EP1143416B1 - Geräuschunterdrückung im Zeitbereich - Google Patents
Geräuschunterdrückung im Zeitbereich Download PDFInfo
- Publication number
- EP1143416B1 EP1143416B1 EP01440083A EP01440083A EP1143416B1 EP 1143416 B1 EP1143416 B1 EP 1143416B1 EP 01440083 A EP01440083 A EP 01440083A EP 01440083 A EP01440083 A EP 01440083A EP 1143416 B1 EP1143416 B1 EP 1143416B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- frequency
- noise
- frequency spectrum
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L2021/02168—Noise filtering characterised by the method used for estimating noise the estimation exclusively taking place during speech pauses
Definitions
- the call partners are not in the same acoustic environment and therefore are not aware of the acoustic situation at the other party's location. Therefore, a problem arises more intensively when one of the partners is forced to speak very loudly due to its acoustic environment, while the other partner generates low amplitude voice signals in a quiet acoustic environment.
- the terminals are designed so small that an immediate spatial proximity between speaker and microphone unavoidable is. Due to the direct sound transmission, in particular by structure-borne noise between speaker and microphone, the acoustic interference signal come in the same order of magnitude as the useful signal of the speaker on respective terminal or this even exceed in amplitude. Such a thing Noise problem also occurs with several spatially adjacent Terminals, for example in an office or conference room with many Telephone connections in a significant extent, since a coupling of every loudspeaker signal is sent to each microphone.
- noise such as unwanted background noise (Street noise, factory noise, office noise, canteen noise, aircraft noise, etc.) to reduce or completely suppress.
- the degree of noise reduction according to a fixed predetermined transfer function has first the property of voice signals with a specific (pre-set) "normal speech signal level" (possibly called normal volume) practical unchanged from its input to the output. But now once the input signal is too loud, e.g. because a speaker is too close Microphone comes, so limits a dynamic compressor to the output level almost the same value as normally, adding the current gain in the Kompander is linearly lowered with increasing input volume. By this property remains the language at the output of the compander system about the same - no matter how strong the input volume fluctuates.
- normal speech signal level possibly called normal volume
- a signal with a level that is smaller than the Normal level is given to the input of the compander, so will that Signal is additionally attenuated by the gain being back-regulated to If possible, transmit background noise only attenuated.
- the Kompander thus consists of two sub-functions, a compressor for Speech signal levels greater than or equal to a normal level and one Expander for signal levels lower than the normal level.
- the noise measured in the speech pauses and in the form of a Power density spectrum continuously stored in a memory.
- the power density spectrum is won over a Fourier transformation.
- the stored sound spectrum "as the best current estimate "subtracted from the current disturbed speech spectrum, then transformed back into the time domain to create in this way a To obtain noise reduction for the disturbed signal.
- a disadvantage of such methods is the complex determination of this acoustic Masking threshold and the execution of all with this procedure connected arithmetic operations.
- Another disadvantage of the spectral subtraction is that by the process of a basically inaccurate spectral noise estimation and subsequent subtraction also errors in the Output signal occur, which are noticeable as "musical tones".
- a spectral acoustic masking threshold R T (f) for the human ear is then calculated using the rules from the MPEG standard, for example.
- a filter pass curve H (f) is calculated according to a simple rule, designed to let the essential spectral parts of the speech pass as unaltered as possible and reduce the spectral parts of the noise as much as possible.
- Object of the present invention is in contrast, a method possible low complexity with the features described above, in a technically inexpensive way a noise reduction or noise suppression is achieved, and at the original signal remains untouched until the actual noise deduction.
- the procedure should be simple, especially with less computational effort as far as possible, one for the human ear possible pleasant overall acoustic impression, depending on the taste can be adapted to individual needs.
- the new method completely independent of the requirements for a voice signal processing can be performed and thus a simple optimization to the requirements of spectral processing of noise signals enable.
- the inventive method made possible by the separate replica the noise signal in the frequency domain regardless of processing the original voice signal direct deduction of the replicated Noise signal from the original, unadulterated input signal, which neither a Fourier transform nor an inverse Fourier transform is subjected. With a corresponding phase correction in the frequency domain is even a noise subtraction from the original signal with no time delay possible.
- the inventive method is less complex as the above-described known prior art methods, requires less computing power and leads to better frequency resolution.
