EP1157752A2 - Tool with ultrasound adaptor - Google Patents
Tool with ultrasound adaptor Download PDFInfo
- Publication number
- EP1157752A2 EP1157752A2 EP01810469A EP01810469A EP1157752A2 EP 1157752 A2 EP1157752 A2 EP 1157752A2 EP 01810469 A EP01810469 A EP 01810469A EP 01810469 A EP01810469 A EP 01810469A EP 1157752 A2 EP1157752 A2 EP 1157752A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- transformer
- tool device
- electroacoustic transducer
- assigned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002604 ultrasonography Methods 0.000 title description 8
- 238000004804 winding Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- LYKJEJVAXSGWAJ-UHFFFAOYSA-N compactone Natural products CC1(C)CCCC2(C)C1CC(=O)C3(O)CC(C)(CCC23)C=C LYKJEJVAXSGWAJ-UHFFFAOYSA-N 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/02—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
- B28D1/04—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
- B28D1/041—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B3/00—Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
Definitions
- the invention relates to a tool device, for example a core drilling device or a grinding device, with an ultrasonic adapter for e.g. abrasive or machining of Solids, such as building materials such as stone, metal or wood.
- a tool device for example a core drilling device or a grinding device
- an ultrasonic adapter for e.g. abrasive or machining of Solids, such as building materials such as stone, metal or wood.
- the abrasive sawing processing of rock via an at least partially rotating, with Cylindrical drill bit with hard materials on its end face is, for example, from EP0280835 previously known.
- Such drill bits usually use water as the rinsing and cooling liquid.
- the ultrasonic vibrations are generated by capacitive electro-acoustic Transducers formed in the ultrasonic frequency range.
- the electrostatic converter can, for example be constructed from pre-stressed piezo disks.
- Capacitive electroacoustic transducers in the ultrasonic frequency range consist of an electrostrictive material as the dielectric of a capacitor, which changes its dimension under an applied electrical voltage.
- Such a trained capacitor has a due to its mechanical properties Self-response on.
- Capacitive electroacoustic transducers require sufficient to generate Deformations a high voltage.
- a hand tool device has a rotating cylindrical, abrasive material-removing tool on the one made of electrostrictive material capacitive electroacoustic transducers axially superimposed on a longitudinal ultrasound field is.
- the drill bit is in accordance with the amplitude resonance to the frequency of the ultrasound field designed.
- an ultrasonic adapter for a rotating tool driving, drilling machine a rotating, made of electrostrictive material, capacitive electro-acoustic transducer based on slip rings with an ultrasonic frequency AC voltage is connected.
- a disadvantage of such an energy supply is the wear caused by the mechanical contact, which increases the service life limited.
- ring-shaped rotatable rotary transmitters or Transformers with circular U-cores for stator and rotor which via assigned coils electrical energy via an alternating magnetic field transferred from the stator to the rotor.
- the object of the invention is to avoid the above disadvantages in the implementation of a Tool device with an ultrasonic adapter for impressing an ultrasonic vibration on the tool.
- Another aspect is the superposition of a rotary movement the tool with an ultrasonic vibration.
- the ultrasound adapter essentially has one for contactless energy transmission
- a capacitive electroacoustic transducer connected to the secondary winding of a transformer, whose primary winding with an AC voltage electric ultrasonic frequency generator generating in the ultrasonic range is connected and thus the electrical power via the alternating magnetic field transmits contactlessly to the capacitive electroacoustic transducer, the secondary winding at the same time in connection with the capacitive electroacoustic transducer forms a parallel resonance circuit and, in the event of resonance, a voltage surge causes.
- the resonance frequencies are further advantageous with the frequency of the ultrasound frequency generator the capacitive electroacoustic transducer, the secondary resonant circuit, the Primary resonant circuit and the amplitude of the longitudinal vibrations of the tool, especially a drill bit, coordinated.
- a subcomponent of the transformer of contactless energy transmission is advantageous, for example, the secondary winding to tune the electrical resonant circuit with the capacitive electroacoustic transducer.
- the mass of a subcomponent of the transformer of the contactless is also advantageous Energy transfer, e.g. the mass of the inner transformer core, for coordination of the mechanical resonance circuit of the tool can be used.
- the transformer of two coils within two, one with the opening is advantageous assigned, U-shell cores formed, which together thus essentially one Form closed shell core, with one U-shell core, a coil rotatably assigned.
- the rotatable transformer consists of two nested, U-shaped shell cores oriented opposite to the tool axis, which coils are assigned in a rotationally fixed manner and oriented parallel to the tool axis include, the primary winding being connected to the tool device in a rotationally fixed manner Stator and the secondary winding the rotor connected to the tool in a rotationally fixed manner assigned.
- An inner U-shell core and is also advantageously located with respect to a diameter the secondary coil inside and an outer U-shell core and the primary coil inside radially outer, whereby there is a degree of freedom of movement parallel to the tool axis along this a decoupling of the vibration and a dismantling of the transformer, For example, when changing a tool with an integrated capacitive electroacoustic Converter and secondary part of a transformer, is made possible.
- a winding ratio of 1: 1 is required to minimize the size of the transformer advantageous.
- the small number of windings also results from the feed frequency in the Range from 20 to 35kHz.
- the mass of the ferromagnetic inner transformer core acts as an oscillating one Mass and can be used to balance the vibrating mechanical system become.
- This inner transformer core made of layered and against each other is advantageous electrically insulated slats, which are used to avoid eddy current losses follow the magnetic field lines and piece by piece or non-cutting are reshaped.
- the capacitive electroacoustic transducer along the tool axis is also advantageous arranged so that the vibration amplitude occurring in the direction of the tool axis increases the abrasive material removal by local axial pressure increase.
