EP1159060A2 - Multilayer membranes and method for the production thereof - Google Patents
Multilayer membranes and method for the production thereofInfo
- Publication number
- EP1159060A2 EP1159060A2 EP00922423A EP00922423A EP1159060A2 EP 1159060 A2 EP1159060 A2 EP 1159060A2 EP 00922423 A EP00922423 A EP 00922423A EP 00922423 A EP00922423 A EP 00922423A EP 1159060 A2 EP1159060 A2 EP 1159060A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- groups
- layer
- carrier material
- polyelectrolyte
- individual layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 26
- 239000010410 layer Substances 0.000 claims abstract description 124
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 39
- 239000002356 single layer Substances 0.000 claims abstract description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 125000002091 cationic group Chemical group 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229920001448 anionic polyelectrolyte Polymers 0.000 claims abstract description 8
- 239000012876 carrier material Substances 0.000 claims description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 150000003839 salts Chemical class 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 16
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 14
- 239000003960 organic solvent Substances 0.000 claims description 11
- 125000000129 anionic group Chemical group 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 8
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 7
- 230000009918 complex formation Effects 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 229920001184 polypeptide Polymers 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 5
- 229920002873 Polyethylenimine Polymers 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 3
- -1 polypropylene Polymers 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- 230000009477 glass transition Effects 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 150000007942 carboxylates Chemical group 0.000 claims 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims 3
- 239000002198 insoluble material Substances 0.000 claims 2
- 239000004745 nonwoven fabric Substances 0.000 claims 2
- 239000004953 Aliphatic polyamide Substances 0.000 claims 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims 1
- 229920003231 aliphatic polyamide Polymers 0.000 claims 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000012510 hollow fiber Substances 0.000 claims 1
- 125000005496 phosphonium group Chemical group 0.000 claims 1
- 229920000083 poly(allylamine) Polymers 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 14
- 238000005373 pervaporation Methods 0.000 abstract description 6
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 36
- 239000012466 permeate Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229920000447 polyanionic polymer Polymers 0.000 description 5
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 241001082241 Lythrum hyssopifolia Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- CSNDXHSGSSAWOF-UHFFFAOYSA-L disodium;ethenyl phosphate Chemical compound [Na+].[Na+].[O-]P([O-])(=O)OC=C CSNDXHSGSSAWOF-UHFFFAOYSA-L 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical group 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
- B01D61/3621—Pervaporation comprising multiple pervaporation steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/80—Block polymers
Definitions
- Multi-layer membranes and process for their manufacture are Multi-layer membranes and process for their manufacture
- the invention relates to the fields of chemistry, the converting industry, biotechnology and the food industry and relates to multilayer membranes, such as those used for the separation of aqueous alcohol mixtures by means of pervaporation, and methods for their production.
- the general aim is to produce membranes with the thinnest possible active layers.
- the phase inversion method is used for the production of such membranes (S. Loeb, S. Sourirajan, Adv. Chem. Ser. 38, 117 (1962)), which provides asymmetrical membranes with an integrated, separation-active layer.
- the desired membranes can also be created using a composite structure, e.g. by the deposition of polyelectrolyte complex layers on a carrier material.
- This symplex is applied to a non-ionic microporous support layer to ensure mechanical stability. In this process, only one complex layer is built up. However, since the porous carrier material has to be sealed, high mass inserts (2-5% by mass) of the symplex-forming components are necessary with this method, which lead to relatively high layer thicknesses (a few 100 nm) due to the manufacturing technique.
- a pervaporation and gas separation membrane composed of a polyelectrolyte complex multilayer system has been described (L. Krasemann, B. Tieke J. Membr. Sei., 150, 23-30 (1998)).
- the porous carrier material used was subjected to a technically complex plasma treatment before the polyelectrolyte multilayer complex was built up.
- ionic groups are generated on the surface, which ensure improved adhesion of the adsorbed polyelectrolyte multilayer complex to the support material through electrostatic interaction.
- Due to the porosity of the carrier material a high number of polyelectrolyte complex layers (> 30 double layers corresponding to> 60 single layers) is necessary in order to obtain a defect-free, separation-active layer and thus an effective membrane.
- a further disadvantage of this membrane in addition to the necessary plasma pretreatment of the carrier material and the high number of polyelectrolyte complex layers, is the insufficient stability of the polyelectrolyte multilayer system with water contents of> 24% by mass in the feed.
- the object of the present invention is to provide a multi-layer membrane with a defect-free separation-active layer and a high separation performance and to produce this by a more easily manageable and inexpensive method.
- the multilayer membranes according to the invention consist of a dense or microporous support material and a separating layer applied thereon, this separating layer being composed of at least one individual layer.
- the carrier material is at least chemically constructed in the same way.
- it is chemically uniform and structurally asymmetrical.
- the carrier material is constructed chemically and structurally in the same way throughout. In any case, the carrier material itself can also be active with regard to the separation problems to be processed.
- the separation-active layer is in the form of a polyelectrolyte complex multilayer system in which the carrier material is connected to a single layer by a polyelectrolyte complex or, in the case of several individual layers on the carrier material, these individual layers are also connected to one another by a polyelectrolyte complex.
- the individual layers applied one above the other alternately consist of at least one anionic and at least one cationic polyelectrolyte material which, after application, forms a complex bond with the previously applied individual layer.
- two such individual layers originally charged differently are referred to as double layers.
- the anionic polyelectrolyte materials are sulfonic acid groups and / or their salts and / or phosphonic acid groups and / or their salts and / or phosphoric acid groups and / or their salts and / or carboxyl groups and / or their salts and / or sulfate groups Homopolymers and / or copolymers of olefinically unsaturated monomers and / or polysaccharides containing carboxyl groups and / or their salts and / or polypeptides containing carboxyl groups and / or their salts.
- the cationic polyelectrolyte materials are polymeric amine and / or ammonium or phosphine and / or phosphonium compounds.
- the number of individual layers applied is considerably less than according to the prior art.
- the layer thicknesses of the individual individual layers of the separation-active layer are also located in the area of the thinner layer thicknesses from the area of the known layer thicknesses.
- thin layers in small numbers are sufficient to achieve an equally good or substantially improved separating effect compared to that of the prior art.
- polyelectrolyte material is still predominantly covering the surface of the carrier material.
- the amount applied is advantageously 5 to 500 ⁇ g / cm 2 carrier surface, more preferably 50 to 300 ⁇ g / cm 2
- Carrier material instead, but at least partially extends deeper.
- the carrier material is constructed in a uniform manner at least chemically and advantageously also structurally throughout.
- the membrane according to the invention is used for dewatering organic substances, for example solvents, or mixtures of substances (aldehydes, ketones, ethers, alcohols, amines, acids) or for separating organics / organics * by means of pervaporation or for removing water vapor and / or hydrogen sulfide from substances or Mixtures of substances, such as water vapor and / or hydrogen sulfide from methane, by means of gas separation.
- the membrane according to the invention should only be used for the separation of substances or mixtures of substances which are inert towards the membrane.
- the anionic polyelectrolyte component is preferably homopolymers and / or copolymers and / or their salts, such as, for example, water-soluble sulfonic acid groups.
- Poly (styrene sulfonic acid), poly (styrene sulfonic acid-old maleic anhydride), poly (vinyl sulfonic acid) sodium salt, poly (styrene sulfonic acid) sodium salt, and / or homo- and / or copolymers and / or their salts such as e.g. Poly (vinylphosphonic acid) and / or phosphoric acid groups containing homopolymers and / or copolymers and / or their salts, e.g.
- Water-soluble nitrogen-containing polymer compounds and / or their salts such as e.g. Polyallylammonium chloride, polydimethyldiallylammonium chloride, polyvinylpyridinium salts, polyethyleneimine, tetraalkylammonium salt groups containing polymer compounds and / or polyvinyl compounds with quaternizable and / or quaternized nitrogen atoms, amino-functionalized poiysaccharides such as e.g. Chitosan and their salts and / or polypeptides containing amino groups (e.g. polylysine) and / or their salts are used.
- Polyallylammonium chloride polydimethyldiallylammonium chloride, polyvinylpyridinium salts, polyethyleneimine, tetraalkylammonium salt groups containing polymer compounds and / or polyvinyl compounds with quaternizable and / or quaternized nitrogen atoms
- the polyelectrolytes or polyelectrolyte components are preferably present in an aqueous solution and are applied to the carrier material.
