EP1155357A1 - Method to control a lubricant production - Google Patents
Method to control a lubricant productionInfo
- Publication number
- EP1155357A1 EP1155357A1 EP00913273A EP00913273A EP1155357A1 EP 1155357 A1 EP1155357 A1 EP 1155357A1 EP 00913273 A EP00913273 A EP 00913273A EP 00913273 A EP00913273 A EP 00913273A EP 1155357 A1 EP1155357 A1 EP 1155357A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compositional
- base stock
- viscosity
- lubricant
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/02—Petroleum fractions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00695—Synthesis control routines, e.g. using computer programs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00698—Measurement and control of process parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/007—Simulation or vitual synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/00756—Compositions, e.g. coatings, crystals, formulations
Definitions
- the present invention is directed to the production of petroleum-based lubricants. More specifically, the present invention relates to a method for controlling lubricant quality and the lubricant production process by refining and blending by a method which includes a predictive technique relating the quality of the final lubricant product and its performance to compositional parameters.
- Lubricating oils are, for the most part, based on petroleum fractions that boil above 232°C (450°F). The molecular weight of the hydrocarbon constituents is high and these constituents display almost all conceivable structures and structure types depending in large part on the type of crude oil from which they were prepared.
- lubricant refining is that a suitable crude oil, as shown by experience or by assay, can be refined into lubricant base stock having a predetermined set of properties such as, for example, appropriate viscosity, oxidation stability, and maintenance of fluidity at low temperatures.
- the refining process employed to isolate the lubricant base stock currently consists of a set of subtractive unit operations which remove the unwanted components. These unit operations include distillation, solvent refining, hydroprocessing, and dewaxing, each of which is basically a separation process.
- a lubricant base stock (i.e. from a refined crude oil) may be used as a lubricant component, or it may be blended with another lubricant base stock having somewhat different properties.
- a particular base stock, prior to use as a lubricant is conventionally compounded with one or more additives such as antioxidants, extreme pressure additives, and viscosity index (V.I.) improvers.
- additives such as antioxidants, extreme pressure additives, and viscosity index (V.I.) improvers.
- the term "stock,” regardless of whether the term is further qualified, refers only to a hydrocarbon oil without additives.
- solvent-refined stock” or “raffinate” refers to an oil that has been solvent extracted, for example with furfural.
- dewaxed stock refers to an oil which has been treated by any method to remove or otherwise convert the wax contained therein and thereby reduce its pour point.
- waxy refers to an oil of sufficient wax content to result in a pour point greater than 4°C (+25°F).
- base stock refers to an oil refined to a point suitable for some particular end use, such as for preparing an automotive oil, marine oil, hydraulic oil, etc.
- the current practice for the preparation of high grade lubricating oil base stocks is illustrated in Fig. 1.
- the overall process is designated as 10.
- the first step is to vacuum distill an atmospheric tower residuum from an appropriate crude oil (step 100).
- This step provides one or more raw stocks within the boiling range of 700°F to 1000°F designated as light 15 (from 700° to 810°F), medium 20 (from 810° to 890°F), and heavy 30 neutrals (from 890° to 1000°F), and a vacuum residuum 40.
- each stock is characterized by a different viscosity range, e.g., light neutral stocks have the lowest viscosity range (from 3.5 to 5.5 cS KV at 100°C) and heavy neutral stocks have the highest viscosity range (from 10.0 to 15.3 cS KV at 100°C).
- a solvent e.g., furfural, phenol or chlorex, which is selective for aromatic hydrocarbons, and which removes undesirable components
- the vacuum residuum 140 usually requires an additional step to remove asphaltic material prior to solvent extraction (step 120).
- the raffinate from the solvent refining is generally very waxy and typically requires a dewaxing operation (step 160).
- Dewaxing raffinates is generally carried out by solvent dewaxing or catalytic dewaxing under conditions which produce a predetermined or target pour point for the base stock.
- the art of lube base stock production may further require an additional step of hydroprocessing the dewaxed stock (step 180).
- Hydroprocessing is the addition of hydrogen to the stock for the purpose of removing certain impurities that may be detrimental to lubricant performance, depending upon the final lubricant product specifications. Hydroprocessing is especially useful for removing sulfur as the hydrogen combines with sulfur to form hydrogen sulfide. Either the dewaxing step (step 160) or the hydroprocessing step (step 180), or both, can yield a stock of sufficient quality to be used as a base stock for final lubricant formulation.
- Suitable materials, or additives are then added to the base stock to augment the base stock's lubricating properties and to meet the required specifications, such as viscosity index (VI) (shown in Figure 6).
- VI viscosity index
- Base stock produced from new crude sources is considered to be a "new" base stock and must be approved for use as a lubricant.
- the lube base stock approval system requires that a base stock produced from a new crude undergoes a costly and time-consuming approval process before it can be used as a lubricant oil.
- Full approval for samples produced from a new crude or base stock requires extensive bench and engine testing which generally takes 5 to 10 months to complete. Changes in process conditions also require re-approval with additional bench and engine testing.
- a lubricant base stock for use in manufacturing a lubricant for a particular application can be selected by a particular method.