- the amplitude of the longitudinal vibrations of the tool is advantageous capacitive electroacoustic transducers arranged in a vibration node.
- an ultrasonic adapter 1 has a rotating movement of a tool 2 about a tool axis A generating, not fully shown tool 3 a rotatable capacitive electroacoustic transducer 4 connected to the Secondary winding 5 of a rotatable transformer 6, the primary winding 7 with a powerful ultrasound frequency generator 8 is connected in the ultrasound range, the secondary winding 5 parallel to the capacitive electroacoustic transducer 4 is switched.
- Tool 2 is a hollow core bit for cut-off grinding cylindrical core bores in rock 9 and via a drilling fluid channel 10 along the tool axis A with the tool device 3.
- the transformer 6 consists of two U-shaped shell cores assigned to each other with respect to the opening, which coils are assigned in a rotationally fixed manner and oriented parallel to the tool axis A include, wherein the coil designed as primary winding 7 with the tool 3 non-rotatably connected stator and the coil designed as a secondary winding 5 with is associated with the tool 2 rotatably connected rotor.
- the compact one Transformer 6 has a hollow U-shaped arrangement arranged radially from the inside out Shell core as inner transformer core 11, the secondary winding 5, an air gap 12, the Primary winding 7 and an annular U-shaped shell core as the outer Transformer core 13 on.
- the ring-shaped hollow capacitive electroacoustic transducer 4 is axially in the direction of the tool device 3 adjacent to the inner transformer core 11 and the secondary winding 5 arranged, whereby the mass thereof in the mechanical Tool 2 resonant circuit is received.
- an electrical resonant circuit with respect to an alternating current i 2 and an alternating voltage u 2 has the inductance L P formed by a coil, the capacitance C P formed by the capacitive electroacoustic transducer and the resistance R P determined by the losses.
- this electrical resonant circuit is coupled to a mechanical resonant circuit with regard to a displacement speed v and a displacement force F.
- the mechanical resonant circuit is described by the internal damping d, the rigidity 1 / c and the mass m and the damping load d L.
- the inductance L P is replaced for the inductive energy transmission with the secondary side of a transformer fed with an alternating current i 1 and an alternating voltage u 1 .
- U 2 1000V
- I 2 2A
- ü 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Mining & Mineral Resources (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Drilling And Boring (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Ein Werkzeuggerät (3) mit einem Ultraschalladapter (1) mit einem an einen elektrischen Ultraschallfrequenzgenerator (8) angeschlossenen kapazitiven elektroakustischen Wandier (4) zur Erzeugung von Ultraschallwellen für ein Werkzeug (2), wobei der kapazitive elektro-akustische Wandler (4) mit einer Sekundärwicklung (5) und der Ultraschallfrequenzgenerator (8) mit einer Primärwicklung (7) eines Transformators (6) verbunden ist. A tool device (3) with an ultrasonic adapter (1) with a capacitive electro-acoustic transducer (4) connected to an electrical ultrasonic frequency generator (8) for generating ultrasonic waves for a tool (2), the capacitive electro-acoustic transducer (4) with a Secondary winding (5) and the ultrasonic frequency generator (8) is connected to a primary winding (7) of a transformer (6).
Description
Die Erfindung bezeichnet ein Werkzeuggerät, bspw. ein Kernbohrgerät oder ein Schleifgerät, mit einem Ultraschalladapter zur bspw. abrasiven oder spanenden Bearbeitung von Festkörpern, wie Baustoffen bspw. Gestein, Metall oder Holz.The invention relates to a tool device, for example a core drilling device or a grinding device, with an ultrasonic adapter for e.g. abrasive or machining of Solids, such as building materials such as stone, metal or wood.
Die abrasiv sägende Bearbeitung von Gestein über eine zumindest teilweise drehende, mit Hartstoffen auf ihrer Stirnseite besetzten zylindrischen Bohrkrone ist bspw. aus EP0280835 vorbekannt. Derartige Bohrkronen verwenden üblicherweise Wasser als Spül- und Kühlflüssigkeit. Die Ultraschallschwingungen werden dabei durch kapazitive elektroakustische Wandler im Ultraschallfrequenzbereich gebildet. Der elektrostatische Wandler kann beispielsweise aus vorgespannten Piezoscheiben aufgebaut sein.The abrasive sawing processing of rock via an at least partially rotating, with Cylindrical drill bit with hard materials on its end face is, for example, from EP0280835 previously known. Such drill bits usually use water as the rinsing and cooling liquid. The ultrasonic vibrations are generated by capacitive electro-acoustic Transducers formed in the ultrasonic frequency range. The electrostatic converter can, for example be constructed from pre-stressed piezo disks.
Kapazitive elektroakustische Wandler im Ultraschallfrequenzbereich, bspw. Piezoscheiben, bestehen aus einem elektrostriktiven Material als Dielektrikum eines Kondensators, welches unter einer angelegten elektrischen Spannung seine Dimension verändert. Ein derart ausgebildeter Kondensator weist aufgrund seiner mechanischen Eigenschaften eine Eigenresonanz auf. Kapazitive elektroakustische Wandler benötigen zur Erzeugung ausreichender Deformationen eine hohe elektrische Spannung.Capacitive electroacoustic transducers in the ultrasonic frequency range, e.g. piezo disks, consist of an electrostrictive material as the dielectric of a capacitor, which changes its dimension under an applied electrical voltage. Such a trained capacitor has a due to its mechanical properties Self-response on. Capacitive electroacoustic transducers require sufficient to generate Deformations a high voltage.