- the aqueous solution may optionally contain additional ionic and / or nonionic additives, such as low molecular weight electrolytes such as NaCl.
- the carrier material can be a dense or microporous sheet or a membrane, in particular a sheet which is preferably non-porous. This carrier material consists of a water-insoluble polymer with carboxyl and / or amino and / or sulfonic acid groups and / or phosphonic acid groups and / or
- the carrier material advantageously consists of one or more carboxyl-functionalized polyamide (s) and / or one or more carboxyl-functionalized homo- and / or copolymer of olefinically unsaturated monomers and / or of one or more reaction product (s) made of carboxyl-functionalized polyolefin (s) and / or homo - and / or copolymer of olefinically unsaturated monomers and polyamide (s).
- Such a polymer is either used directly as a carrier material for the production of the membranes according to the invention or is applied to a nonwoven as a carrier material consisting of polyamide, polypropylene, polyester, polyphenylene sulfide or a fine silk fabric, preferably from solution.
- the inventive multilayer membrane is produced by applying at least one single layer made of at least one anionic or at least one cationic polyelectrolyte material or from at least one separately produced non-stoichiometric polyelectrolyte complex by consecutively alternating application of the oppositely charged polyelectrolyte materials on the carrier material.
- the order in which the individual polyelectrolyte components are applied to the carrier results from the charge of the carrier material used.
- the individual layers are advantageously applied by immersing the carrier material, possibly with the individual layers already applied, into a solution which contains the respective anionic or cationic polyelectrolyte material (s) or the non- contains stoichiometric polyelectolyte complex (s) and possibly additional ionic and / or nonionic additives.
- the production of the multilayer membrane according to the invention can likewise advantageously also be carried out in the finished module by rinsing the module with the corresponding polyelectrolyte solutions.
- the carrier material is introduced into a module and connected accordingly.
- the module At least immediately before use of the multilayer membrane, depending on the charge of the support material, the module must be rinsed with at least one solution which contains oppositely charged polyelectrolyte components or a non-stoichiometric polyelectrolyte complex. To apply several individual layers, one must alternately rinse with a solution that contains differently charged polyelectrolyte components or complexes. Between the application of the individual layers, the module is rinsed and / or dried with a liquid for washing, advantageously with water.
- the individual layers are preferably applied at elevated temperatures.
- the temperature is advantageously not chosen above the boiling point of the solvent used. It is particularly advantageous to apply the individual layers at temperatures in the range or above the glass transition temperature T g of the support material.
- the mass fraction of the polyelectrolyte components in the solutions is between 0.01 and 5% by mass, preferably between 0.03 and 3% by mass.
- the carrier material is a dense or microporous material functionalized with ionic and / or ionizable groups.
- the multilayer membrane according to the invention is preferably washed with water or with a mixture of water and an organic solvent, preferably alcohol and in particular in a mixing ratio of 4: 1.
- the multilayer membranes can be dried after the application of one and / or all of the individual layers and after washing. It has proved to be advantageous in that the multilayer membrane is dried after each coating step.
- the polyelectrolyte complex layers applied to the support represent the actual release-active layer.
- the support material can also contribute to the release effect.
- the multilayer membranes according to the invention can be immersed in an aqueous solution containing the polyelectrolyte components, or by other known ways of applying a thin layer, such as e.g. Spraying or spin coating can be obtained.
- a thin layer such as e.g. Spraying or spin coating can be obtained.
- the multilayer membranes according to the invention are distinguished in that the use of a carrier material functionalized with ionic and / or ionizable groups ensures particularly good adhesion between the polyelectrolyte complex multilayer system and the carrier material. Furthermore, the multilayer membranes according to the invention are distinguished by a high water (steam) permeability or permeability of hydrophilic components and by a good selectivity for water and water vapor and for hydrophilic components in relation to other components. They can also be used multiple times, have high mechanical stability and are easy to handle. Furthermore, the multi-layer membrane production process is characterized by a low use of polyelectrolytes and the formation of very thin, defined separating layers that enable a high permeate flow.
- the permeate flow J in kg / m 2 h under the given test conditions (temperature, composition of the feed, permeate-side pressure) and the separation factor ⁇ of the multilayer membranes are used for the permeate-related characterization of the multilayer membranes.
- the ⁇ value is dimensionless Size that is defined as the concentration ratio of the binary mixtures in the permeate to that in the feed.
- test conditions were as follows: permeate-side pressure: 2000 Pa temperature: 50 ° C
- a polyelectrolyte complex multilayer system is applied to the polymeric carrier material, consisting of a carboxyl-functionalized polyamide-6 with a carboxyl group concentration of 207 ⁇ mol / g.
- the multi-layer system is made by consecutive alternating immersion of the carrier material in aqueous
- the polymer carrier is washed with water between each coating step.
- Polyacrylic acid or polyethyleneimine serve as the polyanion or polycation component.
- the concentration of the solutions is in each case 20 mmol / l, based on the monomer unit of the polyelectrolyte components.
- the polyanion and the polycation material alternately apply 6 individual layers, ie a total of 12 single layers or 6 double layers.
- the amount of layer material applied to the carrier surface is approximately 60 ⁇ g / cm 2 per individual layer.
- the layer thickness of the entire release-active layer on the carrier material is approximately 7 nm.
- Example 1 procedure, the after the application of the last polyelectrolyte layer
- Multi-layer membrane is dried at 70 ° C.
- Example 1 the polycation being polydimethyldiallylammonium chloride
- the multilayer membrane according to the invention is produced as in Example 1, the polyanion being poly (styrene sulfonic acid) sodium salt Place of polyacrylic acid is used and a total of 10 double layers are applied.
- Example 1 procedure, poly (styrene sulfonic acid) sodium salt being used as the polyanion and polydimethyldiallylammonium chloride being used as the polycation. A total of 10 double layers are applied.
- Procedure 1 wherein the carrier material consists of a modified polyacrylonitrile. 3 double layers are applied.
- Example 1 the support material consisting of a modified polyacrylonitrile and the application of the polyelectrolyte layers at 80.degree. It will be one
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
Mehrschichtmembranen und Verfahren zu ihrer HerstellungMulti-layer membranes and process for their manufacture
Technisches GebietTechnical field
Die Erfindung bezieht sich auf die Gebiete der Chemie, der stoffumwandelnden Industrie, der Biotechnologie und der Lebensmittelindustrie und betrifft Mehrschichtmembranen, wie sie beispielsweise für die Trennung wässriger Alkoholmischungen mittels Pervaporation eingesetzt werden und Verfahren zu ihrer Herstellung.The invention relates to the fields of chemistry, the converting industry, biotechnology and the food industry and relates to multilayer membranes, such as those used for the separation of aqueous alcohol mixtures by means of pervaporation, and methods for their production.
Stand der TechnikState of the art
Zur Entwässerung organischer Lösungsmittel mittels Pervaporation wurden bereits zahlreiche dichte Polymermembranen beschrieben, mit deren Hilfe bevorzugt Wasser transportiert wird (J. Neel in R.Y.M. Huang: Pervaporation Membrane Separation Processes, Elsevier 1991 , Kap. 1 ; bzw. J. Neel in R.D. Noble und S.A. Stern: Membrane Separations Technology; Elsevier 1995, Kap. 5).Numerous dense polymer membranes have been described for dewatering organic solvents by means of pervaporation, with the aid of which water is preferably transported (J. Neel in RYM Huang: Pervaporation Membrane Separation Processes, Elsevier 1991, Chapter 1; and J. Neel in RD Noble and SA Stern: Membrane Separations Technology; Elsevier 1995, Chapter 5).
Da der Transport durch derartige Membranen mittels Diffusion erfolgt, wird allgemein angestrebt, Membranen mit möglichst dünnen trennaktiven Schichten herzustellen. Für die Herstellung solcher Membranen wird das Phasen-Inversions-Verfahren genutzt (S. Loeb, S. Sourirajan, Adv. Chem. Ser. 38,117 (1962)), welches asymmetrische Membranen mit einer integrierten trennaktiven Schicht liefert. Die gewünschten Membranen können aber auch durch einen Kompositaufbau, wie z.B. durch die Abscheidung von Polyelektrolytkomplexschichten auf ein Trägermaterial hergestellt werden.Since the transport through such membranes takes place by means of diffusion, the general aim is to produce membranes with the thinnest possible active layers. The phase inversion method is used for the production of such membranes (S. Loeb, S. Sourirajan, Adv. Chem. Ser. 38, 117 (1962)), which provides asymmetrical membranes with an integrated, separation-active layer. However, the desired membranes can also be created using a composite structure, e.g. by the deposition of polyelectrolyte complex layers on a carrier material.