- a candidate lubricant base stock is characterized according to a plurality of compositional components common to all lubricant base stocks and each compositional component varies in amount with respect to each base stock.
- a model predicting the performance of a lubricant base stock in a final lubricant product is formed by identifying particular ones of the plurality of compositional components in a lubricant base stock that are probative of lubricant performance for a plurality of applications, in combination.
- An acceptable range is next determined for a combination of identified compositional components from a plurality of performance tests required of a plurality of lubricant products where the lubricant products each have a different viscosity.
- adjustments are preferably made for viscosity variations of each lubricant base stock by predicting the amounts of the compositional components from at least one other acceptable range for a base stock of a different viscosity wherein the acceptable range is determined for a combination of the identified compositional components from the plurality of performance tests.
- a candidate base stock is then analyzed to determine the amounts of the identified components. It is then determined whether the amount of each identified component, in combination, in the candidate base stock is within the acceptable performance range.
- the lubricant base stocks whose composition falls outside of the acceptable region predicted by the compositional model can also be blended to form a lubricant of satisfactory performance.
- This method begins with determining the acceptable region and adjusting for viscosity variations as described above. Next, two or more lubricant base stocks with complementary compositions are selected. The amount of each required to be combined to define the final lubricant composition within the acceptable region as predicted by the compositional model is calculated. The lubricant base stocks are then blended.
- the predictive model can also be applied to the lubricant manufacturing process, making use of the effect of known refining parameters such as hydroprocessing conditions, solvent treat rate and temperature, on a given range of refinery stocks to be used in the manufacture of the lubricants.
- a lubricant base stock which is to be used in manufacturing a lubricant for a particular application from a refinery stream is characterized according to a plurality of compositional components common to the base stock and to the refinery stream. This method begins with determining the acceptable region and adjusting for viscosity variations as described above.
- the amounts of the identified compositional components are identified for a lubricant base stock that, in combination, are required for acceptable lubricant performance and the amounts of identified components, in combination, in the refinery stream are determined to be outside of the acceptable range for such identified components.
- the refinery stream is then refined to produce a lubricant base stock having a combination of identified components within the acceptable range as determined by the model.
- combination of petroleum refinery streams which are to be refined into lubricant base stock can be blended into a refinery stream which can then be processed into the desired final stock or stocks. This method begins with determining the acceptable region and adjusting for viscosity variations as described above.
- the amounts of the identified compositional components are identified for a lubricant base stock which is to be refined from the refinery streams and the composition of the blend is determined in accordance with the combination of identified components within the acceptable range as determined by the model.
- the streams are then blended in accordance with the determined composition and refined.
- the refinery streams are crudes.
- the refinery streams are selected from any one of the unit processes in the refinery.
- Fig. 1 is a flow diagram showing an overview of a current lube base stock manufacturing process
- Fig. 2 is a flow diagram showing the method of the present invention
- Fig. 3 is a graph showing how a compositional specification model is made for a plurality of lubricant performance tests according to one embodiment of the present invention
- Fig. 4 is a graph showing the overlap of the compositional specification models developed for light and heavy neutral base stocks according to one embodiment of the present invention
- Fig. 5 is a graph showing a compositional specification model for light neutral base stocks, where such graph is used in connection with a method to blend a plurality of base stocks to yield a resulting blended base stock whose composition is within the acceptable region predicted by the compositional model;
- Fig. 6 is a graph similar to the graph of Fig. 5, and shows the compositional specification model of Fig. 5 used with extraction severity data to obtain a base stock whose composition is within the acceptable region predicted by the compositional model;
- Fig. 7 is a block diagram illustrating the operation of an embodiment of the present invention.
- a computer model (801 in Fig. 7) is created and used to predict the quality of a lubricant base stock for use in a plurality of products having a plurality of viscosities.
- the model is based upon a quantitative analysis of key compositional parameters and performance criteria for a plurality of products representing a plurality of viscosities.
- Such model is herein referred to as comprehensive compositional model and, as will be shown, is normally and preferably comprised of compositional models developed for specific viscosities.
- compositional models predict, among other things, whether the composition of a new lubricant base stock is similar or dissimilar to known lubricant base stock compositions that have previously passed or failed performance tests. New lubricant base stock compositions are, thus, evaluated in light of lubricant base stocks that have demonstrated acceptable performance in a plurality of products. Statistical analysis of base stock properties has shown that lubricant performance may be predicted from the chemical composition of the base stock. In particular, the various chemical compositional parameters are combined to obtain a comprehensive prediction of lubricant performance.
- Fig. 2 is a process flow diagram illustrating a method, to predict a base stock's lubricant performance in accordance with one embodiment of the present invention.
- compositional parameters incorporated into the compositional model are chemical components of the base stock that have been identified as significantly contributing to lubrication performance (step 200).
- examples of such components are, for example, total sulfur, aliphatic sulfur, basic nitrogen, aromatic distribution, nitrogen, aliphatic compound distribution, degree of aliphatic chain branching, molecular weight distribution or any combination thereof.
- the preferred embodiment includes total sulfur, aliphatic sulfur, basic nitrogen, total aromatics, aromatic ring distribution, or a combination of these parameters.
