[go: up one dir, main page]

EP1148191A1 - Antenna drive circuit with constant peak current - Google Patents

Antenna drive circuit with constant peak current Download PDF

Info

Publication number
EP1148191A1
EP1148191A1 EP01400960A EP01400960A EP1148191A1 EP 1148191 A1 EP1148191 A1 EP 1148191A1 EP 01400960 A EP01400960 A EP 01400960A EP 01400960 A EP01400960 A EP 01400960A EP 1148191 A1 EP1148191 A1 EP 1148191A1
Authority
EP
European Patent Office
Prior art keywords
coil
voltage
magnetic field
periodic
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01400960A
Other languages
German (de)
French (fr)
Other versions
EP1148191B1 (en
Inventor
Xavier Boulesteix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Comfort and Driving Assistance SAS
Original Assignee
Valeo Electronique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Electronique SA filed Critical Valeo Electronique SA
Publication of EP1148191A1 publication Critical patent/EP1148191A1/en
Application granted granted Critical
Publication of EP1148191B1 publication Critical patent/EP1148191B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00777Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by induction

Definitions

  • the invention relates to an electronic circuit intended to supply a magnetic field emitting coil having a first input terminal to receive a supply voltage, a second input terminal for receive a periodic command signal, an output terminal for applying an output voltage across said emitting coil, so as to convert said periodic control signal into a field periodic magnetic emitted by the coil.
  • Such a circuit is more particularly intended to supply a coil transmitter forming an antenna in a so-called “hands-free” access system to a closed enclosure, this enclosure possibly being for example a vehicle automobile.
  • a system can also be used to authorize or prohibit the starting a vehicle.
  • Such a system generally includes a recognition device having an antenna in the form of a coil which emits a periodic magnetic field to exchange data with an identification body to be authenticated.
  • the two useful characteristics of this magnetic field are its frequency and its emission diagram.
  • the circuit supply of the transmitting coil receives a control signal at a given frequency, and applies a voltage to the emitting coil which has the frequency of the control signal and which has for amplitude the amplitude of the vehicle battery voltage.
  • the battery supply voltage can fluctuate between 10 and 16 volts, as well, when these fluctuations are directly reflected in the amplitude of the output voltage, which is applied to the emitting coil, it follows corresponding fluctuations in the range of the magnetic field. These fluctuations are detrimental, since we want authentication of the identification device can always be carried out in standard conditions such as a standard minimum distance between the user and the vehicle.
  • This problem can be remedied by incorporating a voltage regulator in the supply circuit of the emitting coil, to have a magnetic field emission diagram whose shape does not vary in function of fluctuations in the supply voltage.
  • the defect of this solution is the increase in the manufacturing cost of the supply circuit.
  • the object of the invention is to remedy these drawbacks.
  • the invention relates to an electronic circuit intended for supply a magnetic field emitting coil, having a first input terminal to receive a supply voltage, a second terminal input to receive a periodic command signal, a terminal output to apply an output voltage across said coil transmitter, so as to convert said periodic control signal into a periodic magnetic field emitted by the coil, characterized in that, said output voltage is a periodic signal having an identical period to the period of the control signal and a duty cycle which depends on the supply voltage, so that a current flowing in the coil has a peak intensity corresponding to a reference peak intensity.
  • the supply circuit manages the peak intensity of the current flowing through the emitting coil so that it is always equal to a reference peak intensity, thus, the range of the magnetic field emitted by the coil does not fluctuate according to variations in voltage from the battery, without having to integrate a voltage regulator in the supply circuit.
  • the intensity reference peak is adjustable which allows for example to modify the range of the magnetic field emitted by the coil to assess more finely the physical location of an identification body to be authenticated during data exchange.
  • Figure 1 is a view of a schematic assembly comprising a circuit pilot, and a transmitter coil.
  • Figure 2A is a graphical representation of the current flowing a transmitting coil when a constant voltage is applied to it.
  • Figure 2B is a graphical representation of the current flowing through the emitting coil for a first value of the supply voltage of the circuit according to the invention.
  • Figure 2C is a graphical representation of the current flowing through the emitting coil for a second value of the supply voltage of the circuit according to the invention.
  • Figure 2D is a graph illustrating the possibility of adjusting the intensity reference peak.
  • Figure 3 gives an example of modulation of the scope of the diagram emission of the magnetic field.
  • FIG. 1 is a schematic representation of a supply circuit AC according to the invention which is connected to a field emitting coil magnetic L.
  • This circuit which is connected to a ground includes a first input terminal 1 intended to receive a supply voltage Ubat provided by the vehicle battery and which can vary over time, a second input terminal 2 for receiving a control signal periodic square SC, and a third input terminal 3 for receiving a reference voltage Uref.
  • this supply circuit includes a terminal 4 which is intended to apply an output voltage U to the coil L magnetic field transmitter, which is connected on the one hand to this terminal 4 and secondly to ground.
  • the reference voltage Uref is a constant voltage corresponding to a peak current of Iref reference desired in the transmitting coil L.
  • This supply circuit CA includes a MOS transistor (not shown) which is connected between the first input terminal 1 and output terminal 4, and which is controlled by a control voltage internal to the supply circuit according to the invention. Of this way, the voltage U applied across the emitting coil L is Ubat when the transistor is closed.
  • a second curve 12 represents the establishment of the current in the coil for a second constant supply voltage Ubat2.
  • this graph shows that the limiting intensity of the current in the coil is Ubat / R, if we apply a constant voltage equal to Ubat across the coil.
