EP1180663A2 - Portable pressure measuring apparatus - Google Patents
Portable pressure measuring apparatus Download PDFInfo
- Publication number
- EP1180663A2 EP1180663A2 EP01306223A EP01306223A EP1180663A2 EP 1180663 A2 EP1180663 A2 EP 1180663A2 EP 01306223 A EP01306223 A EP 01306223A EP 01306223 A EP01306223 A EP 01306223A EP 1180663 A2 EP1180663 A2 EP 1180663A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- movement
- pressure
- sampling period
- altitude
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C5/00—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
- G01C5/06—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/02—Divers' equipment
Definitions
- the present invention relates to lowering power consumption of a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display.
- a portable pressure measuring apparatus used as an altimeter comprises at least a semiconductor pressure sensor for sampling and measuring a pressure at regular intervals, an operation control section for calculating an altitude by using a known pressure-altitude conversion formula, a display section for displaying the altitude, and a battery for supplying power to these components.
- a portable pressure measuring apparatus which can be used in both of a bathometer and an altimeter, comprising at least a semiconductor pressure sensor, a control section, and a display section, wherein a sampling period for a pressure measurement can be switched to suppress power consumption of the semiconductor pressure sensor. More specifically, a sampling measurement is performed for a pressure measurement only for a certain period of time in the 1-second period at measuring the water depth, while a sampling measurement is performed in the 1-second period immediately after starting an altitude measurement and afterward in the 1-minute period at measuring the altitude; in case of a significant altitude change, the sampling measurement is performed in the 1-second period for a certain period of time for each so as to lower the power consumption.
- the water depth measurement and the altitude measurement are manually switched to each other by key inputs.
- the conventional portable pressure measuring apparatus measures a pressure in the 1-minute sampling period unless the altitude change is significant or in the 1-second sampling period if the altitude change is significant and these sampling periods are automatically switched to each other with measuring the rate of altitude change per minute, thereby concurrently achieving a real-time altitude display and low power consumption.
- the conventional portable pressure measuring apparatus however, has only two kinds of carriage sampling periods such as 1-minute and 1-second periods, and therefore they cannot be optimum carriage sampling periods for uses in skydiving, skiing, mountain climbing, and the like.
- normal carriage sampling periods for skydiving, skiing, and mountain climbing are 100 milliseconds, 100 milliseconds to 1 second, and 1 minute, respectively, for the portable pressure measuring apparatus. Therefore, the conventional portable pressure measuring apparatus has a problem that it is still unsatisfactory for concurrently achieving the low power consumption and the real-time altitude display.
- a user manually performs switching operations between the water depth measurement and the altitude measurement by means of key inputs and the user manually terminates the measurement by key inputs after the use of the apparatus though it is not particular described. Therefore, the user may forget a key input for terminating the measurement; if so, the measurement mode continues, thereby causing a problem of wasteful power consumption.
- the present invention is provided. It is an object of the present invention to provide a portable pressure measuring apparatus to be used as an altimeter, which can be automatically switched to an optimum sampling period in accordance with a use of the apparatus before a pressure measurement at all times.
- sampling periods coping with various rates of altitude change are preset so that the current sampling period is automatically switched to another whenever the rate of altitude change exceeds a threshold so as to perform a pressure measurement in the optimum sampling period. Furthermore, to prevent the portable pressure measuring apparatus from consuming wasteful power during no movement, the pressure is not measured at all or is measured in a very long sampling period during no movement.
- the present invention which achieves the above object relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, wherein a pressure is measured in a carriage sampling period suitable for the real-time display if the movement detection means detects a movement or the pressure is not measured unless the movement detection means detects any movement.
- the present invention which achieves the above object relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, wherein a pressure is measured in a carriage sampling period suitable for the real-time display if the movement detection means detects a movement or in a non-movement sampling period which is longer than the carriage sampling period unless the movement detection means detects any movement.
- the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising rate of altitude change operation means and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold.
- N is assumed to be 3.
- the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a pressure sampling measurement is not performed. Then there is disclosed an embodiment in which the above N is assumed to be 2.
- the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, rate of altitude change operation means, and means for setting N - 1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a pressure is measured in the non-movement sampling period longer than the maximum period. Then there is disclosed an embodiment in which the above N is assumed to be 2.
- a portable pressure measuring apparatus comprises a pressure sensor 10, a control section 11 for performing various controls and arithmetic operations, a ROM 12 in which control programs are stored, a RAM 13 for storing various data, a display panel 14 for displaying an altitude or the like, switches 15 for various settings, a sampling controller 16 for driving the pressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of the pressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, and a movement detecting section 20 such as an acceleration sensor, wherein a pressure is measured in accordance with flowcharts as shown in Fig. 10 and Fig. 11.
- a movement detecting processing program in Fig. 10 is started upon a movement detecting section interrupt made by the movement detecting section 20. Then, the control section 11 performs measurement sampling start processing (101) and movement continuation counter setting (102) in order and then terminates a movement detecting processing program.
- the above movement continuation counter is incorporated in the control section 11 and used for setting and managing a time duration during movement. For example, if a pressure measurement sampling period, namely, a carriage sampling period is 1 min. and value 5 is set to the movement continuation counter, the movement continuation counter is set to 5 whenever movement detecting processing is performed.
- a pressure measuring processing program in Fig. 11 is started upon a sampling controller interrupt made by the sampling controller 16. Then, the control section 11 causes the program to perform pressure sensor driving (201), A/D conversion (202), and pressure/altitude operation (203) processing in order. Subsequently to step 203, the control section 11 causes it to perform movement continuation counter 1 (204) processing.
- the movement continuation counter 1 is processing in which value 1 is subtracted from a set value of the movement continuation counter.
- step 204 the control section 11 determines whether the movement continuation counter is 0 (205); if a result of the determination is YES, the control section 11 performs measurement sampling end processing (206) and then terminates the pressure measuring processing program. If the result in step 205 is NO, the measurement sampling is continued.
- FIG. 4 there is shown a change of a sampling period when a user carrying the portable pressure measuring apparatus according to the first embodiment of the present invention moves from a level ground to an upland.