- compositional model At a minimum, only two of the factors are used to create the compositional model to accurately predict a base stock's lubricant performance in a final lubricant formulation. All of the components are quantitatively determined according to standard analytical chemistry techniques. Total aromatics, for example, are determined from a chemometric correlation of the UV spectrum. Specifically, a Perkin-Elmer Lambda 19 spectrometer is used. The aromatic ring distribution is determined by conventional techniques known to those skilled in the art for classifying aromatic rings. Basic nitrogen is determined according to ASTM Method D2896. Total sulfur is determined by ASTM method D2622.
- the aliphatic sulfur content may be determined by UV spectrophotometry based on the quantitation of an iodine complex of the aliphatic sulfides according to the technique described by Drushel and Miller in Anal. Chem. 27, 495 (1955); and Anal Chem. 39, 1819 (1967).
- This method which suitably measures absorbance of the complex at 310 nm, provides a reliable determination of aliphatic sulfur, being free of interferences by nitrogen compounds and the aromatic hydrocarbons indigenous to lubestocks.
- Determining the compositional model's performance parameter comprises evaluating the performance of a plurality of products having different viscosities. Variation of the compositional model's parameters as described below in accordance with variations in the viscosity of the lubricant products provides superior prediction of lubricant performance as compared to scaling compositional parameters in accordance with viscosity. The viscosities of the products are, thus, a function of the products' end use.
- the compositional model's performance parameters include engine oil performance of automotive engine lubricants, marine engine performance of marine engine lubricants, industrial equipment performance of industrial equipment lubricants, and hydraulic performance of hydraulic lubricants. As each application requires a product of a different viscosity, the compositional model thereby incorporates a plurality of kinetic viscosities ranging from 3.5 to at least 20 cS (100°C).
- Adjustments for viscosity variations may be made by simple linear interpolation derived from similar compositional models, having different determined parameters from different viscosities. It is also possible although less preferred to adjust for viscosity changes by scaling composition rather than model parameters for viscosity variations between samples processed to similar viscosity index from the same crude.
- composition factors scale with viscosity according to a power law where the composition at a selected temperature and viscosity is related to the composition at a reference viscosity scaled by a power of the ratio between the viscosities at the selected temperature and the reference temperature; in this relationship, the exponent value varies typically from -2 to 2 (depending on measurement unit and possibly other empirically determined factors) for the compositional factors referred to above, with the value in many cases being in the range 0.1 to 1.0.
- the greatest sensitivity in the scaling relationship has been found to exist with respect to the basic nitrogen content and the least with total aromatics, polycyclic aromatics (two or more rings) and sulfur (total and aliphatic) occupying comparable intermediate rankings.
- compositional model will incorporate the separate compositional models.
- the limits of the performance parameters are determined by industry standard performance tests specific to the particular products and corresponding viscosities. For example, for products made from light neutrals, the following performance tests (accompanied by the particular application and acceptable performance level) may be used as examples of performance tests by which lubricant performance may be assessed. Other performance tests may be used according to standard requirements of the lubricant manufacturer.
- TOST life (Hydraulic oils) >1000 hr Such tests are known to those skilled in the art of performance testing.
- a lubricant product when tested according to any one of the above tests, is designated as either "pass” or "fail.”
- an acceptable region in a multi-dimensional space is determined by defining the performance boundaries (i.e., "pass” or "fail") with respect to key compositional parameters. This is accomplished over a broad range of product applications and viscosities. Such acceptable region is then represented by the compositional model. The end result is that the compositional model allows lubricant performance to be predicted over all possible base stock compositions and viscosities.
- step 220 To develop a comprehensive compositional model (step 220), separate compositional models are first developed for specific viscosities.
- the model parameters for a test viscosity are found by interpolating between the parameters of the model at the nearest higher viscosity and the parameters of the model at the nearest viscosity lower than the test viscosity.
- the following describes how to develop the comprehensive compositional model by first developing separate compositional models for a light neutral viscosity (kinematic viscosity at 100°C of 4,5 cSt) and a heavy neutral viscosity (kinematic viscosity at 100°C of 12.5 cSt).
- Composition Scaled (composition at y KV 100°C) x (y/reference viscosity) ⁇ z wherein ⁇ is "taken to the power of;" the reference kinematic viscosity at 100°C is 4.5 or 12.5 cSt; and z is typically between 0 and 1.
- developing the acceptable region (step 220) for the individual compositional models are the same for base stocks of all viscosities.
- a series of base stocks are performance tested for a plurality of product formulations that employ base stocks of the same viscosity range.
- each of the lubricant product formulations are lubricant products for different applications, i.e., automotive, hydraulic, industrial, etc.
- regions are drawn around the points that are a "pass” for each formulation, where such regions exclude the "failed" base stocks.
- a method employed to determine the acceptable regions, i.e., the regions drawn around the points that are a "pass” for each formulation is preferably a technique involving cluster analysis of the performance test data.