- step (d) By separating the noise simulation from the transmission of the original signal allows the process of the invention in a particularly preferred Variant that in step (d) only a selected part of the generated Frequency spectrum used to generate the simulated noise signal becomes.
- the for carrying out the method according to the invention required computing power further minimized or the process itself be done even faster.
- a development of this variant of the method is characterized in that the selection of the for generating the simulated noise signal used part of the frequency spectrum according to criteria of psychoacoustics according to the mean values of the perceptual spectrum of the human Hearing takes place.
- the value for the sound signal to be reproduced is not only from the instantaneous power value of an original signal in speech pauses alone, but also from a weighted spectral course of the corresponding signal determined and in total over the function thus gained a hearing-correct, i.e. Achieved a psychoacoustically pleasing-sounding noise reduction.
- the Selection of the signal used to generate the simulated noise signal Part of the frequency spectrum such that only discrete frequencies of the Spectrum are considered, and that the distance of the discrete frequencies steadily larger in the direction of higher frequencies, preferably after one logarithmic function is selected. This is the frequency resolution to the Perception of the human ear better adapted.
- Step (c) or before step (d) takes place.
- step (b) the frequency spectrum in step (b) the branched TK signal only in a predetermined frequency range is produced. If the source of interference only a limited frequency spectrum can, in turn, with this measure, considerable computing power be saved. For example, in motor vehicles with sources of interference in a frequency range only up to a maximum of 1 KHz to be expected, since the Interference signal mainly due to low-frequency sound generation (engine, Gear, rolling noise, etc.) is formed.
- step (b) a discrete Fourier transform or an inverse discrete Fourier transform is applied, wherein the incoming TK signal with discrete time amplitude values a sampling frequency f T are sampled.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- step (b) broadband interferers can be processed particularly economically become.
- an embodiment is selected in which only that part of the generated frequency spectrum which is below half the sampling frequency f T / 2. This in turn can be achieved in savings in computing power, but also in storage space.
- step (c) a frequency spectrum is buffered, the by averaging the frequency spectrum currently generated in step (b) previously generated frequency spectra is obtained.
- psychoacoustic Weighting the frequency dependent settling times to the adapted to human hearing. This achieves an optimization of the system in terms of naturalness, stability and adaptation time.
- step (e) according to predetermined criteria with a weighting factor a ⁇ 1 weighted simulated noise signal from the currently arriving one TK signal deducted.
- the weighting factor a is used as one of Faults of the TK system dependent constant value selected. This makes possible an inexpensive and simple optimization of the invention Procedure to the errors of the respective telecommunications system. The errors become automatic recorded, the weighting can also take place during operation.
- the weighting factor a may be determined as one after one by the user of the TK-Systems selectable quality level adjustable value can be selected.
- One such user-defined weighting factor allows an individual, custom adaptation of the method according to the invention to the individual Needs. Is the system of the invention in an existing integrated parent concept can be a user-provided statistical value, such as the error probability or recognition rate used to control the weighting factor.
- the weighting factor for example also be derived from the speed or speed.
- the weighting factor a is adaptive is adapted to the current incoming TK signal.
- the adaptive weighting allows automatic optimization of noise reduction during of the operation.
- the weighting factor may vary from statistical values such as probability of error, Mean value, state changes, etc. are derived. With the adaptive weighting are particularly easy and quick adjustments of the inventive method to individual circumstances in the acoustic environment of the telecommunications terminal possible.
- a further advantageous variant of the method according to the invention is characterized characterized in that the simulated noise signal generated in step (d) before step (e) a synthetic noise signal is added.
- the Admixture of an artificial noise signal with constant power density can mask dynamic, non-stationary interferers in the output signal serve.
- a further variant of the method according to the invention provides that the currently arriving TK signal before step (e) of a defined time delay is subjected, which is preferably designed so that the phase angle of the incoming TK signal with the phase position of the simulated noise signal matches before withdrawal.
- the currently arriving TK signal is fed without delay to the trigger in step (e), and that the simulated noise signal in its phase position before step (e) to the phase angle of the currently arriving TK signal is adjusted.
- the Phase angle of the reproduced noise signal in the frequency range before Corrected inverse transformation the subtraction from the instantaneous signal take place in the time domain. Disturbing signal delays can thus be dispensed with. These inevitably occur in all procedures in which the useful signal (Language) makes the detour via two transformations, such as in the known spectral subtraction discussed above.
