EP1148762B1 - Induction heating device having transverse flux and variable width inductor - Google Patents
Induction heating device having transverse flux and variable width inductor Download PDFInfo
- Publication number
- EP1148762B1 EP1148762B1 EP01400868A EP01400868A EP1148762B1 EP 1148762 B1 EP1148762 B1 EP 1148762B1 EP 01400868 A EP01400868 A EP 01400868A EP 01400868 A EP01400868 A EP 01400868A EP 1148762 B1 EP1148762 B1 EP 1148762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic
- plate
- heating device
- strip
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
- H05B6/103—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
- H05B6/104—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/365—Coil arrangements using supplementary conductive or ferromagnetic pieces
Definitions
- the present invention relates to a heating device with the parade, by electromagnetic induction, magnetic or nonmagnetic strips of low and medium thicknesses (of the order of 0.05 to 50 millimeters). It is more particularly a transverse flux induction heating device.
- the heating by electromagnetic induction of a metal strip is achieved by means of coils which are arranged to surround the strip to be heated by creating a magnetic field parallel to the outer surface of this strip according to the scrolling direction (longitudinal flow, cf. figure 1a ).
- the main disadvantage of this type of installation lies in the fact that the loop distribution of the currents induced by the magnetic flux through does not generally make it possible to achieve satisfactory temperature homogeneity, especially the ends in the direction of the width of the the band (the banks) are too much or too little heated according to the relative dimensions of the coils and the magnetic circuit used with respect to the bandwidth.
- transverse flux electromagnetic induction heating in which the inductors comprise magnetic circuits. These are intended to guide the magnetic flux generated by the coils to act on the distribution of induced currents.
- an electromagnetic induction heating device described in US Pat. No. 4,678,883, for example, is known in which the inductors consist of a plurality of magnetic strips coupled together (by "coupled” means). means mutually reinforcing bars so that the magnetic flux generated by the inductors can pass from one bar to the other bar), arranged parallel to the direction of movement of the strip to be heated and can be individually moved perpendicular to the surface of said strip so as to adapt the flow distribution to the width of the strip, according to the dimensions of the latter.
- EP-A-0 667 731 which discloses a transverse flux electromagnetic induction heating device in which the length of the coils is varied in order to adapt the flux distribution to the bandwidths.
- this document proposes to make these windings by assembling two opposing J-shaped inductors which can freely translate in a direction parallel to the bandwidth.
- this device does not provide a very satisfactory transverse temperature homogeneity.
- EP-A-0 308 182 discloses a transverse induction heating device in which the total width of the magnetic coil-core assemblies can be varied according to the width of the part to be heated.
- the magnetic circuits constituted by magnetic plates or bars are not independent of the electrical windings which are thus displaced with the magnetic cores, which complicates the installation, in particular for the power supply of the windings to be moved.
- the mass to be moved is increased by that of the coils.
- US 4,587,392A also relates to an induction heating device in which the electric winding is to be moved with the magnetic strips for a width adjustment.
- US 4,258,241A relates to a slit induction heating device in which elongated parts, such as shafts, arranged parallel to each other are introduced and moved in a direction orthogonal to the large dimension of the parts. Axially spaced areas of the parts are heated passing between conductors parallel to the direction of movement of the parts.
- the electrical conductors can be moved in a direction parallel to the large dimension of the parts and orthogonal to the direction of advance of these parts to change the position of the heated areas of the rooms. Again, the electrical conductors are moved.
- the present invention proposes to provide an original solution by providing a transverse flux electromagnetic induction heating device whose magnetic circuit, made by a plurality of independent magnetic strips, adapted to the width of the strip to be heated. This device thus makes it possible to improve the thermal homogeneity in the direction of the width of the strip to be heated.
- the invention provides a device for heating by electromagnetic induction of a metal strip moving in a determined direction comprising at least one electric coil arranged facing at least one of the large faces of said strip in order to heat the latter.
- each winding being associated with at least one magnetic circuit, each circuit being divided into a plurality of magnetic strips not coupled together and arranged parallel to the running direction of the strip, said device being characterized in that said magnetic circuit, consisting of said plurality of strips, independent of each other, adapts to the width of the strip to be heated by spacing or bringing said strips closer to each other, so as to continuously adapt the distribution of said magnetic flux to the characteristic dimensions of said strip.
- the volume and therefore the weight of the magnetic circuit remains invariable.
- the electromagnetic induction heating device also includes screens of good electrical conductivity material placed in the air gap on both sides of the strip and at the edges of the latter, so as to optimize the homogeneity of the transverse temperature.
- the surface of the magnetic circuit facing one of the large faces of the strip to be heated is given a suitable "polar" profile (for example bisinusoidal) by cutting the magnetic sheets. constituting this circuit so as to obtain a better distribution of the magnetic flux, and more particularly at the edges of said strip.
- polar profile is meant a surface of the magnetic circuit which is curved in the three directions of space.
- the transverse flow electromagnetic induction heating device comprises in particular two magnetic armatures respectively 1 and 1 'provided with at least one electric winding 2 and arranged face-to-face on either side a band 4 to heat.
- the latter may for example be guided in the gap defined between the magnetic circuits using rollers (not shown) and thus be transferred into the heating zone. Its displacement is generally continuous during the heating process according to the invention.
- this heating device it is possible to have at least one magnetic armature 1 provided with at least one electric coil 2 facing only one of the large faces of the band 4 to be heated.
- the magnetic flux generated by the electric windings 2 crosses the heating strip 4 and induces in it a current flowing in the plane of said strip and which closes in a loop at the banks .
- the winding or coils 2 are powered using a medium frequency alternating current (for example, of the order of 50 to 20000 Hz approximately).
- This circuit 6 consists of a plurality of magnetic strips 8 arranged parallel to the direction of travel of the strip 4 to be heated.
- the strips 8 constituting the magnetic circuit 6 are not coupled together and are arranged parallel to one another. These strips are therefore independent of each other and they are also independent of the electric windings. In addition, they can slide by means 10 at the level of the electric windings 2 so as to deviate or come closer to each other, the electric windings remaining fixed. Thus, the spacing between two adjacent strips can be enlarged or shrunk, continuously, under the action of said means 10. As a result, the magnetic flux distribution can be adapted to the dimensions of the strip 4, and in particular to its width (cf. figure 2b ).