- SIMCA Soft Independent Classification Analysis
- the variance weight is the ratio of inter category variance and the sum of the intra-category variances for a given property. It approximates the distance between two distributions. For example the total variance for the percent aromatic fraction of the base stock is calculated for passing Caterpillar 1-G engine tests and is divided by the sum of the variance for the passing tests. Overall variance weights for n>2 categories are the geometric mean of the individual category variance weights. The variance weights are given by the formula:
- w Variance weight for two categories;
- x Base stock compositional parameter, i.e. sulfur, aliphatic sulfur, basic nitrogen, or aromatic distribution;
- N Number of samples in a given class
- P or F Denotes the Pass or Fail data
- P or F Denotes the Pass or Fail data
- a Fischer weight uses the distance between mean values in the two distributions divided by the sum of variances to determine the discriminating power of the variables. Overall, the Fischer weights for n>2 categories are the mean of the individual category fisher weights. The fisher weight is given by:
- the SIMCA method uses principal component analysis to construct a model for each class, i.e. pass/fail. Factor analysis is used to calculate the significant chemical patterns for each class.
- the significant patterns are known as the principal components.
- the principal component analysis provides a convenient method for data compression. It also provides a rotation of the data (base stock composition) to an orthonormal basis, removing any co-linearities in the data.
- the principal components form a new set of axes for the data (base stock properties).
- the F-test is a measure of the residual error which describes the distance between a sample and the space defined by the principal components.
- the Mahalanobis Distance describes the distance from the compositional centroid of the compositional model.
- the F-test determines if the error associated with a sample is statistical error or whether it is due to the inability of the principal components to model the data.
- the Mahalanobis distance indicates whether the prediction is an extrapolation of the compositional model.
- compositional models are used by projecting unknown samples into each model.
- the chemical patterns for each model are applied to the new base stock.
- the residual error and the distance from the centroid of each class form a basis for determining the similarity of unknown samples.
- the unknown samples may belong to one or several classes.
- Soft models i.e., the local clusters of data independently modeled and independent models, are used to accurately predict or classify samples.
- base stock compositions that have demonstrated passing performance in the Caterpillar 1-G2, for example can be considered as one cluster; failing base stock compositions are therefore another cluster.
- the passing samples will form the basis for one model and the failing samples form the basis for a second model.
- SIMCA uses principal component analysis (PCA) to calculate the chemical patterns for each class.
- the PCA provides a statistical basis for selecting the significant chemical patterns.
- the PCA provides a technique for re-expressing the original data.
- the original data matrix, the base stock properties, X ⁇ is decomposed to a linear combination of scores, Li (weights) and eigenvector patterns Vj T :
- Xi LiVi T (A-3)
- One technique for decomposing a matrix is the Singular Value Decomposition, SVD as described by Golub, Gene H., and Charles Van Loan, in Matrix Computations, 2 nd Edition, p.70, The Johns Hopkins University Press, Baltimore (1989):
- the SVD provides two orthogonal matrices U and V that can be used to build the SIMCA models.
- the diagonal of the S matrix contains the singular values, which are the positive square roots of the eigenvalues of the matrix X T X.
- the singular values provide a direct indication of the rank of the matrix X.
- the number of significant components used is determined by the cumulative variance calculated from the singular values.
- the matrix V contains the eigenvectors of X with the eigenvectors used as the chemical patterns for samples in the data matrix X.
- the matrix multiplication of UjSj gives the scores, Lj.
- the SIMCA model requires that the residual error of each class be calculated.
- the principal components analysis provides some error filtering of the original data. Therefore, the residual of each base stock property is also examined. Residual error gives an indication of the "tightness" of each compositional box.
- the SIMCA model uses the measured base stock properties and their chemical patterns, or eigenvectors, to calculate the residual error of each sample.
- the residual error can be estimated using linear regression techniques.
- the fitted values of X can be calculated from:
- the matrix H is commonly referred to as the hat matrix and transforms observed responses to fitted responses.
- the H matrix is estimated from
- the projection onto the range of X provides a method for transforming observed responses to fitted responses.
- the projection onto the range of X from the SVD of data matrix X provides a principal component based method for estimating the hat matrix:
- NS is the number of samples
- NV is the number of variables (base stock properties)
- NC is the number of principal components.
- the residual error of an unknown sample, Xu projected into class "i" is estimated from the significant eigenvectors and singular values:
- the residual variance of the unknown sample is estimated by
- the Mahalanobis distance indicates whether a projection into the compositional model space is an extrapolation.
- the M-distance is estimated by
- the covariance matrix l ⁇ is an unbiased estimate of the covariance matrix and can be calculated from:
- the covariance matrix can be re-expressed in terms of the SVD of Xi:
- V (NS-1)(V,S 2 ,V, T ) ' ' (A -24)
- T,' (NS-l)(V,S V,SUPT) (A- 27)
- ⁇ sj(NS-l)xd ⁇ agonal( ⁇ j,U ⁇ ,) (A - 29)
- a plot of the M distance versus the calculated F value provides a graphical representation of the base stock composition.
- the maximum M distance is a direct measure of the size of the principal component space.
- Base stock samples should not exceed the M distance calculated from the data used to construct the compositional model.
- the F statistic indicates the type of residuals that remain after the sample is projected into the principal component space.