- the noise reproduction also includes a echo reproduction that with a connected to the remote TK subscriber signal is connected.
- This process variant can be improved by the fact that the control the reduction of noise signals and the reduction of echo signals done separately.
- the scope of the present invention also includes a server line, a Processor assembly and a gate array assembly to support the method described above and a computer program to carry out the process.
- the method can be used both as a hardware circuit, as well as in the form of a computer program.
- software programming for powerful DSP's preferred because new knowledge and additional functions easier by a Modification of the software can be implemented on an existing hardware basis are.
- methods can also be used as hardware components, for example in TK terminals or telephone systems are implemented.
- Fig. 1 it is shown how from an incoming original signal x, which contains a voice portion s and a noise n, on the one hand in a device 1, a noise signal y n in the frequency domain is simulated and on the other hand, the original signal x s + n separated from the noise simulation of a Noise subtraction is supplied, wherein optionally a time delay time delay ⁇ can be made.
- the noise-reduced signal y s is then forwarded in the TK system.
- a simple embodiment is shown in which in the device 1 a for noise simulation a virtually always required speech pause detector 2 is provided, which determines when the incoming Signal may contain speech signals or when there is a speech break.
- the incoming TK signal of a Fourier transform FT subjected to generating a Frequenzsprektrums and each of them resulting frequency spectrum stored in a buffer 3.
- the time sequentially stored frequency spectra can help with a means 4 are averaged.
- the speech pause detector 2 determines that a speech pause is over is and in the incoming original signal and speech signals can be present, becomes the last stored in the buffer memory 3 frequency spectrum (possibly averaged with previously recorded spectra) of an inverse Fourier transformation IFT subjected and in a Sub Volumeglied 5 of Original signal, which was possibly subjected to a time delay ⁇ deducted, to get a noise-free or at least noise-reduced signal.
- FIG. 4 shows a further embodiment of the invention, in which the original signal x s + n, which is initially received in the time domain, is processed block-by-block in the device 1 b for noise simulation.
- the time signal before the transformation into the frequency range is subjected to a windowing (eg according to Hamming) in a correspondingly upstream device 4 'or 4 "In order to compensate for the errors caused by the windowing during the inverse transformation, in addition to the processing in a first Path is made parallel processing in another path with the same fenestration, wherein only the signal is offset by half the window length and otherwise the simulated noise signal is calculated by the same means, whereby a compensation of the errors generated by the fenestration can be achieved.
- a windowing eg according to Hamming
- the windowing is performed in a device 4 ', then the time signal is subjected to a fast Fourier transformation FFT and the resulting spectrum is stored in an intermediate memory 3'.
- FFT fast Fourier transformation
- An inverse fast Fourier transformation IFFT is connected to the latches 3 ', 3 ", and the resulting spectra in the time domain are combined to form a simulated noise signal Yn in an overlap device 6.
- the simulated noise signal in the subtraction element 5 is converted by a optionally subtracted by a time ⁇ time-offset original signal x s + n in order to obtain the noise-corrected output signal y S.
- the subtraction of the noise signal from the original signal in the subtraction element 5 can be phase-adjusted.
- FIG. 5 A further embodiment is shown in Fig. 5, where the branched incoming TK signal x s + n + e in addition to speech and noise signals also contains echo signals.
- a device 1c for noise and echo replica also an echo signal e is input, which is further treated in a processing path parallel to the noise training path.
- the incoming original signal X s + n + e is first subjected to a windowing in a device 4a, then a fast Fourier transform FFT and the obtained frequency spectrum are buffered in a buffer 3a.
- the echo signal e in a device 4b is also subjected to a windowing and then Fourier-transformed.
- the frequency spectra of both paths are buffered in a buffer 3b and possibly subjected to averaging. Thereafter, a fast inverse Fourier transformation IFFT is performed separately on both paths.
- the simulated noise signal and the simulated echo signal are overlapped into a total signal y n + e to be subtracted, which is subtracted in the subtraction device 5 from the original signal x s + n + e delayed or delayed by a time ⁇ in order to record the noise and echo-reduced TK signal y s .
- FIGS. 6a to 6c show examples of noise signals calculated in the frequency domain according to the method of the invention.
- the noise signal to be reproduced has been obtained from a fast Fourier transformation FFT.