Es ist üblich, das elektrische (kapazitive) Verhalten eines piezoelektrischen Wandlers durch eine Induktivität zu ergänzen, die so abgestimmt wird, dass der entstehende Parallel-Schwingkreis auf der elektrischen Seite die gleiche Resonanzfrequenz besitzt wie der mechanische Schwingkreis, der durch die Steifigkeit und Masse des Schallkonverters bestimmt ist.It is common to measure the electrical (capacitive) behavior of a piezoelectric transducer to add an inductance that is tuned so that the resulting parallel resonant circuit has the same resonance frequency on the electrical side as the mechanical resonant circuit, due to the rigidity and mass of the sound converter is determined.
Nach der EP0720890B1 weist ein Handwerkzeuggerät ein drehendes zylindrisches, abrasiv materialabtragendes Werkzeug auf, dem über einen aus elektrostriktiven Material bestehenden kapazitiven elektroakustischen Wandler ein longitudinales Ultraschallfeld axial überlagert ist. Die Bohrkrone ist entsprechend der Amplitudenresonanz auf die Frequenz des Ultraschallfeldes ausgelegt. According to EP0720890B1, a hand tool device has a rotating cylindrical, abrasive material-removing tool on the one made of electrostrictive material capacitive electroacoustic transducers axially superimposed on a longitudinal ultrasound field is. The drill bit is in accordance with the amplitude resonance to the frequency of the ultrasound field designed.
Nach der US3614484 weist ein Ultraschalladapter für eine, ein drehendes Werkzeug antreibende, Bohrmaschine einen mitdrehenden, aus elektrostriktiven Material bestehenden, kapazitiven elektroakustischen Wandler auf, der über Schleifringe mit einer ultraschallfrequenten Wechselspannung verbunden ist. Nachteilig bei einer derartigen Energieversorgung ist der durch den mechanischen Kontakt verursachte Verschleiss, welcher die Lebensdauer begrenzt. Des weiteren ergeben sich durch die Verwendung von Wasser unter Berücksichtigung der zum Betrieb von elektrostriktiven Wandlern erforderlichen hohen Spannung Isolationsprobleme, welche die Sicherheit des Nutzers beeinträchtigen könnten.According to US3614484, an ultrasonic adapter for a rotating tool driving, drilling machine a rotating, made of electrostrictive material, capacitive electro-acoustic transducer based on slip rings with an ultrasonic frequency AC voltage is connected. A disadvantage of such an energy supply is the wear caused by the mechanical contact, which increases the service life limited. Furthermore, result from the use of water taking into account the high voltage required to operate electrostrictive transducers Isolation problems that could affect the safety of the user.
Des weiteren sind nach der EP0680060A1 ringförmige rotierbare Drehübertrager bzw. Transformatoren mit jeweils kreisringförmigen U-Kernen für Stator und Rotor vorbekannt, welche über zugeordnete Spulen elektrische Energie über ein magnetisches Wechselfeld vom Stator auf den Rotor übertragen.Furthermore, according to EP0680060A1, ring-shaped rotatable rotary transmitters or Transformers with circular U-cores for stator and rotor, which via assigned coils electrical energy via an alternating magnetic field transferred from the stator to the rotor.
Die Aufgabe der Erfindung besteht bei Meidung obiger Nachteile in der Realisierung eines Werkzeuggerätes mit einem Ultraschalladapter zum Aufprägen einer Ultraschallschwingung auf das Werkzeug. Ein weiterer Aspekt besteht in der Überlagerung einer Drehbewegung des Werkzeugs mit einer Ultraschallschwingung.The object of the invention is to avoid the above disadvantages in the implementation of a Tool device with an ultrasonic adapter for impressing an ultrasonic vibration on the tool. Another aspect is the superposition of a rotary movement the tool with an ultrasonic vibration.
Die Aufgabe wird im wesentlichen durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.The task is essentially solved by the features of the independent claims. Advantageous further developments result from the subclaims.
Im wesentlichen weist zur berührungslosen Energieübertragung der Ultraschalladapter eines Werkzeuggerätes einen kapazitiven elektroakustischen Wandler verbunden mit der Sekundärwicklung eines Transformators auf, dessen Primärwicklung mit einem, eine Wechselspannung im Ultraschallbereich erzeugenden, elektrischen Ultraschallfrequenzgenerator verbunden ist und somit über das magnetische Wechselfeld die elektrische Leistung berührungslos an den kapazitiven elektroakustischen Wandler überträgt, wobei die Sekundärwicklung gleichzeitig in Verbindung mit dem kapazitiven elektroakustischen Wandler einen Parallelresonanzkreis ausbildet und im Resonanzfall eine Spannungsüberhöhung bewirkt.The ultrasound adapter essentially has one for contactless energy transmission A capacitive electroacoustic transducer connected to the secondary winding of a transformer, whose primary winding with an AC voltage electric ultrasonic frequency generator generating in the ultrasonic range is connected and thus the electrical power via the alternating magnetic field transmits contactlessly to the capacitive electroacoustic transducer, the secondary winding at the same time in connection with the capacitive electroacoustic transducer forms a parallel resonance circuit and, in the event of resonance, a voltage surge causes.
Der durch die berührungslose Energieübertragung wesentlich verringerte mechanische Verschleiss wirkt sich Vorteilhaft auf die Lebensdauer des Werkzeuggerätes aus. Zudem ergeben sich bei der Bearbeitung von mit Wasser kontaminierten Materialien keine Isolationsprobleme bei der Energieübertragung. Durch die Nutzung der Sekundärwicklung als Parallelinduktivität wird die für den Abgleich des elektrischen Schwingkreises erforderliche zusätzliche Induktivität eingespart.The mechanical reduction, which is significantly reduced due to the contactless energy transfer Wear has an advantageous effect on the service life of the tool device. In addition there are no insulation problems when processing materials contaminated with water in energy transmission. By using the secondary winding as Parallel inductance becomes the one required for the adjustment of the electrical resonant circuit additional inductance saved.