Der Aufbau dünner Schichten auf festen Substraten mittels konsekutiver alternierender Polyelektrolytadsorption wurde erstmals Anfang der neunziger Jahre beschrieben (G. Decher, J.-D. Hong, J. Schmitt, Thin Solid Films, 210/211 , 831-835 (1992)). Über die Nutzung dieser Technik zur Herstellung von dünnen Schichten zum Aufbau von Kompositmembranen wurde bisher wenig berichtet. Aus der DE 42 29 530 ist eine Polyelektrolyt-Komposit-Membran (Symplex) bekannt, die zur Entwässerung organischer Lösungsmittel eingesetzt wird. Als Polyelektrolyte werden Cellulosesulfat (Polyanion) und Polydimethyldiallylammoniumchlorid (Polykation) eingesetzt. Dieser Symplex wird auf eine nichtionische mikroporöse Trägerschicht aufgebracht, um die mechanische Stabilität zu gewährleisten. Bei diesem Verfahren wird nur eine Komplexschicht aufgebaut. Da aber das poröse Trägermaterial abgedichtet werden muß, sind bei diesem Verfahren jedoch hohe Masseneinsätze (2 - 5 Ma.-%) der symplexbildenden Komponenten notwendig, die aufgrund der Herstellungstechnik zu relativ hohen Schichtdicken (einige 100 nm) führen.The construction of thin layers on solid substrates by means of consecutive alternating polyelectrolyte adsorption was first described in the early 1990s (G. Decher, J.-D. Hong, J. Schmitt, Thin Solid Films, 210/211, 831-835 (1992)). So far, little has been reported about the use of this technique for the production of thin layers for the construction of composite membranes. From DE 42 29 530 a polyelectrolyte composite membrane (Symplex) is known which is used for dewatering organic solvents. Cellulose sulfate (polyanion) and polydimethyldiallylammonium chloride (polycation) are used as polyelectrolytes. This symplex is applied to a non-ionic microporous support layer to ensure mechanical stability. In this process, only one complex layer is built up. However, since the porous carrier material has to be sealed, high mass inserts (2-5% by mass) of the symplex-forming components are necessary with this method, which lead to relatively high layer thicknesses (a few 100 nm) due to the manufacturing technique.
Eine aus einem Polyelektrolytkomplex-Multischichtsystem aufgebaute Pervaporations- und Gastrennmembran wurde beschrieben (L. Krasemann, B. Tieke J. Membr. Sei., 150, 23-30 (1998)). Das verwendete poröse Trägermaterial wurde vor dem Aufbau des Polyelektrolyt-Mehrschichtkomplexes einer technisch aufwendigen Plasmabehandlung unterworfen. Dadurch werden ionische Gruppen auf der Oberfläche erzeugt, die eine verbesserte Haftung des adsorbierten Polyelektrolyt- Mehrschichtkomplexes auf dem Trägermaterial durch elektrostatische Wechselwirkung gewährleisten. Aufgrund der Porosität des Trägermaterials ist eine hohe Anzahl an Polyelektrolytkomplexschichten (> 30 Doppelschichten entsprechend > 60 Einzelschichten) notwendig, um eine defektfreie trennaktive Schicht und somit eine effektive Membran zu erhalten. Ein weiterer Nachteil dieser Membran ist, neben der notwendigen Plasma-Vorbehandlung des Trägermaterials und der hohen Polyelektrolytkomplexschichtzahl, die ungenügende Stabilität des Polyelektrolyt-Mehrschichtsystems bei Wassergehalten von > 24 Ma.-% im Zulauf.A pervaporation and gas separation membrane composed of a polyelectrolyte complex multilayer system has been described (L. Krasemann, B. Tieke J. Membr. Sei., 150, 23-30 (1998)). The porous carrier material used was subjected to a technically complex plasma treatment before the polyelectrolyte multilayer complex was built up. As a result, ionic groups are generated on the surface, which ensure improved adhesion of the adsorbed polyelectrolyte multilayer complex to the support material through electrostatic interaction. Due to the porosity of the carrier material, a high number of polyelectrolyte complex layers (> 30 double layers corresponding to> 60 single layers) is necessary in order to obtain a defect-free, separation-active layer and thus an effective membrane. A further disadvantage of this membrane, in addition to the necessary plasma pretreatment of the carrier material and the high number of polyelectrolyte complex layers, is the insufficient stability of the polyelectrolyte multilayer system with water contents of> 24% by mass in the feed.
Weiterhin bekannt ist (J.-M. Leväsalmi, T.J. McCarthy, Macromolecules, 30, 1752- 1757 (1997)) eine Gastrennmembran basierend auf einem Polyolefinträgermaterial und einem Polyelektrolytkomplex-Mehrschichtsystem. Es ist jedoch notwendig, den hydrophoben Polyolefinträger vor dem Aufbau des Polyelektrolytkomplex- Mehrschichtsystems durch eine naßchemische Modifizierung mit Chromschwefelsäure und Salpetersäure zu hydrophilieren, um ionogene Gruppen zu erzeugen, die die Adsorption der ersten Polyelektrolytschicht durch elektrostatische Wechselwirkungen erst ermöglichen. Eine effektive Membran wird jedoch erst durch das Aufbringen einer hohen Polyelektrolytschichtzahl erhalten.Also known (J.-M. Leväsalmi, TJ McCarthy, Macromolecules, 30, 1752-1757 (1997)) is a gas separation membrane based on a polyolefin carrier material and a polyelectrolyte complex multilayer system. However, it is necessary to hydrophilize the hydrophobic polyolefin support before the polyelectrolyte complex multilayer system is built up by wet-chemical modification with chromosulfuric acid and nitric acid in order to generate ionogenic groups which inhibit the adsorption of the first polyelectrolyte layer by electrostatic Making interactions possible. However, an effective membrane is only obtained by applying a high number of polyelectrolytes.
Nach R.M. France, R.D. Short, J. Chem. Soc, Faraday Trans., 93(17), 3173 - 3178 (1997) ist ebenfalls bekannt, dass die durch Plasmabehandlung eingeführten Sauerstofffunktionalitäten auf Polymeroberflächen nur bedingt stabil sind und mit einem für das Polymersubstrat inerten Lösungsmittel abgewaschen werden können. Weiterhin wurde in dieser Studie gezeigt, dass mindestens 40 % der Sauerstofffunktionalitäten Hydroxygruppen zugeordnet werden können, die hinsichtlich der Polyelektrolytkomplexbildung als inaktiv angesehen werden können.According to R.M. France, R.D. Short, J. Chem. Soc, Faraday Trans., 93 (17), 3173-3188 (1997) also knows that the oxygen functionalities introduced by plasma treatment on polymer surfaces are only stable to a limited extent and can be washed off with a solvent that is inert to the polymer substrate . Furthermore, it was shown in this study that at least 40% of the oxygen functionalities can be assigned to hydroxyl groups, which can be regarded as inactive with regard to the formation of the polyelectrolyte complex.
Darstellung der ErfindungPresentation of the invention
Aufgabe der vorliegenden Erfindung ist es, eine Mehrschichtmembran mit einer defektfreien trennaktiven Schicht und einer hohen Trennleistung anzugeben und diese durch ein einfacher handhabbares und preiswerteres Verfahren herzustellen.The object of the present invention is to provide a multi-layer membrane with a defect-free separation-active layer and a high separation performance and to produce this by a more easily manageable and inexpensive method.
Gelöst wird die Aufgabe durch die in den Ansprüchen 1 und 19 angegebene Erfindung. Weiterbildungen sind Gegenstand der Unteransprüche.The object is achieved by the invention specified in claims 1 and 19. Further training is the subject of the subclaims.