- the typical mirror symmetry can be seen around half the frequency value f s / 2.
- Fig. 6c shows the result of using a modified discrete Fourier transform with higher resolution, again processing only half of the frequency spectrum up to the frequency f s / 2.
Landscapes
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Noise Elimination (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Mobile Radio Communication Systems (AREA)
- Details Of Television Scanning (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Plural Heterocyclic Compounds (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
Während einer natürlichen Kommunikation zwischen Menschen passt man in der Regel die Amplitude der gesprochenen Sprache automatisch an die akustische Umgebung an. Bei einer Sprachkommunikation zwischen entfernten Orten jedoch befinden sich die Gesprächspartner nicht im selben akustischen Umfeld und sind sich daher jeweils nicht der akustischen Situation am Ort des anderen Gesprächspartners bewusst. Verstärkt tritt daher ein Problem auf, wenn einer der Partner aufgrund seiner akustischen Umgebung gezwungen ist, sehr laut zu sprechen, während der andere Partner in einer leisen akustischen Umgebung Sprachsignale mit geringer Amplitude erzeugt.
- Fig. 1
- ein stark schematisiertes Diagramm der Funktionsweise einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
- Fig. 2
- eine detailliertere schematische Darstellung einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
- Fig. 3
- ein Schema für ein spektrales Subtraktionsverfahren nach dem Stand der Technik;
- Fig. 4
- eine Ausführungsform der Erfindung mit schneller Fourier-Transformation und schneller Rücktransformation sowie blockweise überlappender Bearbeitung des eingegebenen Zeitsignals im Frequenzbereich;
- Fig. 5
- Ein Schema einer Ausführungsform mit gleichzeitiger Echo-reduktion;
- Fig. 6a
- ein Beispiel eines mit FFT berechneten Geräuschsignals im Frequenzraum;
- Fig. 6b
- ein mit einer diskreten Fourier-Transformation und nur bis fs/2 berechneten Geräuschsignals; und
- Fig. 6c
- ein Geräuschsignal im Frequenzbereich bis fs/2 als Ergebnis einer modifizierten Fourier-Transformation mit höherer Auflösung.
Claims (14)
- Verfahren zur Reduktion von Geräuschsignalen bei Telekommunikations(=TK)-Systemen für die Übertragung von akustischen Nutzsignalen, insbesondere menschlicher Sprache, mit folgenden Schritten:(a) Feststellen mittels Sprach-Pausen-Detektion, wann in der zu übertragenden Mischung aus Nutzsignalen und Störsignalen ein Sprachsignal enthalten ist oder wann eine Sprachpause vorliegt;(b) Abzweigen des ankommenden TK-Signals von Hauptsignalpfad und Anwenden einer Fourier-Transformation auf das abgezweigte TK-Signal zur Erzeugung eines Frequenzspektrums des abgezweigten TK-Signals;(c) Speichern des letzten während der letzten Sprachpause aufgenommenen Frequenzspektrums in einem Zwischenspeicher (3);(d) Anwenden einer inversen Fourier-Transformation auf das jeweils letzte aufgenommenen Frequenzspektrum zur Erzeugung eines nachgebildeten Geräuschsignals;(e) Abziehen des nachgebildeten Geräuschsignals im Zeitbereich vom aktuell ankommenden TK-Signal.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt (d) nur ein ausgewählter Teil des erzeugten Frequenzspektrums zur Erzeugung des nachgebildeten Geräuschsignals verwendet wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Auswahl des zur Erzeugung des nachgebildeten Geräuschsignals verwendeten Teils des Frequenzspektrums nach Kriterien der Psychoakustik gemäß den Mittelwerten des Wahrnehmungsspektrums des menschlichen Gehörs erfolgt.