  • curves 11 and 12 for establishing currents have shapes different, so if we set a reference peak intensity, like for example Iref1, lower than Ubat1 / R and Ubat2 / R, to reach in the coil, the time required to reach this intensity has a different value ⁇ ton1, ⁇ ton2 depending on whether the constant voltage applied to coil terminals is Ubat1 or Ubat2.
  • the time for reaching an Iref intensity is all the longer as the Ubat voltage applied is weak.
  • Figure 2B shows a graph showing how a signal square command SC having a frequency f is converted by the circuit AC power supply according to the invention at a control voltage Uc for obtain a current I in the emitting coil L, this current in the coil emitter having for frequency f, and for peak intensity the peak intensity of reference Iref1.
  • This control voltage Uc controls the open state or closed of the MOS transistor so that it is closed when Uc is non-zero and open otherwise.
  • FIG. 2C which is a graph showing the same signals than those of FIG. 2B, for the case where the supply voltage is worth no more Ubat1 but Ubat2, with Ubat2 ⁇ Ubat1, we can see that time ⁇ ton2 necessary for the current in the transmitting coil L to reach the value Iref1 is greater than the time ⁇ ton1 which appears in Figure 2B.
  • the supply circuit according to the invention is capable of converting a control signal SC at a current I in the emitting coil L having a peak intensity equal to Iref1 regardless of variations in voltage from the vehicle battery.
  • the square control signal SC is converted in a periodic control voltage of rectangular shape Uc having a duty cycle r suitable for the duration ⁇ ton during which the voltage Ubat battery is applied across the emitting coil corresponds to the time required for the current in the coil transmitter reaches the Iref value.
  • the time ⁇ ton is established as a function of the supply voltage Ubat, of the resistance R and of the inductance L of the transmitting coil, and finally of the peak current Iref desired in the transmitting coil.
  • FIG. 2D which is a graph representing the same signals than those of FIGS. 2B and 2C, for the case where the supply voltage is worth Ubat1 and where the reference current is no longer Iref1 but Iref2, with Iref2 ⁇ Iref1, it can be seen that the supply circuit according to the invention is capable convert a control signal into a current in the emitting coil having a peak intensity equal to Iref2.
  • the supply circuit according to the invention interprets the voltage Uref to deduce therefrom the peak current of reference Iref, to deduce the corresponding duty cycle r from it.
  • the circuit supply adjusts the duty cycle of the control voltage Uc for that the peak current in the emitting coil has the desired value.
  • the supply circuit according to the invention may include, for example a microcontroller to calculate the value ⁇ ton according to the relation (*) or an approximate expression of it, and order for example opening and closing of a MOS transistor connected between the terminal input 1 and output terminal 4.
  • the microcontroller can still choose the value of ⁇ ton in a data table it contains. So the MOS transistor will be closed when the control voltage Uc is no zero, during the duration ⁇ ton, so that the current I in the coil L reaches the value of the peak current Iref, then the MOS transistor will be open during the duration ⁇ toff so that the current in the emitting coil decreases until the control voltage Uc is again no nothing.
  • an evaluation of the supply voltage Vehicle battery Ubat is performed to calculate the ⁇ ton value and this same value is then used for the duration of an exchange data between the recognition device and the identification unit.
  • the value ⁇ ton could be generated by a specialized electronic circuit.
  • the form of the signal corresponding to the current in the emitting coil may take the form of a triangular signal having a shape close to that given in FIGS. 2A, 2B, 2C and 2D, taking into account the characteristics specific to electronic components used.
  • the emission at the level of the recognition device whose purpose is generally to transmit a bit stream towards an organ identification could for example be performed at frequencies of 125 kHz and 133 kHz.
  • the issuance of a 125 kHz signal for 1 ms corresponds to the emission of a bit worth 1
  • the emission of a 133 kHz signal for 1 ms corresponds to the emission a bit equal to 0, which allows the identification unit to reconstruct the bit stream emitted by the recognizer by analyzing the signal received.
  • the recognition will transmit at 125 kHz for 1 ms, then at 133 kHz for 1 ms, then at 125 kHz for 2 ms.
  • Figure 3 which is an illustration of the magnetic field diagram emitted by a transmitting coil comprises a transmitting coil L and emission diagrams D1 and D2 corresponding for example to the intensities reference peaks Iref1 and Iref2.
  • the radiation diagram of a magnetic field emitted by a transmitting coil is proportional to the current flowing through the coil. So, the range of the emitted field is therefore proportional to the Iref value of the selected peak reference intensity.
  • capacitive phenomena that appear between the emitting coil and the sheet can give rise to the emission of an electric field of the same frequency that the magnetic field emitted, so that the emitted field is then a electromagnetic field.
  • the invention is not only reserved for the embodiments described above, and can also be applied to any field in which one wishes supply a transmitting coil to emit a magnetic field according to a diagram which remains stable regardless of voltage fluctuations feed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Lock And Its Accessories (AREA)
  • Selective Calling Equipment (AREA)

Abstract

Le circuit électronique qui est destiné à alimenter une bobine émettrice de champ magnétique, a une première borne d'entrée (1) pour recevoir une tension d'alimentation (Ubat), une seconde borne d'entrée (2) pour recevoir un signal de commande périodique (SC), une borne de sortie (4) pour appliquer une tension de sortie (U) aux bornes de ladite bobine émettrice (L), de manière à convertir ledit signal de commande périodique en un champ magnétique périodique émis par la bobine. Dans ce circuit, ladite tension de sortie (U) est un signal périodique ayant une période identique à la période du signal de commande (SC), et un rapport cyclique qui dépend de la tension d'alimentation (Ubat) pour qu'un courant circulant dans la bobine ait une intensité crête correspondant à une intensité crête de référence. Avec un tel agencement la portée du champ magnétique émis par la bobine émettrice ne subit pas les influences de la variation de la tension d'alimentation.