- This essential characteristic of the present invention makes it possible not only to obtain an induction heating device adaptable to different widths of the strip to be heated, but above all the thermal homogeneity obtained in the width direction of said strip remains optimal regardless of the width of it.
- the spatial positioning of the magnetic strips associated with a suitable polar profile makes it possible to act on the circulation of the induced currents and thus to control the transverse temperature distribution.
- the means 10 making it possible to slide, continuously, the magnetic strips 8 at the level of the electric windings 2, but without moving the latter, are constituted in particular by at least two rails 11 and 11 'parallel disposed on each side of the surface of the strip 4 and perpendicular to the direction of movement thereof.
- These rails support a plurality of reinforcements 12, each of these armatures being fixed to at least one bar 8.
- the support of the reinforcements of two adjacent bars is alternated on the two rails 11 and 11 'so as to reduce the congestion when the width of the magnetic circuit 6 is minimal (where the spacing between the bars is minimal).
- the armatures slide on the rails using rollers 13 or the like independently of each other, which enables a very precise, optimal and continuous adjustment of the width of the magnetic circuit and therefore of the flux distribution.
- a width of the magnetic circuit varying from 800 to 1500 millimeters.
- the spacing between two adjacent magnetic strips 8 can be adjusted manually or automatically in order to obtain the desired magnetic distribution.
- screens 14 are placed in the gap on either side of said strip and at the edges thereof.
- Such screens are made of a material having good electrical conductivity, for example of the copper, aluminum or silver type. Their function is to adjust the magnetic flux at the edges of the strip in order to control the temperature of the banks of said strip.
- these screens are also fixed on frames 15 supported by rails by means of rollers or the like so as to be able to be driven by a translation movement along the width of the band used.
- magnetic pads 16 on the plates 15 supporting the screens 14 so as to refine the distribution of the magnetic flux over the width of the strip, in particular such pads make it possible to fill possible temperature heterogeneities.
- These magnetic pads 16 may be coupled to screens 15 of good electrical conductivity and / or magnetic strips 8 or be arranged without screens.
- the surface of the magnetic circuit 6 of each armature (1, 1 ') which is opposite one of the large faces of the strip 4 is given a "polar" profile, adapted to obtain a controlled distribution of the magnetic flux generated by the electric windings 2, in particular at the edges of said strip.
- a short-circuit winding (not shown) is added on either side of the heating device, perpendicularly to the bars of the magnetic circuit and embracing the band in displacement in order to reduce the magnetic fields of leakage at the ends of the inductor.
- the figure 5 is a schematic and partial view of a bright annealing installation, for example stainless steel.
- a bright annealing installation for example stainless steel.
- Such annealing line is disposed on a single vertical strand whose total height must not exceed 50 meters.
- the strip 18 to be heated which is guided by rollers 19, passes through this height, first a heating zone 20 and then a cooling zone 21.
- the latter between in the heating zone at room temperature (approximately 20 ° C)
- the electromagnetic induction heating device according to the invention applied to such an installation has the advantage of being able to reduce the overall height of the heating zone to about 10 meters, which provides much more room for cooling and Thus, it is possible to reach a line speed of 120 meters per minute for stainless steel having a thickness of approximately 0.5 millimeters.
- the present invention as described above thus offers multiple advantages. It allows from an electromagnetic induction heating device using variable width magnetic circuits to create a high intensity magnetic flux for medium frequencies. This magnetic flux density makes it possible to achieve a power density transmitted to the strip to be heated, which is greater than that of the known heating means. Thanks to the characteristics of the invention, there is no magnetic material in inter-bar spaces, unlike systems according to the prior art. In addition, the electrical efficiency of this device is greater than that of known technologies. In addition, such a device makes it possible to obtain a satisfactory thermal homogeneity in the direction of the width of the strip.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Induction Heating (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
La présente invention est relative à un dispositif de chauffage au défilé, par induction électromagnétique, de bandes magnétiques ou amagnétiques de faible et moyenne épaisseurs (de l'ordre de 0,05 à 50 millimètres). Elle vise plus particulièrement un dispositif de chauffage par induction à flux transverse.The present invention relates to a heating device with the parade, by electromagnetic induction, magnetic or nonmagnetic strips of low and medium thicknesses (of the order of 0.05 to 50 millimeters). It is more particularly a transverse flux induction heating device.
De façon connue, le chauffage au défilé par induction électromagnétique d'une bande métallique est réalisé à l'aide de bobinages qui sont disposés de manière à entourer la bande à chauffer en créant un champ magnétique parallèle à la surface extérieure de cette bande selon la direction de défilement (flux longitudinal, cf.
Lorsqu'il s'agit de chauffer des bandes magnétiques de faible épaisseur, le rendement de ce type de chauffage à flux longitudinal est élevé. Cependant, il chute fortement, + pour ces matériaux, dès que l'on dépasse la température du point de Curie (environ 750°C). Ceci est notamment dû au fait que la perméabilité relative du matériau à chauffer décroît rapidement au cours du procédé de chauffage jusqu'à atteindre la valeur de 1 à cette même température. Le rendement est également limité pour les matériaux amagnétiques (acier inoxydable, aluminium ...), quelle que soit la température du produit.When it comes to heating thin magnetic strips, the efficiency of this type of longitudinal flow heating is high. However, it falls sharply, + for these materials, as soon as we exceed the temperature of the point Curie (about 750 ° C). This is particularly due to the fact that the relative permeability of the material to be heated decreases rapidly during the heating process to reach the value of 1 at the same temperature. The yield is also limited for non-magnetic materials (stainless steel, aluminum ...), whatever the temperature of the product.
Selon une autre solution connue pour le chauffage au défilé par induction de produits métalliques plats, on dispose deux bobinages de part et d'autre du produit à réchauffer, en regard de chacune des grandes faces de ce dernier de façon à créer un champ magnétique perpendiculaire aux grandes faces du produit selon la technique dite du flux transverse (cf.
L'inconvénient principal de ce type d'installation réside dans le fait que la distribution en boucle des courants induits par le flux magnétique traversant ne permet généralement pas d'atteindre une homogénéité en température satisfaisante, notamment les extrémités dans le sens de la largeur de la bande (les rives) sont trop ou pas assez chauffées suivant les dimensions relatives des bobinages et du circuit magnétique utilisés par rapport à la largeur de bande.The main disadvantage of this type of installation lies in the fact that the loop distribution of the currents induced by the magnetic flux through does not generally make it possible to achieve satisfactory temperature homogeneity, especially the ends in the direction of the width of the the band (the banks) are too much or too little heated according to the relative dimensions of the coils and the magnetic circuit used with respect to the bandwidth.