Die erfindungsgemäßen Mehrschichtmembranen bestehen aus einem dichten oder mikroporösem Trägermaterial und einer darauf aufgebrachten trennaktiven Schicht, wobei diese trennaktive Schicht aus mindestens einer Einzelschicht aufgebaut ist. Das Trägermaterial ist dabei mindestens chemisch durchgehend gleichartig aufgebaut. Vorteilhafterweise ist es chemisch durchgehend gleichartig und strukturell asymmetrische aufgebaut. Es ist aber erfindungsgemäß auch möglich, dass das Trägermaterial chemisch und strukturell durchgehend gleichartig aufgebaut ist. In jedem Fall kann das Trägermaterial auch selbst aktiv hinsichtlich der zu bearbeitenden Trennprobleme sein.The multilayer membranes according to the invention consist of a dense or microporous support material and a separating layer applied thereon, this separating layer being composed of at least one individual layer. The carrier material is at least chemically constructed in the same way. Advantageously, it is chemically uniform and structurally asymmetrical. However, it is also possible according to the invention that the carrier material is constructed chemically and structurally in the same way throughout. In any case, the carrier material itself can also be active with regard to the separation problems to be processed.
Die trennaktive Schicht liegt als Polyelektrolytkomplex-Mehrschichtsystem vor, bei dem das Trägermaterial mit einer Einzelschicht durch einen Polyelektrolytkomplex oder bei mehreren Einzelschichten auf dem Trägermaterial auch diese Einzelschichten untereinander durch einen Polyelektrolytkomplex verbunden sind. Bei mehreren Einzelschichten bestehen die jeweils übereinander aufgebrachten Einzelschichten abwechselnd aus mindestens einem anionischen und aus mindestens einem kationischen Polyelektrolytmaterial, welches nach dem Aufbringen mit der vorher aufgebrachten Einzelschicht eine Komplexbindung eingeht. Nach dem Stand der Technik werden jeweils zwei solcher ursprünglich unterschiedlich geladenen Einzelschichten als Doppeischicht bezeichnet.The separation-active layer is in the form of a polyelectrolyte complex multilayer system in which the carrier material is connected to a single layer by a polyelectrolyte complex or, in the case of several individual layers on the carrier material, these individual layers are also connected to one another by a polyelectrolyte complex. In the case of a plurality of individual layers, the individual layers applied one above the other alternately consist of at least one anionic and at least one cationic polyelectrolyte material which, after application, forms a complex bond with the previously applied individual layer. According to the prior art, two such individual layers originally charged differently are referred to as double layers.
Bei den anionischen Polyelektrolytmaterialien handelt es sich um Sulfonsäuregruppen und/oder deren Salze und/oder um Phosphonsäuregruppen und/oder deren Salze und/oder um Phosphorsäuregruppen und/oder deren Salze und/oder um Carboxylgruppen und/oder deren Salze und/oder um Sulfatgruppen aufweisende Homopolymere und/oder Copolymere aus olefinisch ungesättigten Monomeren und/oder um carboxylgruppenhaltige Polysaccharide und/oder deren Salze und/oder um carboxylgruppenhaltige Polypeptide und/oder deren Salze.The anionic polyelectrolyte materials are sulfonic acid groups and / or their salts and / or phosphonic acid groups and / or their salts and / or phosphoric acid groups and / or their salts and / or carboxyl groups and / or their salts and / or sulfate groups Homopolymers and / or copolymers of olefinically unsaturated monomers and / or polysaccharides containing carboxyl groups and / or their salts and / or polypeptides containing carboxyl groups and / or their salts.
Bei den kationischen Polyelektrolytmaterialien handelt es sich um polymere Amin- und/oder Ammonium- oder Phosphin- und/oder Phosphoniumverbindungen.The cationic polyelectrolyte materials are polymeric amine and / or ammonium or phosphine and / or phosphonium compounds.
Die Anzahl der aufgebrachten Einzelschichten ist erfindungsgemäß wesentlich geringer als nach dem Stand der Technik.According to the invention, the number of individual layers applied is considerably less than according to the prior art.
Danach werden üblicherweise 20 bis 60 Doppeischichten, also 40 bis 120After that, 20 to 60 double layers, i.e. 40 to 120, are usually used
Einzelschichten aufgebracht.Single layers applied.
Nach der erfindungsgemäßen Lösung brauchen vorteilhafterweise nur zwischen 1 und 30 Einzelschichten aufgebracht werden, um die gleiche oder sogar eine bessereAccording to the solution according to the invention, advantageously only between 1 and 30 individual layers need to be applied in order to achieve the same or even a better one
Trennwirkung zu erhalten, als nach dem Stand der Technik. Noch vorteilhafterweise reichen zwischen 2 und 20 Einzelschichten entsprechend der erfindungsgemäßenTo obtain separation effect than according to the prior art. Even more advantageously, between 2 and 20 individual layers corresponding to the invention are sufficient
Lösung für das Erreichen einer besseren Trennwirkung vollkommen aus.Solution for achieving a better separation effect.
Weiterhin sind auch die Schichtdicken der einzelnen Einzelschichten der trennaktiven Schicht im Bereich der dünneren Schichtdicken aus dem Bereich der bekannten Schichtdicken angesiedelt.Furthermore, the layer thicknesses of the individual individual layers of the separation-active layer are also located in the area of the thinner layer thicknesses from the area of the known layer thicknesses.
Nach dem Stand der Technik sind einerseits relativ dünne Schichtdicken für Einzel- und auch Doppelschichten bekannt. Diese liegen um 1 nm pro Doppelschicht. Um bei solchen Schichtdicken der Doppelschichten eine ausreichende Trennwirkung zu erreichen, ist eine Schichtanzahl von 20 bis 60 Doppelschichten notwendig.On the one hand, relatively thin layer thicknesses for single and also double layers are known from the prior art. These are around 1 nm per double layer. Around with such a layer thickness of the double layers to achieve a sufficient separation effect, a number of layers of 20 to 60 double layers is necessary.
Nach dem Stand der Technik ist auch bekannt, eine geringere Anzahl an Schichten aufzubringen. Diese sind dann jedoch wesentlich dicker und liegen um 500 nm proIt is also known from the prior art to apply a smaller number of layers. However, these are then much thicker and are around 500 nm each
Doppelschicht.Double layer.
Nach der erfindungsgemäßen Lösung sind also dünne Schichten in geringer Anzahl ausreichend, um eine gleichgute oder im wesentlichen verbesserte Trennwirkung gegenüber der des Standes der Technik zu erreichen.According to the solution according to the invention, thin layers in small numbers are sufficient to achieve an equally good or substantially improved separating effect compared to that of the prior art.
Ebenso ist bei der erfindungsgemäßen Lösung insbesondere für die ersteLikewise, in the solution according to the invention, in particular for the first
Einzelschicht auf dem Trägermaterial eine geringere Menge an Polyelektrolytmaterial notwendig als nach dem Stand der Technik bekannt. Mit dieser geringeren Menge anSingle layer on the carrier material requires a smaller amount of polyelectrolyte material than is known from the prior art. With this lesser amount of
Polyelektrolytmaterial wird aber trotzdem die Oberfläche des Trägermaterials zum überwiegenden Teil bedeckt. Die aufgebrachte Menge liegt vorteilhafterweise bei 5 bis 500 μg/cm2 Trägeroberfläche, noch besser bei 50 bis 300 μg/cm2 However, polyelectrolyte material is still predominantly covering the surface of the carrier material. The amount applied is advantageously 5 to 500 μg / cm 2 carrier surface, more preferably 50 to 300 μg / cm 2
Trägeroberfläche.Carrier surface.
Nach und/oder während des Aufbringens findet zwischen dem Trägermaterial und der aufgebrachten ersten Einzelschicht eine Komplexbildung statt. DieseAfter and / or during the application, a complex formation takes place between the carrier material and the applied first individual layer. This
Komplexbildung findet jedoch nicht nur in einem oberflächennahen Bereich desHowever, complex formation does not only take place in a near-surface area of the
Trägermaterials statt, sondern reicht zumindest teilweise auch tiefer.Carrier material instead, but at least partially extends deeper.
Dies ist möglich, da das Trägermaterial mindestens chemisch und vorteilhafterweise auch strukturell durchgehend gleichartig aufgebaut ist.This is possible because the carrier material is constructed in a uniform manner at least chemically and advantageously also structurally throughout.
Dadurch wird eine gewisse Verzahnung zwischen der ersten Einzelschicht und demThis creates a certain interlocking between the first individual layer and the
Trägermaterial erreicht, was zu einer wesentlich besseren Haftung dieser erstenCarrier material reached, resulting in a much better adhesion of this first
Einzelschicht auf dem Trägermaterial führt.Single layer leads on the carrier material.