- the movement continuation counter is reset to a predetermined value, for example, 5 whenever a movement detecting section interrupt is made. Therefore, processing is repeated from steps 101 to 102 of the flowchart in Fig. 10 and steps 201 to 204 of the flowchart in Fig. 11 while the user moves.
- a portable pressure measuring apparatus comprises the same components as for the portable pressure measuring apparatus according to the first embodiment as shown in Fig. 1, wherein a pressure is measured in accordance with flowcharts as shown in Fig. 12 and Fig. 13.
- a movement detecting processing program shown in Fig. 12 is started upon a movement detecting section interrupt made by the movement detecting section 20. Then the control section 11 performs sampling period 2 setting (301) and movement continuation counter setting (302) processing in order and terminates the movement detecting processing program.
- the sampling period 2 is a carriage sampling period and is, for example, 1 minute.
- the pressure measuring processing program in Fig. 13 is started upon a sampling controller interrupt made by the sampling controller 16. Then, the control section 11 causes it to perform pressure sensor driving (401), A/D conversion (402), and pressure/altitude operation (403) processing in order.
- the sampling period 1 is, for example, 30 minutes.
- step 404 If a result of the determination in step 404 is NO, processing of movement continuation counter 1 (405) is performed. If the result of the determination in step 404 is YES, the pressure measuring processing program is terminated.
- step 405 the control section 11 determines whether the movement continuation counter is 0 (406). If a result of the determination in step 406 is YES, the control section 11 causes the sampling controller 16 to set the measurement sampling period 1 (407) to continue the measurement sampling in the sampling period 1. If the result of the determination in step 406 is NO, the control section 11 terminates the pressure measuring processing program.
- FIG. 5 there is shown a change of a sampling period when a user carrying the portable pressure measuring apparatus according to the second embodiment moves from a level ground to an upland.
- the portable pressure measuring apparatus measures a pressure in a non-movement sampling period, namely, sampling 1 before the user begins to move, the pressure is started to be measured in a predetermined measurement sampling period, namely, sampling period 2 upon a movement detecting section interrupt made by the movement detecting section 20.
- the movement continuation counter is reset to a predetermined value, for example, 5 whenever a movement detecting section interrupt is made. Therefore, processing is repeated from steps 301 to 302 of the flowchart in Fig. 12 and steps 401 to 405 of the flowchart in Fig. 13 while the user moves.
- a portable pressure measuring apparatus comprises a pressure sensor 10, a control section 11 for performing various controls and arithmetic operations, a ROM 12 in which control programs are stored, a RAM 13 for storing various data, a display panel 14 for displaying an altitude or the like, switches 15 for various settings, a sampling controller 16 for driving the pressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of the pressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, and a rate of pressure change operation section 19, wherein a pressure is measured in accordance with a flowchart as shown in Fig. 14.
- a pressure measurement program is started upon a sampling controller interrupt signal transmitted from the sampling controller 16.
- control section 11 causes the program to perform processing of pressure sensor driving (501), an A/D conversion (502), a pressure/altitude operation (503), and a rate of altitude change (hereinafter referred to as ⁇ ALT) operation (504) in order.
- a value of the ⁇ ALT operation is obtained from the previous measurement and the current measurement.
- control section 11 determines whether an absolute value of ⁇ ALT is smaller than threshold 1 (505). If a result of the determination in step 505 is YES, the control section 11 causes the sampling controller 16 to set a measurement sampling period 1 (507).
- control section 11 determines whether the absolute value of ⁇ ALT is the threshold 1 or greater and smaller than threshold 2 (506).
- step 506 determines whether the result of the determination in step 506 is NO, in other words, if the absolute value of ⁇ ALT is the threshold 2 or greater. If the result of the determination in step 506 is NO, in other words, if the absolute value of ⁇ ALT is the threshold 2 or greater, the control section 11 causes the sampling controller 16 to set a measurement sampling period 3 (509).
- the portable pressure measuring apparatus comprises rate of altitude change operation means and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein in an embodiment in which N is 3 a pressure is measured in the minimum sampling period 3 if the absolute value of ⁇ ALT is equal to or greater than the maximum threshold (threshold 2), in the maximum sampling period 1 if the rate of altitude change is smaller than the minimum threshold (threshold 1), or in a sampling period 2 having a length between the maximum period and the minimum period if the rate of altitude change is between the maximum threshold and the minimum threshold.
- the pressure is measured in the sampling period 1 which is the maximum period if an absolute value of ⁇ ALT is small and the threshold is smaller than 1. If the absolute value of ⁇ ALT is extremely high and the threshold is 2 or greater, the pressure is measured in the sampling period 3 which is the minimum period. Then, if the absolute value of ⁇ ALT is moderate and the threshold is equal to 1 or greater and smaller than the threshold 2, the pressure is measured in the sampling period 2, namely, a predetermined period between the sampling period 1 and the sampling period 3.
- the ⁇ ALT threshold depends upon a use of the portable pressure measuring apparatus according to the third embodiment, more specifically, a use in skydiving, skiing, mountain climbing, or scuba diving.
- the threshold 1 of ⁇ ALT is ⁇ 4 m/min. at the rate of altitude change and the threshold 2 is ⁇ 20 m/min.
- the sampling period determined correspondingly to thresholds also depends upon a use of the portable pressure measuring apparatus according to the third embodiment, more specifically, a use in skydiving, skiing, mountain climbing, and scuba diving.
- the sampling period 1 is 5 min.
- the sampling period 2 is 5 sec.
- the sampling period 3 is 1 sec.
- the portable pressure measuring apparatus according to the third embodiment has been described for a case in which N is 3.
- 4 or 5 may be selected as the sampling period N depending upon a use of the portable pressure measuring apparatus according to the third embodiment.
- a portable pressure measuring apparatus comprises a pressure sensor 10, a control section 11 for performing various controls and arithmetic operations, a ROM 12 in which control programs are stored, a RAM 13 for storing various data, a display panel 14 for displaying an altitude or the like, switches 15 for various settings, a sampling controller 16 for driving the pressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of the pressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, a rate of pressure change operation section 19, and a movement detecting section 20 wherein a pressure is measured in accordance with flowcharts as shown in Fig. 15 and Fig. 16.
- the movement detecting processing program in Fig. 15 is started upon a movement detecting section interrupt made by the movement detecting section 20. Then, the control section 11 performs processing of measurement sampling start processing (601), sampling period 1 setting (602), and movement detection flag-on (603) in order and then terminates the movement detecting processing program.
- the sampling period 1 is, for example, 1 min.
- the pressure measuring processing program in Fig. 16 is started upon a sampling controller interrupt made by the sampling controller 16. Then, the control section 11 determines whether the movement detection flag is on (701). If a result of the determination is YES in step 701, the control section 11 causes the program to perform processing of pressure sensor driving (702), an A/D conversion (703), a pressure/altitude operation (704), and a ⁇ ALT operation (705) in order. A value of the ⁇ ALT operation is obtained from the previous measurement and the current measurement.
- step 705 the control section 11 determines whether the ⁇ ALT absolute value is smaller than a threshold (706). If a result of the determination in step 706 is YES, the control section 11 causes the sampling controller 16 to perform the measurement sampling period 1 setting (708) processing and subsequently to perform movement detection flag-off (709) processing, in other words, unless a movement is detected until the next sampling the sampling is terminated.
- control section 11 causes the sampling controller 16 to perform the measurement sampling period 2 setting (707) processing and then the pressure measuring processing program is terminated.
- a portable pressure measuring apparatus comprises movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change exceeds the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is equal to or smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein unless the movement detection means detects a movement a pressure sampling measurement is not performed.
- the sampling period N is assumed to be 2.
- a pressure is not measured at all before the user begins to move, while a pressure measurement is started in the sampling period 1 upon a movement detecting section interrupt made by the movement detecting section 20.
- the pressure is measured in the sampling period 1 which is the maximum period. If the absolute value of ⁇ ALT is so large as to be equal to or more than the threshold, the pressure is measured in the sampling period 2 which is the minimum period. If the movement is not detected any more, the movement detection flag becomes off, thereby the control section 11 detects it and terminates the pressure measurement.
- the threshold of ⁇ ALT is ⁇ 20 m/min.
- the sampling period 1 is 5 sec.
- the sampling period 2 is 1 sec.
- 3, 4, 5, or the like is selected as the sampling period N depending upon a use of it.
- a portable pressure measuring apparatus comprises the same components as for the portable pressure measuring apparatus according to the fourth embodiment as shown in Fig. 3, wherein a pressure is measured in sampling periods as shown in Fig. 8 and Fig. 9 if the movement detecting section 20 detects a movement or in the non-movement sampling period unless the movement detecting section 20 detects any movement.
- the portable pressure measuring apparatus in which a pressure is measured with sampling and an altitude is displayed in real time, comprises movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a movement a pressure is measured in the non-movement sampling period longer than the maximum period; the embodiment in which the sampling period N is assumed to be 2 is quite the same as for the portable pressure measuring apparatus according to the fourth embodiment within a range of processing during movement.
- sampling period N is assumed to be 2
- the second sampling period is 1 sec.
- the non-movement sampling period is 30 min., for example.
- 3, 4, 5, or the like is selected as the sampling period N depending upon a use of the apparatus.
- a portable pressure measuring apparatus concurrently satisfying two requirements of a real-time altitude display depending upon a use of the apparatus and low power consumption.
- an optimum sampling period can be set in accordance with a rate of altitude change, thereby providing a portable pressure measuring apparatus applicable to various uses.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measuring Fluid Pressure (AREA)
- Electric Clocks (AREA)
Abstract
Description
- The present invention relates to lowering power consumption of a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display.
- In general, a portable pressure measuring apparatus used as an altimeter comprises at least a semiconductor pressure sensor for sampling and measuring a pressure at regular intervals, an operation control section for calculating an altitude by using a known pressure-altitude conversion formula, a display section for displaying the altitude, and a battery for supplying power to these components.
- In the Japanese Utility Model Publication No. 5-11455, there is disclosed a portable pressure measuring apparatus which can be used in both of a bathometer and an altimeter, comprising at least a semiconductor pressure sensor, a control section, and a display section, wherein a sampling period for a pressure measurement can be switched to suppress power consumption of the semiconductor pressure sensor. More specifically, a sampling measurement is performed for a pressure measurement only for a certain period of time in the 1-second period at measuring the water depth, while a sampling measurement is performed in the 1-second period immediately after starting an altitude measurement and afterward in the 1-minute period at measuring the altitude; in case of a significant altitude change, the sampling measurement is performed in the 1-second period for a certain period of time for each so as to lower the power consumption.
- In this conventional portable pressure measuring apparatus, the water depth measurement and the altitude measurement are manually switched to each other by key inputs. In addition, it is determined automatically by the control section whether the altitude change is significant. More specifically, the control section compares the latest altitude data with altitude data obtained one minute before and determines the altitude change to be significant if the difference between them exceeds a threshold.
- In short, after an elapse of a certain time period after starting the altitude measurement, the conventional portable pressure measuring apparatus measures a pressure in the 1-minute sampling period unless the altitude change is significant or in the 1-second sampling period if the altitude change is significant and these sampling periods are automatically switched to each other with measuring the rate of altitude change per minute, thereby concurrently achieving a real-time altitude display and low power consumption.
- The conventional portable pressure measuring apparatus, however, has only two kinds of carriage sampling periods such as 1-minute and 1-second periods, and therefore they cannot be optimum carriage sampling periods for uses in skydiving, skiing, mountain climbing, and the like. In this connection, normal carriage sampling periods for skydiving, skiing, and mountain climbing are 100 milliseconds, 100 milliseconds to 1 second, and 1 minute, respectively, for the portable pressure measuring apparatus. Therefore, the conventional portable pressure measuring apparatus has a problem that it is still unsatisfactory for concurrently achieving the low power consumption and the real-time altitude display.
- Furthermore, in the conventional portable pressure measuring apparatus, a user manually performs switching operations between the water depth measurement and the altitude measurement by means of key inputs and the user manually terminates the measurement by key inputs after the use of the apparatus though it is not particular described. Therefore, the user may forget a key input for terminating the measurement; if so, the measurement mode continues, thereby causing a problem of wasteful power consumption.
- To solve these problems, the present invention is provided. It is an object of the present invention to provide a portable pressure measuring apparatus to be used as an altimeter, which can be automatically switched to an optimum sampling period in accordance with a use of the apparatus before a pressure measurement at all times.
- Taking into consideration that a portable pressure measuring apparatus is used for various uses, sampling periods coping with various rates of altitude change are preset so that the current sampling period is automatically switched to another whenever the rate of altitude change exceeds a threshold so as to perform a pressure measurement in the optimum sampling period. Furthermore, to prevent the portable pressure measuring apparatus from consuming wasteful power during no movement, the pressure is not measured at all or is measured in a very long sampling period during no movement.
- More specifically, according to an aspect, the present invention which achieves the above object relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, wherein a pressure is measured in a carriage sampling period suitable for the real-time display if the movement detection means detects a movement or the pressure is not measured unless the movement detection means detects any movement.
- According to another aspect, the present invention which achieves the above object relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, wherein a pressure is measured in a carriage sampling period suitable for the real-time display if the movement detection means detects a movement or in a non-movement sampling period which is longer than the carriage sampling period unless the movement detection means detects any movement.
- According to still another aspect, the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising rate of altitude change operation means and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold. Then there is disclosed an embodiment in which the above N is assumed to be 3.
- According to still another aspect, the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a pressure sampling measurement is not performed. Then there is disclosed an embodiment in which the above N is assumed to be 2.
- Furthermore, according to another aspect, the present invention which achieves the above problem relates to a portable pressure measuring apparatus for a pressure sampling measurement and a real-time altitude display, comprising movement detection means, rate of altitude change operation means, and means for setting N - 1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a pressure is measured in the non-movement sampling period longer than the maximum period. Then there is disclosed an embodiment in which the above N is assumed to be 2.
- Embodiments of the present invention will now be described by way of further example only and with reference to the accompanying drawings, in which:-
- Fig. 1 is is a block diagram of a portable pressure measuring apparatus according to a first embodiment and a second embodiment of the present invention;
- Fig. 2 is a block diagram of a portable pressure measuring apparatus according to a third embodiment of the present invention;
- Fig. 3 is a block diagram of a portable pressure measuring apparatus according to a fourth embodiment and a fifth embodiment of the present invention;
- Fig. 4 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the first embodiment;
- Fig. 5 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the second embodiment;
- Fig. 6 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the third embodiment, correspondingly to an altitude;
- Fig. 7 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the third embodiment, correspondingly to a rate of altitude change;
- Fig. 8 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the fourth embodiment, correspondingly to an altitude;
- Fig. 9 is a diagram showing an example of a sampling period of the portable pressure measuring apparatus according to the fourth embodiment, correspondingly to a rate of altitude change;
- Fig. 10 is a flowchart of movement detecting processing in the portable pressure measuring apparatus according to the first embodiment;
- Fig. 11 is a diagram showing an example of a flowchart of pressure measuring processing in the portable pressure measuring apparatus according to the first embodiment;
- Fig. 12 is a diagram showing an example of a flowchart of movement detecting processing in the portable pressure measuring apparatus according to the second embodiment;
- Fig. 13 is a diagram showing an example of a flowchart of pressure measuring processing in the portable pressure measuring apparatus according to the second embodiment;
- Fig. 14 is a diagram showing an example of a flowchart of pressure measuring processing in the portable pressure measuring apparatus according to the third embodiment;
- Fig. 15 is a diagram showing an example of a flowchart of movement detecting processing in the portable pressure measuring apparatus according to the fourth embodiment; and
- Fig. 16 is a diagram showing an example of a flowchart of pressure measuring processing in the portable pressure measuring apparatus according to the fourth embodiment.
-
- Hereinafter, first to fifth embodiments of the present invention will now be described in order.
- A portable pressure measuring apparatus according to a first embodiment of the present invention, as shown in Fig. 1, comprises a
pressure sensor 10, acontrol section 11 for performing various controls and arithmetic operations, aROM 12 in which control programs are stored, aRAM 13 for storing various data, adisplay panel 14 for displaying an altitude or the like,switches 15 for various settings, asampling controller 16 for driving thepressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of thepressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, and amovement detecting section 20 such as an acceleration sensor, wherein a pressure is measured in accordance with flowcharts as shown in Fig. 10 and Fig. 11. - In other words, a movement detecting processing program in Fig. 10 is started upon a movement detecting section interrupt made by the
movement detecting section 20. Then, thecontrol section 11 performs measurement sampling start processing (101) and movement continuation counter setting (102) in order and then terminates a movement detecting processing program. - The above movement continuation counter is incorporated in the
control section 11 and used for setting and managing a time duration during movement. For example, if a pressure measurement sampling period, namely, a carriage sampling period is 1 min. andvalue 5 is set to the movement continuation counter, the movement continuation counter is set to 5 whenever movement detecting processing is performed. - A pressure measuring processing program in Fig. 11 is started upon a sampling controller interrupt made by the
sampling controller 16. Then, thecontrol section 11 causes the program to perform pressure sensor driving (201), A/D conversion (202), and pressure/altitude operation (203) processing in order. Subsequently tostep 203, thecontrol section 11 causes it to perform movement continuation counter 1 (204) processing. Themovement continuation counter 1 is processing in whichvalue 1 is subtracted from a set value of the movement continuation counter. - Subsequently to
step 204, thecontrol section 11 determines whether the movement continuation counter is 0 (205); if a result of the determination is YES, thecontrol section 11 performs measurement sampling end processing (206) and then terminates the pressure measuring processing program. If the result instep 205 is NO, the measurement sampling is continued. - Referring to Fig. 4, there is shown a change of a sampling period when a user carrying the portable pressure measuring apparatus according to the first embodiment of the present invention moves from a level ground to an upland.