Vorteilhaft wird bei einer möglichen, jedoch nicht notwendigen, um eine Werkzeugachse zumindest teilweise drehenden oder schwingenden Bewegung des Werkzeuges ein mit diesem zumindest teilweise mitdrehender oder mitschwingender kapazitiver elektroakustischer Wandler über einen zumindest teilweise rotierbaren Transformator berührungslos mit dem Ultraschallfrequenzgenerator verbunden.It is advantageous for a possible, but not necessary, around a tool axis at least partially rotating or oscillating movement of the tool this at least partially rotating or resonating capacitive electroacoustic Transducer via an at least partially rotatable transformer without contact connected to the ultrasonic frequency generator.
Weiter vorteilhaft sind mit der Frequenz des Ultraschallfrequenzgenerators die Resonanzfrequenzen des kapazitiven elektroakustischen Wandlers, des Sekundärschwingkreises, des Primärschwingkreises sowie der Amplitude der Longitudinalschwingungen des Werkzeuges, insbesondere einer Bohrkrone, aufeinander abgestimmt.The resonance frequencies are further advantageous with the frequency of the ultrasound frequency generator the capacitive electroacoustic transducer, the secondary resonant circuit, the Primary resonant circuit and the amplitude of the longitudinal vibrations of the tool, especially a drill bit, coordinated.
Vorteilhaft ist eine Teilkomponente des Transformators der berührungslosen Energieübertragung, bspw. die Sekundärwicklung, zum Abstimmen des elektrischen Resonanzkreises mit dem kapazitiven elektroakustischen Wandler nutzbar.A subcomponent of the transformer of contactless energy transmission is advantageous, for example, the secondary winding to tune the electrical resonant circuit with the capacitive electroacoustic transducer.
Weiter vorteilhaft ist die Masse einer Teilkomponente des Transformators der berührungslosen Energieübertragung, bspw. die Masse des inneren Transformatorkerns, zur Abstimmung des mechanischen Resonanzkreises des Werkzeugs nutzbar.The mass of a subcomponent of the transformer of the contactless is also advantageous Energy transfer, e.g. the mass of the inner transformer core, for coordination of the mechanical resonance circuit of the tool can be used.
Durch die obige mehrfache Ausnutzung von Teilkomponenten des Transformators der berührungslosen Energieübertragung, verbunden mit einer radialen ineinander verschachtelten Anordnung der Teilkomponenten, bspw. von Innen nach Aussen: Innerer Transformatorkern, Sekundärwicklung, Luftspalt, Primärwicklung, äusserer Transformatorkern, ist vorteilhaft eine weitgehend kompakte Bauweise für den Transformator der berührungslosen Energieübertragung realisierbar.Due to the above multiple use of sub-components of the transformer non-contact energy transmission, combined with a radial nested Arrangement of the sub-components, e.g. from the inside to the outside: inner transformer core, Secondary winding, air gap, primary winding, outer transformer core, is advantageous a largely compact design for the transformer of the contactless Energy transfer possible.
Vorteilhaft ist der Transformator aus zwei Spulen innerhalb zweier, einander mit der Öffnung zugeordneter, U-Schalenkerne ausgebildet, welche zusammen somit einen im wesentlichen geschlossenen Schalenkern ausbilden, wobei je einem U-Schalenkern eine Spule drehfest zugeordnet ist.The transformer of two coils within two, one with the opening, is advantageous assigned, U-shell cores formed, which together thus essentially one Form closed shell core, with one U-shell core, a coil rotatably assigned.
Alternativ besteht der rotierbare Transformator aus zwei ineinander verschachtelten, bezüglich der Werkzeugachse entgegengesetzt orientierten, U-förmigen Schalenkernen, welche jeweils drehfest zugeordnete, parallel zur Werkzeugachse orientierte, Spulen beinhalten, wobei die Primärwicklung dem mit dem Werkzeuggerät drehfest verbundenen Stator und die Sekundärwicklung dem mit dem Werkzeug drehfest verbundenen Rotor zugeordnet ist.Alternatively, the rotatable transformer consists of two nested, U-shaped shell cores oriented opposite to the tool axis, which coils are assigned in a rotationally fixed manner and oriented parallel to the tool axis include, the primary winding being connected to the tool device in a rotationally fixed manner Stator and the secondary winding the rotor connected to the tool in a rotationally fixed manner assigned.
Weiter vorteilhaft befindet sich bezüglich eines Durchmessers ein innerer U-Schalenkern und die Sekundärspule im radial Inneren und ein äusserer U-Schalenkern und die Primärspule im radial Äusseren, wodurch parallel zur Werkzeugachse ein Bewegungsfreiheitsgrad besteht längs dessen eine Entkopplung der Schwingung sowie eine Demontage des Transformators, bspw. bei Wechsel eines Werkzeugs mit integriertem kapazitiven elektroakustischen Wandler und Sekundärteil eines Transformators, ermöglicht wird.An inner U-shell core and is also advantageously located with respect to a diameter the secondary coil inside and an outer U-shell core and the primary coil inside radially outer, whereby there is a degree of freedom of movement parallel to the tool axis along this a decoupling of the vibration and a dismantling of the transformer, For example, when changing a tool with an integrated capacitive electroacoustic Converter and secondary part of a transformer, is made possible.
Zur Minimierung der Baugrösse des Transformators ist ein Wicklungsverhältnis von 1:1 vorteilhaft. Die geringe Anzahl der Wicklungen resultiert zudem aus der Speisefrequenz im Bereich von 20 bis 35kHz.A winding ratio of 1: 1 is required to minimize the size of the transformer advantageous. The small number of windings also results from the feed frequency in the Range from 20 to 35kHz.