Die Bedeckung der Oberfläche des Trägermaterials mit der ersten aufgebrachten Einzelschicht erfolgt zu mehr als 50 %, vorteilhafterweise zu mehr als 80 %. Dabei bedeckt das Material der ersten Einzelschicht die Trägeroberfläche beim Aufbringen vorteilhafterweise in größeren Inseln oder in größeren Bereichen oder in miteinander verbundenen Inseln oder in miteinander verbundenen Bereichen. Die erfindungsgemäße Membran dient zur Entwässerung organischer Stoffe, beispielsweise Lösungsmittel, oder von Stoffgemischen (Aldehyde, Ketone, Ether, Alkohole, Amine, Säuren) oder zur Trennung von Organika/Organika* mittels Pervaporation oder zur Abtrennung von Wasserdampf und/oder Schwefelwasserstoff aus Stoffen oder Stoffgemischen, wie z.B. Wasserdampf und/oder Schwefelwasserstoff aus Methan, mittels Gastrennung. Die erfindungsgemäße Membran sollte dabei nur bei der Trennung von Stoffen oder Stoffgemischen Anwendung finden, die sich gegenüber der Membran inert verhalten.More than 50%, advantageously more than 80%, of the surface of the carrier material is covered with the first single layer applied. The material of the first individual layer advantageously covers the carrier surface when applied in larger islands or in larger areas or in interconnected islands or in interconnected areas. The membrane according to the invention is used for dewatering organic substances, for example solvents, or mixtures of substances (aldehydes, ketones, ethers, alcohols, amines, acids) or for separating organics / organics * by means of pervaporation or for removing water vapor and / or hydrogen sulfide from substances or Mixtures of substances, such as water vapor and / or hydrogen sulfide from methane, by means of gas separation. The membrane according to the invention should only be used for the separation of substances or mixtures of substances which are inert towards the membrane.
Bei der anionischen Polyelektrolytkomponente handelt es sich um vorzugsweise wasserlösliche Sulfonsäuregruppen aufweisende Homo- und/oder Copolymere und/oder deren Salze wie z.B. Poly(styrensulfonsäure), Poly(styrensulfonsäure-alt- maleinsäureanhydrid), Poly(vinylsulfonsäure)-Natriumsalz, Poly(styrensulfonsäure)- Natriumsalz, und/oder Phosphonsäuregruppen aufweisende Homo- und/oder Copolymere und/oder deren Salze wie z.B. Poly(vinylphosphonsäure) und/oder Phosphorsäuregruppen aufweisende Homo- und/oder Copolymere und /oder deren Salze, wie z.B. Poly(vinylphosphorsäure)-Natriumsalz und/oder Carboxylgruppen und/oder deren Salze und/oder Sulfatgruppen aufweisende polymere Verbindungen oder Homo- und/oder Copolymerisate olefinisch ungesättigter Monomere und/oder carboxylfunktionalisierte Poiysaccharide und/oder deren Salze und/oder Carboxylgruppen aufweisende Polypeptide und/oder deren Salze.The anionic polyelectrolyte component is preferably homopolymers and / or copolymers and / or their salts, such as, for example, water-soluble sulfonic acid groups. Poly (styrene sulfonic acid), poly (styrene sulfonic acid-old maleic anhydride), poly (vinyl sulfonic acid) sodium salt, poly (styrene sulfonic acid) sodium salt, and / or homo- and / or copolymers and / or their salts such as e.g. Poly (vinylphosphonic acid) and / or phosphoric acid groups containing homopolymers and / or copolymers and / or their salts, e.g. Poly (vinylphosphoric acid) sodium salt and / or carboxyl groups and / or their salts and / or sulfate group-containing polymeric compounds or homo- and / or copolymers of olefinically unsaturated monomers and / or carboxyl-functionalized polysaccharides and / or their salts and / or carboxyl group-containing polypeptides and / or their salts.
Als kationische Komponenten kommen bevorzugt wasserlösliche stickstoffhaltige Polymerverbindungen und/oder deren Salze wie z.B. Polyallylammoniumchlorid, Polydimethyldiallylammoniumchlorid, Polyvinylpyridiniumsalze, Polyethylenimin, Tetraalkylammoniumsaizgruppen aufweisende Poiymerverbindungen und/oder Poiyvinylverbindungen mit quaternisierbaren und/oder quarternisierten Stickstoffatomen, aminofunktionalisierte Poiysaccharide wie z.B. Chitosan und deren Salze und/oder Aminogruppen aufweisende Polypeptide (z.B. Polylysin) und/oder deren Salze zum Einsatz.Water-soluble nitrogen-containing polymer compounds and / or their salts such as e.g. Polyallylammonium chloride, polydimethyldiallylammonium chloride, polyvinylpyridinium salts, polyethyleneimine, tetraalkylammonium salt groups containing polymer compounds and / or polyvinyl compounds with quaternizable and / or quaternized nitrogen atoms, amino-functionalized poiysaccharides such as e.g. Chitosan and their salts and / or polypeptides containing amino groups (e.g. polylysine) and / or their salts are used.
Die Polyelektrolyte bzw. Polyelektrolytkomponenten liegen vorzugsweise in einer wässrigen Lösung vor und werden auf das Trägermaterial aufgebracht. Die wässrige Lösung kann gegebenenfalls zusätzliche ionische und/oder nichtionische Zusätze, wie z.B. niedermolekulare Elektrolyte wie beispielsweise NaCI, enthalten. Bei dem Trägermaterial kann es sich um ein dichtes oder mikroporöses Flächengebilde bzw. eine Membran, insbesondere eine Flächenmembran, welche vorzugsweise nicht porös ist, handeln. Dieses Trägermaterial besteht aus einem wasserunlöslichen Polymer, das mit Carboxyl- und/oder Amino- und/oder Sulfonsäuregruppen und/oder Phosphonsäuregruppen und/oderThe polyelectrolytes or polyelectrolyte components are preferably present in an aqueous solution and are applied to the carrier material. The aqueous solution may optionally contain additional ionic and / or nonionic additives, such as low molecular weight electrolytes such as NaCl. The carrier material can be a dense or microporous sheet or a membrane, in particular a sheet which is preferably non-porous. This carrier material consists of a water-insoluble polymer with carboxyl and / or amino and / or sulfonic acid groups and / or phosphonic acid groups and / or
Phosphorsäuregruppen und/oder deren Salze und/oder Sulfatgruppen, vorzugsweise mit Carboxylgruppen funktionalisiert ist.Phosphoric acid groups and / or their salts and / or sulfate groups, preferably functionalized with carboxyl groups.
Vorteilhafterweise besteht das Trägermaterial aus einem oder mehreren carboxylfunktionalisierten Polyamid(en) und/oder einem oder mehreren carboxylfunktionalisierten Homo- und/oder Copolymer olefinisch ungesättigter Monomere und/oder aus einem oder mehreren Reaktionsprodukt(en) aus carboxylfunktionalisierten Polyolefin(en) und/oder Homo- und/oder Copolymer olefinisch ungesättigter Monomere und Polyamid(en).The carrier material advantageously consists of one or more carboxyl-functionalized polyamide (s) and / or one or more carboxyl-functionalized homo- and / or copolymer of olefinically unsaturated monomers and / or of one or more reaction product (s) made of carboxyl-functionalized polyolefin (s) and / or homo - and / or copolymer of olefinically unsaturated monomers and polyamide (s).
Ein derartiges Polymer wird entweder für die Herstellung der erfindungsgemäßen Membranen direkt als Trägermaterial verwendet oder auf ein Vlies als Trägermaterial, bestehend aus Polyamid, Polypropylen, Polyester, Polyphenylensulfid oder ein Feinseidegewebe, bevorzugt aus Lösung, aufgebracht.Such a polymer is either used directly as a carrier material for the production of the membranes according to the invention or is applied to a nonwoven as a carrier material consisting of polyamide, polypropylene, polyester, polyphenylene sulfide or a fine silk fabric, preferably from solution.
Die erfindungsgemäße Herstellung der erfindungsgemäßen Mehrschichtmembran erfolgt durch Aufbringen mindestens einer Einzelschicht aus mindestens einem anionischen oder mindestens einem kationischen Polyelektrolytmaterial oder aus mindestens einem separat hergestellten nicht-stöchiometrischen Polyelektrolyt- Komplex durch konsekutiv alternierendes Aufbringen der entgegengesetzt geladenen Polyelektrolytmaterialien auf dem Trägermaterial. Die Reihenfolge, in der die einzelnen Polyelektrolytkomponenten auf dem Träger aufgebracht werden, ergibt sich aus der Ladung des eingesetzten Trägermaterials.The inventive multilayer membrane is produced by applying at least one single layer made of at least one anionic or at least one cationic polyelectrolyte material or from at least one separately produced non-stoichiometric polyelectrolyte complex by consecutively alternating application of the oppositely charged polyelectrolyte materials on the carrier material. The order in which the individual polyelectrolyte components are applied to the carrier results from the charge of the carrier material used.