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Auswahl des zur Erzeugung des nachgebildeten Geräuschsignals verwendeten Teiles des Frequenzspektrums derart erfolgt, dass nur diskrete Frequenzen des Spektrums betrachtet werden, und dass der Abstand der diskreten Frequenzen in Richtung höherer Frequenzen stetig größer vorzugsweise nach einer logarithmischen Funktion gewählt wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der ausgewählte Teil des Frequenzspektrums in vorher festgelegte Frequenzgruppen aufgeteilt wird, und dass in jeder Frequenzgruppe nur die Frequenz bzw. das Frequenzband mit der größten Signalenergie innerhalb der Frequenzgruppe selektiert und zur Erzeugung des nachgebildeten Geräuschsignals weiterverwendet wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Selektion der Frequenz bzw. des Frequenzbandes mit der größten Signalenergie innerhalb der Frequenzgruppe vor Schritt (c) bzw. vor Schritt (d) erfolgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt (b) das Frequenzspektrum des abgezweigten TK-Signals nur in einem vorgegebenen Frequenzbereich erzeugt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt (c) ein Frequenzspektrum zwischengespeichert wird, das durch eine Mittelung des aktuell in Schritt (b) erzeugten Frequenzspektrums mit vorher erzeugten Frequenzspektren gewonnen wird.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Mittelung mit unterschiedlicher relativer Wichtung des aktuell erzeugten Frequenzspektrums in unterschiedlichen Frequenzbereichen erfolgt.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Wichtung nach Kriterien der Psychoakustik gemäß den Mittelwerten des Wahrnehmungsspektrums des menschlichen Gehörs erfolgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt (e) ein nach vorgegebenen Kriterien mit einem Wichtungsfaktor a < 1 gewichtetes nachgebildetes Geräuschsignal vom vom aktuell ankommenden TK-Signal abgezogen wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem in Schritt (d) erzeugten nachgebildeten Geräuschsignal vor Schritt (e) ein synthetisches Geräuschsignal beigemischt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aktuell ankommende TK-Signal vor Schritt (e) einer definierten Zeitverzögerung unterworfen wird, die vorzugsweise so ausgelegt ist, dass die Phasenlage des ankommenden TK-Signals mit der Phasenlage des nachgebildeten Geräuschsignals vor dem Abzug übereinstimmt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aktuell ankommende TK-Signal unverzögert dem Abzug in Schritt (e) zugeführt wird, und dass das nachgebildete Geräuschsignal in seiner Phasenlage vor Schritt (e) an die Phasenlage des aktuell ankommenden TK-Signals angepasst wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10017646 | 2000-04-08 | ||
DE10017646A DE10017646A1 (de) | 2000-04-08 | 2000-04-08 | Geräuschunterdrückung im Zeitbereich |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1143416A2 EP1143416A2 (de) | 2001-10-10 |
EP1143416A3 EP1143416A3 (de) | 2004-04-21 |
EP1143416B1 true EP1143416B1 (de) | 2005-11-16 |
Family
ID=7638139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01440083A Expired - Lifetime EP1143416B1 (de) | 2000-04-08 | 2001-03-22 | Geräuschunterdrückung im Zeitbereich |
Country Status (8)
Country | Link |
---|---|
US (1) | US6801889B2 (de) |
EP (1) | EP1143416B1 (de) |
JP (1) | JP2001350498A (de) |
CN (1) | CN1225104C (de) |
AT (1) | ATE310305T1 (de) |
AU (1) | AU3336101A (de) |
DE (2) | DE10017646A1 (de) |
HU (1) | HUP0101288A2 (de) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7117149B1 (en) * | 1999-08-30 | 2006-10-03 | Harman Becker Automotive Systems-Wavemakers, Inc. | Sound source classification |
US8019091B2 (en) | 2000-07-19 | 2011-09-13 | Aliphcom, Inc. | Voice activity detector (VAD) -based multiple-microphone acoustic noise suppression |
US20030179888A1 (en) * | 2002-03-05 | 2003-09-25 | Burnett Gregory C. | Voice activity detection (VAD) devices and methods for use with noise suppression systems |
US9066186B2 (en) | 2003-01-30 | 2015-06-23 | Aliphcom | Light-based detection for acoustic applications |
US8271279B2 (en) | 2003-02-21 | 2012-09-18 | Qnx Software Systems Limited | Signature noise removal |
US7895036B2 (en) * | 2003-02-21 | 2011-02-22 | Qnx Software Systems Co. | System for suppressing wind noise |