Figure 00000001
The electronic circuit which is intended to power a magnetic field emitting coil, has a first input terminal (1) for receiving a supply voltage (Ubat), a second input terminal (2) for receiving a signal periodic control (SC), an output terminal (4) for applying an output voltage (U) to the terminals of said emitting coil (L), so as to convert said periodic command signal into a periodic magnetic field emitted by the coil . In this circuit, said output voltage (U) is a periodic signal having a period identical to the period of the control signal (SC), and a duty cycle which depends on the supply voltage (Ubat) so that a current circulating in the coil has a peak intensity corresponding to a reference peak intensity. With such an arrangement, the range of the magnetic field emitted by the emitting coil is not influenced by the variation of the supply voltage.
Figure 00000001

Description

L'invention concerne un circuit électronique destiné à alimenter une bobine émettrice de champ magnétique, ayant une première borne d'entrée pour recevoir une tension d'alimentation, une seconde borne d'entrée pour recevoir un signal de commande périodique, une borne de sortie pour appliquer une tension de sortie aux bornes de ladite bobine émettrice, de manière à convertir ledit signal de commande périodique en un champ magnétique périodique émis par la bobine.The invention relates to an electronic circuit intended to supply a magnetic field emitting coil having a first input terminal to receive a supply voltage, a second input terminal for receive a periodic command signal, an output terminal for applying an output voltage across said emitting coil, so as to convert said periodic control signal into a field periodic magnetic emitted by the coil.

Un tel circuit est plus particulièrement destiné à alimenter une bobine émettrice formant une antenne dans un système d'accès dit « mains libres » à une enceinte fermée, cette enceinte pouvant être par exemple un véhicule automobile. Un tel système peut encore servir à autoriser ou interdire le démarrage d'un véhicule. Un tel système comporte généralement un dispositif de reconnaissance ayant une antenne sous la forme d'une bobine qui émet un champ magnétique périodique pour effectuer un échange de données avec un organe d'identification à authentifier. Pour cette application, les deux caractéristiques utiles de ce champ magnétique sont sa fréquence et son diagramme d'émission. Classiquement, le circuit d'alimentation de la bobine émettrice reçoit un signal de commande à une fréquence donnée, et applique à la bobine émettrice une tension qui a la fréquence du signal de commande et qui a pour amplitude l'amplitude de la tension de la batterie du véhicule.Such a circuit is more particularly intended to supply a coil transmitter forming an antenna in a so-called “hands-free” access system to a closed enclosure, this enclosure possibly being for example a vehicle automobile. Such a system can also be used to authorize or prohibit the starting a vehicle. Such a system generally includes a recognition device having an antenna in the form of a coil which emits a periodic magnetic field to exchange data with an identification body to be authenticated. For this application, the two useful characteristics of this magnetic field are its frequency and its emission diagram. Classically, the circuit supply of the transmitting coil receives a control signal at a given frequency, and applies a voltage to the emitting coil which has the frequency of the control signal and which has for amplitude the amplitude of the vehicle battery voltage.

Dans un véhicule équipé par exemple d'une batterie de type 12 volt, la tension d'alimentation de la batterie peut fluctuer entre 10 et 16 volts, ainsi, lorsque ces fluctuations sont directement répercutées sur l'amplitude de la tension de sortie, qui est appliquée à la bobine émettrice, il s'ensuit des fluctuations correspondantes de la portée du champ magnétique. Ces fluctuations sont préjudiciables, puisque l'on souhaite que l'authentification de l'organe d'identification puisse toujours être effectuées dans des conditions standard comme par exemple une distance minimum standard entre l'utilisateur et le véhicule.In a vehicle equipped for example with a 12 volt type battery, the battery supply voltage can fluctuate between 10 and 16 volts, as well, when these fluctuations are directly reflected in the amplitude of the output voltage, which is applied to the emitting coil, it follows corresponding fluctuations in the range of the magnetic field. These fluctuations are detrimental, since we want authentication of the identification device can always be carried out in standard conditions such as a standard minimum distance between the user and the vehicle.

On peut remédier à ce problème en intégrant un régulateur de tension dans le circuit d'alimentation de la bobine émettrice, pour avoir un diagramme d'émission du champ magnétique dont la forme ne varie pas en fonction des fluctuations de la tension d'alimentation. Le défaut de cette solution est l'augmentation du coût de fabrication du circuit d'alimentation.This problem can be remedied by incorporating a voltage regulator in the supply circuit of the emitting coil, to have a magnetic field emission diagram whose shape does not vary in function of fluctuations in the supply voltage. The defect of this solution is the increase in the manufacturing cost of the supply circuit.

Le but de l'invention est de remédier à ces inconvénients.The object of the invention is to remedy these drawbacks.

A cet effet, l'invention a pour objet un circuit électronique destiné à alimenter une bobine émettrice de champ magnétique, ayant une première borne d'entrée pour recevoir une tension d'alimentation, une seconde borne d'entrée pour recevoir un signal de commande périodique, une borne de sortie pour appliquer une tension de sortie aux bornes de ladite bobine émettrice, de manière à convertir ledit signal de commande périodique en un champ magnétique périodique émis par la bobine, caractérisé en ce que, ladite tension de sortie est un signal périodique ayant une période identique à la période du signal de commande et un rapport cyclique qui dépend de la tension d'alimentation, pour qu'un courant circulant dans la bobine ait une intensité crête correspondant à une intensité crête de référence.To this end, the invention relates to an electronic circuit intended for supply a magnetic field emitting coil, having a first input terminal to receive a supply voltage, a second terminal input to receive a periodic command signal, a terminal output to apply an output voltage across said coil transmitter, so as to convert said periodic control signal into a periodic magnetic field emitted by the coil, characterized in that, said output voltage is a periodic signal having an identical period to the period of the control signal and a duty cycle which depends on the supply voltage, so that a current flowing in the coil has a peak intensity corresponding to a reference peak intensity.