Pour résoudre ce problème, on a déjà proposé d'utiliser un chauffage par induction électromagnétique à flux transverse dans lequel les inducteurs comportent des circuits magnétiques. Ces derniers ont pour but de guider le flux magnétique générés par les bobinages afin d'agir sur la distribution des courants induits.To solve this problem, it has already been proposed to use transverse flux electromagnetic induction heating in which the inductors comprise magnetic circuits. These are intended to guide the magnetic flux generated by the coils to act on the distribution of induced currents.
Cependant, de tels dispositifs ont pour désavantage de ne pas être facilement modifiables afin de s'adapter aux largeurs de bande à chauffer. Pour pallier un tel inconvénient, on connaît par exemple un dispositif de chauffage par induction électromagnétique décrit dans le brevet américain n° 4, 678, 883 dans lequel les inducteurs sont constitués d'une pluralité de barrettes magnétiques couplées entre elles (par "couplées", on entend des barrettes qui coopèrent entre elles de façon à ce que le flux magnétique engendré par les inducteurs puisse passer d'une barrette à l'autre barrette), disposées parallèlement à la direction de déplacement de la bande à chauffer et pouvant être individuellement déplacées perpendiculairement à la surface de ladite bande de manière à adapter la distribution de flux à la largeur de la bande, suivant les dimensions de cette dernière.However, such devices have the disadvantage of not being easily modifiable in order to adapt to the widths of band to be heated. To overcome such a drawback, an electromagnetic induction heating device described in US Pat. No. 4,678,883, for example, is known in which the inductors consist of a plurality of magnetic strips coupled together (by "coupled" means). means mutually reinforcing bars so that the magnetic flux generated by the inductors can pass from one bar to the other bar), arranged parallel to the direction of movement of the strip to be heated and can be individually moved perpendicular to the surface of said strip so as to adapt the flow distribution to the width of the strip, according to the dimensions of the latter.
Or, même ce type de chauffage par induction électromagnétique ne permet pas de correctement contrôler les fluctuations de température au niveau des rives de la bande à chauffer. En effet, les barrettes magnétiques en retrait par rapport à ladite bande continuent d'exercer une influence, certes plus faible, sur la distribution de flux magnétique et donc sur la température et il en résulte que la courbe de distribution de température montre une concentration des courants induits sur les rives.Even this type of electromagnetic induction heating does not make it possible to correctly control temperature fluctuations at the edges of the strip to be heated. Indeed, the magnetic strips recessed with respect to said band continue to exert an influence, albeit lower, on the magnetic flux distribution and therefore on the temperature and it follows that the temperature distribution curve shows a concentration of induced currents on the banks.
Par ailleurs, on connaît également
Compte-tenu des inconvénients des solutions de l'état antérieur de la technique rappelée ci-dessus, la présente invention se propose d'apporter une solution originale en réalisant un dispositif de chauffage par induction électromagnétique à flux transverse dont le circuit magnétique, réalisé par une pluralité de barrettes magnétiques indépendantes, s'adapte à la largeur de la bande à chauffer. Ce dispositif permet ainsi d'améliorer l'homogénéité thermique dans le sens de la largeur de la bande à chauffer.Given the disadvantages of the solutions of the prior art recalled above, the present invention proposes to provide an original solution by providing a transverse flux electromagnetic induction heating device whose magnetic circuit, made by a plurality of independent magnetic strips, adapted to the width of the strip to be heated. This device thus makes it possible to improve the thermal homogeneity in the direction of the width of the strip to be heated.
A cet effet, l'invention apporte un dispositif de chauffage par induction électromagnétique d'une bande métallique défilant dans une direction déterminée comprenant au moins un bobinage électrique disposé en regard d'au moins une des grandes faces de ladite bande afin de chauffer cette dernière par induction à flux magnétique cransverse, chaque bobinage étant associé à au moins un circuit magnétique, chaque circuit étant divisé en une pluralité de barrettes magnétiques non couplées entre elles et disposées parallèlement à la direction de défilement de la bande, ledit dispositif étant caractérisé en ce que ledit circuit magnétique, constitué de ladite pluralité de barrettes, indépendantes les unes des autres, s'adapte à la largeur de la bande à chauffer en écartant ou en rapprochant lesdites barrettes les unes des autres, de manière à adapter en continu la distribution dudit flux magnétique aux dimensions caractéristiques de ladite bande.For this purpose, the invention provides a device for heating by electromagnetic induction of a metal strip moving in a determined direction comprising at least one electric coil arranged facing at least one of the large faces of said strip in order to heat the latter. by induction with a cransverse magnetic flux, each winding being associated with at least one magnetic circuit, each circuit being divided into a plurality of magnetic strips not coupled together and arranged parallel to the running direction of the strip, said device being characterized in that said magnetic circuit, consisting of said plurality of strips, independent of each other, adapts to the width of the strip to be heated by spacing or bringing said strips closer to each other, so as to continuously adapt the distribution of said magnetic flux to the characteristic dimensions of said strip.
Ainsi, grâce à la présente invention, quelle que soit la largeur de la bande à chauffer, le volume donc le poids du circuit magnétique reste invariable.Thus, thanks to the present invention, whatever the width of the band to be heated, the volume and therefore the weight of the magnetic circuit remains invariable.
Selon une caractéristique avantageuse de l'invention, le dispositif de chauffage par induction électromagnétique comporte également des écrans en matériaux de bonne conductibilité électrique placés dans l'entrefer de part et d'autre de la bande et au niveau des rives de cette dernière, de manière à optimiser l'homogénéité de la température transversale.According to an advantageous characteristic of the invention, the electromagnetic induction heating device also includes screens of good electrical conductivity material placed in the air gap on both sides of the strip and at the edges of the latter, so as to optimize the homogeneity of the transverse temperature.
