitt.
Der Abgasturbolader besitzt allgemein eine Turbine 1, die über eine Welle 2 mit einem Verdichter 3 verbunden ist und diesen antreibt. In der Turbine 1 ist ein Laufrad 4 vorgesehen, das über eine Leitvorrichtung 5, die aus Leitschaufeln 6 besteht, mit dem Abgas einer nicht dargestellten Brennkraftmaschine beaufschlagt wird. Nach dem Durchströmen des Laufrades 4 strömt das Abgas in einer axialen Öffnung 7 ab. Das Abgas wird über ein Spiralgehäuse 8 zur Leitvorrichtung 5 geführt, in dem zwei Fluten 9, 10 in Axialrichtung nebeneinander angeordnet sind, die durch eine Trennwand 14 voneinander getrennt sind. Der Turbine 1 vorgeschaltet ist ein Adapter 21, der neben der Klappe 13 ein Abblaseventil 20 aufnimmt. Dieses Abblaseventil 20 ist als Klappenventil dargestellt, das als mechanisch betätigtes oder als von der Motorsteuerung betätigtes elektromagnetisches Ventil ausgeführt sein kann. Es ist auch möglich in an sich bekannter Weise eine mechanische Steuerung über den Ladedruck vorzusehen, oder einfach ein Überdruckventil einzusetzen. Der Gasstrom aus dem Abblaseventil 20 mündet in ein Abgasrohr 22 stromabwärts der Turbine 1.
Aus der Fig. 2 ist ersichtlich, dass insgesamt neun feststehende Leitschaufeln 6 in gleichmäßigen Winkelabständen um das Laufrad 4 angeordnet sind, so dass zwischen diesen Leitschaufeln 6 Düsen 11, 12 ausgebildet sind, die auf das Laufrad 4 gerichtet sind. Die Düsen 11 der ersten Gruppe stehen mit der ersten Flut 9 in Strömungsverbindung. Zwischen den Düsen 11 sind jeweils zwei Düsen 12 einer weiteren Gruppe angeordnet, die mit der zweiten Flut 10 in Strömungsverbindung stehen. Auf diese Weise kann das Laufrad 4 je nach dem Betriebszustand der Brennkraftmaschine über drei Düsen 11 der ersten Gruppe, über sechs Düsen 12 der zweiten Gruppe oder über alle neun Düsen 11, 12 beaufschlagt werden. Damit kann auch bei einem geringen Abgasstrom eine hohe Drehzahl des Laufrades 4 und damit ein günstiger Ladedruck und ein schnelles Ansprechverhalten erreicht werden. Es ist für den Fachmann offensichtlich, dass das Regelungsverhältnis 1:2:3 nach Bedarf beispielsweise dadurch abgeändert werden kann, dass zwischen den Düsen 11 der ersten Gruppe beispielsweise drei Düsen 12 der zweiten Gruppe angeordnet werden. Weiters kann die Breite der einzelnen Düsen in Umfangsrichtung unterschiedlich ausgeführt werden. Wesentlich ist, dass sämtliche Leitschaufeln 6 eine optimale Spaltbreite s zum äußeren Umfang des Laufrades 4 aufweisen.
Aus der Fig. 3 ist schematisch eine motorisch angetriebene Klappe 13 ersichtlich, mit der der Abgasstrom in die erste Flut 9 oder in die zweite Flut 10 oder in der Mittelstellung in beide Fluten 9, 10 gelenkt werden kann. In der Fig. 3 ist mit durchgezogenen Linien eine Stellung der Klappe 13 gezeigt, in der der Abgasstrom in die erste Flut 9 zur Beaufschlagung der ersten Gruppe von Düsen 11 eingestellt ist. Mit unterbrochenen Linien ist eine weitere Stellung gezeigt, in der der Abgasstrom in die zweite Flut 10 zur Beaufschlagung der zweiten Gruppe von Düsen 12 gelenkt wird. Die Klappe 13 kann direkt im Gehäuse der Turbine 1 angeordnet sein, auch in einem speziellen Adaptergehäuse vorgesehen sein, das an den erfindungsgemäßen Abgasturbolader angeflanscht ist oder im Abgassammelkrümmer des Verbrennungsmotors.