- Low values of F, for a model developed with a statistically significant number of base oil samples, F ⁇ 4,>95% confidence limits indicate the base stock property residuals are null.
- the predictive errors are due to normal errors associated with collecting analytical data. If the F value is greater than 4, the principal components do not accurately model the data, and the sample does not fit into the compositional model.
- compositional models for both light and heavy neutrals are constructed as described above.
- the compositional models for light and heavy neutrals are developed by repeating the above process for each of the respective base stock's performance tests such as those listed above.
- Fig. 3 is a simplified illustration of how the acceptable region for each viscosity grade is generally developed.
- the performance of a series of lubricant base stocks of the same viscosity grade were measured in two performance tests. The performance tests could be performed on either the same lubricant product formulation or on product formulations for different applications, i.e., automotive oil lubricants, industrial oil lubricants, marine oil lubricants, etc.
- the "pass" regions, x and z, for each test are plotted on one graph.
- x and y represent the "pass" regions for only two performance tests of products made by either light or heavy neutral base stock.
- the overlapping "pass" regions become the acceptable region defining the respective compositional model for light or heavy neutral base stocks and is, thus, predictive of lubricant performance across a wide range of lubricant products.
- Adjustments for viscosity variations may be made at this point by, for example, simple linear interpolation derived from similar compositional models having different determined parameters for different viscosities. Minor variations in viscosity outside the range determined by the compositional model may also be extrapolated. It has been found satisfactory to generate compositional models for each lubricant type such as, for example, light and heavy neutrals, using a limited range of viscosity values rather than to use a single value of viscosity for each type with adjustments for minor variations in the viscosities of the samples within each viscosity grade made by scaling composition according to typical trends of compositional variation with viscosity as described above. Thus, once the compositional model for the respective light and heavy neutral base stocks are developed, the comprehensive compositional model allows the accurate interpolation of the acceptable performance regions of base stocks of intermediate viscosity from the light and heavy neutral models. The interpolation is performed by another manipulation.
- compositional modeling principle a base stock of intermediate viscosity is approved if it is possible to mimic its composition as a blend of two acceptable light and heavy neutrals.
- the compositional model employs ellipses or ellipsoids to define the acceptable region, however, other geometrical figures can also be used.
- a simple linear interpolation of the principal component ends of the "ellipsoid" designated as the acceptable performance region, for example, could be used such that at every viscosity a different ellipse is used.
- Linear interpolations of orthogonal axes, however, are not orthogonal, and the desirable properties of the principal components would be lost.
- the interpolations are accomplished by "morphing" one ellipsoid into another, i.e., linearly translating the center of the ellipse as a function of viscosity, while gradually rotating the ellipsoid, and expanding/contracting the ellipsoid axes according to their singular-value scales. This can be achieved if the compositional models are in the same "space", and they have the same number of principal components.
- T z is the z-matrix power of T, computed from Ts eigen-analysis T E - E D, where E is ortho-normal and D is diagonal, and D z is also diagonal, with the diagonal elements of D raised to the z power. Since T is not symmetric, both E and D will contain conjugate pairs of complex eigenvectors-eigenvalues, requiring complex algebra. Additional complications need to be addressed before computing V z for a given Vi and V 0 .
- One is chirality, and the other is alignment. Chiral objects are mirror images of each other. Therefore, it is impossible to rotate a chiral object into its mirror image.
- a set of orthogonal vectors in multidimensional space has a certain characteristic or "sense" that is analogous to chirality.
- the only valid rotations that do not drastically deform the vectors into imaginary planes in intermediate steps are those that transform between sets of vectors with the same chirality, or sense.
- the Vi columns are multiplied by -1 until the intermediary transformation vectors V 0 . 5 are in the real plane.
- the last complication of alignment is solved by computing all possible rotations in the real plane, and comparing their rotation "distance" for the 1 st , 2 nd , . . ., N h principal components, until the rotation with the minimal angular change as a function of z change is found. Once the proper rotation is found, the rest of the compositional model parameters are interpolated accordingly. The average, axis scaling, and Mahalanobis distance are interpolated linearly, while the f-ratio and the residual variance are interpolated quadratically. This technique can be extended to a viscosity grade higher or lower than heavy or light neutrals, respectively. For example, by developing a compositional model for bright stocks (i.e.
- any lubricant base stock selected according to any variety of ways, having any viscosity, whose lubricant performance is unknown in a finished lubricant product formulation, merely has to be analyzed for the chemical concentrations of the key compositional parameters (step 240). Once evaluated against the compositional model, the lubricant base stock either falls into the acceptable region or it does not. Thus, the compositional model predicts whether the lubricant base stock is acceptable for use in all lubricant products or not acceptable for use as a lubricant, at least in its present form.
- Fig. 4 shows the compositional model comprised of the acceptable compositional regions for the light and heavy neutral models. While there is considerable overlap between the acceptable regions for the light and heavy neutral compositional models, this is not the most efficient way to use the compositional model. Rather, the most efficient way to use the compositional model is in its comprehensive form as such comprehensive compositional model employs all reasonable interpolations for viscosity in between these extremes. Since both light and heavy neutrals are produced from a given crude, the compositional model, as shown in Fig. 4, indicates that many potential crudes are suitable to be used for lubricant products over a plurality of viscosities, as long as there is overlap in the acceptable areas as determined by the compositional model for the plurality of viscosities.