Selon une autre caractéristique avantageuse de l'invention, on donne à la surface du circuit magnétique qui est en regard de l'une des grandes faces de la bande à chauffer un profil "polaire" adapté (bisinusoidal par exemple) par découpage des tôles magnétiques constituant ce circuit de façon à obtenir une meilleure distribution du flux magnétique, et plus particulièrement au niveau des rives de ladite bande. Par profil "polaire", on entend une surface du circuit magnétique qui est courbe dans les trois directions de l'espace.According to another advantageous characteristic of the invention, the surface of the magnetic circuit facing one of the large faces of the strip to be heated is given a suitable "polar" profile (for example bisinusoidal) by cutting the magnetic sheets. constituting this circuit so as to obtain a better distribution of the magnetic flux, and more particularly at the edges of said strip. By "polar" profile is meant a surface of the magnetic circuit which is curved in the three directions of space.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-après, en référence aux dessins annexés qui en illustrent des exemples de réalisation et d'application dépourvus de tout caractère limitatif. Sur les dessins :
- les
figures 1a et1b illustrent des dispositifs de chauffage par induction électromagnétique connus de l'art antérieur, respectivement à flux longitudinal et flux transverse ; - les
figures 2a et 2b sont des vues partielles, en perspective du dispositif de chauffage par induction selon l'invention dans deux positions ; - les
figures 3a et 3b sont des vues partielles, en perspective du dispositif de lafigure 1 muni d'écrans en matériaux de bonne conductibilité électrique couplés à des plots magnétiques ; - la
figure 4 est une vue schématique et partielle d'un exemple de profil polaire (surface du circuit magnétique en regard de la bande à chauffer) ; - la
figure 5 est une vue schématique et partielle d'une installation classique de recuit brillant d'acier inoxydable.
- the
figures 1a and1b illustrate electromagnetic induction heating devices known from the prior art, respectively longitudinal flow and transverse flow; - the
Figures 2a and 2b are partial views, in perspective of the induction heating device according to the invention in two positions; - the
Figures 3a and 3b are partial views, in perspective of the device of thefigure 1 equipped with screens made of materials of good electrical conductivity coupled with magnetic studs; - the
figure 4 is a schematic and partial view of an example of polar profile (surface of the magnetic circuit facing the strip to be heated); - the
figure 5 is a schematic and partial view of a classic stainless steel bright annealing installation.
Si on se réfère aux dessins, ec plus particulièrement aux
En variante, et selon l'application désirée de ce dispositif de chauffage, on peut disposer au moins une armature magnétique 1 pourvue d'au moins un bobinage électrique 2 en regard de seulement l'une des grandes faces de la bande 4 à chauffer.As a variant, and depending on the desired application of this heating device, it is possible to have at least one
Selon la technique connue dite du flux transverse, le flux magnétique engendré par les bobinages électriques 2 traverse la bande à chauffer 4 et induit dans celle-ci un courant qui circule dans le plan de ladite bande et qui se ferme en boucle au niveau des rives. Pour ce faire, le ou les bobinages 2 sont alimentées à l'aide d'un courant alternatif à fréquence moyenne (par exemple, de l'ordre de 50 à 20000 Hz environ).According to the known technique known as the transverse flux, the magnetic flux generated by the
Pour assurer le guidage du flux magnétique engendré par les bobinages 2 notamment au niveau des rives de ladite bande, on dispose un circuit magnétique 6 sur toute ou une partie de la longueur desdits bobinages. Ce circuit est constitué d'une pluralité de barrettes magnétiques 8 disposées parallèlement à la direction de défilement de la bande 4 à chauffer.To ensure the guidance of the magnetic flux generated by the
Selon l'invention, les barrettes 8 composant le circuit magnétique 6 ne sont pas couplées entre elles et sont disposées parallèles les unes par rapport aux autres. Ces barrettes sont donc indépendantes les unes des autres et elles sont aussi indépendantes des bobinages électriques. En outre, elles peuvent coulisser à l'aide de moyens 10 au niveau des bobinages électriques 2 de manière à s'écarter ou se rapprocher les unes des autres, les bobinages électriques restant fixes. Ainsi, l'espacement entre deux barrettes adjacentes peut être agrandi ou rétréci, en continu, sous l'action desdits moyens 10. Il en résulte que la distribution de flux magnétique peut être adaptée aux dimensions de la bande 4, et notamment à sa largeur (cf.
Cette caractéristique essentielle de la présente invention permet d'obtenir, non seulement un dispositif de chauffage à induction adaptable à différentes largeurs de la bande à chauffer, mais surtout l'homogénéité thermique obtenue dans le sens de la largeur de ladite bande reste optimale quelque soit la largeur de celle-ci.This essential characteristic of the present invention makes it possible not only to obtain an induction heating device adaptable to different widths of the strip to be heated, but above all the thermal homogeneity obtained in the width direction of said strip remains optimal regardless of the width of it.
En effet, le positionnement spatial des barrettes magnétiques associé à un profil polaire adapté, permettent d'agir sur la circulation des courants induits et donc de maîtriser la distribution de température transversale.In fact, the spatial positioning of the magnetic strips associated with a suitable polar profile makes it possible to act on the circulation of the induced currents and thus to control the transverse temperature distribution.
Les moyens 10 permettant de faire coulisser, en continu, les barrettes magnétiques 8 au niveau des bobinages électriques 2, mais sans déplacer ces derniers, sont constitués notamment par au moins deux rails 11 et 11' parallèles disposés de chaque côté de la surface de la bande 4 et perpendiculairement à la direction de déplacement de celle-ci. Ces rails supportent une pluralité d'armatures 12, chacune de ces armatures étant fixée à au moins une barrette 8. De préférence, on alterne le support des armatures de deux barrettes adjacentes sur les deux rails 11 et 11' de manière à réduire l'encombrement lorsque la largeur du circuit magnétique 6 est minimale (cas où l'espacement entre les barrettes est minimal). Les armatures viennent coulisser sur les rails à l'aide de galets 13 ou analogues de façon indépendante entre elles ce qui permet un ajustement très précis, optimal et en continu de la largeur du circuit magnétique et donc de la distribution de flux. Ainsi, on peut réaliser par exemple une largeur du circuit magnétique variant de 800 à 1500 millimètres.The means 10 making it possible to slide, continuously, the magnetic strips 8 at the level of the
Selon une caractéristique avantageuse de l'invention, l'espacement entre deux barrettes magnétiques 8 adjacentes peut être ajusté manuellement ou automatiquement afin d'obtenir la distribution magnétique souhaitée.According to an advantageous characteristic of the invention, the spacing between two adjacent magnetic strips 8 can be adjusted manually or automatically in order to obtain the desired magnetic distribution.