Bei der Variante von Fig. 4 ist die stromaufwärtige Seite der Klappe 13 in zwei Kanäle 15, 16 unterteilt, die zu unterschiedlichen Gruppen von nicht dargestellten Zylindern der Brennkraftmaschine führen. In der dargestellten Stellung der Klappe 13 werden die beiden Kanäle 15, 16 in die erste Flut 9 zusammengefasst. Bei hohem Gasdurchsatz werden die Kanäle 15, 16 getrennt voneinander mit den Fluten 9, 10 verbunden, wodurch zusätzlich ein gasdynamischer Effekt bei zweiflutigen Turbinengehäusen genützt werden kann.
Die Fig. 5 entspricht im Wesentlichen der Fig. 3, wobei jedoch die Klappe 13 in einer Stellung gezeigt ist, in der sie sich bei höchstem Abgasdurchsatz und geöffnetem Abblaseventil befindet. Dabei wird der Abgasstrom zur ersten Flut 9 etwas gedrosselt und ein zusätzlicher Abgasstrom zur zweiten Flut 10 umgelenkt. Stromabwärts des in der Fig. 5 nicht dargestellten Waste-Gates ergibt sich daher näherungsweise ein gleichmäßiges Druckniveau in beiden Fluten 9, 10.
In der Fig. 6 ist eine Ausführung gezeigt, bei der Sperrkörper 30 in Axialrichtung in die ersten Düsen 11 einschiebbar sind, um diese größtenteils zu verschließen. Die Stärke der Motorbremswirkung kann auch stufenlos dadurch eingestellt werden, dass die Sperrkörper 30 unterschiedlich tief in die Düsen 11 eintauchen. Eine optimale Motorbremswirkung wird dann erreicht, wenn die Schalteinrichtung 13 den gesamten Abgasstrom auf die ersten Düsen 11 lenkt und somit die Düsen 12 der zweiten Gruppe wegschaltet. Auf diese Weise wird auch das Abblaseventil 20 deaktiviert.
Der Abgasturbolader der Fig. 7 besitzt wie die übrigen Ausführungsvarianten eine Turbine 1, die über eine Welle 2 mit einem nicht dargestellten Verdichter verbunden ist und diesen antreibt. In der Turbine 1 ist ein Laufrad 4 vorgesehen, das über eine Leitvorrichtung 5, die aus schwenkbaren Leitschaufeln 6 besteht, mit dem Abgas einer nicht dargestellten Brennkraftmaschine beaufschlagt wird. Beim dargestellten Ausführungsbeispiel sind insgesamt zwölf Leitschaufeln 6 vorgesehen, die in Gruppen zu jeweils drei Schaufeln um das Laufrad 4 angeordnet sind. Zwischen den einzelnen Gruppen von Leitschaufeln 6 sind Düsen 11 angeordnet, die aus feststehenden Leitschaufeln 6a gebildet sind.
In der mit durchgezogenen Linien gezeichneten Stellung der schwenkbaren Leitschaufeln 6 steht das Spiralgehäuse 8 nur über die Düsen 11 mit dem Laufrad 4 in Verbindung, da die Leitschaufeln dichtend aneinander und an den Düsen 11 anliegen. Das Laufrad 4 wird daher nur über die Düsen 11 angeströmt, wobei der radiale Spalt s und der Anströmwinkel optimiert sind. Bei höherem Gasdurchsatz werden die schwenkbaren Leitschaufeln 6 gleichzeitig oder auch nach einander geöffnet, wie dies teilweise mit unterbrochenen Linien dargestellt ist, um einen entsprechenden Anströmquerschnitt zur Verfügung zu stellen.
Die vorliegende Erfindung ermöglicht es, auch bei kleiner Motordrehzahl und damit einem geringen Abgasstrom eine hohe Turbinendrehzahl und damit ein gutes Ansprechverhalten und eine optimale Aufladung zu erreichen.