- the lower sulfur and aromatics region is acceptable for light neutrals but not acceptable for heavy neutrals. As shown, such a region generally provides good Sequence VE, Mack T-8, and CEO Caterpillar 1M-PC performance.
- compositional model is based on lubricant base stock compositions known to yield good lubricants.
- options are available for those base stock compositions that have been designated by the compositional model as "failed.”
- the "failed" sample may be blended with a base stock that has
- Fig. 5 shows an approximate two-dimensional representation of the acceptable region of the compositional model for a light neutral with the concentration of total aromatics versus total sulfur as the compositional parameters.
- the light neutral base stocks of a plurality of crudes are plotted on the graph according to the relative concentrations of total aromatics and total sulfur.
- Some of the crudes produce light neutrals whose compositional components fall within the acceptable region of the compositional model, and some do not. Those that do not fall within the acceptable region, however, may be blended with a base stock composition that does fall within the acceptable region.
- Base stock compositions can be blended only if the compositions between the two or more base stocks to be blended (step 260) are complementary. For example, in Fig.
- the light neutral base stock produced from crude J contains a high amount of aromatics and a high concentration of total sulfur.
- Such base stock produced from crude J could be blended with the light neutral base stock produced from crude D, for example, which contains a lower level of both total aromatics and sulfur such that the combined product is well within the acceptable region predicted by the compositional model. Knowing the concentrations of the compositional parameters allows a calculation of the amounts of each base stock required to achieve a resultant base stock composition whose compositional parameters are within the acceptable region (steps 270 and 280).
- Two "failing" base stocks can also be combined in this manner as long as their compositions are complementary in such a way that their combination will result in a base stock whose compositional parameters fall within the compositional model's predicted acceptable region.
- the light neutral base stock produced from crude A for example, can be combined with the light neutral base stock from crude X to form the "passing" light neutral base stock AX.
- the light neutral base stock produced from crude A cannot be combined with the light neutral base stock from crude Y to yield a "passing" combination as the bias in composition of each base stock is not favorable enough to achieve a "passing" resultant base stock.
- the compositional model allows the integration of known refining data with the prediction of lubricant performance.
- the compositions of the base stocks produced from the world's crudes can be readily determined by conventional analytical techniques by those skilled in the art.
- knowing either a selected crude or selected base stock's refining data allows one to determine whether the selected crude or base stock can be refined to within the acceptable region predicted by the compositional model (step 285).
- knowing the selected crude's refining data allows one to determine whether the selected crude can be refined to produce a base stock whose composition is within the acceptable region predicted by the compositional model.
- the solvent e.g. furfural
- extraction severity is increased (step 140 in Fig. 1), certain key compositional components, such as, for example, total aromatics and aliphatic sulfur, decrease when a base stock is solvent extracted.
- any commercial refinery extraction process can be employed but normally, however, the extraction process is a continuous flow process.
- the oil is introduced into the lower part of the vessel with a multiplicity of mixers inside.
- the multiplicity of mixers allows the refinery to control the severity of the extraction.
- a solvent is introduced near the top of the vessel.
- the solvent is typically liquid sulfur dioxide mixed with benzene, furfural, propane, phenol, N-methylpyrrolidone, or the like.
- a furfural extraction is preferred.
- the solvent then works its way towards the bottom of the vessel dissolving the extract as it goes along.
- the remaining solvent-refined stock, or raffinate rises to the top of the vessel and is separated from the solvent-containing extract.
- hydroprocessing may also be used to remove sulfur and other heteroatoms from the base stock.
- Any commercial refinery hydroprocessing method can be employed. Most commercial hydroprocessing operations entail mixing the stream of base stock with hydrogen at temperatures from 260° to 425°C. The oil combined with the hydrogen is then charged to a vessel filled with a catalyst so that the required reactions can occur. The oil is then sent to a flash tank to remove inorganic heteroatoms such as hydrogen sulfide and any light hydrocarbons that may have resulted during the catalytic reaction.
- a base stock produced from a certain crude has a high concentration of, for example, total aromatics and total sulfur such that it is outside of the acceptable region predicted by the compositional model, such as, for example, the base stock produced by crude K
- the base stock may be further refined (step 290) to a point where its composition does fall within the acceptable region predicted by the compositional model.
- the extracted base stocks can be combined in the manner described above to yield a composition within the acceptable region predicted by the compositional model.
- the effect of refining of a number of different of crudes can enable a prediction of blend parameters to be made, based on the composition of the base stocks produced from such crudes.
- knowing the composition and viscosity of any stream in the refinery such as, for example, those shown in Fig. 1 , a composition can be predicted and blended that will further refine into a base stock having a composition within the acceptable region determined by the model.
- the compositional changes that depend on changes in refining, either solvent or hydroprocessing, are well known and can easily be modeled for the purposes of selecting suitable refinery streams from known crude sources and for selecting suitable crudes themselves.