Selon une autre caractéristique avantageuse de l'invention (cf.
De plus, ces écrans sont également fixés sur des armatures 15 supportées par des rails par l'intermédiaire de galets ou analogues de manière à pouvoir être animés d'un mouvement de translation suivant la largeur de la bande utilisée. En variante, on peut également fixer ces écrans directement sur les barrettes magnétiques d'extrémité qui sont en regard des rives de la bande à chauffer.In addition, these screens are also fixed on
Selon encore une autre caractéristique avantageuse de l'invention, on peut également disposer des plots magnétiques 16 sur les armatures 15 supportant les écrans 14 de manière à affiner la distribution du flux magnétique sur la largeur de la bande, notamment de tels plots permettent de combler d'éventuelles hétérogénéités de température. Ces plots magnétiques 16 peuvent être couplés aux écrans 15 de bonne conductibilité électrique et/ou aux barrettes magnétiques 8 ou bien être disposés sans écrans.According to yet another advantageous characteristic of the invention, it is also possible to have
Selon encore une autre caractéristique avantageuse de l'invention (cf.
Selon encore une autre caractéristique avantageuse de l'invention, on ajoute une spire en court-circuit (non représentée) de part et d'autre du dispositif de chauffage, perpendiculairement aux barrettes du circuit magnétique et enlaçant la bande en déplacement afin de réduire les champs magnétiques de fuite aux extrémités de l'inducteur.According to yet another advantageous characteristic of the invention, a short-circuit winding (not shown) is added on either side of the heating device, perpendicularly to the bars of the magnetic circuit and embracing the band in displacement in order to reduce the magnetic fields of leakage at the ends of the inductor.
On décrira maintenant un exemple d'application avantageuse du dispositif de chauffage à induction électromagnétique selon l'invention.An example of an advantageous application of the electromagnetic induction heating device according to the invention will now be described.
La
On connaît des dispositifs de chauffage à gaz ou à résistances électriques dont la hauteur sur une telle ligne est de 30 mètres environ ce qui laisse peu de place pour le refroidissement de la bande. En conséquence, de tels dispositifs fonctionnent avec une vitesse de déplacement de la bande à chauffer typiquement de l'ordre de 60 mètres par minute.There are known gas heating devices or electrical resistance whose height on such a line is about 30 meters, which leaves little room for cooling the band. Consequently, such devices operate with a speed of movement of the strip to be heated typically of the order of 60 meters per minute.
Le dispositif de chauffage par induction électromagnétique selon l'invention appliqué à une telle installation a pour avantage de pouvoir réduire la hauteur d'encombrement de la zone de chauffage jusqu'à 10 mètres environ, ce qui ménage beaucoup plus de place pour le refroidissement et permet ainsi d'atteindre une vitesse de ligne de 120 mètres par minute pour de l'acier inoxydable ayant une épaisseur de 0,5 millimètre environ.The electromagnetic induction heating device according to the invention applied to such an installation has the advantage of being able to reduce the overall height of the heating zone to about 10 meters, which provides much more room for cooling and Thus, it is possible to reach a line speed of 120 meters per minute for stainless steel having a thickness of approximately 0.5 millimeters.
La présente invention telle que décrite précédemment offre donc de multiples avantages. Elle permet à partir d'un dispositif de chauffage par induction électromagnétique utilisant des circuits magnétiques à largeur variable de créer un flux magnétique de forte intensité pour des fréquences moyennes. Cette densité de flux magnétique permet d'atteindre une densité de puissance transmise à la bande à chauffer, supérieure à celle des moyens de chauffage connus. Grâce aux caractéristiques de l'invention, il n'existe pas de matière magnétique dans les espaces inter-barrettes, contrairement aux systèmes selon l'état antérieur de la technique. De plus, le rendement électrique de ce dispositif est supérieur à celui des technologies connues. En outre, un tel dispositif permet d'obtenir une homogénéité thermique satisfaisante dans le sens de la largeur de la bande.The present invention as described above thus offers multiple advantages. It allows from an electromagnetic induction heating device using variable width magnetic circuits to create a high intensity magnetic flux for medium frequencies. This magnetic flux density makes it possible to achieve a power density transmitted to the strip to be heated, which is greater than that of the known heating means. Thanks to the characteristics of the invention, there is no magnetic material in inter-bar spaces, unlike systems according to the prior art. In addition, the electrical efficiency of this device is greater than that of known technologies. In addition, such a device makes it possible to obtain a satisfactory thermal homogeneity in the direction of the width of the strip.
Claims (6)
- Heating device by electromagnetic induction of a metal plate (4) running in predefined direction, which comprises at least one electrical winding (2) arranged opposite at least one of the large faces of the said plate in order to heat the latter by transverse magnetic flux induction, each winding being connected to at least one magnetic circuit (6), which comprises a plurality of magnetic bars (8) arranged parallel to the running direction of the plate, said device being characterised in that:- the magnetic bars (8) are not connected together, are independent of one another and are independent of the electrical windings (2);- the bars (8) are mounted so that they are able to slide by way of means (10) at the level of the electrical windings (2) so as to move away from one another or approach one another, the electrical windings (2) remaining fixed, which makes it possible to continually adjust the distribution of magnetic flux to the width of the plate.
- Heating device according to claim 1, characterised in that it comprises screens (14) with good electrical conductivity arranged in the air gap defined by said magnetic circuits, on either side of the plate and at the edges of said plate so as to adjust the magnetic flux to the ends of said plate in the direction of its width.
- Heating device according to one of claims 1 or 2, characterised in that it comprises magnetic contacts (16) arranged in the air gap defined by the said magnetic circuits on either side of the plate and at the edges of the said plate so as to optimise the distribution of magnetic flux.
- Heating device according to any one of the preceding claims, characterised in that the means (10) comprise at least one rail (11, 11') on each side of the plate (4) and perpendicular to the running direction of the latter, said rail supporting by means of rollers (13) or the like a plurality of armatures (12), each of said armatures being fixed to at least one magnetic bar (8) so as to allow the armatures (12) supporting the said bars to be moved away from one another or closer towards one another by sliding on said rails (11,11').