Avec un tel agencement, le circuit d'alimentation gère l'intensité crête du courant qui passe dans la bobine émettrice pour qu'elle soit toujours égale à une intensité crête de référence, ainsi, la portée du champ magnétique émis par la bobine ne fluctue pas en fonction des variations de la tension d'alimentation fournie par la batterie, et ce sans avoir à intégrer un régulateur de tension au circuit d'alimentation.With such an arrangement, the supply circuit manages the peak intensity of the current flowing through the emitting coil so that it is always equal to a reference peak intensity, thus, the range of the magnetic field emitted by the coil does not fluctuate according to variations in voltage from the battery, without having to integrate a voltage regulator in the supply circuit.

Dans un mode préféré de réalisation du circuit selon l'invention, l'intensité crête de référence est réglable ce qui permet par exemple de modifier la portée du champ magnétique émis par la bobine pour évaluer plus finement la localisation physique d'un organe d'identification à authentifier au cours d'un échange de données.In a preferred embodiment of the circuit according to the invention, the intensity reference peak is adjustable which allows for example to modify the range of the magnetic field emitted by the coil to assess more finely the physical location of an identification body to be authenticated during data exchange.

L'invention sera maintenant décrite en référence aux dessins annexés qui en illustrent une forme de réalisation à titre d'exemple non limitatif.The invention will now be described with reference to the accompanying drawings which illustrate an embodiment thereof by way of nonlimiting example.

La figure 1 est une vue d'un ensemble schématique comprenant un circuit de pilotage, et une bobine émettrice.Figure 1 is a view of a schematic assembly comprising a circuit pilot, and a transmitter coil.

La figure 2A est une représentation graphique du courant qui traverse une bobine émettrice lorsqu'une tension constante lui est appliquée.Figure 2A is a graphical representation of the current flowing a transmitting coil when a constant voltage is applied to it.

La figure 2B est une représentation graphique du courant qui traverse la bobine émettrice pour une première valeur de la tension d'alimentation du circuit selon l'invention. Figure 2B is a graphical representation of the current flowing through the emitting coil for a first value of the supply voltage of the circuit according to the invention.

La figure 2C est une représentation graphique du courant qui traverse la bobine émettrice pour une deuxième valeur de la tension d'alimentation du circuit selon l'invention.Figure 2C is a graphical representation of the current flowing through the emitting coil for a second value of the supply voltage of the circuit according to the invention.

La figure 2D est un graphe illustrant la possibilité de régler l'intensité crête de référence.Figure 2D is a graph illustrating the possibility of adjusting the intensity reference peak.

La figure 3 donne un exemple de modulation de la portée du diagramme d'émission du champ magnétique.Figure 3 gives an example of modulation of the scope of the diagram emission of the magnetic field.

La figure 1 est une représentation schématique d'un circuit d'alimentation CA selon l'invention qui est connecté à une bobine émettrice de champ magnétique L. Ce circuit qui est connecté à une masse comprend une première borne d'entrée 1 destinée à recevoir une tension d'alimentation Ubat fournie par la batterie du véhicule et qui peut varier dans le temps, une seconde borne d'entrée 2 destinée à recevoir un signal de commande périodique carré SC, et une troisième borne d'entrée 3 pour recevoir une tension de référence Uref. En sortie, ce circuit d'alimentation comporte une borne 4 qui est destinée à appliquer une tension de sortie U à la bobine L émettrice de champ magnétique, qui est connectée d'une part à cette borne 4 et d'autre part à la masse. Il convient de noter que la tension de référence Uref est une tension constante correspondant à un courant crête de référence Iref souhaité dans la bobine émettrice L. Ce circuit d'alimentation CA comprend un transistor MOS (non représenté) qui est connecté entre la première borne d'entrée 1 et la borne de sortie 4, et qui est piloté par une tension de commande interne au circuit d'alimentation selon l'invention. De cette façon, la tension U appliquée aux bornes de la bobine émettrice L vaut Ubat lorsque le transistor est fermé.Figure 1 is a schematic representation of a supply circuit AC according to the invention which is connected to a field emitting coil magnetic L. This circuit which is connected to a ground includes a first input terminal 1 intended to receive a supply voltage Ubat provided by the vehicle battery and which can vary over time, a second input terminal 2 for receiving a control signal periodic square SC, and a third input terminal 3 for receiving a reference voltage Uref. At the output, this supply circuit includes a terminal 4 which is intended to apply an output voltage U to the coil L magnetic field transmitter, which is connected on the one hand to this terminal 4 and secondly to ground. It should be noted that the reference voltage Uref is a constant voltage corresponding to a peak current of Iref reference desired in the transmitting coil L. This supply circuit CA includes a MOS transistor (not shown) which is connected between the first input terminal 1 and output terminal 4, and which is controlled by a control voltage internal to the supply circuit according to the invention. Of this way, the voltage U applied across the emitting coil L is Ubat when the transistor is closed.

La figure 2A qui est une figure générale destinée à montrer comment s'établit un courant de charge dans une bobine fait apparaítre un graphique temps-intensité montrant une première courbe 11 d'établissement d'un courant dans une bobine de résistance R, qui pourrait être la bobine émettrice L, aux bornes de laquelle est appliquée une première tension d'alimentation constante Ubat1 à partir de l'instant t=0. De façon similaire, une seconde courbe 12 représente l'établissement du courant dans la bobine pour une seconde tension d'alimentation constante Ubat2.Figure 2A which is a general figure intended to show how a load current is established in a coil shows a graph time-intensity showing a first curve 11 for establishing a current in a coil of resistance R, which could be the coil emitter L, at the terminals of which a first voltage is applied constant supply Ubat1 from time t = 0. In the same way, a second curve 12 represents the establishment of the current in the coil for a second constant supply voltage Ubat2.