- unit processes such as, for example, distillation, solvent extraction, dewaxing, and hydroprocessing can be modeled and used according to the present understanding.
- This modeling includes such elements as aromatics level and type, sulfur level and types, nitrogen level and types, and may include others as required.
- the effects of unit processes should include such parameters as distillation cut points, solvent dosage and temperatures, contact times, dewaxing dosages and temperature profiles, hydrogen pressure, temperature, catalyst type, conversion and hydrogen treat rate.
- the compositional model 801 developed as discussed above is run on a computer or processor 803 having attached memory 805.
- the processor 803 and memory 805 may be any appropriate processor and memory, respectively, without departing from the spirit and scope of the present invention.
- the processor may be PC-based or main-frame-based and the memory may be RAM, ROM, or any appropriate storage device such as a hard drive and the like.
- the compositional model typically receives as input data representing a base stock 807 or base stocks 807 (in the blending case), or data representing a crude 809 or crudes 809 (in a blending case).
- the model may also receive as input data representing the refining data 810 of the particular crude(s) 809.
- the compositional parameters are, in fact, input in the base stock(s) case, or are predicted in the case of crude(s).
- appropriate information on the compositional parameters is available as assay data which is stored in the memory 805 in the case of the base stock(s).
- compositional parameters may be predicted from a library of industry data which is also stored in the memory 805. Once presented with such data, the compositional model predicts whether the inputted base stock(s) 807 or crude(s) 809 are acceptable in accordance with the method as described above and provides an appropriate output 811.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- General Chemical & Material Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Lubricants (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/240,027 US6317654B1 (en) | 1999-01-29 | 1999-01-29 | Control of crude refining by a method to predict lubricant base stock's ultimate lubricant preformance |
US240976 | 1999-01-29 | ||
US09/240,976 US6295485B1 (en) | 1999-01-29 | 1999-01-29 | Control of lubricant production by a method to predict a base stock's ultimate lubricant performance |
US240027 | 1999-01-29 | ||
PCT/US2000/002093 WO2000045228A1 (en) | 1999-01-29 | 2000-01-27 | Method to control a lubricant production |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1155357A1 true EP1155357A1 (en) | 2001-11-21 |
EP1155357A4 EP1155357A4 (en) | 2010-01-27 |
Family
ID=26933086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00913273A Withdrawn EP1155357A4 (en) | 1999-01-29 | 2000-01-27 | Method to control a lubricant production |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1155357A4 (en) |
JP (2) | JP5524436B2 (en) |
KR (1) | KR100682553B1 (en) |
AU (1) | AU756690B2 (en) |
CA (1) | CA2359669C (en) |
RU (1) | RU2216573C2 (en) |
WO (1) | WO2000045228A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050095714A1 (en) * | 2003-10-31 | 2005-05-05 | Wollenberg Robert H. | High throughput preparation of lubricating oil compositions for combinatorial libraries |
US7389186B2 (en) * | 2006-08-11 | 2008-06-17 | Exxonmobil Research And Engineering Company | Prediction of stream composition and properties in near real time |
US9868921B2 (en) * | 2013-10-01 | 2018-01-16 | Exxonmobil Research And Engineering Company | Lubricant design manufacturability process |
CN104156854A (en) * | 2014-07-15 | 2014-11-19 | 神州数码融信软件有限公司 | Method and system for realizing financial products based on product plant design concept |
RU2688841C1 (en) * | 2018-12-07 | 2019-05-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет (СПбГУ)" | Method for identification of fractions of thermal distillation of oil |
CN119069017B (en) * | 2024-11-05 | 2025-02-14 | 西安热工研究院有限公司 | Preparation method and device of phosphate flame-retardant hydraulic oil |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3526127A (en) * | 1969-03-24 | 1970-09-01 | Mobil Oil Corp | Engine oil analysis system |
US3649659A (en) * | 1970-03-24 | 1972-03-14 | Mobil Oil Corp | Coordinated complexes of mannich bases |
US5102567A (en) * | 1990-06-25 | 1992-04-07 | Amoco Corporation | High performance food-grade lubricating oil |
US5817928A (en) * | 1997-04-14 | 1998-10-06 | Csi Technology, Inc. | Method and apparatus for lubrication fluid analysis |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4794534A (en) * | 1985-08-08 | 1988-12-27 | Amoco Corporation | Method of drilling a well utilizing predictive simulation with real time data |
US4866632A (en) * | 1987-11-16 | 1989-09-12 | Texaco Inc. | Control means and method for solvent refining unit |
US4913794A (en) * | 1988-04-11 | 1990-04-03 | Mobil Oil Corp. | Process configuration for producing high viscosity lubricating oils |
DE59404777D1 (en) * | 1994-01-17 | 1998-01-22 | Siemens Ag | Process and device for carrying out a process |