- Heating device according to any one of the preceding claims, characterised in that the surface of the magnetic circuit (6) of each armature (1,1'), which faces one of the large surfaces of the said plate has a "polar" profile adjusted to obtain a controlled distribution of the magnetic flux.
- Heating device according to any one of the preceding claims, characterised in that it comprises at least one short-circuit coil arranged on either side of said armature (1,1'), so as to clasp the plate (4) to reduce the magnetic field losses at the ends of the inductor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0005062A FR2808163B1 (en) | 2000-04-19 | 2000-04-19 | TRANSVERSE FLOW INDUCTION HEATING DEVICE WITH MAGNETIC CIRCUIT OF VARIABLE WIDTH |
FR0005062 | 2000-04-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1148762A1 EP1148762A1 (en) | 2001-10-24 |
EP1148762B1 true EP1148762B1 (en) | 2008-10-08 |
EP1148762B8 EP1148762B8 (en) | 2008-11-26 |
Family
ID=8849429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01400868A Expired - Lifetime EP1148762B8 (en) | 2000-04-19 | 2001-04-04 | Induction heating device having transverse flux and variable width inductor |
Country Status (15)
Country | Link |
---|---|
US (1) | US6498328B2 (en) |
EP (1) | EP1148762B8 (en) |
JP (2) | JP2002008838A (en) |
KR (1) | KR100838092B1 (en) |
CN (1) | CN1172560C (en) |
AT (1) | ATE410907T1 (en) |
AU (1) | AU778739B2 (en) |
BR (1) | BR0101516A (en) |
CA (1) | CA2343677C (en) |
DE (2) | DE60136027D1 (en) |
ES (1) | ES2173828T3 (en) |
FR (1) | FR2808163B1 (en) |
RU (1) | RU2236770C2 (en) |
TR (1) | TR200201159T3 (en) |
ZA (1) | ZA200102921B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3941157A1 (en) | 2020-07-15 | 2022-01-19 | ABP Induction Systems GmbH | Method and system for inductively heating flat articles |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004075605A2 (en) * | 2003-02-14 | 2004-09-02 | Inductoheat Inc. | Induction heat treatment of complex-shaped workpieces |
FR2852187A1 (en) * | 2003-03-07 | 2004-09-10 | Celes | Heating device for drying paint layer, has coil surrounding metallic band zone transversally to longitudinal direction of band, including single concave loops whose average plan is orthogonal to longitudinal direction of band |
US20050061804A1 (en) * | 2003-09-22 | 2005-03-24 | Norman Golm | Induction flux concentrator utilized for forming heat exchangers |
US7323666B2 (en) * | 2003-12-08 | 2008-01-29 | Saint-Gobain Performance Plastics Corporation | Inductively heatable components |
JP5191391B2 (en) * | 2005-11-01 | 2013-05-08 | ターゲジェン インコーポレーティッド | Bi-aryl meta-pyrimidine inhibitors of kinases |
EP2045340A1 (en) * | 2007-09-25 | 2009-04-08 | ArcelorMittal France | Comb-shaped laminated cylinder head for an inducer with a magnetic field passing through it for reheating strips of metal |
US20090145894A1 (en) * | 2007-11-20 | 2009-06-11 | Fluxtrol Inc. | Passive inductor for improved control in localized heating of thin bodies |
JP5038962B2 (en) * | 2008-04-09 | 2012-10-03 | 新日本製鐵株式会社 | Induction heating apparatus and induction heating method |
CN101560598B (en) * | 2008-04-17 | 2011-05-11 | 天津天高感应加热有限公司 | Induction heating device applicable for thin metal narrowband heat treatment |
WO2010011987A2 (en) * | 2008-07-25 | 2010-01-28 | Inductotherm Corp. | Electric induction edge heating of electrically conductive slabs |
CN102652459B (en) | 2009-12-14 | 2014-09-24 | 新日铁住金株式会社 | Control device for induction heating device, induction heating system, and control method for induction heating device |
WO2011102454A1 (en) | 2010-02-19 | 2011-08-25 | 新日本製鐵株式会社 | Transverse flux induction heating device |
RU2518187C2 (en) * | 2010-02-19 | 2014-06-10 | Ниппон Стил Корпорейшн | Induction heater with cross-flow |
DE102010017905B4 (en) * | 2010-04-21 | 2014-08-21 | TRUMPF Hüttinger GmbH + Co. KG | Method and induction heating device for hot sheet metal forming |
MX2013003285A (en) * | 2010-09-23 | 2013-05-30 | Radyne Corp | Electric induction heat treatment of longitudinally-oriented workpieces. |
CN102538034A (en) * | 2010-12-24 | 2012-07-04 | 博西华电器(江苏)有限公司 | Electromagnetic range and magnetic strips thereof |
CA2841635C (en) * | 2011-07-15 | 2017-01-03 | Tata Steel Ijmuiden Bv | Apparatus for producing annealed and electro-galvanized steels and process for producing said steels |
KR101294918B1 (en) * | 2011-12-28 | 2013-08-08 | 주식회사 포스코 | Heater, Transverse Flux Induction Heater, Rolling Line and Heating Method |
KR101428178B1 (en) * | 2012-07-30 | 2014-08-07 | 주식회사 포스코 | Transverse Flux Induction Heater, and Heating System for Strip having The Same |
JP6037552B2 (en) * | 2012-10-01 | 2016-12-07 | トクデン株式会社 | Pack heating device for spinning and melt spinning device |
US20170008225A1 (en) * | 2013-11-29 | 2017-01-12 | Tetra Laval Holdings & Finance S.A. | An induction heating device |
FR3014449B1 (en) * | 2013-12-06 | 2020-12-04 | Fives Celes | POST-GALVANIZING ANCURING SECTION CONTAINING A TRANSVERSE-FLOW INDUCER HEATING UNIT |
WO2015094482A1 (en) | 2013-12-20 | 2015-06-25 | Ajax Tocco Magnethermic Corporation | Transverse flux strip heating dc edge saturation |
CN103821053A (en) * | 2014-01-03 | 2014-05-28 | 北京燕雅鼎信工控技术有限公司 | Coil servo positioning system of normalizing equipment and normalizing equipment with same |
WO2015177892A1 (en) * | 2014-05-21 | 2015-11-26 | 日産自動車株式会社 | Fuel cell manufacturing method and fuel cell manufacturing apparatus |
TWI574584B (en) * | 2014-09-03 | 2017-03-11 | 新日鐵住金股份有限公司 | Induction heating device of metal strip |
