EP1139857A2 - System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation - Google Patents
System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculationInfo
- Publication number
- EP1139857A2 EP1139857A2 EP99963480A EP99963480A EP1139857A2 EP 1139857 A2 EP1139857 A2 EP 1139857A2 EP 99963480 A EP99963480 A EP 99963480A EP 99963480 A EP99963480 A EP 99963480A EP 1139857 A2 EP1139857 A2 EP 1139857A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- eye
- arrangement
- vkt
- arrangement according
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 210000002159 anterior chamber Anatomy 0.000 title claims abstract description 13
- 238000005259 measurement Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 19
- 210000004087 cornea Anatomy 0.000 title abstract description 12
- 238000005286 illumination Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000003384 imaging method Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 13
- 210000001747 pupil Anatomy 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 230000010287 polarization Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 230000001629 suppression Effects 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000002310 reflectometry Methods 0.000 claims 2
- 238000011156 evaluation Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000011514 reflex Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000004358 school myopia Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1005—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/107—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/117—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/156—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
- A61B3/158—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking of corneal reflection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/10—Eye inspection
Definitions
- a longitudinal section through the human eye is shown schematically.
- the axis length AL of the human eye is usually measured using ultrasound using the contact method.
- the curvature of the corneal radius HHR is determined using known keratometers / ophthalmometers (DD 251497, US 4572628, US 4660946, US 5212507, 5325134).
- the anterior chamber depth VKT can be measured by means of ultrasound or by means of an additional unit for a slit lamp (anterior chamber depth meter, adjustment via the slit lamp image).
- these parameters must be determined, which are also important for the selection of the IOL intraocular lens to be implanted.
- these devices In clinical practice, it is common to use these devices at least with two devices (eg ultrasound a-scan and automatic keratometer) to be measured.
- the measured variables are used in formulas which calculate the optical effect of the IOL.
- the object of the invention is to reduce these device-dependent measurement errors to a minimum.
- all the necessary parameters of the eye are advantageously determined by means of a device arrangement and corresponding measuring methods. Necessary settings that enable the device to be adjusted to the patient are also implemented in this arrangement.
- the calculation of the IOL is also carried out using this device arrangement. This also eliminates data loss or data falsification when the measured values are transmitted from various devices to the computer which carries out the IOL calculation.
- the invention and its advantages are explained below with reference to the schematic representations.
- the light of a laser diode 1 is adjustable via a Michelson interferometer (3-5), consisting of a fixed reference arm R1 with a reflector 4, here a triple prism and one based on different positions of a further reflector 5 (triple prism) Reference arm R2, and a beam splitter cube 3 for superimposing the radiation components reflected in Rl and R2, a splitter cube 8 and a diffractive optical element DOE 9 are imaged on the patient's eye 14.
- a diode 7 monitors the light output of the laser diode 1.
- the axis length measurement is carried out according to known methods, for example described in US5673096.
- part of the reflected light (light coming from the eye) is applied to a CCD using an achromatic lens 22 via mirror 20.
- An aperture 21 is in the switched-off position.
- the eye 14 is illuminated analogously to DD 251497 at an angle of approximately 18 ° to the optical axis AI by means of 6 preferably infrared LEDs ⁇ s 10, two of which are shown in FIG. 1 by way of example in the plane of the drawing are shown.
- Pinhole diaphragms 10 a are arranged downstream of the LEDs for generating point-shaped lighting images.
- the diode light To collimate the diode light, six lenses 11 are arranged downstream of the LEDs in the direction of illumination.
- the images of these light sources created in the eye are imaged on the CCD camera via divider cubes 8 and 15 and achromats 18 and 19.
- the DOE 9 is advantageously pivoted out here, but can also remain in the beam path.
- the achromat 22 is pivoted out.
- each eye is LED at an angle of approx. 33 °
- slit diaphragm 12a and cylindrical lens 13 illuminated in the form of a slit.
- Divider cubes 8 and 15 and achromats 18 and 19 are imaged on the CCD camera 23 with the DOE preferably pivoted out.
- the achromat 22 is pivoted out.
- FIG. 3 shows a front view of the device in the direction of the observation, with the illustration of a known slit lamp cross table for x y / z adjustment being dispensed with.