Die Masse des ferromagnetischen, inneren Transformatorkerns wirkt als schwingende Masse und kann zum Abgleich des schwingenden, mechanischen Systems verwendet werden.The mass of the ferromagnetic inner transformer core acts as an oscillating one Mass and can be used to balance the vibrating mechanical system become.
Vorteilhaft ist dieser innere Transformatorkern aus geschichteten und gegeneinander elektrisch isolierten Lamellen aufgebaut, welche zur Vermeidung von Wirbelstromverlussten den magnetischen Feldlinien folgen und stückweise zusammengesetzt oder spanlos umgeformt sind.This inner transformer core made of layered and against each other is advantageous electrically insulated slats, which are used to avoid eddy current losses follow the magnetic field lines and piece by piece or non-cutting are reshaped.
Weiter vorteilhaft ist der kapazitive elektroakustische Wandler längs der Werkzeugachse angeordnet, damit die in Richtung der Werkzeugachse auftretende Schwingungsamplitude durch lokale axiale Drucküberhöhung den abrasiven Materialabtrag steigert.The capacitive electroacoustic transducer along the tool axis is also advantageous arranged so that the vibration amplitude occurring in the direction of the tool axis increases the abrasive material removal by local axial pressure increase.
Vorteilhaft wird bezüglich der Amplitude der Longitudinalschwingungen des Werkzeuges der kapazitive elektroakustische Wandler in einem Schwingungsknoten angeordnet.The amplitude of the longitudinal vibrations of the tool is advantageous capacitive electroacoustic transducers arranged in a vibration node.
Die Erfindung wird bezüglich eines vorteilhaften Ausführungsbeispiels näher erläutert mit:
Nach Fig. 1 weist ein Ultraschalladapter 1 eines, eine drehende Bewegung eines Werkzeuges
2 um eine Werkzeugachse A erzeugenden, nicht vollständig dargestellten Werkzeuggerätes
3 einen rotierbaren kapazitiven elektroakustischen Wandler 4 verbunden mit der
Sekundärwicklung 5 eines rotierbaren Transformators 6 auf, dessen Primärwicklung 7 mit
einem leistungsstarken Ultraschallfrequenzgenerator 8 im Ultraschallbereich verbunden ist,
wobei die Sekundärwicklung 5 parallel zu dem kapazitiven elektroakustischen Wandler 4
geschaltet ist. Das Werkzeug 2 ist als eine hohle Bohrkrone zum Trennschleifen
zylindrischer Kernbohrungen in Gestein 9 ausgeführt und über einen Bohrflüssigkeitskanal
10 längs der Werkzeugachse A mit dem Werkzeuggerät 3 verbunden. Der Transformator 6
besteht aus zwei einander bezüglich der Öffnung zugeordneten U-förmigen Schalenkernen,
welche jeweils drehfest zugeordnete, parallel zur Werkzeugachse A orientierte, Spulen
beinhalten, wobei die als Primärwicklung 7 ausgeführte Spule dem mit dem Werkzeuggerät 3
drehfest verbundenen Stator und die als Sekundärwicklung 5 ausgeführte Spule dem mit
dem Werkzeug 2 drehfest verbundenen Rotor zugeordnet ist. Der kompakt aufgebaute
Transformator 6 weist radial von Innen nach Aussen angeordnet einen hohlen U-förmigen
Schalenkern als inneren Transformatorkern 11, die Sekundärwicklung 5, ein Luftspalt 12, die
Primärwicklung 7 und einen ringförmigen U-förmigen Schalenkern als äusseren
Transformatorkern 13 auf. Der ringförmig hohle kapazitive elektroakustische Wandler 4 ist
axial in Richtung des Werkzeuggerätes 3 benachbart zu dem inneren Transformatorkern 11
und der Sekundärwicklung 5 angeordnet, wodurch deren Masse mit in den mechanischen
Schwingkreis des Werkzeugs 2 eingeht.According to FIG. 1, an
Nach Fig. 2 weist in der Ersatzschaltung ein elektrischer Schwingkreis bezüglich eines
Wechselstromes i2 und einer Wechselspannung u2 die von einer Spule gebildete Induktivität
LP, die vom kapazitiven elektroakustischen Wandler gebildete Kapazität CP und den durch
die Verluste bestimmten Widerstand RP auf. Über eine Kopplung 1:A ist dieser elektrische
Schwingkreis mit einem mechanischen Schwingkreis bezüglich einer Verschiebungsgeschwindigkeit
v und einer Verschiebungskraft F gekoppelt. Der mechanische Schwingkreis
wird durch die Eigendämpfung d, die Steifigkeit 1/c und die Masse m und die dämpfende
Last dL beschrieben. Die Induktivität LP ist für die induktive Energieübertragung mit der
Sekundärseite eines mit einem Wechselstromes i1 und einer Wechselspannung u1 gespeisten
Transformators ersetzt.2, in the equivalent circuit, an electrical resonant circuit with respect to an alternating current i 2 and an alternating voltage u 2 has the inductance L P formed by a coil, the capacitance C P formed by the capacitive electroacoustic transducer and the resistance R P determined by the losses. Via coupling 1: A, this electrical resonant circuit is coupled to a mechanical resonant circuit with regard to a displacement speed v and a displacement force F. The mechanical resonant circuit is described by the internal damping d, the
Dimensioniert wurde die Anordnung anhand eines Ultraschallaktors mit einem Leistungsbedarf von 2kW bei einer Frequenz von 20kHz. Daraus ergibt sich bei einem im Verhältnis ü=1 übertragendem Transformator eine Speisespannung von U2=1000V und I2=2A. Bei der Verwendung eines, den magnetischen Fluss günstig führenden Materials, welches nicht in der Sättigung betrieben wird, erweisen sich 120 Windungen primär- und sekundärseitig in Bezug auf Flächenbedarf als vorteilhaft. Diese geringe Anzahl von Windungen wird durch die Verwendung einer Speisefrequenz von 20kHz ermöglicht.The arrangement was dimensioned using an ultrasonic actuator with a power requirement of 2 kW at a frequency of 20 kHz. This results in a supply voltage of U 2 = 1000V and I 2 = 2A for a transformer with a ratio of ü = 1. When using a material which conducts the magnetic flux favorably and which is not operated in saturation, 120 turns on the primary and secondary sides prove to be advantageous in terms of the area required. This small number of turns is made possible by using a feed frequency of 20 kHz.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10025352A DE10025352B4 (en) | 2000-05-23 | 2000-05-23 | Tool device with an ultrasonic adapter |