De façon plus générale, ce graphique montre que l'intensité limite du courant dans la bobine vaut Ubat/R, dans le cas où l'on applique une tension constante valant Ubat aux bornes de la bobine. D'autre part on peut voir que les courbes 11 et 12 d'établissement des courants ont des formes différentes, si bien que si l'on se fixe une intensité crête de référence, comme par exemple Iref1, inférieure à Ubat1/R et à Ubat2/R, à atteindre dans la bobine, le temps nécessaire pour atteindre cette intensité a une valeur différente Δton1, Δton2 selon que la tension constante appliquée aux bornes de la bobine est Ubat1 ou Ubat2. Quantitativement, le temps pour atteindre une intensité Iref est d'autant plus long que la tension Ubat appliquée est faible.More generally, this graph shows that the limiting intensity of the current in the coil is Ubat / R, if we apply a constant voltage equal to Ubat across the coil. On the other hand we can see that curves 11 and 12 for establishing currents have shapes different, so if we set a reference peak intensity, like for example Iref1, lower than Ubat1 / R and Ubat2 / R, to reach in the coil, the time required to reach this intensity has a different value Δton1, Δton2 depending on whether the constant voltage applied to coil terminals is Ubat1 or Ubat2. Quantitatively, the time for reaching an Iref intensity is all the longer as the Ubat voltage applied is weak.

La figure 2B fait apparaítre un graphique montrant comment un signal de commande carré SC ayant une fréquence f est converti par le circuit d'alimentation CA selon l'invention en une tension de commande Uc pour obtenir un courant I dans la bobine émettrice L, ce courant dans la bobine émettrice ayant pour fréquence f, et pour intensité crête l'intensité crête de référence Iref1. Cette tension de commande Uc commande l'état ouvert ou fermé du transistor MOS de telle manière que celui-ci est fermé lorsque Uc est non nulle et ouvert sinon.Figure 2B shows a graph showing how a signal square command SC having a frequency f is converted by the circuit AC power supply according to the invention at a control voltage Uc for obtain a current I in the emitting coil L, this current in the coil emitter having for frequency f, and for peak intensity the peak intensity of reference Iref1. This control voltage Uc controls the open state or closed of the MOS transistor so that it is closed when Uc is non-zero and open otherwise.

Comme on peut le voir dans ce graphique, lorsque le circuit reçoit le front montant d'un carré du signal de commande, il applique aux bornes de la bobine émettrice L la tension Ubat1 pendant un temps Δton1 correspondant à la durée nécessaire pour que le courant dans la bobine émettrice atteigne la valeur Iref1, puis, pendant un intervalle de temps Δtoff1, la tension Ubat1 n'est plus appliquée aux bornes de la bobine émettrice de manière à ce que le courant décroisse dans celle-ci. Ainsi un signal de commande périodique SC de fréquence f est converti en un courant I dans la bobine émettrice, de fréquence f et dont l'intensité crête vaut Iref1.As we can see in this graph, when the circuit receives the front amount of a square of the control signal it applies across the emitting coil L the voltage Ubat1 for a corresponding time Δton1 the time required for the current in the emitting coil to reach the value Iref1, then, during a time interval Δtoff1, the voltage Ubat1 is no longer applied across the emitting coil so that the current decreases in it. Thus a periodic command signal SC of frequency f is converted into a current I in the emitting coil, of frequency f and whose peak intensity is Iref1.

Dans la figure 2C, qui est un graphique représentant les mêmes signaux que ceux de la figure 2B, pour le cas où la tension d'alimentation vaut non plus Ubat1 mais Ubat2, avec Ubat2 < Ubat1, on peut voir que le temps ▵ton2 nécessaire pour que le courant dans la bobine émettrice L atteigne la valeur Iref1 est supérieur au temps ▵ton1 qui apparaít dans la figure 2B. Ainsi, le circuit d'alimentation selon l'invention est capable de convertir un signal de commande SC en un courant I dans la bobine émettrice L ayant une intensité crête valant Iref1 indépendamment des variations de la tension d'alimentation fournie par la batterie du véhicule.In Figure 2C, which is a graph showing the same signals than those of FIG. 2B, for the case where the supply voltage is worth no more Ubat1 but Ubat2, with Ubat2 <Ubat1, we can see that time ▵ton2 necessary for the current in the transmitting coil L to reach the value Iref1 is greater than the time ▵ton1 which appears in Figure 2B. Thus, the supply circuit according to the invention is capable of converting a control signal SC at a current I in the emitting coil L having a peak intensity equal to Iref1 regardless of variations in voltage from the vehicle battery.

D'une façon plus générale, le signal de commande carré SC est converti en une tension de commande périodique d'allure rectangulaire Uc ayant un rapport cyclique r adapté'pour que la durée ▵ton pendant laquelle la tension de la batterie Ubat est appliquée aux bornes de la bobine émettrice corresponde à la durée nécessaire pour que le courant dans la bobine émettrice atteigne la valeur Iref. Ainsi, le rapport cyclique r qui vaut r = Δton / (Δton + Δtoff) est calculé à partir de Δton pour respecter la condition Δton + Δtoff = p dans laquelle p désigne la période du signal de commande (p = 1 / 2πf).More generally, the square control signal SC is converted in a periodic control voltage of rectangular shape Uc having a duty cycle r suitable for the duration ▵ton during which the voltage Ubat battery is applied across the emitting coil corresponds to the time required for the current in the coil transmitter reaches the Iref value. Thus, the duty cycle r which is equal to r = Δton / (Δton + Δtoff) is calculated from Δton to comply with the Δton + condition Δtoff = p in which p denotes the period of the control signal (p = 1 / 2πf).