US7885420B2 (en) * | 2003-02-21 | 2011-02-08 | Qnx Software Systems Co. | Wind noise suppression system |
US7725315B2 (en) * | 2003-02-21 | 2010-05-25 | Qnx Software Systems (Wavemakers), Inc. | Minimization of transient noises in a voice signal |
US8326621B2 (en) | 2003-02-21 | 2012-12-04 | Qnx Software Systems Limited | Repetitive transient noise removal |
US7949522B2 (en) * | 2003-02-21 | 2011-05-24 | Qnx Software Systems Co. | System for suppressing rain noise |
US8073689B2 (en) * | 2003-02-21 | 2011-12-06 | Qnx Software Systems Co. | Repetitive transient noise removal |
US7340397B2 (en) * | 2003-03-03 | 2008-03-04 | International Business Machines Corporation | Speech recognition optimization tool |
US9099094B2 (en) | 2003-03-27 | 2015-08-04 | Aliphcom | Microphone array with rear venting |
DE10330286B4 (de) * | 2003-07-04 | 2005-08-18 | Infineon Technologies Ag | Verfahren und Vorrichtung zum Übertragen von Sprachsignalen über ein Datenübertragungsnetzwerk |
WO2005098820A1 (ja) * | 2004-03-31 | 2005-10-20 | Pioneer Corporation | 音声認識装置及び音声認識方法 |
US20050254629A1 (en) * | 2004-05-14 | 2005-11-17 | China Zhu X | Measurement noise reduction for signal quality evaluation |
DE102004036154B3 (de) * | 2004-07-26 | 2005-12-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur robusten Klassifizierung von Audiosignalen sowie Verfahren zu Einrichtung und Betrieb einer Audiosignal-Datenbank sowie Computer-Programm |
US7680652B2 (en) | 2004-10-26 | 2010-03-16 | Qnx Software Systems (Wavemakers), Inc. | Periodic signal enhancement system |
US8170879B2 (en) | 2004-10-26 | 2012-05-01 | Qnx Software Systems Limited | Periodic signal enhancement system |
US8543390B2 (en) | 2004-10-26 | 2013-09-24 | Qnx Software Systems Limited | Multi-channel periodic signal enhancement system |
US7716046B2 (en) * | 2004-10-26 | 2010-05-11 | Qnx Software Systems (Wavemakers), Inc. | Advanced periodic signal enhancement |
US7610196B2 (en) * | 2004-10-26 | 2009-10-27 | Qnx Software Systems (Wavemakers), Inc. | Periodic signal enhancement system |
US8306821B2 (en) * | 2004-10-26 | 2012-11-06 | Qnx Software Systems Limited | Sub-band periodic signal enhancement system |
US7949520B2 (en) | 2004-10-26 | 2011-05-24 | QNX Software Sytems Co. | Adaptive filter pitch extraction |
US8284947B2 (en) * | 2004-12-01 | 2012-10-09 | Qnx Software Systems Limited | Reverberation estimation and suppression system |
US8027833B2 (en) | 2005-05-09 | 2011-09-27 | Qnx Software Systems Co. | System for suppressing passing tire hiss |
US7492814B1 (en) | 2005-06-09 | 2009-02-17 | The U.S. Government As Represented By The Director Of The National Security Agency | Method of removing noise and interference from signal using peak picking |
US7676046B1 (en) | 2005-06-09 | 2010-03-09 | The United States Of America As Represented By The Director Of The National Security Agency | Method of removing noise and interference from signal |
US8311819B2 (en) * | 2005-06-15 | 2012-11-13 | Qnx Software Systems Limited | System for detecting speech with background voice estimates and noise estimates |
US8170875B2 (en) | 2005-06-15 | 2012-05-01 | Qnx Software Systems Limited | Speech end-pointer |
US8233636B2 (en) | 2005-09-02 | 2012-07-31 | Nec Corporation | Method, apparatus, and computer program for suppressing noise |
US7599430B1 (en) * | 2006-02-10 | 2009-10-06 | Xilinx, Inc. | Fading channel modeling |
FR2899372B1 (fr) * | 2006-04-03 | 2008-07-18 | Adeunis Rf Sa | Systeme de communication audio sans fil |
US7844453B2 (en) | 2006-05-12 | 2010-11-30 | Qnx Software Systems Co. | Robust noise estimation |
US8326620B2 (en) | 2008-04-30 | 2012-12-04 | Qnx Software Systems Limited | Robust downlink speech and noise detector |
US8335685B2 (en) | 2006-12-22 | 2012-12-18 | Qnx Software Systems Limited | Ambient noise compensation system robust to high excitation noise |
US8904400B2 (en) | 2007-09-11 | 2014-12-02 | 2236008 Ontario Inc. | Processing system having a partitioning component for resource partitioning |