CN106688308B (en) * | 2014-09-05 | 2020-03-17 | 日本制铁株式会社 | Induction heating device for metal band plate |
KR102094623B1 (en) | 2015-06-24 | 2020-03-27 | 노벨리스 인크. | High-speed response heaters and associated control systems used in combination with metal processing furnaces |
CN105861791B (en) * | 2016-05-18 | 2017-10-20 | 燕山大学 | A kind of wind-powered electricity generation ring gear longitudinal magnetic flux induction heat treatment device |
CN108235479B (en) * | 2016-12-14 | 2021-01-12 | 宝山钢铁股份有限公司 | Device and method for improving transverse temperature uniformity of transverse magnetic flux induction heating strip steel |
JP6658977B1 (en) | 2018-03-23 | 2020-03-04 | 日本製鉄株式会社 | Induction heating method for metal strip and its induction heating equipment |
FR3086671B1 (en) | 2018-09-27 | 2021-05-28 | Psa Automobiles Sa | PROCESS FOR THERMAL TREATMENT OF annealing or reshuffling of weld spots by induction heating |
IT201900006433A1 (en) * | 2019-04-29 | 2020-10-29 | Rotelec Sa | HEATING APPARATUS FOR METALLIC PRODUCTS |
JP7255370B2 (en) * | 2019-06-07 | 2023-04-11 | 富士電機株式会社 | induction heating device |
DE102019008622A1 (en) * | 2019-12-13 | 2021-06-17 | ABP lnduction Systems GmbH | Cross-field induction heater |
JP7215603B2 (en) * | 2020-05-11 | 2023-01-31 | 東芝三菱電機産業システム株式会社 | Induction heating method and induction heating system |
CN113752918A (en) * | 2021-07-30 | 2021-12-07 | 东风汽车集团股份有限公司 | Battery system, vehicle, and control method for vehicle |
EP4398681A4 (en) | 2021-09-01 | 2024-12-18 | Nippon Steel Corporation | CROSS-FLOW INDUCTION HEATING DEVICE |
WO2023033115A1 (en) | 2021-09-01 | 2023-03-09 | 日本製鉄株式会社 | Transverse-type induction heating device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321444A (en) * | 1975-03-04 | 1982-03-23 | Davies Evan J | Induction heating apparatus |
US4258241A (en) * | 1979-03-28 | 1981-03-24 | Park-Ohio Industries, Inc. | Slot furnace for inductively heating axially spaced areas of a workpiece |
FR2509562A1 (en) * | 1981-07-10 | 1983-01-14 | Cem Comp Electro Mec | METHOD AND APPARATUS FOR HOMOGENEOUS HEATING BY TRANSVERSE FLOW ELECTROMAGNETIC INDUCTION OF FLAT, CONDUCTOR AND AMAGNETIC PRODUCTS |
GB2144609B (en) * | 1983-08-03 | 1987-02-18 | Davy Mckee | Variable width inductor for induction heating |
FR2558941B1 (en) * | 1984-01-26 | 1986-05-02 | Cem Comp Electro Mec | DEVICE FOR HEATING FLAT PRODUCTS IN A RUNWAY BY ELECTROMAGNETIC INDUCTION |
JPS6235490A (en) * | 1985-08-09 | 1987-02-16 | 住友重機械工業株式会社 | Electromagnetic induction heater |
US4778971A (en) * | 1986-05-23 | 1988-10-18 | Kabushiki Kaisha Meidensha | Induction heating apparatus |
JPS63310592A (en) * | 1987-06-11 | 1988-12-19 | Kawasaki Steel Corp | Transverse magnetic flux type induction heating device |
GB8721663D0 (en) * | 1987-09-15 | 1987-10-21 | Electricity Council | Induction heating apparatus |
JPH0280990U (en) * | 1988-12-09 | 1990-06-21 | ||
GB8902090D0 (en) * | 1989-01-31 | 1989-03-22 | Metal Box Plc | Electro-magnetic induction heating apparatus |
JPH02270287A (en) * | 1989-04-10 | 1990-11-05 | Sumitomo Special Metals Co Ltd | Heating of thin plate in induction heating apparatus |
JPH0388295U (en) * | 1989-12-27 | 1991-09-10 | ||
JPH0757861A (en) * | 1993-08-10 | 1995-03-03 | Kyowa Kogyosho:Kk | Electromagnetic induction heating device |
US5818013A (en) * | 1994-06-15 | 1998-10-06 | Otto Junker Gmbh | Process and device for inductive cross-field heating of flat metallic material |
JP3045007B2 (en) * | 1994-06-17 | 2000-05-22 | 日本鋼管株式会社 | Method and apparatus for induction heating of metal plate |
JP3112617B2 (en) * | 1994-06-21 | 2000-11-27 | 北芝電機株式会社 | Induction heating method for rolled material |
-
2000
- 2000-04-19 FR FR0005062A patent/FR2808163B1/en not_active Expired - Lifetime
-
2001
- 2001-04-03 AU AU33417/01A patent/AU778739B2/en not_active Expired
- 2001-04-04 TR TR2002/01159T patent/TR200201159T3/en unknown
- 2001-04-04 ES ES01400868T patent/ES2173828T3/en not_active Expired - Lifetime
- 2001-04-04 EP EP01400868A patent/EP1148762B8/en not_active Expired - Lifetime
- 2001-04-04 DE DE60136027T patent/DE60136027D1/en not_active Expired - Lifetime
- 2001-04-04 AT AT01400868T patent/ATE410907T1/en active
- 2001-04-04 DE DE1148762T patent/DE1148762T1/en active Pending
- 2001-04-05 US US09/826,190 patent/US6498328B2/en not_active Expired - Lifetime
- 2001-04-09 ZA ZA200102921A patent/ZA200102921B/en unknown
- 2001-04-11 CA CA2343677A patent/CA2343677C/en not_active Expired - Lifetime
- 2001-04-13 JP JP2001115552A patent/JP2002008838A/en active Pending
- 2001-04-17 KR KR1020010020367A patent/KR100838092B1/en active IP Right Grant
- 2001-04-18 RU RU2001110912/09A patent/RU2236770C2/en active
- 2001-04-18 BR BR0101516-8A patent/BR0101516A/en not_active Application Discontinuation
- 2001-04-19 CN CNB011170182A patent/CN1172560C/en not_active Expired - Lifetime
-
2011
- 2011-12-12 JP JP2011271373A patent/JP5280510B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3941157A1 (en) | 2020-07-15 | 2022-01-19 | ABP Induction Systems GmbH | Method and system for inductively heating flat articles |
WO2022013066A1 (en) | 2020-07-15 | 2022-01-20 | Primetals Technologies Austria GmbH | Method and installation for inductively heating flat objects |
Also Published As
Publication number | Publication date |
---|---|
DE1148762T1 (en) | 2002-10-02 |
JP5280510B2 (en) | 2013-09-04 |
ZA200102921B (en) | 2001-10-11 |
ATE410907T1 (en) | 2008-10-15 |
ES2173828T1 (en) | 2002-11-01 |
CA2343677A1 (en) | 2001-10-19 |
US6498328B2 (en) | 2002-12-24 |
RU2236770C2 (en) | 2004-09-20 |
EP1148762B8 (en) | 2008-11-26 |