Le temps Δton est établi en fonction de la tension d'alimentation Ubat, de la résistance R et de l'inductance L de la bobine émettrice, et enfin du courant crête Iref souhaité dans la bobine émettrice. Pour une bobine émettrice ayant une inductance L et une résistance R, le temps de charge ▵ton nécessaire pour atteindre une intensité Iref sous une tension d'alimentation Ubat peut être approximé avec la relation : ▵ton = -(L / R).In(1-(R.Iref / Ubat))    où In désigne la fonction Logarithme Népérien.The time Δton is established as a function of the supply voltage Ubat, of the resistance R and of the inductance L of the transmitting coil, and finally of the peak current Iref desired in the transmitting coil. For a transmitting coil having an inductance L and a resistance R, the charge time ▵ton necessary to reach an intensity Iref under a supply voltage Ubat can be approximated with the relation: ▵ton = - (L / R) .In (1- (R.Iref / Ubat)) where In denotes the Natural Logarithm function.

Dans la figure 2D, qui est un graphique représentant les mêmes signaux que ceux des figures 2B et 2C, pour le cas où la tension d'alimentation vaut Ubat1 et où le courant de référence vaut non plus Iref1 mais Iref2, avec Iref2 < Iref1, on peut voir que le circuit d'alimentation selon l'invention est capable de convertir un signal de commande en un courant dans la bobine émettrice ayant une intensité crête valant Iref2. Ainsi, le circuit d'alimentation selon l'invention interprète la tension Uref pour en déduire le courant crête de référence Iref, pour en déduire le rapport cyclique r correspondant. Comme dans les cas précédents décrits par les figures 2A, 2B, et 2C, le circuit d'alimentation ajuste le rapport cyclique de la tension de commande Uc pour que le courant crête dans la bobine émettrice ait la valeur souhaitée.In Figure 2D, which is a graph representing the same signals than those of FIGS. 2B and 2C, for the case where the supply voltage is worth Ubat1 and where the reference current is no longer Iref1 but Iref2, with Iref2 <Iref1, it can be seen that the supply circuit according to the invention is capable convert a control signal into a current in the emitting coil having a peak intensity equal to Iref2. Thus, the supply circuit according to the invention interprets the voltage Uref to deduce therefrom the peak current of reference Iref, to deduce the corresponding duty cycle r from it. As in the previous cases described by FIGS. 2A, 2B, and 2C, the circuit supply adjusts the duty cycle of the control voltage Uc for that the peak current in the emitting coil has the desired value.

Le circuit d'alimentation selon l'invention pourra comprendre par exemple un microcontrôleur pour calculer la valeur Δton en fonction de la relation (*) ou d'une expression approchée de celle-ci, et commander par exemple l'ouverture et la fermeture d'un transistor MOS connecté entre la borne d'entrée 1 et la borne de sortie 4. Le microcontrôleur pourra encore choisir la valeur de Δton dans une table de données qu'il contient. Ainsi, le transistor MOS sera fermé lorsque la tension de commande Uc sera non nulle, pendant la durée Δton, pour que le courant I dans la bobine L atteigne la valeur du courant crête Iref, puis le transistor MOS sera ouvert pendant la durée Δtoff pour que le courant dans la bobine émettrice décroisse jusqu'à ce que la tension de commande Uc soit à nouveau non nulle. D'une manière générale, une évaluation de la tension d'alimentation Ubat de la batterie du véhicule est réalisée pour calculer la valeur Δton et cette même valeur est ensuite utilisée pendant toute la durée d'un échange de données entre le dispositif de reconnaissance et l'organe d'identification.The supply circuit according to the invention may include, for example a microcontroller to calculate the value Δton according to the relation (*) or an approximate expression of it, and order for example opening and closing of a MOS transistor connected between the terminal input 1 and output terminal 4. The microcontroller can still choose the value of Δton in a data table it contains. So the MOS transistor will be closed when the control voltage Uc is no zero, during the duration Δton, so that the current I in the coil L reaches the value of the peak current Iref, then the MOS transistor will be open during the duration Δtoff so that the current in the emitting coil decreases until the control voltage Uc is again no nothing. Generally speaking, an evaluation of the supply voltage Vehicle battery Ubat is performed to calculate the Δton value and this same value is then used for the duration of an exchange data between the recognition device and the identification unit.

Dans un autre mode de réalisation, la valeur Δton pourra être générée par un circuit électronique spécialisé.In another embodiment, the value Δton could be generated by a specialized electronic circuit.

Pour ce qui est de la forme du signal correspondant au courant dans la bobine émettrice, il convient de noter que celui-ci pourra prendre la forme d'un signal triangulaire ayant une allure proche de celle qui est donnée dans les figures 2A, 2B, 2C et 2D, compte tenu des caractéristiques propres aux composants électroniques utilisés.As for the form of the signal corresponding to the current in the emitting coil, it should be noted that this may take the form of a triangular signal having a shape close to that given in FIGS. 2A, 2B, 2C and 2D, taking into account the characteristics specific to electronic components used.