DE10025352 | 2000-05-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1157752A2 true EP1157752A2 (en) | 2001-11-28 |
EP1157752A3 EP1157752A3 (en) | 2004-05-26 |
EP1157752B1 EP1157752B1 (en) | 2008-03-19 |
Family
ID=7643142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01810469A Expired - Lifetime EP1157752B1 (en) | 2000-05-23 | 2001-05-14 | Tool with ultrasound adaptor |
Country Status (5)
Country | Link |
---|---|
US (1) | US6731047B2 (en) |
EP (1) | EP1157752B1 (en) |
JP (1) | JP4917215B2 (en) |
CN (1) | CN1219602C (en) |
DE (2) | DE10025352B4 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1422034A1 (en) * | 2002-11-19 | 2004-05-26 | Siemens Aktiengesellschaft | Method for machining a work piece |
WO2010091821A1 (en) * | 2009-02-10 | 2010-08-19 | Sauer Ultrasonic Gmbh | Interface for a tool actuator and/or for a tool, in particular for connecting to a machine tool |
WO2012163919A3 (en) * | 2011-05-30 | 2013-01-24 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Ultrasonic welding device with rotary coupler |
DE102012106382A1 (en) * | 2012-07-16 | 2014-01-16 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | output stage |
Families Citing this family (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
KR101118799B1 (en) * | 2004-07-02 | 2012-03-20 | 싸우에르 게엠바하 | Tool with an oscillating head |
EP3162309B1 (en) | 2004-10-08 | 2022-10-26 | Ethicon LLC | Ultrasonic surgical instrument |
US7156189B1 (en) * | 2004-12-01 | 2007-01-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self mountable and extractable ultrasonic/sonic anchor |
JP4856650B2 (en) * | 2005-04-11 | 2012-01-18 | 一正 大西 | Cutting or grinding equipment |
JP2007007810A (en) * | 2005-07-01 | 2007-01-18 | Bosch Corp | Spindle for ultrasonic machining |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US8910727B2 (en) * | 2006-02-03 | 2014-12-16 | California Institute Of Technology | Ultrasonic/sonic jackhammer |
GB0625301D0 (en) * | 2006-12-19 | 2007-01-24 | Airbus Uk Ltd | Method and system for making holes in composite materials |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
WO2008156116A1 (en) * | 2007-06-19 | 2008-12-24 | Kazumasa Ohnishi | Cutting or grinding device |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
EP2217157A2 (en) | 2007-10-05 | 2010-08-18 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US7901423B2 (en) * | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8344596B2 (en) | 2009-06-24 | 2013-01-01 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8956349B2 (en) | 2009-10-09 | 2015-02-17 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
JP5646734B2 (en) * | 2010-04-29 | 2014-12-24 | エジソン・ウェルディング・インスティチュート,インコーポレーテッド | Ultrasonic machining assembly for use with portable devices |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
CN102476222B (en) * | 2010-11-24 | 2014-12-10 | 南京德朔实业有限公司 | Tapper used for oscillation tool |
CN102151867B (en) * | 2011-03-14 | 2013-05-29 | 天津大学 | A Rotary Ultrasonic Head Based on Machine Tool Attachment |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
DE102011052252A1 (en) * | 2011-07-28 | 2013-01-31 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Tool head and method for machining |
USD700699S1 (en) | 2011-08-23 | 2014-03-04 | Covidien Ag | Handle for portable surgical device |
US9314292B2 (en) | 2011-10-24 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Trigger lockout mechanism |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
EP2811932B1 (en) | 2012-02-10 | 2019-06-26 | Ethicon LLC | Robotically controlled surgical instrument |
USD709203S1 (en) * | 2012-02-29 | 2014-07-15 | Kabushiki Kaisha Toshiba | Adapter for fixing a magnetic sensor |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9492224B2 (en) | 2012-09-28 | 2016-11-15 | EthiconEndo-Surgery, LLC | Multi-function bi-polar forceps |
CN102922609B (en) * | 2012-10-13 | 2016-03-30 | 洛阳金诺机械工程有限公司 | A kind of ultrasonic vibration rotary drawing-out device |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US10245652B2 (en) * | 2012-11-05 | 2019-04-02 | M4 Sciences Llc | Rotating tool holder assembly for modulation assisted machining |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
CN103072209B (en) * | 2012-12-27 | 2016-05-18 | 洛阳金诺机械工程有限公司 | One is drawn material equipment |
WO2014111972A1 (en) * | 2013-01-16 | 2014-07-24 | 三重電子株式会社 | Non-contact power supply device |
EP2946859B1 (en) * | 2013-01-16 | 2017-10-18 | Mie Electronics Co., Ltd. | Processing apparatus |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9993843B2 (en) * | 2013-07-15 | 2018-06-12 | Dukane Ias, Llc | Adapter for ultrasonic transducer assembly |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US20170140869A1 (en) | 2014-05-23 | 2017-05-18 | I.M.A. Industria Macchine Automatiche S.P.A. | Working unit equipped with a device for contactless electricity transfer and method for contactless electricity transfer in a working unit |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