Claims (19)

  1. Abgasturbolader für eine Brennkraftmaschine mit innerer Verbrennung, mit einer Turbine (1), die ein Laufrad (4), ein Spiralgehäuse (8) und eine Leitvorrichtung (5) aufweist, um den Abgasstrom auf das Laufrad (4) zu lenken, welche Leitvorrichtung (8) aus mindestens zwei Gruppen von Düsen (11, 12) besteht, die unmittelbar auf den äußeren Umfang des Laufrades (4) gerichtet sind, dadurch gekennzeichnet, dass die Düsen (11) einer ersten Gruppe in gleichmäßigen Winkelabständen um das Laufrad (4) angeordnet sind und dass zwischen diesen Düsen (11) weitere Düsen (12) vorgesehen sind, die regelbar ausgebildet sind.
  2. Abgasturbolader nach Anspruch 1, dadurch gekennzeichnet, dass das Spiralgehäuse (8) in mindestens zwei Fluten (9, 10) unterteilt ist, von denen jede mit jeweils einer Gruppe von Düsen (11, 12) in Strömungsverbindung steht, und dass weiters eine Schalteinrichtung (13) vorgesehen ist, um einzelne oder alle Fluten (9, 10) des Spiralgehäuses (8) mit der Brennkraftmaschine abgasseitig zu verbinden.
  3. Abgasturbolader nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Düsen (11, 12) durch feststehende Leitschaufeln (6) gebildet sind.
  4. Abgasturbolader nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Breite der Düsen (11, 12) in Axialrichtung der des Laufrades (4) an seinem Umfang entspricht.
  5. Abgasturbolader nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine erste Gruppe von Düsen, eine zweite Gruppe und allfällige weitere Gruppen eine unterschiedliche Anzahl von Düsen (11, 12) aufweisen.
  6. Abgasturbolader nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Düsen (11) einer ersten Gruppe, die Düsen (12) einer zweiten Gruppe und die Düsen allfälliger weiterer Gruppen eine unterschiedliche Breite in Umfangsrichtung aufweisen.
  7. Abgasturbolader nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schalteinrichtung durch eine motorisch betätigbare Klappe (13) gebildet ist.
  8. Abgasturbolader nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Breite der Düsen (11, 12) in Umfangsrichtung mindestens dem Umfangsabstand der Schaufeln des Laufrades (4) entspricht.
  9. Abgasturbolader nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere schwenkbare Leitschaufeln (6) vorgesehen sind, die rund um das Laufrad (4) angeordnet sind und die in eine Stellung bringbar sind, in der das Spiralgehäuse (8) nahezu ausschließlich durch die feststehenden Düsen (11) mit dem Laufrad (4) in Strömungsverbindung steht.
  10. Abgasturbolader nach Anspruch 9, dadurch gekennzeichnet, dass die schwenkbaren Leitschaufeln (6) in eine Stellung bringbar sind, in der sie aneinander und/oder an den feststehenden Düsen (11) dichtend anliegen.
  11. Abgasturbolader nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass zwischen jeweils zwei feststehenden Düsen (11) mindestens eine, vorzugsweise drei schwenkbare Leitschaufeln (6) vorgesehen sind.
  12. Abgasturbolader nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die schwenkbaren Leitschaufeln (6) gleichzeitig oder in einer vorgebbaren zeitlichen Abfolge betätigbar sind.
  13. Abgasturbolader nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Teillastbereich bei geringen Massendurchsätzen eine elektromotorische Unterstützung der Turbine (1) vorgesehen ist.
  14. Abgasturbolader nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Spiralgehäuse (8) in mindestens zwei Fluten (9, 10) unterteilt ist, von denen jede mit jeweils einer Gruppe von Düsen (11, 12) in Strömungsverbindung steht, um einzelne oder alle Fluten (9, 10) des Spiralgehäuses (8) mit der Brennkraftmaschine abgasseitig zu verbinden und dass stromabwärts der Schalteinrichtung (13) im Bereich einer Flut (9) ein Abblaseventil (20) vorgesehen sind, das bei Überschreiten eines vorbestimmten Drucks in der Flut (9) öffnet.
  15. Abgasturbolader nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zwei oder mehrere Fluten (9, 10) vorgesehen sind, die in Axialrichtung nebeneinander angeordnet sind.
  16. Abgasturbolader nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Schalteinrichtung (13) eine vorbestimmte Stellung aufweist, in der bei hohem Gasdurchsatz der Druck in beiden Fluten etwa gleich groß ist.
  17. Abgasturbolader nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass weiters eine Motorbremseinrichtung vorgesehen ist, die Sperrkörper (30) aufweist, die in eine Gruppe von Düsen (11) vorzugsweise in Axialrichtung einschiebbar sind.
  18. Abgasturbolader nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass ein zweistufige Aufladung vorgesehen ist und ein weiterer Abgasturbolader als Hochdruckstufe vorgeschaltet ist.
  19. Abgasturbolader nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass ein zweistufige Aufladung vorgesehen ist und ein weiterer Abgasturbolader als Niederdruckstufe nachgeschaltet ist.
EP20010890300 2000-10-31 2001-10-25 Abgasturbolader Expired - Lifetime EP1201881B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT01890300T ATE312274T1 (de) 2000-10-31 2001-10-25 Abgasturbolader

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
AT18462000A AT410697B (de) 2000-10-31 2000-10-31 Abgasturbolader für eine brennkraftmaschine
AT18452000 2000-10-31
AT18462000 2000-10-31
AT0184500A AT411615B (de) 2000-10-31 2000-10-31 Abgasturbolader für eine brennkraftmaschine
AT19892000A AT410698B (de) 2000-11-27 2000-11-27 Abgasturbolader
AT19892000 2000-11-27

Publications (3)

Publication Number Publication Date
EP1201881A2 true EP1201881A2 (de) 2002-05-02
EP1201881A3 EP1201881A3 (de) 2004-02-11
EP1201881B1 EP1201881B1 (de) 2005-12-07

Family

ID=27151347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010890300 Expired - Lifetime EP1201881B1 (de) 2000-10-31 2001-10-25 Abgasturbolader

Country Status (2)

Country Link
EP (1) EP1201881B1 (de)
DE (1) DE50108296D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020592A1 (de) * 2009-05-09 2010-11-11 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
DE102011121330A1 (de) * 2011-12-16 2013-06-20 Ihi Charging Systems International Gmbh Turbine für einen Abgasturbolader
WO2013107610A1 (de) * 2012-01-18 2013-07-25 Ihi Charging Systems International Gmbh Leiteinrichtung für eine turbine eines abgasturboladers und zugehörige turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050673A (ko) 2013-10-30 2015-05-11 현대자동차주식회사 가변 지오메트리 터보 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512714A (en) 1982-02-16 1985-04-23 Deere & Company Variable flow turbine
DE3907504A1 (de) 1988-03-08 1989-09-21 Honda Motor Co Ltd Turbine mit einer zweifach spiralfoermigen struktur
EP0196183B1 (de) 1985-03-19 1989-12-20 Mazda Motor Corporation Turbolader für eine Brennkraftmaschine
DE4242494C1 (en) 1992-12-16 1993-09-09 Mercedes-Benz Aktiengesellschaft, 70327 Stuttgart, De Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
DE19717559A1 (de) 1996-04-25 1998-01-22 Aisin Seiki Turbolader

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759881B2 (ja) * 1988-04-15 1995-06-28 本田技研工業株式会社 可変容量タービン
US5560208A (en) * 1995-07-28 1996-10-01 Halimi; Edward M. Motor-assisted variable geometry turbocharging system
DE19543190C2 (de) * 1995-11-20 1998-01-29 Daimler Benz Ag Motorbremse für eine aufgeladene Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512714A (en) 1982-02-16 1985-04-23 Deere & Company Variable flow turbine
EP0196183B1 (de) 1985-03-19 1989-12-20 Mazda Motor Corporation Turbolader für eine Brennkraftmaschine
DE3907504A1 (de) 1988-03-08 1989-09-21 Honda Motor Co Ltd Turbine mit einer zweifach spiralfoermigen struktur
DE4242494C1 (en) 1992-12-16 1993-09-09 Mercedes-Benz Aktiengesellschaft, 70327 Stuttgart, De Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
DE19717559A1 (de) 1996-04-25 1998-01-22 Aisin Seiki Turbolader