US8850154B2 (en) | 2007-09-11 | 2014-09-30 | 2236008 Ontario Inc. | Processing system having memory partitioning |
US8694310B2 (en) | 2007-09-17 | 2014-04-08 | Qnx Software Systems Limited | Remote control server protocol system |
US8209514B2 (en) | 2008-02-04 | 2012-06-26 | Qnx Software Systems Limited | Media processing system having resource partitioning |
CN102037664A (zh) * | 2008-05-21 | 2011-04-27 | 林翰 | 降低音频干扰的方法及其装置 |
US8543061B2 (en) | 2011-05-03 | 2013-09-24 | Suhami Associates Ltd | Cellphone managed hearing eyeglasses |
JP5752324B2 (ja) * | 2011-07-07 | 2015-07-22 | ニュアンス コミュニケーションズ, インコーポレイテッド | 雑音の入った音声信号中のインパルス性干渉の単一チャネル抑制 |
FR2988549B1 (fr) * | 2012-03-22 | 2015-06-26 | Bodysens | Procede, terminal et casque de communication vocale sans fil avec auto-synchronisation |
WO2015038975A1 (en) | 2013-09-12 | 2015-03-19 | Saudi Arabian Oil Company | Dynamic threshold methods, systems, computer readable media, and program code for filtering noise and restoring attenuated high-frequency components of acoustic signals |
HUE041826T2 (hu) | 2013-12-19 | 2019-05-28 | Ericsson Telefon Ab L M | Háttérzaj becslés audio jelekben |
US9691378B1 (en) * | 2015-11-05 | 2017-06-27 | Amazon Technologies, Inc. | Methods and devices for selectively ignoring captured audio data |
US10079015B1 (en) | 2016-12-06 | 2018-09-18 | Amazon Technologies, Inc. | Multi-layer keyword detection |
DE102017203469A1 (de) * | 2017-03-03 | 2018-09-06 | Robert Bosch Gmbh | Verfahren und eine Einrichtung zur Störbefreiung von Audio-Signalen sowie eine Sprachsteuerung von Geräten mit dieser Störbefreiung |
CN110136733B (zh) * | 2018-02-02 | 2021-05-25 | 腾讯科技(深圳)有限公司 | 一种音频信号的解混响方法和装置 |
US10957342B2 (en) * | 2019-01-16 | 2021-03-23 | Cirrus Logic, Inc. | Noise cancellation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU633673B2 (en) * | 1990-01-18 | 1993-02-04 | Matsushita Electric Industrial Co., Ltd. | Signal processing device |
DE4229912A1 (de) | 1992-09-08 | 1994-03-10 | Sel Alcatel Ag | Verfahren zum Verbessern der Übertragungseigenschaften einer elektroakustischen Anlage |
US5903819A (en) * | 1996-03-13 | 1999-05-11 | Ericsson Inc. | Noise suppressor circuit and associated method for suppressing periodic interference component portions of a communication signal |
US5960389A (en) * | 1996-11-15 | 1999-09-28 | Nokia Mobile Phones Limited | Methods for generating comfort noise during discontinuous transmission |
US6175602B1 (en) * | 1998-05-27 | 2001-01-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Signal noise reduction by spectral subtraction using linear convolution and casual filtering |
US6122610A (en) * | 1998-09-23 | 2000-09-19 | Verance Corporation | Noise suppression for low bitrate speech coder |
US6507623B1 (en) * | 1999-04-12 | 2003-01-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Signal noise reduction by time-domain spectral subtraction |
US6523003B1 (en) * | 2000-03-28 | 2003-02-18 | Tellabs Operations, Inc. | Spectrally interdependent gain adjustment techniques |
-
2000
- 2000-04-08 DE DE10017646A patent/DE10017646A1/de not_active Withdrawn
-
2001
- 2001-03-22 DE DE50108051T patent/DE50108051D1/de not_active Expired - Lifetime
- 2001-03-22 AT AT01440083T patent/ATE310305T1/de not_active IP Right Cessation
- 2001-03-22 EP EP01440083A patent/EP1143416B1/de not_active Expired - Lifetime
- 2001-03-29 HU HU0101288A patent/HUP0101288A2/hu unknown
- 2001-03-30 AU AU33361/01A patent/AU3336101A/en not_active Abandoned
- 2001-03-30 JP JP2001101112A patent/JP2001350498A/ja not_active Withdrawn
- 2001-04-04 US US09/825,335 patent/US6801889B2/en not_active Expired - Lifetime
- 2001-04-06 CN CNB011163011A patent/CN1225104C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
HUP0101288A2 (hu) | 2001-12-28 |
EP1143416A3 (de) | 2004-04-21 |
CN1325222A (zh) | 2001-12-05 |
EP1143416A2 (de) | 2001-10-10 |
DE10017646A1 (de) | 2001-10-11 |