CN1172560C (en) | 2004-10-20 |
EP1148762A1 (en) | 2001-10-24 |
US20020011486A1 (en) | 2002-01-31 |
FR2808163A1 (en) | 2001-10-26 |
AU3341701A (en) | 2001-10-25 |
DE60136027D1 (en) | 2008-11-20 |
AU778739B2 (en) | 2004-12-16 |
KR20010098646A (en) | 2001-11-08 |
CA2343677C (en) | 2011-03-08 |
FR2808163B1 (en) | 2002-11-08 |
CN1326309A (en) | 2001-12-12 |
TR200201159T3 (en) | 2002-06-21 |
BR0101516A (en) | 2001-11-20 |
JP2002008838A (en) | 2002-01-11 |
ES2173828T3 (en) | 2009-04-01 |
JP2012099490A (en) | 2012-05-24 |
KR100838092B1 (en) | 2008-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1148762B1 (en) | Induction heating device having transverse flux and variable width inductor | |
EP0170556B1 (en) | Electromagnetic induction device for the heating of metallic elements | |
EP0206963B1 (en) | Inductor with a variable air gap for induction heating the edges of a metallurgical product | |
FR2693071A1 (en) | Homogeneous inductive heating device for flat metallic products on parade. | |
FR2661849A1 (en) | METHOD AND DEVICES FOR INDUCTION HEATING OF A METALLURGICAL PRODUCT IN AN ELONGATE SHAPE. | |
EP0081400B1 (en) | Magnetic induction-heating device for rectangular metallic flat products moving lengthwise | |
EP0080921B1 (en) | Method and arrangement for realizing a transversal heating homogeneity by electromagnetic induction of long, thin, continuously advancing products | |
FR2558085A1 (en) | METHOD AND DEVICE FOR THE PREPARATION OF LOW THICK METALLIC AND SEMI-METALLIC RIBBONS | |
EP0274673A1 (en) | Process for sintering by induction | |
FR3014449A1 (en) | APPARATUS AND METHOD FOR INDUCTION HEATING FOR ANNEAL SECTION AFTER GALVANIZATION. | |
EP0150793A2 (en) | Continuously working apparatus for heating of flat products by electromagnetic induction | |
EP0053060B1 (en) | Inductor with travelling field and orientated flux for a stirrer for continuous casting slabs | |
FR2556625A1 (en) | CASTING SYSTEM FOR LIQUID METALS COMPRISING AN ELECTROMAGNETIC PUMP DESIGNED FOR OBTAINING RAPID SOLIDIFICATION OF SUCH METALS | |
EP0266470B1 (en) | Inductor and induction heating device for the edges of a metallurgical product | |
EP0476311A1 (en) | Electrif fluid heater | |
EP0129160B1 (en) | Continuous-induction-heating arrangement for metallic products | |
BE726847A (en) | Conveyor roller for elongated metal products | |
FR2780846A1 (en) | Heating of steel strip with transverse induction flux | |
FR3107635A1 (en) | DEVICE FOR HEATING A PRODUCT BY TRANSVERSE FLOW INDUCTION | |
FR2519025A2 (en) | IMPROVING PROCESS AND APPARATUS FOR CONTINUOUS REINFORCING OF METAL WIRES | |
FR2473244A1 (en) | Pulsed field induction heating for metals - using rotating DC coils or rotating yoke element to vary magnetic circuit reluctance | |
BE412422A (en) | ||
BE624493A (en) | High frequency induction heating device | |
WO2015132352A1 (en) | Electric generator having permanent magnets and fitted with a magnetic flux collector | |
FR2538665A1 (en) | Method and devices for homogeneous induction heating of flat articles on the move. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
17P | Request for examination filed |
Effective date: 20020323 |
|
TCNL | Nl: translation of patent claims filed | ||
TCAT | At: translation of patent claims filed | ||
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: PP Ref document number: 20020300017 Country of ref document: GR |
|
DET | De: translation of patent claims | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: BA2A Ref document number: 2173828 Country of ref document: ES Kind code of ref document: T1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ELECTRICITE DE FRANCE Owner name: ARCELOR FRANCE Owner name: CELES |
|
17Q | First examination report despatched |
Effective date: 20070529 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELOR FRANCE Owner name: ELECTRICITE DE FRANCE Owner name: FIVES CELES |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ELECTRICITE DE FRANCE Owner name: FIVES CELES Owner name: ARCELORMITTAL FRANCE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60136027 Country of ref document: DE Date of ref document: 20081120 Kind code of ref document: P |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: FIVES CELES EN ARCELORMITTAL FRANCE EN ELECTRICITE Effective date: 20081105 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2173828 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090709 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20200319 Year of fee payment: 20 Ref country code: GB Payment date: 20200323 Year of fee payment: 20 Ref country code: SE Payment date: 20200320 Year of fee payment: 20 Ref country code: FI Payment date: 20200318 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20200319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200323 Year of fee payment: 20 Ref country code: FR Payment date: 20200319 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200319 Year of fee payment: 20 Ref country code: ES Payment date: 20200504 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200318 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200317 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60136027 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20210403 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210403 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 410907 Country of ref document: AT Kind code of ref document: T Effective date: 20210404 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20210404 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210404 |