L'émission au niveau du dispositif de reconnaissance dont le but est généralement de transmettre un train de bits en direction d'un organe d'identification pourra par exemple être réalisée selon les fréquences de 125 kHz et 133 kHz. Dans ce cas, il est par exemple convenu que l'émission d'un signal 125 kHz pendant 1 ms correspond à l'émission d'un bit valant 1, et que l'émission d'un signal 133 kHz pendant 1ms correspond à l'émission d'un bit valant 0, ce qui permet à l'organe d'identification de reconstituer le train de bits émis par le dispositif de reconnaissance en analysant le signal reçu. De cette façon, pour émettre le train de bit 1011, le dispositif de reconnaissance va émettre à 125 kHz pendant 1 ms, puis à 133 kHz pendant 1 ms, puis à 125 kHz pendant 2 ms.The emission at the level of the recognition device whose purpose is generally to transmit a bit stream towards an organ identification could for example be performed at frequencies of 125 kHz and 133 kHz. In this case, it is for example agreed that the issuance of a 125 kHz signal for 1 ms corresponds to the emission of a bit worth 1, and that the emission of a 133 kHz signal for 1 ms corresponds to the emission a bit equal to 0, which allows the identification unit to reconstruct the bit stream emitted by the recognizer by analyzing the signal received. In this way, to transmit bit stream 1011, the recognition will transmit at 125 kHz for 1 ms, then at 133 kHz for 1 ms, then at 125 kHz for 2 ms.

La figure 3 qui est une illustration du diagramme du champ magnétique émis par une bobine émettrice comprend une bobine émettrice L et des diagrammes d'émission D1 et D2 correspondant par exemple aux intensités crêtes de référence Iref1 et Iref2. En effet, le diagramme de rayonnement d'un champ magnétique émis par une bobine émettrice est proportionnel au courant qui traverse la bobine. Ainsi, la portée du champ émis est donc proportionnelle à la valeur Iref de l'intensité crête de référence choisie. Enfin, compte tenu du fait que la bobine émettrice de champ magnétique est généralement placée à proximité de la caisse métallique du véhicule, des phénomènes capacitifs qui apparaissent entre la bobine émettrice et la tôle peuvent donner lieu à l'émission d'un champ électrique de même fréquence que le champ magnétique émis, si bien que le champ émis est alors un champ électromagnétique. Figure 3 which is an illustration of the magnetic field diagram emitted by a transmitting coil comprises a transmitting coil L and emission diagrams D1 and D2 corresponding for example to the intensities reference peaks Iref1 and Iref2. Indeed, the radiation diagram of a magnetic field emitted by a transmitting coil is proportional to the current flowing through the coil. So, the range of the emitted field is therefore proportional to the Iref value of the selected peak reference intensity. Finally, taking into account the fact that the magnetic field emitting coil is generally placed near the metal body of the vehicle, capacitive phenomena that appear between the emitting coil and the sheet can give rise to the emission of an electric field of the same frequency that the magnetic field emitted, so that the emitted field is then a electromagnetic field.

L'invention n'est pas uniquement réservée aux réalisations décrites ci-dessus, et pourra aussi s'appliquer à tout domaine dans lequel on souhaite alimenter une bobine émettrice pour émettre un champ magnétique selon un diagramme qui reste stable indépendamment des fluctuations de la tension d'alimentation.The invention is not only reserved for the embodiments described above, and can also be applied to any field in which one wishes supply a transmitting coil to emit a magnetic field according to a diagram which remains stable regardless of voltage fluctuations feed.

Claims (3)

Un circuit électronique destiné à alimenter une bobine émettrice de champ magnétique, ayant une première borne d'entrée (1) pour recevoir une tension d'alimentation (Ubat), une seconde borne d'entrée (2) pour recevoir un signal de commande périodique (SC), une borne de sortie (4) pour appliquer une tension de sortie (U) aux bornes de ladite bobine émettrice (L), de manière à convertir ledit signal de commande périodique en un champ magnétique périodique émis par la bobine, caractérisé en ce que, ladite tension de sortie (U) est un signal périodique ayant une période identique à la période du signal de commande (SC) et un rapport cyclique qui dépend de la tension d'alimentation (Ubat), pour qu'un courant circulant dans la bobine ait une intensité crête correspondant à une intensité crête de référence.An electronic circuit for supplying a magnetic field emitting coil, having a first input terminal (1) for receiving a supply voltage (Ubat), a second input terminal (2) for receiving a periodic control signal (SC), an output terminal (4) for applying an output voltage (U) across the terminals of said emitting coil (L), so as to convert said periodic control signal into a periodic magnetic field emitted by the coil, characterized in that said output voltage (U) is a periodic signal having a period identical to the period of the control signal (SC) and a duty cycle which depends on the supply voltage (Ubat), so that a current circulating in the coil has a peak intensity corresponding to a reference peak intensity. Un circuit électrique selon la revendication 1 dans lequel l'intensité crête de référence est réglable pour modifier volontairement la portée (D1, D2) du champ magnétique émis.An electrical circuit according to claim 1 in which the peak intensity is adjustable to voluntarily modify the range (D1, D2) of the magnetic field emitted. Un système dit mains libres destiné à commander le déverrouillage d'ouvrants d'un véhicule et/ou à autoriser le démarrage d'un véhicule comprenant un circuit électronique selon la revendication 1 ou 2, dans lequel la tension d'alimentation est fournie par une batterie du véhicule.A hands-free system for controlling unlocking opening a vehicle and / or authorizing the starting of a vehicle comprising an electronic circuit according to claim 1 or 2, in which the supply voltage is supplied by a vehicle battery.
EP01400960A 2000-04-19 2001-04-13 Antenna drive circuit with constant peak current Expired - Lifetime EP1148191B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0005043 2000-04-19
FR0005043A FR2808137B1 (en) 2000-04-19 2000-04-19 CONSTANT CURRENT ANTENNA PILOT

Publications (2)