CN1225104C (zh) | 2005-10-26 |
US6801889B2 (en) | 2004-10-05 |
AU3336101A (en) | 2001-10-11 |
ATE310305T1 (de) | 2005-12-15 |
US20010028713A1 (en) | 2001-10-11 |
DE50108051D1 (de) | 2005-12-22 |
JP2001350498A (ja) | 2001-12-21 |
HU0101288D0 (en) | 2001-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1143416B1 (de) | Geräuschunterdrückung im Zeitbereich | |
DE69428119T2 (de) | Verringerung des hintergrundrauschens zur sprachverbesserung | |
DE69409121T2 (de) | Störreduktionssystem für ein binaurales hörgerät | |
DE60108401T2 (de) | System zur erhöhung der sprachqualität | |
DE69827911T2 (de) | Verfahren und einrichtung zur mehrkanaligen kompensation eines akustischen echos | |
DE69905035T2 (de) | Rauschunterdrückung mittels spektraler subtraktion unter verwendung von linearem faltungsprodukt und kausaler filterung | |
EP0912974B1 (de) | Verfahren zur verringerung von störungen eines sprachsignals | |
DE60116255T2 (de) | Rauschunterdückungsvorrichtung und -verfahren | |
DE602004004242T2 (de) | System und Verfahren zur Verbesserung eines Audiosignals | |
DE69931580T2 (de) | Identifikation einer akustischer Anordnung mittels akustischer Maskierung | |
EP0698986B1 (de) | Verfahren zur adaptiven Echokompensation | |
DE60029453T2 (de) | Messen der Übertragungsqualität einer Telefonverbindung in einem Fernmeldenetz | |
EP2158588B1 (de) | Spektralglättungsverfahren von verrauschten signalen | |
EP0747880B1 (de) | Spracherkennungssystem | |
EP1103956B1 (de) | Exponentielle Echo- und Geräuschabsenkung in Sprachpausen | |
DE69731573T2 (de) | Geräuschverminderungsanordnung | |
DE112007003625T5 (de) | Echounterdrückungsvorrichtung, echounterdrückungssystem, Echounterdrückungsverfahren und Computerprogramm | |
DE60308336T2 (de) | Verfahren und system zur messung der übertragungsqualität eines systems | |
EP3454572A1 (de) | Verfahren zum erkennen eines defektes in einem hörinstrument | |
EP1155561B1 (de) | Vorrichtung und verfahren zur geräuschunterdrückung in fernsprecheinrichtungen | |
EP1239455A2 (de) | Verfahren und Anordnung zur Durchführung einer an die Übertragungsfunktion menschilcher Sinnesorgane angepassten Fourier Transformation sowie darauf basierende Vorrichtungen zur Geräuschreduktion und Spracherkennung | |
DE602004006912T2 (de) | Verfahren zur Verarbeitung eines akustischen Signals und ein Hörgerät | |
EP1126687A2 (de) | Verfahren zur koordinierten Echo-und/oder Geräuschabsenkung | |
DE10137348A1 (de) | Verfahren und Schaltungsanordnung zur Geräuschreduktion bei der Sprachübertragung in Kommunikationssystemen | |
EP1351550B1 (de) | Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040323 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50108051 Country of ref document: DE Date of ref document: 20051222 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060216 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060216 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060417 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060817 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: ALCATEL Effective date: 20060331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110325 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120322 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: GC Effective date: 20140717 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RG Effective date: 20141016 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170322 Year of fee payment: 17 Ref country code: DE Payment date: 20170322 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170322 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108051 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108051 Country of ref document: DE Representative=s name: BARKHOFF REIMANN VOSSIUS, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50108051 Country of ref document: DE Owner name: WSOU INVESTMENTS, LLC, LOS ANGELES, US Free format text: FORMER OWNER: ALCATEL LUCENT, PARIS, FR |