CN105583453B (en) * | 2014-10-24 | 2018-09-25 | 富鼎电子科技(嘉善)有限公司 | Handle of a knife |
CN104439348B (en) * | 2014-11-12 | 2017-01-11 | 大连理工大学 | A non-contact energy transfer device for rotary ultrasonic machining |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
CN104842203A (en) * | 2015-05-28 | 2015-08-19 | 天津大学 | Locally induced attached rotary ultrasonic head based on machine tool |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US20170086909A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Frequency agile generator for a surgical instrument |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10875138B1 (en) | 2016-08-09 | 2020-12-29 | M4 Sciences Llc | Tool holder assembly for machining system |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10736649B2 (en) | 2016-08-25 | 2020-08-11 | Ethicon Llc | Electrical and thermal connections for ultrasonic transducer |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
CA3036434C (en) * | 2016-10-13 | 2021-05-04 | Halliburton Energy Services, Inc. | Resonant transformer for downhole electrocrushing drilling |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10710172B2 (en) | 2017-07-31 | 2020-07-14 | Milwaukee Electric Tool Corporation | Rotary power tool |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
TWI669185B (en) * | 2018-08-28 | 2019-08-21 | 國立中興大學 | Non-contact electric energy transmission high-frequency vibration main shaft system and restraint manufacturing method |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US20210196358A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes biasing support |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
CN111250767B (en) * | 2020-03-27 | 2021-07-13 | 南京航空航天大学 | Variable-frequency ultrasonic vibration machining system for numerical control milling machine |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3152295A (en) * | 1961-05-01 | 1964-10-06 | Bendix Corp | Pulsed tank circuit magneto-or electrostrictive device excitation |
US3293456A (en) * | 1963-03-18 | 1966-12-20 | Branson Instr | Ultrasonic cleaning apparatus |
US3441875A (en) * | 1967-08-15 | 1969-04-29 | Branson Instr | Electrical switching circuit using series connected transistors |
US3614484A (en) * | 1970-03-25 | 1971-10-19 | Branson Instr | Ultrasonic motion adapter for a machine tool |
US4271371A (en) * | 1979-09-26 | 1981-06-02 | Kabushiki Kaisha Morita Seisakusho | Driving system for an ultrasonic piezoelectric transducer |
DE3323243A1 (en) * | 1983-02-02 | 1985-01-10 | Leuze electronic GmbH + Co, 7311 Owen | DEVICE FOR GENERATING THE CURRENT IMPULSES REQUIRED FOR THE OPERATION OF RADIATION-EMITTING SEMICONDUCTOR DIODES |
US4582067A (en) * | 1983-02-14 | 1986-04-15 | Washington Research Foundation | Method for endoscopic blood flow detection by the use of ultrasonic energy |
JPS60176471A (en) * | 1984-02-21 | 1985-09-10 | Canon Inc | Drive circuit of vibration wave motor |
JPS60257777A (en) * | 1984-06-04 | 1985-12-19 | Taga Denki Kk | Twisting vibrator |
JPS62247870A (en) * | 1986-04-21 | 1987-10-28 | 多賀電気株式会社 | Method of controlling drive of ultrasonic vibrator |
EP0277823B1 (en) * | 1987-02-04 | 1991-04-24 | Taga Electric Co. Ltd. | Ultrasonic vibration cutting device |
GB2203978B (en) * | 1987-03-03 | 1991-06-12 | Taga Electric Co Ltd | Ultrasonic vibrational cutting apparatus |
US5140231A (en) * | 1987-10-20 | 1992-08-18 | Canon Kabushiki Kaisha | Drive circuit for vibratory-wave motor |
US5021700A (en) * | 1988-03-01 | 1991-06-04 | Matsushita Electric Industrial Co., Ltd. | Driving apparatus for ultrasonic motor |
EP0680060A1 (en) * | 1994-04-26 | 1995-11-02 | Eaton Corporation | Rotary transformer |
US5563504A (en) * | 1994-05-09 | 1996-10-08 | Analog Devices, Inc. | Switching bandgap voltage reference |
DE4444853B4 (en) * | 1994-12-16 | 2006-09-28 | Hilti Ag | Hand tool for material-removing machining with an electro-acoustic transducer for the generation of ultrasonic vibrations |
JPH1110420A (en) * | 1997-06-23 | 1999-01-19 | Ntn Corp | Static pressure air bearing spindle |
-
2000
- 2000-05-23 DE DE10025352A patent/DE10025352B4/en not_active Expired - Fee Related
-
2001
- 2001-05-14 DE DE50113742T patent/DE50113742D1/en not_active Expired - Lifetime
- 2001-05-14 EP EP01810469A patent/EP1157752B1/en not_active Expired - Lifetime
- 2001-05-15 CN CN01119003.5A patent/CN1219602C/en not_active Expired - Lifetime
- 2001-05-17 US US09/859,872 patent/US6731047B2/en not_active Expired - Lifetime
- 2001-05-23 JP JP2001153739A patent/JP4917215B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1422034A1 (en) * | 2002-11-19 | 2004-05-26 | Siemens Aktiengesellschaft | Method for machining a work piece |
WO2010091821A1 (en) * | 2009-02-10 | 2010-08-19 | Sauer Ultrasonic Gmbh | Interface for a tool actuator and/or for a tool, in particular for connecting to a machine tool |
DE102009008227C5 (en) * | 2009-02-10 | 2016-10-13 | Sauer Ultrasonic Gmbh | Interface for a tool actuator or for a tool, in particular for connection to a machine tool |
WO2012163919A3 (en) * | 2011-05-30 | 2013-01-24 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Ultrasonic welding device with rotary coupler |
US8955574B2 (en) | 2011-05-30 | 2015-02-17 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Ultrasonic welding device with rotary coupler |
DE102012106382A1 (en) * | 2012-07-16 | 2014-01-16 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | output stage |