GB9502041D0 (en) * | 1995-02-02 | 1995-03-22 | Exxon Chemical Patents Inc | Additives and fuel oil compositions |
US5699270A (en) * | 1995-06-23 | 1997-12-16 | Exxon Research And Engineering Company | Method for preparing lubrication oils (LAW232) |
US5727218A (en) * | 1996-03-05 | 1998-03-10 | Unisys Corp. | Controlling an apparatus disposed for adapting fiber channel transmissions to an industry standard data bus |
US5727128A (en) * | 1996-05-08 | 1998-03-10 | Fisher-Rosemount Systems, Inc. | System and method for automatically determining a set of variables for use in creating a process model |
-
2000
- 2000-01-27 AU AU34746/00A patent/AU756690B2/en not_active Expired
- 2000-01-27 EP EP00913273A patent/EP1155357A4/en not_active Withdrawn
- 2000-01-27 RU RU2001123931/09A patent/RU2216573C2/en active
- 2000-01-27 JP JP2000596421A patent/JP5524436B2/en not_active Expired - Lifetime
- 2000-01-27 KR KR1020017008510A patent/KR100682553B1/en active IP Right Grant
- 2000-01-27 CA CA2359669A patent/CA2359669C/en not_active Expired - Lifetime
- 2000-01-27 WO PCT/US2000/002093 patent/WO2000045228A1/en active IP Right Grant
-
2012
- 2012-07-20 JP JP2012161713A patent/JP5608712B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3526127A (en) * | 1969-03-24 | 1970-09-01 | Mobil Oil Corp | Engine oil analysis system |
US3649659A (en) * | 1970-03-24 | 1972-03-14 | Mobil Oil Corp | Coordinated complexes of mannich bases |
US5102567A (en) * | 1990-06-25 | 1992-04-07 | Amoco Corporation | High performance food-grade lubricating oil |
US5817928A (en) * | 1997-04-14 | 1998-10-06 | Csi Technology, Inc. | Method and apparatus for lubrication fluid analysis |
Non-Patent Citations (1)
Title |
---|
See also references of WO0045228A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU3474600A (en) | 2000-08-18 |
EP1155357A4 (en) | 2010-01-27 |
CA2359669A1 (en) | 2000-08-03 |
JP2002535481A (en) | 2002-10-22 |
AU756690B2 (en) | 2003-01-23 |
WO2000045228A1 (en) | 2000-08-03 |
JP5524436B2 (en) | 2014-06-18 |
WO2000045228A9 (en) | 2001-08-30 |
JP2012246490A (en) | 2012-12-13 |
RU2216573C2 (en) | 2003-11-20 |
KR100682553B1 (en) | 2007-02-15 |
KR20010089767A (en) | 2001-10-08 |
JP5608712B2 (en) | 2014-10-15 |
CA2359669C (en) | 2010-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6317654B1 (en) | Control of crude refining by a method to predict lubricant base stock's ultimate lubricant preformance | |
JP5608712B2 (en) | Method for controlling the production of lubricants | |
US5740073A (en) | Lubricant property determination | |
EP2972304B1 (en) | Crude oil selection for the production of lubricant base stocks | |
CA2740845C (en) | Estimating detailed compositional information from limited analytical data | |
DE69918443T2 (en) | METHOD FOR PRODUCING A LUBRICANT OIL WITH IMPROVED STABILITY AGAINST OXIDATION | |
US9846147B2 (en) | Prediction of refining characteristics of oil | |
CN107976419B (en) | Method for predicting properties of oil product by near infrared spectrum | |
JP2012246490A5 (en) | ||
US6295485B1 (en) | Control of lubricant production by a method to predict a base stock's ultimate lubricant performance | |
HUP0401142A2 (en) | Process to prepare a hydrocarbon product having a sulphur content of below 0.05 wt | |
EP1915615A2 (en) | Method to determine predictive tests and device applying same to lubricant formulations | |
US10012587B2 (en) | Method for characterising a product by means of topological spectral analysis | |
US10241040B2 (en) | Method for characterizing a product by means of topological spectral analysis | |
Zhang et al. | Correlation between the molecular structure and viscosity index of CTL base oils based on ridge regression | |
JP2002535481A5 (en) | ||
DE69508062T2 (en) | DETERMINATION OF A PROPERTY | |
EP3861320B1 (en) | Systems and methods for implicit chemical resolution of vacuum gas oils and fit quality determination | |
US10365263B1 (en) | Prediction of crude oil blend compatibility and blend optimization for increasing heavy oil processing | |
Burg et al. | Prediction of kinematic viscosity of crude oil from chromatographic data | |
CN109724938B (en) | Method for predicting properties of lubricating oil base oil by near infrared spectrum | |
Alves et al. | Determining the presence of naphthenic and vegetable oils in paraffin-based lubricant oils using near infrared spectroscopy and support vector machines | |
Firmstone et al. | A comparison of neural network and partial least squares approaches in correlating base oil composition to lubricant performance in gasoline engine tests and industrial oil applications | |
Mehrkesh et al. | A generalized correlation for characterization of lubricating base-oils from their viscosities | |
Valeev et al. | Recovery of oil viscosity values according to its additive parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20091228 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 101/02 20060101ALI20091218BHEP Ipc: G05B 13/02 20060101AFI20000808BHEP Ipc: B01J 19/00 20060101ALI20091218BHEP |
|
17Q | First examination report despatched |
Effective date: 20100305 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190418 |