Vorteilhafterweise erfolgt das Aufbringen der Einzelschichten durch Tauchen des Trägermaterials, ggf. mit den bereits aufgebrachten Einzelschichten, in eine Lösung, die das oder die jeweilige(n) anionische(n) oder kationische(n) Polyelektrolytmaterial(ein) oder den oder die nicht-stöchiometrischen Polyelektolyt- Komplex(e) und ggf. zusätzliche ionische und/oder nichtionische Zusätze enthält. Die Herstellung erfindungsgemäßen Mehrschichtmembran kann ebenfalls vorteilhafterweise auch im fertigen Modul durch Spülen des Moduls mit den entsprechenden Polyelektrolytlösungen erfolgen. Dazu wird das Trägermaterial in ein Modul eingebracht und entsprechend angeschlossen. Mindestens unmittelbar vor Gebrauch der Mehrschichtmembran muss in Abhängigkeit von der Ladung des Trägermaterials das Modul mit mindestens einer Lösung gespült werden, die entgegengesetzt geladene Polyelektrolytkomponenten oder einen nicht- stöchiometrischen Polyelektrolyt-Komplex enthält. Zur Aufbringung mehrerer Einzelschichten muss jeweils abwechselnd mit einer Lösung gespült werden, die unterschiedlich geladene Polyelektrolytkomponenten oder Komplexe enthält. Zwischen dem Aufbringen der Einzelschichten wird das Modul mit einer Flüssigkeit zum Waschen, vorteilhafterweise mit Wasser, gespült und/oder getrocknet.The individual layers are advantageously applied by immersing the carrier material, possibly with the individual layers already applied, into a solution which contains the respective anionic or cationic polyelectrolyte material (s) or the non- contains stoichiometric polyelectolyte complex (s) and possibly additional ionic and / or nonionic additives. The production of the multilayer membrane according to the invention can likewise advantageously also be carried out in the finished module by rinsing the module with the corresponding polyelectrolyte solutions. For this purpose, the carrier material is introduced into a module and connected accordingly. At least immediately before use of the multilayer membrane, depending on the charge of the support material, the module must be rinsed with at least one solution which contains oppositely charged polyelectrolyte components or a non-stoichiometric polyelectrolyte complex. To apply several individual layers, one must alternately rinse with a solution that contains differently charged polyelectrolyte components or complexes. Between the application of the individual layers, the module is rinsed and / or dried with a liquid for washing, advantageously with water.
Das Aufbringen der Einzelschichten erfolgt bevorzugt bei erhöhten Temperaturen. Die Temperatur wird dabei vorteilhafterweise nicht oberhalb der Siedetemperatur des eingesetzten Lösungsmittels gewählt. Besonders vorteilhaft ist die Aufbringung der Einzelschichten bei Temperaturen im Bereich oder oberhalb der Glasübergangstemperatur Tg des Trägermaterials.The individual layers are preferably applied at elevated temperatures. The temperature is advantageously not chosen above the boiling point of the solvent used. It is particularly advantageous to apply the individual layers at temperatures in the range or above the glass transition temperature T g of the support material.
Der Massenanteil der Polyelektrolytkomponenten in den Lösungen liegt zwischen 0.01 und 5 Ma.-%, vorzugsweise zwischen 0.03 und 3 Ma.-%.The mass fraction of the polyelectrolyte components in the solutions is between 0.01 and 5% by mass, preferably between 0.03 and 3% by mass.
Das Trägermaterial ist ein mit ionischen und/oder ionisierbaren Gruppen funktionaiisiert.es dichtes oder mikroporöses Material.The carrier material is a dense or microporous material functionalized with ionic and / or ionizable groups.
Nach dem Aufbringen jeder Einzelschicht findet zwischen dieser Einzelschicht und der vorangegangenen entgegengesetzt geladenen Einzelschicht eine Komplexbildung statt, die zu einer festen Haftung der Einzelschichten untereinander führt.After the application of each individual layer, complex formation takes place between this individual layer and the preceding oppositely charged individual layer, which leads to firm adhesion of the individual layers to one another.
Nach jedem Beschichtungsschritt und/oder nach dem Aufbringen aller Einzelschichten wird die erfindungsgemäße Mehrschichtmembran vorzugsweise mit Wasser oder mit einem Gemisch aus Wasser und einem organischen Lösungsmittel, vorzugsweise Alkohol sowie insbesondere in einem Mischungsverhältnis 4:1 , gewaschen. Die Mehrschichtmembranen können nach dem Aufbringen einer und/oder aller Einzelschicht(en) und nach dem Waschen getrocknet werden. Es hat sich als vorteilhaft erwiesen, dass die Mehrschichtmembran nach jeden Beschichtungsschritt getrocknet wird.After each coating step and / or after the application of all individual layers, the multilayer membrane according to the invention is preferably washed with water or with a mixture of water and an organic solvent, preferably alcohol and in particular in a mixing ratio of 4: 1. The multilayer membranes can be dried after the application of one and / or all of the individual layers and after washing. It has proved to be advantageous in that the multilayer membrane is dried after each coating step.
Die auf den Träger aufgebrachten Polyelektrolytkomplexschichten stellen die eigentliche trennaktive Schicht dar. Das Trägermaterial kann aber auch zur Trennwirkung beitragen.The polyelectrolyte complex layers applied to the support represent the actual release-active layer. However, the support material can also contribute to the release effect.
Die erfindungsgemäßen Mehrschichtmembranen können durch Tauchen in eine, die Polyelektrolytkomponenten enthaltende wässrige Lösung, oder auch durch andere bekannte Arten des Aufbringens einer dünnen Schicht, wie z.B. Sprühen oder Spin- Coating, erhalten werden. Es ist aber auch möglich, die Einzelschichten in einem fertigen Modul durch Spülen mit den jeweiligen Polyelektrolytlösungen aufzubringen.The multilayer membranes according to the invention can be immersed in an aqueous solution containing the polyelectrolyte components, or by other known ways of applying a thin layer, such as e.g. Spraying or spin coating can be obtained. However, it is also possible to apply the individual layers in a finished module by rinsing with the respective polyelectrolyte solutions.
Die erfindungsgemäßen Mehrschichtmembranen zeichnen sich dadurch aus, dass durch die Verwendung eines mit ionischen und/oder ionisierbaren Gruppen funktionalisierten Trägermaterials eine besonders gute Haftung zwischen dem Polyelektrolytkompiex-Mehrschichtsystem und dem Trägermaterial gewährleistet ist. Ferner zeichnen sich die erfindungsgemäßen Mehrschichtmembranen durch eine hohe Wasser(dampf)permeabilität bzw. Permeabilität hydrophiler Komponenten sowie durch eine gute Selektivität für Wasser und Wasserdampf sowie für hydrophile Komponenten gegenüber anderen Komponenten aus. Sie sind zudem mehrfach verwendbar, besitzen eine hohe mechanische Stabilität und sind einfach handhabbar. Weiterhin zeichnet sich das Mehrschichtmembranherstellungsverfahren durch einen geringen Einsatz an Polyelektrolyten und die Ausbildung sehr dünner, definierter trennaktiver Schichten aus, die einen hohen Permeatfluß ermöglichen.The multilayer membranes according to the invention are distinguished in that the use of a carrier material functionalized with ionic and / or ionizable groups ensures particularly good adhesion between the polyelectrolyte complex multilayer system and the carrier material. Furthermore, the multilayer membranes according to the invention are distinguished by a high water (steam) permeability or permeability of hydrophilic components and by a good selectivity for water and water vapor and for hydrophilic components in relation to other components. They can also be used multiple times, have high mechanical stability and are easy to handle. Furthermore, the multi-layer membrane production process is characterized by a low use of polyelectrolytes and the formation of very thin, defined separating layers that enable a high permeate flow.
Wege zur Ausführung der ErfindungWays of Carrying Out the Invention
Im weiteren wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert.The invention is explained in more detail using several exemplary embodiments.