- As apparent from Fig. 4, while a pressure is not measured at all before the user begins to move, the pressure is started to be measured in a predetermined carriage sampling period upon a movement detecting section interrupt made by the
movement detecting section 20. - Then the movement continuation counter is reset to a predetermined value, for example, 5 whenever a movement detecting section interrupt is made. Therefore, processing is repeated from
steps 101 to 102 of the flowchart in Fig. 10 andsteps 201 to 204 of the flowchart in Fig. 11 while the user moves. - If the movement detecting processing is not performed any more, in other words, if the movement is terminated, the movement continuation counter is no longer reset, thereby validating only down-counting of the movement continuation counter in the pressure measuring processing and causing processing of subtracting
value 1 from the set value on the movement continuation counter, namely,movement continuation counter 1 processing whenever the pressure measurement is performed. Therefore, if the movement is terminated, the set value on the movement counter becomes zero, in other words, the movement continuation counter = 0 after the fifth movement continuation counter 1 processing and then measurement sampling end processing (206) is performed. If the carriage sampling period is 1 min. and the value on the movement continuation counter is set to 5, the pressure measurement is to be suspended 5 minutes after the movement end time. - A portable pressure measuring apparatus according to a second embodiment of the present invention comprises the same components as for the portable pressure measuring apparatus according to the first embodiment as shown in Fig. 1, wherein a pressure is measured in accordance with flowcharts as shown in Fig. 12 and Fig. 13.
- More specifically, a movement detecting processing program shown in Fig. 12 is started upon a movement detecting section interrupt made by the
movement detecting section 20. Then thecontrol section 11 performssampling period 2 setting (301) and movement continuation counter setting (302) processing in order and terminates the movement detecting processing program. Thesampling period 2 is a carriage sampling period and is, for example, 1 minute. - The pressure measuring processing program in Fig. 13 is started upon a sampling controller interrupt made by the
sampling controller 16. Then, thecontrol section 11 causes it to perform pressure sensor driving (401), A/D conversion (402), and pressure/altitude operation (403) processing in order. - Subsequently, the
control section 11 makes a determination on "Condition =Measurement sampling period 1" (404). More specifically it determines whether the current sampling period is samplingperiod 1. Thesampling period 1 is, for example, 30 minutes. - If a result of the determination in
step 404 is NO, processing of movement continuation counter 1 (405) is performed. If the result of the determination instep 404 is YES, the pressure measuring processing program is terminated. - Subsequently to step 405, the
control section 11 determines whether the movement continuation counter is 0 (406). If a result of the determination instep 406 is YES, thecontrol section 11 causes thesampling controller 16 to set the measurement sampling period 1 (407) to continue the measurement sampling in thesampling period 1. If the result of the determination instep 406 is NO, thecontrol section 11 terminates the pressure measuring processing program. - Referring to Fig. 5, there is shown a change of a sampling period when a user carrying the portable pressure measuring apparatus according to the second embodiment moves from a level ground to an upland.
- As apparent from Fig. 5, while the portable pressure measuring apparatus measures a pressure in a non-movement sampling period, namely,
sampling 1 before the user begins to move, the pressure is started to be measured in a predetermined measurement sampling period, namely,sampling period 2 upon a movement detecting section interrupt made by themovement detecting section 20. - Then the movement continuation counter is reset to a predetermined value, for example, 5 whenever a movement detecting section interrupt is made. Therefore, processing is repeated from
steps 301 to 302 of the flowchart in Fig. 12 andsteps 401 to 405 of the flowchart in Fig. 13 while the user moves. - If the movement detecting processing is not performed any more, in other words, if the movement is terminated, the movement continuation counter is no longer reset, thereby validating only down-counting of the movement continuation counter in the pressure measuring processing and causing processing of subtracting
value 1 from the set value on the movement continuation counter, namely,movement continuation counter 1 whenever the pressure measurement is performed. Therefore, if the movement is terminated, the set value on the movement counter becomes zero, in other words, the movement continuation counter = 0 after the fifthmovement continuation counter 1 processing and then samplingperiod 1, namely, measurement sampling at non-movement measurement sampling is performed. If the carriage sampling period which is samplingperiod 2 is 1 min. and the value on the movement continuation counter is set to 5, the pressure measurement is to shift from thesampling period 2 to thesampling period 1 which is thenon-movement sampling period 5 minutes after the movement end time. - A portable pressure measuring apparatus according to a third embodiment of the present invention, as shown in Fig. 2, comprises a
pressure sensor 10, acontrol section 11 for performing various controls and arithmetic operations, aROM 12 in which control programs are stored, aRAM 13 for storing various data, adisplay panel 14 for displaying an altitude or the like, switches 15 for various settings, asampling controller 16 for driving thepressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of thepressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, and a rate of pressurechange operation section 19, wherein a pressure is measured in accordance with a flowchart as shown in Fig. 14. - In other words, a pressure measurement program is started upon a sampling controller interrupt signal transmitted from the
sampling controller 16. - Then, the
control section 11 causes the program to perform processing of pressure sensor driving (501), an A/D conversion (502), a pressure/altitude operation (503), and a rate of altitude change (hereinafter referred to as Δ ALT) operation (504) in order. A value of the ΔALT operation is obtained from the previous measurement and the current measurement. - Subsequent to step 504, the
control section 11 determines whether an absolute value of ΔALT is smaller than threshold 1 (505). If a result of the determination instep 505 is YES, thecontrol section 11 causes thesampling controller 16 to set a measurement sampling period 1 (507). - If the result of the determination in
step 505 is NO, thecontrol section 11 determines whether the absolute value of ΔALT is thethreshold 1 or greater and smaller than threshold 2 (506). - If the result of the determination in
step 506 is NO, in other words, if the absolute value of ΔALT is thethreshold 2 or greater, thecontrol section 11 causes thesampling controller 16 to set a measurement sampling period 3 (509). - The portable pressure measuring apparatus according to the third embodiment comprises rate of altitude change operation means and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein in an embodiment in which N is 3 a pressure is measured in the
minimum sampling period 3 if the absolute value of ΔALT is equal to or greater than the maximum threshold (threshold 2), in themaximum sampling period 1 if the rate of altitude change is smaller than the minimum threshold (threshold 1), or in asampling period 2 having a length between the maximum period and the minimum period if the rate of altitude change is between the maximum threshold and the minimum threshold. - For example, in Fig. 6 and Fig. 7 showing a case in which a user of the portable pressure measuring apparatus according to the third embodiment moves from a level ground at approx. 30 m altitude to an upland at approx. 460 m altitude, the pressure is measured in the
sampling period 1 which is the maximum period if an absolute value of ΔALT is small and the threshold is smaller than 1. If the absolute value of ΔALT is extremely high and the threshold is 2 or greater, the pressure is measured in thesampling period 3 which is the minimum period. Then, if the absolute value of ΔALT is moderate and the threshold is equal to 1 or greater and smaller than thethreshold 2, the pressure is measured in thesampling period 2, namely, a predetermined period between thesampling period 1 and thesampling period 3. - The ΔALT threshold depends upon a use of the portable pressure measuring apparatus according to the third embodiment, more specifically, a use in skydiving, skiing, mountain climbing, or scuba diving. For example, in the examples shown in Fig. 6 and Fig. 7, the
threshold 1 of Δ ALT is ±4 m/min. at the rate of altitude change and thethreshold 2 is ±20 m/min. - The sampling period determined correspondingly to thresholds also depends upon a use of the portable pressure measuring apparatus according to the third embodiment, more specifically, a use in skydiving, skiing, mountain climbing, and scuba diving. For example, in the examples shown in Fig. 6 and Fig. 7, the
sampling period 1 is 5 min., thesampling period 2 is 5 sec., and thesampling period 3 is 1 sec. - As set forth hereinabove, the portable pressure measuring apparatus according to the third embodiment has been described for a case in which N is 3. In the portable pressure measuring apparatus according to the third embodiment, however, 4 or 5 may be selected as the sampling period N depending upon a use of the portable pressure measuring apparatus according to the third embodiment.
- A portable pressure measuring apparatus according to a fourth embodiment of the present invention, as shown in Fig. 3, comprises a
pressure sensor 10, acontrol section 11 for performing various controls and arithmetic operations, aROM 12 in which control programs are stored, aRAM 13 for storing various data, adisplay panel 14 for displaying an altitude or the like, switches 15 for various settings, asampling controller 16 for driving thepressure sensor 10 in a predetermined sampling period, an A/D converting section 17 for converting an analog signal of thepressure sensor 10 to a digital signal, a pressure/altitude operation section 18 for obtaining an altitude from a measured pressure by an arithmetic operation, a rate of pressurechange operation section 19, and amovement detecting section 20 wherein a pressure is measured in accordance with flowcharts as shown in Fig. 15 and Fig. 16. - In other words, the movement detecting processing program in Fig. 15 is started upon a movement detecting section interrupt made by the
movement detecting section 20. Then, thecontrol section 11 performs processing of measurement sampling start processing (601),sampling period 1 setting (602), and movement detection flag-on (603) in order and then terminates the movement detecting processing program. Thesampling period 1 is, for example, 1 min. - The pressure measuring processing program in Fig. 16 is started upon a sampling controller interrupt made by the
sampling controller 16. Then, thecontrol section 11 determines whether the movement detection flag is on (701). If a result of the determination is YES instep 701, thecontrol section 11 causes the program to perform processing of pressure sensor driving (702), an A/D conversion (703), a pressure/altitude operation (704), and a ΔALT operation (705) in order. A value of the ΔALT operation is obtained from the previous measurement and the current measurement. - Subsequent to step 705, the
control section 11 determines whether the ΔALT absolute value is smaller than a threshold (706). If a result of the determination instep 706 is YES, thecontrol section 11 causes thesampling controller 16 to perform themeasurement sampling period 1 setting (708) processing and subsequently to perform movement detection flag-off (709) processing, in other words, unless a movement is detected until the next sampling the sampling is terminated. - If the result of the determination in
step 706 is NO, thecontrol section 11 causes thesampling controller 16 to perform themeasurement sampling period 2 setting (707) processing and then the pressure measuring processing program is terminated. - A portable pressure measuring apparatus according to the fourth embodiment of the present invention comprises movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change exceeds the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is equal to or smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein unless the movement detection means detects a movement a pressure sampling measurement is not performed. In the above embodiment, the sampling period N is assumed to be 2.
- For example, in Fig. 8 and Fig. 9 showing a case in which a user of the portable pressure measuring apparatus according to the fourth embodiment moves from a level ground at approx. 30 m altitude to an upland at approx. 460 m altitude, a pressure is not measured at all before the user begins to move, while a pressure measurement is started in the
sampling period 1 upon a movement detecting section interrupt made by themovement detecting section 20. - Then, the processing from
steps 601 to 603 of the flowchart in Fig. 15 and fromsteps 702 to 708 of the flowchart in Fig. 16 is repeated during moving. - During moving, if the absolute value of ΔALT is so small as to be below the threshold, the pressure is measured in the
sampling period 1 which is the maximum period. If the absolute value of ΔALT is so large as to be equal to or more than the threshold, the pressure is measured in thesampling period 2 which is the minimum period. If the movement is not detected any more, the movement detection flag becomes off, thereby thecontrol section 11 detects it and terminates the pressure measurement. - In the portable pressure measuring apparatus according to the fourth embodiment, the threshold of ΔALT is ±20 m/min., the
sampling period 1 is 5 sec., and thesampling period 2 is 1 sec. - Also in the portable pressure measuring apparatus according to the fourth embodiment, 3, 4, 5, or the like is selected as the sampling period N depending upon a use of it.
- A portable pressure measuring apparatus according to a fifth embodiment of the present invention comprises the same components as for the portable pressure measuring apparatus according to the fourth embodiment as shown in Fig. 3, wherein a pressure is measured in sampling periods as shown in Fig. 8 and Fig. 9 if the
movement detecting section 20 detects a movement or in the non-movement sampling period unless themovement detecting section 20 detects any movement. - More specifically, the portable pressure measuring apparatus according to the fifth embodiment, in which a pressure is measured with sampling and an altitude is displayed in real time, comprises movement detection means, rate of altitude change operation means, and means for setting N-1 thresholds from the maximum threshold to the minimum threshold, wherein, if the movement detection means detects a movement, a pressure is measured in the Nth sampling period which is the minimum period if the rate of altitude change is equal to or greater than the maximum threshold, in the 1st sampling period which is the maximum period if the rate of altitude change is smaller than the minimum threshold, or in a sampling period having a length corresponding to respective thresholds if the rate of altitude change is between the maximum threshold and the minimum threshold and wherein, unless the movement detection means detects any movement, a movement a pressure is measured in the non-movement sampling period longer than the maximum period; the embodiment in which the sampling period N is assumed to be 2 is quite the same as for the portable pressure measuring apparatus according to the fourth embodiment within a range of processing during movement.
- If the sampling period N is assumed to be 2, the second sampling period is 1 sec., the
first sampling period 5 sec., and the non-movement sampling period is 30 min., for example. - Also in the portable pressure measuring apparatus according to the fifth embodiment, 3, 4, 5, or the like is selected as the sampling period N depending upon a use of the apparatus.
- According to the present invention, there has been provided a portable pressure measuring apparatus concurrently satisfying two requirements of a real-time altitude display depending upon a use of the apparatus and low power consumption.
- Furthermore, an optimum sampling period can be set in accordance with a rate of altitude change, thereby providing a portable pressure measuring apparatus applicable to various uses.
Claims (8)
- A portable pressure measuring apparatus comprising:measurement means for sampling a pressure;a display to display a real-time altitudemovement detection means for detecting movement;
- A portable pressure measuring apparatus comprising:measurement means for sampling a pressure;a display to display a real-time altitude;movement detection means for detecting movement;
- A portable pressure measuring apparatus comprising:measurement means for sampling a pressure;a display to display a real-time altituderate of altitude change operation means for calculating a changing rate of altitude;means for setting N-1 thresholds from the maximum threshold to the minimum threshold;
- A portable pressure measuring apparatus according to claim 3, wherein the N is 3.
- A portable pressure measuring apparatus measurement means for sampling a pressure;a display to display a real-time altitudemovement detection means for detecting movement;rate of altitude change operation means for calculating a changing rate of altitude; andmeans for setting N-1 thresholds from the maximum threshold to the minimum threshold;
- A portable pressure measuring apparatus according to claim 5, wherein the N is 2.
- A portable pressure measuring apparatus comprising:measurement means for sampling a pressure;a display to display a real-time altitudemovement detection means for detecting movement;rate of altitude change operation means for calculating a changing rate of altitude; andmeans for setting N-1 thresholds from the maximum threshold to the minimum threshold;
- A portable pressure measuring apparatus according to claim 7, wherein the N is 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05077524A EP1630521B1 (en) | 2000-08-07 | 2001-07-19 | Portable pressure measuring apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000239052 | 2000-08-07 | ||
JP2000239052A JP3808294B2 (en) | 2000-08-07 | 2000-08-07 | Portable pressure measuring device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05077524A Division EP1630521B1 (en) | 2000-08-07 | 2001-07-19 | Portable pressure measuring apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1180663A2 true EP1180663A2 (en) | 2002-02-20 |
EP1180663A3 EP1180663A3 (en) | 2003-05-02 |
EP1180663B1 EP1180663B1 (en) | 2006-05-17 |
Family
ID=18730654
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01306223A Expired - Lifetime EP1180663B1 (en) | 2000-08-07 | 2001-07-19 | Portable pressure measuring apparatus |
EP05077524A Expired - Lifetime EP1630521B1 (en) | 2000-08-07 | 2001-07-19 | Portable pressure measuring apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05077524A Expired - Lifetime EP1630521B1 (en) | 2000-08-07 | 2001-07-19 | Portable pressure measuring apparatus |
Country Status (6)
Country | Link |
---|---|
US (1) | US6557418B2 (en) |
EP (2) | EP1180663B1 (en) |
JP (1) | JP3808294B2 (en) |
CN (1) | CN1245607C (en) |
DE (2) | DE60130591T2 (en) |
HK (1) | HK1044369B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1762915A1 (en) * | 2005-09-13 | 2007-03-14 | ETA SA Manufacture Horlogère Suisse | Altimeter watch |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100417916C (en) * | 2004-07-13 | 2008-09-10 | 清华大学 | MAV Airborne Micro Altimeter |
JP2007182199A (en) * | 2006-01-10 | 2007-07-19 | Seiko Epson Corp | Information processing apparatus for divers, control method and control program for information processing apparatus for divers |
JP5330703B2 (en) * | 2008-01-31 | 2013-10-30 | アズビル株式会社 | Differential pressure transmitter |
JP4973572B2 (en) * | 2008-03-28 | 2012-07-11 | 富士通セミコンダクター株式会社 | Semiconductor circuit design method and manufacturing method |
KR101545876B1 (en) * | 2009-01-22 | 2015-08-27 | 삼성전자주식회사 | Method for reducing power consumption based on motion sensor and portable terminal using the same |
JP2011215130A (en) * | 2010-03-15 | 2011-10-27 | Seiko Instruments Inc | Altimeter |
GB201017711D0 (en) * | 2010-10-20 | 2010-12-01 | Sonitor Technologies As | Position determination system |