Publication Number Publication Date
EP1148191A1 true EP1148191A1 (en) 2001-10-24
EP1148191B1 EP1148191B1 (en) 2005-08-17

Family

ID=8849418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400960A Expired - Lifetime EP1148191B1 (en) 2000-04-19 2001-04-13 Antenna drive circuit with constant peak current

Country Status (5)

Country Link
US (1) US6420837B2 (en)
EP (1) EP1148191B1 (en)
DE (1) DE60112645T2 (en)
ES (1) ES2247032T3 (en)
FR (1) FR2808137B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097748A1 (en) * 2003-04-25 2004-11-11 Conti Temic Microelectronic Gmbh Method for operating a transmitting device and working transmitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808138B1 (en) * 2000-04-19 2002-06-07 Valeo Electronique RLC CIRCUIT MAGNETIC FIELD TRANSMISSION ANTENNA PILOT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316775A (en) * 1996-08-30 1998-03-04 Caterpillar Inc Pulse width modulation driver having peak current control
US5831420A (en) * 1997-04-28 1998-11-03 Motorola, Inc. Pulse load averaging power converter
US5914849A (en) * 1994-04-26 1999-06-22 Kilovac Corporation DC actuator control circuit with voltage compensation, current control and fast dropout period
US5969515A (en) * 1998-02-27 1999-10-19 Motorola, Inc. Apparatus and method for digital control of a power converter current
US6016260A (en) * 1997-12-10 2000-01-18 U.S. Philips Corporation Switched-mode power supply with current and voltage limitation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167094A (en) * 1996-10-15 2000-12-26 Siemens Aktiengesellschaft Data transmission circuit having a station and a response circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914849A (en) * 1994-04-26 1999-06-22 Kilovac Corporation DC actuator control circuit with voltage compensation, current control and fast dropout period
GB2316775A (en) * 1996-08-30 1998-03-04 Caterpillar Inc Pulse width modulation driver having peak current control
US5831420A (en) * 1997-04-28 1998-11-03 Motorola, Inc. Pulse load averaging power converter
US6016260A (en) * 1997-12-10 2000-01-18 U.S. Philips Corporation Switched-mode power supply with current and voltage limitation
US5969515A (en) * 1998-02-27 1999-10-19 Motorola, Inc. Apparatus and method for digital control of a power converter current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097748A1 (en) * 2003-04-25 2004-11-11 Conti Temic Microelectronic Gmbh Method for operating a transmitting device and working transmitting device

Also Published As

Publication number Publication date
FR2808137B1 (en) 2002-06-07
ES2247032T3 (en) 2006-03-01
US20020003500A1 (en) 2002-01-10
FR2808137A1 (en) 2001-10-26
US6420837B2 (en) 2002-07-16
EP1148191B1 (en) 2005-08-17
DE60112645T2 (en) 2006-06-08
DE60112645D1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
WO2002009021A1 (en) High sensitivity reader for passive transponders
EP1148192B1 (en) Drive circuit for magnetic field-transmitting antenna with RLC circuit
EP0762147B1 (en) Universal inductive proximity detector
FR2804557A1 (en) ADAPTING THE TRANSMISSION POWER OF AN ELECTROMAGNETIC TRANSPONDER DRIVE
EP2267647A2 (en) Authentication of a terminal by an electromagnetic transponder
EP1610257A1 (en) Impedance matching in reader of electromagnetic transponder
EP1148191B1 (en) Antenna drive circuit with constant peak current
WO1994018520A1 (en) Mine clearance device
EP0010010B1 (en) Threshold device for distinguishing between black and white on a document and facsimile transmitter comprising such a device
EP1071213A1 (en) Control of a MOS power transistor
FR2776781A1 (en) DEVICE FOR CONTROLLING THE IMPEDANCE REDUCED ON THE ANTENNA OF AN ELECTROMAGNETIC LABEL
FR2828286A1 (en) Diagnosis device for checking the correct connection and operation of an antenna in a motor vehicle access chip card comprises a simple capacitor circuit arrangement
FR2765045A1 (en) DEVICE FOR ADJUSTING THE CHARGE CURRENT OF A STORAGE CAPACITOR
EP0891597B1 (en) Portable electronic object for remote information exchange
EP1309938B1 (en) Antenna generating an electromagnetic field for transponder
EP0851563B1 (en) Switch mode power supply device with controlled electromagnetic pertubation
FR2654880A1 (en) &#34;Intelligent&#34; power integrated circuit of the MOS type, for controlling the power supply to an electrical load
EP1039408A1 (en) Remote power feeding for an electromagnetic transponder
FR2827095A1 (en) Low voltage DC power supply includes transformer with single secondary producing range of voltages by control of primary conduction times
FR2706698A1 (en) Electronic device for matching the RMS power supply voltage to the terminals of a resistive load
EP3296759A1 (en) Radar transmitter provided with at least one microwave tube
EP1045524A1 (en) Low power radio receiver
FR3004032A1 (en) SURROUND FIELD SENSOR DEVICE AND METHOD OF ADAPTING THE DYNAMIC RANGE OF AN AMPLIFIER-RECEIVER
EP1739817A1 (en) Charger for transmission of electric power to a portable device
FR2786630A1 (en) RESONANCE CIRCUIT, AND OSCILLATING CIRCUIT USING THE RESONANCE CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020424

AKX Designation fees paid

Free format text: DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SECURITE HABITACLE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SECURITE HABITACLE S.A.S.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60112645

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2247032

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170508

Year of fee payment: 17

Ref country code: IT

Payment date: 20170411

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200408

Year of fee payment: 20

Ref country code: FR

Payment date: 20200430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200427

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60112645

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210412