Zur permeatbezogenen Charakterisierung der Mehrschichtmembranen dienen die Größen Permeatfluß J in kg/m2h unter den gegebenen Versuchsbedingungen (Temperatur, Zusammensetzung des Zulaufs, permeatseitiger Druck) sowie der Separationsfaktor α der Mehrschichtmembranen. Der α-Wert ist eine dimensionslose Größe, die als Konzentrationsverhältnis der binären Mischungen im Permeat zu dem im Zulauf definiert ist.The permeate flow J in kg / m 2 h under the given test conditions (temperature, composition of the feed, permeate-side pressure) and the separation factor α of the multilayer membranes are used for the permeate-related characterization of the multilayer membranes. The α value is dimensionless Size that is defined as the concentration ratio of the binary mixtures in the permeate to that in the feed.
Permeat „Zulauf _ ^Wasser ' ^organische KompontePermeate "Inlet _ ^ water ' ^ organic component
„Zulauf Permeat"Permeate feed
^Wasser ' ^organische Komponente^ Water ' ^ organic component
Wenn nicht anders aufgeführt, waren die Versuchsbedingungen folgende: permeatseitiger Druck: 2000 Pa Temperatur: 50°CUnless stated otherwise, the test conditions were as follows: permeate-side pressure: 2000 Pa temperature: 50 ° C
Beispiel 1 :Example 1 :
Für die Herstellung einer erfindungsgemäßen Mehrschichtmembran wird auf das polymere Trägermaterial, bestehend aus einem carboxylfunktionalisierten Polyamid-6 mit einer Carboxylgruppenkonzentration von 207 μmol/g ein Polyeiektrolytkomplex- Mehrschichtsystem aufgebracht. Das Mehrschichtsystem wird durch konsekutives alternierendes Tauchen des Trägermaterials in wässrigeTo produce a multilayer membrane according to the invention, a polyelectrolyte complex multilayer system is applied to the polymeric carrier material, consisting of a carboxyl-functionalized polyamide-6 with a carboxyl group concentration of 207 μmol / g. The multi-layer system is made by consecutive alternating immersion of the carrier material in aqueous
Polyelektrolytkomponentlösungen aufgebaut. Zwischen jedem Beschichtungsschritt wird der Polymerträger mit Wasser gewaschen. Als Polyanion- bzw. Polykationkomponente dienen Polyacrylsäure bzw. Polyethylenimin. Die Konzentration der Lösungen beträgt jeweils 20 mmol/l, bezogen auf die Monomereinheit der Polyelektrolytkomponenten. Es werden vom Polyanion- und vom Polykationmaterial jeweils alternierend 6 Einzelschichten, also insgesamt 12 Einzelschichten oder 6 Doppelschichten aufgetragen.Polyelectrolyte component solutions built. The polymer carrier is washed with water between each coating step. Polyacrylic acid or polyethyleneimine serve as the polyanion or polycation component. The concentration of the solutions is in each case 20 mmol / l, based on the monomer unit of the polyelectrolyte components. The polyanion and the polycation material alternately apply 6 individual layers, ie a total of 12 single layers or 6 double layers.
Die auf die Trägeroberfläche aufgebrachte Menge Schichtmaterial beträgt pro Einzelschicht ca. 60 μg/cm2. Die Schichtdicke der gesamten trennaktiven Schicht auf dem Trägermaterial beträgt etwa 7 nm.The amount of layer material applied to the carrier surface is approximately 60 μg / cm 2 per individual layer. The layer thickness of the entire release-active layer on the carrier material is approximately 7 nm.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
Ethanol/Wasser (80/20) T = 50°C; J = 0,21 kg/m2h; α = 2344Ethanol / water (80/20) T = 50 ° C; J = 0.21 kg / m 2 h; α = 2344
Ethanol/Wasser (90/10) T = 50°C; J = 0,02 kg/m2h; α = 1400Ethanol / water (90/10) T = 50 ° C; J = 0.02 kg / m 2 h; α = 1400
2-Propanol/Wasser (70/30) T = 50°C; J = 0,67 kg/m2h; α = 47002-propanol / water (70/30) T = 50 ° C; J = 0.67 kg / m 2 h; α = 4700
2-Propanol/Wasser (80/20) T = 50°C; J = 0,30 kg/m h; α = 4044 Beispiel 2:2-propanol / water (80/20) T = 50 ° C; J = 0.30 kg / mh; α = 4044 Example 2:
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie inIn the production of the multilayer membrane according to the invention, as in
Beispiel 1 verfahren, wobei nach dem Aufbringen der letzten Polyelektroiytschicht dieExample 1 procedure, the after the application of the last polyelectrolyte layer
Mehrschichtmembran bei 70°C getrocknet wird.Multi-layer membrane is dried at 70 ° C.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
Ethanol/Wasser (80/20) T = 50°C; J = 0,18 kg/m2h; α = 3000Ethanol / water (80/20) T = 50 ° C; J = 0.18 kg / m 2 h; α = 3000
Ethanol/Wasser (90/10) T = 50°C; J = 0,01 kg/m2h; α = 1685Ethanol / water (90/10) T = 50 ° C; J = 0.01 kg / m 2 h; α = 1685
2-Propanol/Wasser (70/30) T = 50°C; J = 0,50 kg/m2h; α = 65002-propanol / water (70/30) T = 50 ° C; J = 0.50 kg / m 2 h; α = 6500
2-Propanol/Wasser (80/20) T = 50°C; J = 0,25 kg/m2h; α = 59802-propanol / water (80/20) T = 50 ° C; J = 0.25 kg / m 2 h; α = 5980
Beispiel 3:Example 3:
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie inIn the production of the multilayer membrane according to the invention, as in
Beispiel 1 verfahren, wobei als Polykation Polydimethyldiallylammoniumchlorid anExample 1 procedure, the polycation being polydimethyldiallylammonium chloride
Stelle von Polyethylenimin verwendet wird. Es werden insgesamt 10Place of polyethyleneimine is used. There will be a total of 10
Doppelschichten aufgebracht.Double layers applied.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
Ethanol/Wasser (80/20) T = 50°C; J = 0,45 kg/m2h; α = 467Ethanol / water (80/20) T = 50 ° C; J = 0.45 kg / m 2 h; α = 467
Ethanol/Wasser (90/10) T = 50°C; J = 0,21 kg/m2h; α = 300Ethanol / water (90/10) T = 50 ° C; J = 0.21 kg / m 2 h; α = 300
2-Propanol/Wasser (70/30) T = 50°C; J = 0,69 kg/m2h; α = 6052-propanol / water (70/30) T = 50 ° C; J = 0.69 kg / m 2 h; α = 605
2-Propanol/Wasser (80/20) T = 50°C; J = 0,38 kg/m2h; α = 5212-propanol / water (80/20) T = 50 ° C; J = 0.38 kg / m 2 h; α = 521
Beispiel 4:Example 4:
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie in Beispiel 1 verfahren, wobei als Polyanion Poly(styrensulfonsäure)-Natriumsalz an Stelle von Polyacrylsäure verwendet wird und insgesamt 10 Doppelschichten aufgebracht werden.The multilayer membrane according to the invention is produced as in Example 1, the polyanion being poly (styrene sulfonic acid) sodium salt Place of polyacrylic acid is used and a total of 10 double layers are applied.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
Ethanol/Wasser (80/20) T = 50°C; J = 0,62 kg/m2h; α = 337Ethanol / water (80/20) T = 50 ° C; J = 0.62 kg / m 2 h; α = 337
2-PropanolΛΛ/asser (70/30) T = 50°C; J = 0,89 kg/m2h; α = 5892-propanol / water (70/30) T = 50 ° C; J = 0.89 kg / m 2 h; α = 589
Beispiel 5:Example 5:
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie inIn the production of the multilayer membrane according to the invention, as in
Beispiel 1 verfahren, wobei als Polyanion Poly(styrensulfonsäure)-Natriumsalz und als Polykation Polydimethyldiallylammoniumchlorid verwendet wird. Es werden insgesamt 10 Doppelschichten aufgebracht.Example 1 procedure, poly (styrene sulfonic acid) sodium salt being used as the polyanion and polydimethyldiallylammonium chloride being used as the polycation. A total of 10 double layers are applied.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
Ethanol/Wasser (80/20) T = 50°C; J = 0,99 kg/m2h; α = 289Ethanol / water (80/20) T = 50 ° C; J = 0.99 kg / m 2 h; α = 289
2-Propanol/Wasser (70/30) T = 50°C; J = 1 ,11 kg/m2h; α = 3852-propanol / water (70/30) T = 50 ° C; J = 1.11 kg / m 2 h; α = 385
Beispiel 6Example 6
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie inIn the production of the multilayer membrane according to the invention, as in
Beispiel 1 verfahren, wobei das Trägermaterial aus einem modifizierten Polyacrylnitril besteht. Es werden 3 Doppelschichten aufgebracht.Procedure 1, wherein the carrier material consists of a modified polyacrylonitrile. 3 double layers are applied.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
2-Propanol/Wasser (70/30) T = 50°C; J = 0,48 kg/m2h; α = 8202-propanol / water (70/30) T = 50 ° C; J = 0.48 kg / m 2 h; α = 820
2-Propanol/Wasser (80/20) T = 50°C; J = 0,50 kg/m2h; = 2243 Beispiel 72-propanol / water (80/20) T = 50 ° C; J = 0.50 kg / m 2 h; = 2243 Example 7
Bei der Herstellung der erfindungsgemäßen Mehrschichtmembran wird wie inIn the production of the multilayer membrane according to the invention, as in
Beispiel 1 verfahren, wobei das Trägermaterial aus einem modifizierten Poiyacrylnitril besteht und das Aufbringen der Polyeiektrolytschichten bei 80°C erfolgt. Es wird eineExample 1 process, the support material consisting of a modified polyacrylonitrile and the application of the polyelectrolyte layers at 80.degree. It will be one
Doppelschicht aufgebracht.Double layer applied.