US9344053B2 (en) | 2012-07-16 | 2016-05-17 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Output stage for adapting an AC voltage signal of an ultrasound generator |
Also Published As
Publication number | Publication date |
---|---|
US6731047B2 (en) | 2004-05-04 |
EP1157752A3 (en) | 2004-05-26 |
DE50113742D1 (en) | 2008-04-30 |
CN1219602C (en) | 2005-09-21 |
CN1324713A (en) | 2001-12-05 |
DE10025352A1 (en) | 2001-12-06 |
JP2002028808A (en) | 2002-01-29 |
EP1157752B1 (en) | 2008-03-19 |
JP4917215B2 (en) | 2012-04-18 |
DE10025352B4 (en) | 2007-09-20 |
US20030001456A1 (en) | 2003-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1157752A2 (en) | Tool with ultrasound adaptor | |
DE102015212810A1 (en) | Device for generating an ultrasonic vibration of a tool and for measuring vibration parameters | |
EP1763416B1 (en) | Tool with an oscillating head | |
DE4444853B4 (en) | Hand tool for material-removing machining with an electro-acoustic transducer for the generation of ultrasonic vibrations | |
EP3920372A1 (en) | Method for increasing efficiency of an energy transmission device, energy transmission device and use of electrically conductive material | |
EP1323496B1 (en) | Core bit for ultrasonic drilling | |
EP2404073B1 (en) | Torque transfer device | |
DE2053615B2 (en) | Electromechanical converter for machine tools | |
DE102012219254B4 (en) | Supply circuit, supply system, tool actuator, tool | |
DE102013210199A1 (en) | Tool | |
DE102015212809A1 (en) | Method and device for measuring a resonant frequency of an ultrasonic tool for machining | |
EP3003611B1 (en) | Tool clamping system | |
WO2012159791A2 (en) | Electrodynamic machine having an added casing | |
WO2017108114A1 (en) | Power transmission device for contactless power transmission and process for contactless power transmission | |
CN104993605A (en) | Circuit compensation network of non-contact power supply ultrasonic vibration system based on efficiency | |
WO2005063437A1 (en) | Tool holder comprising electrostrictive actuator bodies used to influence the concentric behaviour of the tool holder | |
Duan et al. | Design and testing of a novel rotary transformer for rotary ultrasonic machining | |
DE102004030012B4 (en) | torsional vibration damper | |
US1680311A (en) | Reciprocating motor | |
DE102019007229A1 (en) | Arrangement for contactless energy and signal transmission on a rotor shaft of an electric machine | |
EP4034898B1 (en) | Device for detecting a high-frequency event signal in an electric rotating machine | |
WO2020064888A1 (en) | Coil for energy transfer | |
DE102018116793B3 (en) | Vibrating point level sensor with optimized inductive drive | |
EP0919809B1 (en) | Transmission system for ultrasonic waves | |
DE575212C (en) | Control device for network coupling converter, consisting of a synchronous machine and an asynchronous machine with a commutator rear machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 23B 37/00 B Ipc: 7B 28D 1/04 B Ipc: 7H 01L 41/09 B Ipc: 7B 06B 3/00 B Ipc: 7H 01L 41/04 B Ipc: 7B 06B 1/06 A |
|
17P | Request for examination filed |
Effective date: 20041126 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI NL SE |
|
17Q | First examination report despatched |
Effective date: 20061110 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50113742 Country of ref document: DE Date of ref document: 20080430 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080501 Year of fee payment: 8 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080509 Year of fee payment: 8 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120509 Year of fee payment: 12 Ref country code: FR Payment date: 20120608 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: DAMA TECHNOLOGIES AG, CH Free format text: FORMER OWNER: HILTI AKTIENGESELLSCHAFT, LI Ref country code: CH Ref legal event code: NV Representative=s name: RIEDERER HASLER AND PARTNER PATENTANWAELTE AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50113742 Country of ref document: DE Owner name: DAMA TECHNOLOGIES AG, CH Free format text: FORMER OWNER: HILTI AKTIENGESELLSCHAFT, SCHAAN, LI Effective date: 20130905 Ref country code: DE Ref legal event code: R082 Ref document number: 50113742 Country of ref document: DE Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG, LI Effective date: 20130905 Ref country code: DE Ref legal event code: R082 Ref document number: 50113742 Country of ref document: DE Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN PATENTANWA, DE Effective date: 20130905 Ref country code: DE Ref legal event code: R081 Ref document number: 50113742 Country of ref document: DE Owner name: SAUER GMBH, DE Free format text: FORMER OWNER: HILTI AKTIENGESELLSCHAFT, SCHAAN, LI Effective date: 20130905 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130514 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50113742 Country of ref document: DE Owner name: SAUER GMBH, DE Free format text: FORMER OWNER: DAMA TECHNOLOGIES AG, LOEMMENSCHWIL, CH Ref country code: DE Ref legal event code: R082 Ref document number: 50113742 Country of ref document: DE Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN PATENTANWA, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH Ref country code: CH Ref legal event code: PUE Owner name: SAUER GMBH, DE Free format text: FORMER OWNER: DAMA TECHNOLOGIES AG, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200522 Year of fee payment: 20 Ref country code: DE Payment date: 20200531 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50113742 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |