EP1189003A1 - Procédé et installation de séparation d'air par distillation cryogénique - Google Patents
Procédé et installation de séparation d'air par distillation cryogénique Download PDFInfo
- Publication number
- EP1189003A1 EP1189003A1 EP01402310A EP01402310A EP1189003A1 EP 1189003 A1 EP1189003 A1 EP 1189003A1 EP 01402310 A EP01402310 A EP 01402310A EP 01402310 A EP01402310 A EP 01402310A EP 1189003 A1 EP1189003 A1 EP 1189003A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure column
- column
- enriched
- flow
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000000926 separation method Methods 0.000 title claims description 11
- 238000004821 distillation Methods 0.000 title claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 94
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 72
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000001301 oxygen Substances 0.000 claims abstract description 49
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 49
- 239000012530 fluid Substances 0.000 claims abstract description 44
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 38
- 229910052786 argon Inorganic materials 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 38
- 238000009434 installation Methods 0.000 claims description 11
- 239000006200 vaporizer Substances 0.000 abstract 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04448—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
Definitions
- the present invention relates to a method and an installation for air separation by cryogenic distillation.
- it relates to a process using three separation columns operating at high pressure, low pressure and an intermediate pressure between high and low pressures.
- An object of the invention is to reduce the energy consumption of the process separation with respect to the methods of the prior art.
- Another object of the invention is to produce oxygen with a purity of at least minus 95% mol., or even at least 98% mol. with improved performance.
- Figure 1 shows a typical process with a low pressure column 103 operating at 1.3 bara making oxygen at 99.5% mol. with a 92% yield.
- a flow of 1000 Nm 3 / h of air 1 at around 5 bara is divided into two to form a first flow 17 and a second flow 3 which is boosted in a booster 5 at a higher pressure of the order of 75 bara .
- the flow 17 is sent to the tank of the high pressure column 101 and flow 3 liquefied in the exchanger 100 is expanded in a turbine 6 producing a flow at least partially liquid at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least in part to the high pressure column 101.
- a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being expanded and sent to an intermediate level of the low pressure column 103.
- a liquid air flow 12 is withdrawn from the high pressure column 101, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
- a residual nitrogen flow 72 is drawn off at the head of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
- a flow 31 of 193 Nm 3 / h of oxygen at 99.5% mol. is withdrawn in liquid form from the low pressure column 103, pumped into the pump 19 at 40 bara and vaporized in the exchanger 100 to form a gas flow under pressure.
- a flow rate of 200 Nm 3 / h of nitrogen gas 33 is withdrawn from the head of the high pressure column 101 and is partially heated in the exchanger 100. At an intermediate temperature, part of the gas is expanded in a turbine 35 before d 'be mixed with waste gas 72.
- a flow of 1000 Nm 3 / h of air 1 at around 14.3 bara is divided into two to form a first flow 17 and a second flow 3 which is boosted in a booster 5 at a higher pressure of the order of 75 bara.
- the two flows 3.17 cool by passing through an exchanger 100.
- the flow 17 is sent to the tank of the high pressure column 101 and the liquid flow 3 is expanded in a turbine 6 producing an at least partially liquid flow at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least in part to the high pressure column 101.
- a flow of rich liquid 10 from the high pressure column 101 cools in the sub-cooler 83 before being relaxed and sent to an intermediate level of the low pressure column 103.
- a liquid air flow 12 is withdrawn from the high pressure column 101, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
- a residual nitrogen flow 72 is drawn off at the head of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
- a flow 31 of 164 Nm 3 / h of oxygen at 99.5% mol. is withdrawn in liquid form from the low pressure column, pumped into the pump 19 at 40 bara and vaporized in the exchanger 100 to form a gas flow under pressure.
- the inventors of the present application have discovered that even without using an argon separation column, the purification of oxygen in the bottom of the column low pressure remains satisfactory for the production of high purity oxygen.
- a separation installation air by cryogenic distillation comprising a high pressure column, a column at intermediate pressure having a tank reboiler and a low pressure column, the high pressure column and the low pressure column being thermally connected between them, means for sending at least a mixture of oxygen, nitrogen and argon at least to the high pressure column, means for sending a flow enriched in oxygen from the high pressure column to the intermediate pressure column, means for sending an oxygen-enriched fluid and / or a nitrogen-enriched fluid from the intermediate pressure column to the low pressure column, means for send a fluid from the low pressure column to the column reboiler of the column to intermediate pressure, means for withdrawing a nitrogen-enriched fluid and a fluid enriched in oxygen from the low pressure column, characterized in that it does not includes no means for enriching argon with a fluid containing between 3 and 20% mol. argon other than high pressure, low pressure and pressure columns intermediate.
- the fluid sent to the reboiler is withdrawn from the column low pressure at a level lower than the level of introduction of a fluid enriched in oxygen from the intermediate pressure column.
- the intermediate pressure column has an overhead condenser.
- Fluids called 'enriched in oxygen' or 'enriched in nitrogen' are enriched in these components compared to air.
- the device operates with a low column pressure at 1.3 bara and in the case of Figure 4, the device operates with a low pressure column at 4.8 bara.
- FIG. 3 The installation of Figure 3 includes a high pressure column 101 operating at 5 bara, an intermediate pressure column 102 operating at 2.7 bara and a low pressure column 103 operating at 1.3 bara. Part of the overhead nitrogen gas of the high pressure column is used to heat the bottom column reboiler pressure but other means of heating can be envisaged, such as double reboiler systems, one of which is heated by air.
- a flow of 1000 Nm 3 / h of air 1 at around 5 bara is divided into two to form a first flow 17 and a second flow 3 which is boosted in a booster 5 at a higher pressure of the order of 75 bara .
- the two flows 3.17 cool by passing through an exchanger 100.
- the flow 17 is sent to the tank of the high pressure column 101 without having been expanded or compressed and the liquid flow 3 is expanded in a turbine 6 producing a flow at less partially liquid at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least in part to the high pressure column 101.
- a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being expanded and sent to an intermediate level of the intermediate pressure column 102 between two sections, for example of structured fillings of wavy-cross type. Liquid can be sent to another column level and the column can also receive a flow of gaseous air or liquid.
- This liquid is separated into a second oxygen-enriched liquid 20 and a liquid enriched in nitrogen 25.
- the liquid 25 cools in the subcooler 83, before to be relaxed and sent to the head of the low pressure column 103, after being mixed with a lean liquid flow 15 from the head of the high pressure column 101 which has also been cooled in the subcooler 83 and expanded in a valve.
- the tank liquid 20 of the intermediate pressure column is divided into of them. A part is relaxed and sent to the low pressure column directly while the rest is expanded in a valve, sent to the head condenser 22 of the intermediate pressure column where it vaporizes at least partially before to be sent to the low pressure column 103.
- a liquid air flow 12 is withdrawn from the high pressure column, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
- the tank reboiler 24 of the intermediate pressure column 102 is heated by means of a gas flow enriched in argon 233 containing approximately 5 to 15% mol., preferably between 8 and 10% mol. argon from the lower column pressure 103. This flow condenses at least partially in the reboiler 24 before being returned to the low pressure column 103
- a residual nitrogen flow 72 is drawn off at the head of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
- a flow 31 of 203 Nm 3 / h of oxygen at 99.5% mol. is withdrawn in liquid form from the low pressure column 103, pumped into the pump 19 at 40 bara and vaporized in the exchanger 100 to form a gas flow under pressure.
- a flow 33 of 200 Nm 3 / h of nitrogen gas is drawn off at the head of the high pressure column 101 and is partially heated in the exchanger 100. At an intermediate temperature, part of the gas is expanded in a turbine 35 before be mixed with the waste gas 72. The rest of the nitrogen continues to heat up and constitutes a product of the apparatus.
- Liquid products can be drawn from the appliance, but the appliance does not produces no argon-rich fluid.
- FIG. 4 The installation of Figure 4 includes a high pressure column 101 operating at 14.3 bara, an intermediate pressure column 102 operating at 8.5 bara and a low pressure column 103 operating at 4.8 bara. All the nitrogen gas overhead high pressure column is used to heat the bottom column tank reboiler pressure but other means of heating can be envisaged, such as double reboiler systems, one of which is heated by air.
- a flow of 1000 Nm 3 / h of air 1 at around 14.3 bara is divided into two to form a first flow 17 and a second flow 3 which is boosted in a booster 5 at a higher pressure of the order of 75 bara.
- the two flows 3.17 cool by passing through an exchanger 100.
- the flow 17 is sent to the tank of the high pressure column 101 and the liquid flow 3 is expanded in a turbine producing an at least partially liquid flow at its outlet, the fluid or mixture of fluids leaving the turbine being sent at least in part to the high pressure column 101.
- a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being expanded and sent to an intermediate level of the intermediate pressure column 102 between two sections, for example of structured fillings of wavy-cross type. Liquid can be sent to another column level and the column can also receive a flow of gaseous air or liquid.
- This liquid is separated into a second oxygen-enriched liquid 20 and a liquid enriched in nitrogen 25.
- the liquid 25 cools in the subcooler 83, before to be relaxed and sent to the head of the low pressure column 103, after being mixed with a lean liquid flow 15 from the head of the high pressure column 101 which has also been cooled in the subcooler 83 and expanded in a valve.
- the tank liquid 20 of the intermediate pressure column is divided into of them. A part is relaxed and sent to the low pressure column directly while the rest is expanded in a valve, sent to the head condenser 22 of the intermediate pressure column where it vaporizes at least partially before to be sent to the low pressure column 103.
- a liquid air flow 12 is withdrawn from the high pressure column, cooled in the subcooler 83, expanded and sent to the low pressure column.
- the tank reboiler 24 of the intermediate pressure column 102 is heated by means of a gas flow enriched in argon 233 containing approximately 5 to 15% mol., preferably 8 to 10% mol. argon from the low pressure column 103. This flow condenses at least partially in the reboiler 24 before being returned to low pressure column 103.
- a residual nitrogen flow 72 is drawn off at the head of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
- a flow 31 of 177 Nm 3 / h of oxygen at 99.5% mol. is withdrawn in liquid form from the low pressure column, pumped into the pump 19 at 40 bara and vaporized in the exchanger 100 to form a gas flow under pressure.
- the appliance can receive all or part of its supply air from a compressor of a gas turbine, the residual nitrogen from the appliance being returned to the gas turbine.
- Figure 1 process Figure 3 process (invention) High pressure column pressure 5 bara 5 bara Low pressure column pressure 1.3 bara 1.3 bara Intermediate pressure column pressure 2.7 bara Total treated air flow 1000 Nm 3 / h 1000 Nm 3 / h Oxygen content of the gaseous product 99.5% O2 99.5% O2 Oxygen production, counted pure 193 Nm 3 / h 203 Nm 3 / h High pressure nitrogen gas production 200 Nm 3 / h 200 Nm 3 / h Oxygen extraction efficiency 92% 97% Separation energy Base: 100 95 Figure 2 process Figure 4 process (invention) High pressure column pressure 14.3 bara 14.3 bara Low pressure column pressure 4.8 bara 4.8 bara Intermediate pressure column pressure 8.5 bara Total air flow 1000 Nm 3 / h 1000 Nm 3 / h Oxygen content of the gaseous product 99.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
- le fluide enrichi en oxygène soutiré de la colonne basse pression contient au moins 95 % mol. d'oxygène, éventuellement au moins 98 % mol. d'oxygène.
- aucun débit gazeux enrichi en azote n'est soutiré en tête de la colonne haute pression ou un débit gazeux enrichi en azote est soutiré en tête de la colonne haute pression.
- la colonne basse pression opère à au moins 1,3 bara, éventuellement au moins 2 bara, de préférence au moins 4 bara.
- on envoie un (des) débit(s) d'air gazeux et/ou liquide à la colonne à pression intermédiaire et/ou à la colonne basse pression et/ou à la colonne haute pression.
- le gaz provenant de la partie inférieure de la colonne basse pression envoyé au rebouilleur de cuve contient entre 1 et 20 % mol. d'argon, de préférence entre 5 et 15% mol . d'argon, encore plus préférablement entre 8 et 10 % mol. d'argon.
- au moins une partie du deuxième débit enrichi en azote se condense, éventuellement dans un condenseur de tête de la colonne à pression intermédiaire.
- une turbine de détente et des moyens pour amener un débit de la colonne basse pression à cette turbine sans le comprimer.
- des moyens pour amener un débit d'air à la colonne à pression intermédiaire et/ou basse pression et/ou haute pression.
Procédé de la Figure 1 | Procédé de la Figure 3 (invention) | |
Pression de la colonne haute pression | 5 bara | 5 bara |
Pression de la colonne basse pression | 1.3 bara | 1.3 bara |
Pression de la colonne à pression intermédiaire | 2.7 bara | |
Débit total d'air traité | 1000 Nm3/h | 1000 Nm3/h |
Teneur en oxygène du produit gazeux | 99.5% O2 | 99.5% O2 |
Production d'oxygène, compté pur | 193 Nm3/h | 203 Nm3/h |
Production d'azote gazeux haute pression | 200 Nm3/h | 200 Nm3/h |
Rendement d'extraction d'oxygène | 92% | 97% |
Energie de séparation | Base : 100 | 95 |
Procédé de la Figure 2 | Procédé de la Figure 4 (invention) | |
Pression de la colonne haute pression | 14.3 bara | 14.3 bara |
Pression de la colonne basse pression | 4.8 bara | 4.8 bara |
Pression de la colonne à pression intermédiaire | 8.5 bara | |
Débit d'air total | 1000 Nm3/h | 1000 Nm3/h |
Teneur en oxygène du produit gazeux | 99.5% O2 | 99.5% O2 |
Production d'oxygène, compté pur | 164 Nm3/h | 177 Nm3/h |
Production d'azote gazeux haute pression | 0 Nm3/h | 0 Nm3/h |
Rendement d'extraction d'oxygène | 78% | 85% |
Energie de séparation | Base : 100 | 90 |
Claims (13)
- Procédé de séparation d'air dans un appareil de séparation comprenant une colonne haute pression (101), une colonne à pression intermédiaire (102) ayant un rebouilleur de cuve (24) et une colonne basse pression (103) dans lequela) on envoie au moins un mélange (1) au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression où il se sépare en un premier débit enrichi en oxygène et un premier débit enrichi en azoteb) on envoie au moins une partie du premier débit (10) enrichi en oxygène à la colonne opérant à pression intermédiaire où il se sépare en un deuxième débit enrichi en oxygène (20) et un deuxième débit enrichi en azote (25)c) on envoie au moins une partie du deuxième débit enrichi en oxygène et/ou du deuxième débit enrichi en azote à la colonne basse pressiond) on envoie un gaz (233) de la partie inférieure de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire où il se condense au moins partiellement avant d'être renvoyé à la colonne basse pressione) on soutire au moins un fluide enrichi en oxygène (31) et au moins un fluide (72) enrichi en azote de la colonne basse pression etf) on condense au moins partiellement au moins une partie du premier fluide enrichi en azote dans un vaporiseur-condenseur associé à la colonne basse pression et on renvoie au moins une partie du fluide au moins partiellement condensé à la colonne haute pression
- Procédé selon la revendication 1 dans lequel le fluide (31) enrichi en oxygène soutiré de la colonne basse pression contient au moins 95 % mol. d'oxygène, éventuellement au moins 98 % mol. d'oxygène.
- Procédé selon la revendication 1 ou 2 dans lequel aucun débit gazeux enrichi en azote n'est soutiré en tête de la colonne haute pression (101).
- Procédé selon la revendication 1 ou 2 dans lequel un débit gazeux (33) enrichi en azote est soutiré en tête de la colonne haute pression (101).
- Procédé selon la revendication 1,2,3 ou 4 dans lequel la colonne basse pression (103) opère à au moins 1,3 bara, éventuellement au moins 2 bara, de préférence au moins 4 bara.
- Procédé selon une des revendications précédentes dans lequel on envoie un (des) débit(s) d'air gazeux et/ou liquide à la colonne à pression intermédiaire et/ou à la colonne basse pression et/ou à la colonne haute pression.
- Procédé selon une des revendications précédentes dans lequel le gaz (233) provenant de la partie inférieure de la colonne basse pression envoyé au rebouilleur de cuve contient entre 1 et 20 % mol. d'argon.
- Procédé selon une des revendications précédentes dans lequel au moins une partie du deuxième débit enrichi en azote se condense, éventuellement dans un condenseur de tête (22) de la colonne à pression intermédiaire.
- Installation de séparation d'air par distillation cryogénique comprenant une colonne haute pression (101), une colonne à pression intermédiaire (102) ayant un rebouilleur de cuve (24) et une colonne basse pression (103), la colonne haute pression et la colonne basse pression étant reliées thermiquement entre elles, des moyens pour envoyer un mélange (1) au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression, des moyens pour envoyer un débit enrichi en oxygène (10) de la colonne haute pression à la colonne à pression intermédiaire, des moyens pour envoyer un fluide enrichi en oxygène (20) et/ou un fluide enrichi en azote (25) de la colonne à pression intermédiaire à la colonne basse pression, des moyens pour envoyer un fluide (233) de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire, des moyens pour soutirer un fluide enrichi en azote (72) et un fluide enrichi en oxygène (31) de la colonne basse pression
caractérisée en ce qu'elle ne comprend pas de moyens d'enrichissement en argon d'un fluide contenant entre 3 et 20 % mol. d'argon autre que les colonnes haute pression, basse pression et pression intermédiaire. - Installation selon la revendication 9 comprenant une turbine de détente et des moyens pour amener un débit de la colonne basse pression à cette turbine sans le comprimer.
- Installation selon la revendication 9 ou 10 comprenant des moyens pour amener un débit d'air à la colonne à pression intermédiaire et/ou basse pression et/ou haute pression (101,102,103).
- Installation selon l'une des revendications 9 à 11 dans laquelle le fluide (233) envoyé au rebouilleur est soutiré de la colonne basse pression à un niveau inférieur au niveau de l'introduction d'un fluide enrichi en oxygène provenant de la colonne à pression intermédiaire.
- Installation selon l'une des revendications 9 à 12 dans laquelle la colonne à pression intermédiaire (102) a un condenseur de tête (22).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0011932A FR2814229B1 (fr) | 2000-09-19 | 2000-09-19 | Procede et installation de separation d'air par distillation cryogenique |
FR0011932 | 2000-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1189003A1 true EP1189003A1 (fr) | 2002-03-20 |
EP1189003B1 EP1189003B1 (fr) | 2005-01-26 |
Family
ID=8854455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01402310A Expired - Lifetime EP1189003B1 (fr) | 2000-09-19 | 2001-09-06 | Procédé et installation de séparation d'air par distillation cryogénique |
Country Status (7)
Country | Link |
---|---|
US (1) | US6536232B2 (fr) |
EP (1) | EP1189003B1 (fr) |
AT (1) | ATE288064T1 (fr) |
CA (1) | CA2357302A1 (fr) |
DE (1) | DE60108579T2 (fr) |
FR (1) | FR2814229B1 (fr) |
ZA (1) | ZA200107210B (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634517A1 (fr) * | 2012-02-29 | 2013-09-04 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Procédé et appareil pour la séparation d'air par distillation cryogénique |
CN106211791A (zh) * | 2014-02-14 | 2016-12-07 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏来分离空气的塔,包括这样的塔的空气分离设备以及用于生产这样的塔的方法 |
EP3620739A1 (fr) * | 2018-09-05 | 2020-03-11 | Linde Aktiengesellschaft | Procédé de décomposition à basse température de l'air et installation de décomposition de l'air |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1318367B2 (fr) * | 2001-12-04 | 2009-11-11 | Air Products And Chemicals, Inc. | Procédé et dispositif de séparation d'air cryogénique |
FR2875588B1 (fr) * | 2004-09-21 | 2007-04-27 | Air Liquide | Procede de separation d'air par distillation cryogenique |
DE102004047961A1 (de) * | 2004-10-01 | 2006-05-18 | Siemens Ag | Vorrichtung und Verfahren zum Ansteuern eines Piezoaktors |
EP2597409B1 (fr) * | 2011-11-24 | 2015-01-14 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Procédé et installation pour la séparation de l'air par distillation cryogénique |
US12209802B2 (en) | 2022-07-28 | 2025-01-28 | Praxair Technology, Inc. | System and method for cryogenic air separation using four distillation columns including an intermediate pressure column |
US11959701B2 (en) | 2022-07-28 | 2024-04-16 | Praxair Technology, Inc. | Air separation unit and method for production of high purity nitrogen product using a distillation column system with an intermediate pressure kettle column |
US12055345B2 (en) | 2022-07-28 | 2024-08-06 | Praxair Technology, Inc. | Air separation unit and method for production of nitrogen and argon using a distillation column system with an intermediate pressure kettle column |
US20240035741A1 (en) | 2022-07-28 | 2024-02-01 | Neil M. Prosser | Air separation unit and method for cryogenic separation of air using a distillation column system including an intermediate pressure kettle column |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4605427A (en) * | 1983-03-31 | 1986-08-12 | Erickson Donald C | Cryogenic triple-pressure air separation with LP-to-MP latent-heat-exchange |
EP0687876A1 (fr) * | 1994-06-17 | 1995-12-20 | The BOC Group plc | Séparation de l'air |
EP0924486A2 (fr) * | 1997-12-19 | 1999-06-23 | The BOC Group plc | Séparation d'air |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5341646A (en) * | 1993-07-15 | 1994-08-30 | Air Products And Chemicals, Inc. | Triple column distillation system for oxygen and pressurized nitrogen production |
US5682764A (en) * | 1996-10-25 | 1997-11-04 | Air Products And Chemicals, Inc. | Three column cryogenic cycle for the production of impure oxygen and pure nitrogen |
US5881570A (en) * | 1998-04-06 | 1999-03-16 | Praxair Technology, Inc. | Cryogenic rectification apparatus for producing high purity oxygen or low purity oxygen |
US6347534B1 (en) * | 1999-05-25 | 2002-02-19 | Air Liquide Process And Construction | Cryogenic distillation system for air separation |
US6196024B1 (en) * | 1999-05-25 | 2001-03-06 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic distillation system for air separation |
US6318120B1 (en) * | 2000-08-11 | 2001-11-20 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic distillation system for air separation |
-
2000
- 2000-09-19 FR FR0011932A patent/FR2814229B1/fr not_active Expired - Fee Related
-
2001
- 2001-08-30 ZA ZA200107210A patent/ZA200107210B/xx unknown
- 2001-09-06 DE DE60108579T patent/DE60108579T2/de not_active Expired - Fee Related
- 2001-09-06 EP EP01402310A patent/EP1189003B1/fr not_active Expired - Lifetime
- 2001-09-06 AT AT01402310T patent/ATE288064T1/de not_active IP Right Cessation
- 2001-09-13 CA CA002357302A patent/CA2357302A1/fr not_active Abandoned
- 2001-09-19 US US09/955,261 patent/US6536232B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4605427A (en) * | 1983-03-31 | 1986-08-12 | Erickson Donald C | Cryogenic triple-pressure air separation with LP-to-MP latent-heat-exchange |
EP0687876A1 (fr) * | 1994-06-17 | 1995-12-20 | The BOC Group plc | Séparation de l'air |
EP0924486A2 (fr) * | 1997-12-19 | 1999-06-23 | The BOC Group plc | Séparation d'air |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634517A1 (fr) * | 2012-02-29 | 2013-09-04 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Procédé et appareil pour la séparation d'air par distillation cryogénique |
US9360250B2 (en) | 2012-02-29 | 2016-06-07 | L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
CN106211791A (zh) * | 2014-02-14 | 2016-12-07 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏来分离空气的塔,包括这样的塔的空气分离设备以及用于生产这样的塔的方法 |
CN106211791B (zh) * | 2014-02-14 | 2019-12-31 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过低温蒸馏来分离空气的塔,包括这样的塔的空气分离设备以及用于生产这样的塔的方法 |
EP3620739A1 (fr) * | 2018-09-05 | 2020-03-11 | Linde Aktiengesellschaft | Procédé de décomposition à basse température de l'air et installation de décomposition de l'air |
WO2020048634A1 (fr) | 2018-09-05 | 2020-03-12 | Linde Aktiengesellschaft | Procédé de séparation cryogénique d'air et système de séparation d'air |
Also Published As
Publication number | Publication date |
---|---|
FR2814229B1 (fr) | 2002-10-25 |
ZA200107210B (en) | 2002-03-04 |
ATE288064T1 (de) | 2005-02-15 |
EP1189003B1 (fr) | 2005-01-26 |
DE60108579D1 (de) | 2005-03-03 |
US20020053219A1 (en) | 2002-05-09 |
DE60108579T2 (de) | 2005-12-22 |
US6536232B2 (en) | 2003-03-25 |
FR2814229A1 (fr) | 2002-03-22 |
CA2357302A1 (fr) | 2002-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1623172A1 (fr) | Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air | |
EP1189003B1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
FR3010778A1 (fr) | Procede et appareil de production d'oxygene gazeux par distillation cryogenique de l'air | |
WO2015071578A2 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
EP1143216B1 (fr) | Procédé et appareil de production d'un fluide enrichi en oxygène par distillation cryogénique | |
FR2942869A1 (fr) | Procede et appareil de separation cryogenique d'un melange d'hydrogene, d'azote et de monoxyde de carbone avec colonne de deazotation | |
US20110041552A1 (en) | Apparatus And Method For Separating Air By Cryogenic Distillation | |
FR3150578A3 (fr) | Procédé et appareil de séparation d’air par distillation cryogénique | |
FR2831249A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
EP3058297B1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
FR2724011A1 (fr) | Procede et installation de production d'oxygene par distillation cryogenique | |
EP1132700B1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
FR2787559A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
FR2819046A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
EP1063485B1 (fr) | Appareil et procédé de séparation d'air par distillation cryogénique | |
FR2830928A1 (fr) | Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede | |
FR2837564A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur | |
FR2973485A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR2862004A1 (fr) | Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants | |
FR2787561A1 (fr) | Procede de separation d'air par distillation cryogenique | |
FR2861841A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR2831250A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR3135134A1 (fr) | Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air | |
FR3110685A1 (fr) | Procédé et appareil de séparation d’air par distillation cryogénique | |
FR2825453A1 (fr) | Procede et installation de separation par distillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
17P | Request for examination filed |
Effective date: 20020920 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050126 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050126 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050126 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050126 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60108579 Country of ref document: DE Date of ref document: 20050303 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050426 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050426 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050426 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050507 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20051027 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050626 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080811 Year of fee payment: 8 Ref country code: IT Payment date: 20080814 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080822 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080829 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080829 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR Effective date: 20090930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090906 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090906 |