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020592A1 (de) * 2009-05-09 2010-11-11 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
DE102011121330A1 (de) * 2011-12-16 2013-06-20 Ihi Charging Systems International Gmbh Turbine für einen Abgasturbolader
WO2013087155A1 (de) * 2011-12-16 2013-06-20 Ihi Charging Systems International Gmbh Turbine für einen abgasturbolader
CN103998724A (zh) * 2011-12-16 2014-08-20 Ihi供应系统国际有限责任公司 用于废气涡轮增压器的涡轮机
CN103998724B (zh) * 2011-12-16 2015-12-02 Ihi供应系统国际有限责任公司 用于废气涡轮增压器的涡轮机
US9611750B2 (en) 2011-12-16 2017-04-04 Ihi Charging Systems International Gmbh Turbine for an exhaust gas turbocharger
WO2013107610A1 (de) * 2012-01-18 2013-07-25 Ihi Charging Systems International Gmbh Leiteinrichtung für eine turbine eines abgasturboladers und zugehörige turbine
CN104053863A (zh) * 2012-01-18 2014-09-17 Ihi供应系统国际有限责任公司 用于废气涡轮增压机的涡轮的导向装置和相应的涡轮
CN104053863B (zh) * 2012-01-18 2016-08-17 Ihi供应系统国际有限责任公司 用于废气涡轮增压机的涡轮的导向装置和相应的涡轮

Also Published As

Publication number Publication date
DE50108296D1 (de) 2006-01-12
EP1201881A3 (de) 2004-02-11
EP1201881B1 (de) 2005-12-07

Similar Documents

Publication Publication Date Title
DE4242494C1 (en) Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
DE19618160C2 (de) Abgasturbolader für eine Brennkraftmaschine
EP1812698B1 (de) Abgasturbolader für eine brennkraftmaschine
EP0598174B1 (de) Abgasturbolader für eine Brennkraftmaschine
DE10212675B4 (de) Abgasturbolader in einer Brennkraftmaschine
DE69407539T2 (de) Turbomaschine mit System zur Heizung der Rotorscheiben in der Beschleunigungsphase
DE19816645B4 (de) Abgasturboladerturbine
EP1151181B1 (de) Abgasturbolader für eine brennkraftmaschine
EP0243596B1 (de) Axialdrallregler für einen Abgasturbolader für Verbrennungsmotoren
WO1999000589A1 (de) Brennkraftmaschinen-turbolader-system
DE3833906C2 (de)
WO2009086959A1 (de) Leitschaufel für eine variable turbinengeometrie
DE2840201A1 (de) Vorrichtung zur veraenderung der zustroemquerschnittsflaeche der turbine eines abgasturboladers
DE102004035044A1 (de) Verdichter in einem Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines Verdichters
WO2008155023A1 (de) Luftversorger, insbesondere für ein luftversorgungssystem von brennstoffzellen
EP1673525B1 (de) Verdichter im ansaugtrakt einer brennkraftmaschine
DE4310148A1 (de) Aufgeladene Brennkraftmaschine
EP1201881B1 (de) Abgasturbolader
DE10318737A1 (de) Abgasturbolader und Verfahren zum Betrieb eines Abgasturboladers
EP1433937A1 (de) Abgasturbolader mit einer in das Gehäuse integrierten Bypasseinrichtung und Herstellungsverfahren für diese Bypasseinrichtung
AT410698B (de) Abgasturbolader
AT410697B (de) Abgasturbolader für eine brennkraftmaschine
DE10228003A1 (de) Turbine für einen Abgasturbolader
DE10261790B4 (de) Strömungsmaschinenanordnung
EP1878893A1 (de) Abgasturboladeranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040805

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50108296

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060508

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20051207

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

26N No opposition filed

Effective date: 20060908

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: BLANK, OTTO

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061025

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081025

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031