Bei der Entwässerung von organischen Lösungsmittel werden folgende Ergebnisse erhalten:The following results are obtained when dewatering organic solvents:
2-Propanol/Wasser (70/30) T = 50°C; J = 1 ,18 kg/m2h; α = 20022-propanol / water (70/30) T = 50 ° C; J = 1.18 kg / m 2 h; α = 2002
2-Propanol/Wasser (80/20) T = 50°C; J = 1 ,17 kg/m2h; α = 1231 2-propanol / water (80/20) T = 50 ° C; J = 1.17 kg / m 2 h; α = 1231
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19909841 | 1999-03-06 | ||
DE19909841A DE19909841A1 (en) | 1999-03-06 | 1999-03-06 | Multilayer membranes and processes for their manufacture |
PCT/DE2000/000707 WO2000053296A2 (en) | 1999-03-06 | 2000-02-25 | Multilayer membranes and method for the production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1159060A2 true EP1159060A2 (en) | 2001-12-05 |
Family
ID=7899901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00922423A Withdrawn EP1159060A2 (en) | 1999-03-06 | 2000-02-25 | Multilayer membranes and method for the production thereof |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1159060A2 (en) |
AU (1) | AU4284500A (en) |
DE (2) | DE19909841A1 (en) |
WO (1) | WO2000053296A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7799467B2 (en) * | 2002-04-08 | 2010-09-21 | Massachusetts Institute Of Technology | Solid polymer electrolytes from ethylene oxide-containing, layer-by-layer assembled films |
US7101947B2 (en) | 2002-06-14 | 2006-09-05 | Florida State University Research Foundation, Inc. | Polyelectrolyte complex films for analytical and membrane separation of chiral compounds |
US8679308B2 (en) | 2006-03-15 | 2014-03-25 | Honeywell International Inc. | Biosensor membrane and methods related thereto |
DE102006036496A1 (en) * | 2006-07-28 | 2008-02-07 | Leibniz-Institut Für Polymerforschung Dresden E.V. | Sulfonated polyaryl compounds, membrane material therefrom, process for their preparation and use |
CN105056767B (en) * | 2015-08-14 | 2017-07-11 | 浙江大学 | A kind of preparation method of lotus positive electrical polyelectrolyte complex compound homogeneity permeation vaporisation film |
CN108043236A (en) * | 2017-12-20 | 2018-05-18 | 哈尔滨工业大学 | A kind of new ceramics-polyamide composite nanofiltration membrane and preparation method thereof |
CN111992040B (en) * | 2020-09-10 | 2022-05-10 | 德州学院 | Preparation method of polyelectrolyte nanofiltration membrane |
CN115364691B (en) * | 2022-08-12 | 2023-08-25 | 中国科学院上海高等研究院 | Cellulose nanofiber air filtration composite membrane prepared based on electrostatic layer-by-layer self-assembly technology and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0436720B1 (en) * | 1987-12-02 | 1995-03-15 | JAPAN as represented by MINISTER OF INTERNATIONAL TRADE AND INDUSTRY, DIRECTOR GENERAL, BASIC INDUSTRIES BUREAU | Hydrolyzed membrane and process for its production |
DD292846A5 (en) * | 1989-10-11 | 1991-08-14 | Akad Wissenschaften Ddr | USE OF SYMPLEXMEMBRANES FOR PERVAPORATION |
JPH0691949B2 (en) * | 1992-04-23 | 1994-11-16 | 通商産業省基礎産業局長 | Separation membrane made of polyion complex |
KR100224471B1 (en) * | 1997-08-25 | 1999-10-15 | 김충섭 | Stable polyon complex membrance with a double structure |
-
1999
- 1999-03-06 DE DE19909841A patent/DE19909841A1/en not_active Withdrawn
-
2000
- 2000-02-25 AU AU42845/00A patent/AU4284500A/en not_active Abandoned
- 2000-02-25 WO PCT/DE2000/000707 patent/WO2000053296A2/en not_active Application Discontinuation
- 2000-02-25 DE DE10080521T patent/DE10080521D2/en not_active Expired - Fee Related
- 2000-02-25 EP EP00922423A patent/EP1159060A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0053296A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000053296A2 (en) | 2000-09-14 |
WO2000053296A3 (en) | 2000-12-28 |
AU4284500A (en) | 2000-09-28 |
DE10080521D2 (en) | 2002-07-25 |
DE19909841A1 (en) | 2000-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3129702C2 (en) | ||
DE2236663C2 (en) | Process for the production of a macroscopically homogeneous membrane | |
DE2539408C3 (en) | Membrane, process for its manufacture and its use for reverse osmosis and ultrafiltration | |
DE2613248C2 (en) | Method of manufacturing membrane laminate | |
DE3886822T2 (en) | Process for the production of highly permeable composite coated hollow fiber membranes. | |
DE3801690A1 (en) | POLYMER MEMBRANE AND METHOD FOR THEIR PRODUCTION | |
DE60220740T2 (en) | Composite membranes | |
EP0603463B1 (en) | Permanent hydrophilic modification for fluoropolymers and process for producing this modification | |
EP3056260B1 (en) | Method for producing a separating membrane and separating membrane that can be produced by said method | |
DE2735887A1 (en) | HYDROPHILIC POROESE STRUCTURES AND PROCEDURES FOR THEIR PRODUCTION | |
WO2008034487A1 (en) | Isoporous membrane and method of production thereof | |
DE3220570A1 (en) | MULTILAYERED MEMBRANE AND THEIR USE FOR SEPARATING LIQUID MIXTURES BY THE PERVAPORATION PROCESS | |
DE1629789B1 (en) | PROCESS FOR MANUFACTURING POROUS FLAT BODIES FROM ORGANIC HIGH POLYMER | |
EP0162964A2 (en) | Method for the production of an asymmetric membrane | |
DE2808222C3 (en) | Process for the production of composite membranes | |
WO2000053296A2 (en) | Multilayer membranes and method for the production thereof | |
EP1614795A1 (en) | Functionalized non-wovens, method for the prodcution and use thereof | |
DE3853366T2 (en) | Hydrolyzed membrane and process for its manufacture. | |
DE69804970T2 (en) | ion exchange membrane | |
EP0587071B1 (en) | Process for the preparation of a polyelectrolyte composite membrane | |
DE102019005373A1 (en) | Mechanically stable ultrafiltration membrane and process for its manufacture | |
DE10326354A1 (en) | Active composite material, for separation by solution-diffusion, e.g. for separating aromatics from aliphatics, comprises anionic copolymer of methacrylate and sulfoalkyl methacrylate ester plus cationic component | |
EP1791623B1 (en) | Method for producing hollow fiber membranes | |
WO2000074828A1 (en) | Hydrophilic composite membrane for dehydrating organic solutions | |
DE4437869B4 (en) | Surfactant-containing membranes for pervaporation, process for their preparation and use of a surfactant-containing membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010816 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LEIBNIZ-INSTITUT FUER POLYMERFORSCHUNG DRESDEN E.V |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050830 |