JP5639868B2 (en) * | 2010-12-06 | 2014-12-10 | 矢崎総業株式会社 | Load circuit protection device |
EP2807546B1 (en) * | 2012-01-23 | 2020-04-29 | Endress+Hauser SE+Co. KG | Application-specific integrated circuit and a measuring transducer having such a circuit |
CN103900527A (en) * | 2012-12-26 | 2014-07-02 | 贵州风雷航空军械有限责任公司 | Air pressure altitude detection apparatus |
US9357355B2 (en) * | 2013-01-14 | 2016-05-31 | Qualcomm Incorporated | Region determination control |
JP6120630B2 (en) * | 2013-03-22 | 2017-04-26 | シチズン時計株式会社 | Electronic analog measurement display |
CN105277171B (en) * | 2014-07-16 | 2019-01-01 | 中国移动通信集团公司 | A kind of recording method of height above sea level, recording device and terminal |
PL2993964T5 (en) * | 2014-09-08 | 2021-09-13 | Signify Holding B.V. | LIGHTING CONTROL |
US10254188B2 (en) | 2016-09-09 | 2019-04-09 | Qualcomm Incorporated | Adaptive pressure sensor sampling rate |
CN108180895A (en) * | 2018-01-10 | 2018-06-19 | 云南电网有限责任公司电力科学研究院 | A kind of method based on height above sea level peak value measurement relative altitude |
CN110553692A (en) * | 2018-06-04 | 2019-12-10 | 高准有限公司 | Coriolis mass flowmeter and method of measuring gas pressure using the same |
CN109947147A (en) * | 2019-03-18 | 2019-06-28 | 东华大学 | A Differential Sampling Temperature Control Method for Heating System |
DE102023205811A1 (en) * | 2023-06-21 | 2024-12-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Pressure sensor module and method for measuring a pressure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4086804A (en) * | 1976-10-26 | 1978-05-02 | Sperry Rand Corporation | Precision pneumatic pressure supply system |
US4107996A (en) * | 1975-11-28 | 1978-08-22 | Farallon Industries, Inc. | Pressure gauge |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4835716A (en) * | 1986-02-05 | 1989-05-30 | Casio Computer Co., Ltd. | Compact measuring apparatus capable of measuring two different data with a single pressure sensor |
-
2000
- 2000-08-07 JP JP2000239052A patent/JP3808294B2/en not_active Expired - Lifetime
-
2001
- 2001-07-19 EP EP01306223A patent/EP1180663B1/en not_active Expired - Lifetime
- 2001-07-19 DE DE60130591T patent/DE60130591T2/en not_active Expired - Lifetime
- 2001-07-19 DE DE60119633T patent/DE60119633T2/en not_active Expired - Lifetime
- 2001-07-19 EP EP05077524A patent/EP1630521B1/en not_active Expired - Lifetime
- 2001-07-26 US US09/915,427 patent/US6557418B2/en not_active Expired - Lifetime
- 2001-08-07 CN CNB011247924A patent/CN1245607C/en not_active Expired - Fee Related
-
2002
- 2002-08-09 HK HK02105848.1A patent/HK1044369B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4107996A (en) * | 1975-11-28 | 1978-08-22 | Farallon Industries, Inc. | Pressure gauge |
US4086804A (en) * | 1976-10-26 | 1978-05-02 | Sperry Rand Corporation | Precision pneumatic pressure supply system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1762915A1 (en) * | 2005-09-13 | 2007-03-14 | ETA SA Manufacture Horlogère Suisse | Altimeter watch |
US7242639B2 (en) | 2005-09-13 | 2007-07-10 | Eta Sa Manufacture Horlogere Suisse | Altimeter watch |
Also Published As
Publication number | Publication date |
---|---|
US6557418B2 (en) | 2003-05-06 |
JP2002048663A (en) | 2002-02-15 |
CN1245607C (en) | 2006-03-15 |
JP3808294B2 (en) | 2006-08-09 |
EP1630521B1 (en) | 2007-09-19 |
EP1630521A1 (en) | 2006-03-01 |
DE60119633D1 (en) | 2006-06-22 |
US20020016694A1 (en) | 2002-02-07 |
EP1180663B1 (en) | 2006-05-17 |
EP1180663A3 (en) | 2003-05-02 |
HK1044369A1 (en) | 2002-10-18 |
CN1337565A (en) | 2002-02-27 |
DE60119633T2 (en) | 2006-12-14 |
HK1044369B (en) | 2006-10-27 |
DE60130591T2 (en) | 2008-06-12 |
DE60130591D1 (en) | 2007-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1180663A2 (en) | Portable pressure measuring apparatus | |
EP0833537A2 (en) | A mobile telephone apparatus with power saving | |
US5737246A (en) | Water depth measuring device | |
TWI243616B (en) | Method for adjusting brightness of display | |
KR20100038956A (en) | Method and appratus for battery gaging in portable terminal | |
US10019885B2 (en) | Warning notification device, electronic watch, warning method and recording medium | |
KR19990010384A (en) | Residual power display device and method of battery in portable wireless communication terminal | |
CN112136160A (en) | Self-moving equipment, alarm module of self-moving equipment and alarm method of alarm module | |
US6904382B2 (en) | Dive computer, its operation method and a program for executing the operation method with a computer | |
US9192065B2 (en) | Electrical device, control method, and program | |
US6618059B1 (en) | Diver's information display device | |
JP3548628B2 (en) | Electronic equipment with water depth measurement function | |
KR20020007799A (en) | Method and apparatus for automatically saving electrical power of mobile communication terminal | |
US4611923A (en) | Electronic timepiece with a depth gauge | |
JP2021041871A (en) | Vessel speed controller, vessel speed control method, and vessel speed control program | |
EP1061334B1 (en) | Portable pressure measuring apparatus | |
CN112995831B (en) | Water entry alarm method of Bluetooth headset, wearable device and medium | |
EP1202457A1 (en) | Method and software for switching off battery supplied electronic devices and mobile telephone equipped therewith | |
KR100743296B1 (en) | Power Control Device and Method of Image Display Equipment | |
KR100351826B1 (en) | Method and apparatus for controlling power of monitor | |
JP2808686B2 (en) | Electronic depth gauge | |
KR20070030664A (en) | Altitude clock | |
US10066938B2 (en) | Altimeter, electronic timepiece, and program | |
JP4294787B2 (en) | Electronic equipment with water depth measurement function | |
JP2004157143A (en) | Electronic apparatus with water depth measuring function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20031013 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20050406 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60119633 Country of ref document: DE Date of ref document: 20060622 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120718 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120719 Year of fee payment: 12 Ref country code: DE Payment date: 20120711 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130719 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60119633 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 |