- the DOE 9 at its center AI indicates the position of the optical axis in the device
- the lenses 11 for the determination of the corneal curvature with an invisible LED 10 behind it
- the cylindrical lenses 13 for the slit image for measuring the VKT and six IR diodes 24 for illuminating and adjusting the eye 14.
- the measurement tasks are to be explained in more detail with the aid of the beam path A-D from the eye 14 to the CCD camera 23.
- Beam path C adjustment of the device to the eye
- the eye is at the focal length of Achromat 18, is imaged to infinity and is imaged via Achromat 22 in the plane of the CCD camera.
- Achromat 19 is swung out here.
- the patient is offered a fixation light by means of a laser diode (LD) or LED 1 so that he can align the eye pupil in the direction of the optical axis. It is necessary to image a larger section of the eye 14 (for example 15 mm) on the CCD camera.
- DOE Due to its low efficiency (approx. 5% in the focusing part) DOE is for the
- Image of the iris structures less suitable, so that an optical system with a fixed
- Image scale consisting of achromats 18 and 22 realizes the image.
- the DOE is preferably swung out.
- the eye 14 is illuminated by means of IR diodes 24 (FIG. 2) (e.g. 880 nm), which are preferably characterized by a broad radiation characteristic (large half-value angle).
- IR diodes 24 e.g. 880 nm
- the device is adjusted to the patient via the well-known slit lamp cross table, which can be adjusted in the x, y, z direction.
- VCM 3405 from Phillips can be used as the CCD camera.
- Illumination of the eye is necessary in order to be able to adjust the patient to the device even in darker rooms.
- This illumination should be as diffuse as possible for a field of 15 mm, but an image of the light source through the cornea cannot be avoided (since the cornea acts as a convex mirror).
- the basic idea here is to advantageously use the means for lighting to adjust the patient's eye at the same time.
- the patient's eye is shown live on an LC display or monitor;
- a circle / crosshair is shown on the LCD / monitor for center marking.
- the 6 points must be set centrally to the circle shown - this is done by moving the cross table; the patient is correctly adjusted in height / side / depth when the points can be seen in the center and in focus.
- the patient himself looks into the device - from there an alignment laser 1 or LED la is projected, onto which the patient has to fixate.
- the laser reflex can be seen in the middle of the pupil.
- An additional setting aid should be shown on the LC display / monitor.
- Photodiode APD provided.
- the alignment laser 1 or LED 1a is reflected by the anterior surface of the cornea; the reflected light is reflected on the
- APD pictured. This generates a DC voltage signal from the APD
- (Relative) height represents a measure of the centering of the patient's eye.
- This DC voltage signal is fed to the internal computer via an A / D converter and from there is displayed in a suitable form (eg a bar / circle) on the LCD.
- a suitable form eg a bar / circle
- the operator is thus provided with further information on the adjustment state of the patient's eye by the different size of the bar / circle.
- the reflections of the laser diode 1 are imaged on the CCD camera 23 via the DOE as a parallel beam path and the achromatic lens 22, an eye segment of approximately 5 mm being shown with the optics 18, 19 pivoted out for observation and reflex adjustment.
- a large part, advantageously more than approx. 80-95% of the total energy is coupled out to the APD on the divider cube 15 shown in FIG. 2; only about 20 - 5% of the light falls on the CCD camera.
- Beam path B keratometer
- Illumination is preferably carried out analogously to DD 251497 by means of six IR diodes 10 (e.g. 880 nm) in order not to impede the fixation of the patient's eye 14 to the fixation light of the LD 1 or the LED 1a.
- six IR diodes 10 e.g. 880 nm
- the predetermined resolution of the CCD camera 23 requires the imaging of a field no larger than approx. 6 mm on the eye 14 in order to achieve a measuring accuracy of 0.05 mm.
- the effect of the DOE is preferably switched off again by swiveling out and the achromats 18 and 19 realize the 6 corneal reflex images. Serve to increase a measuring accuracy largely independent of the distance between the patient's eye and the device
- a telecentric aperture 21 which limits the aperture for the measurement to preferably less than 0.05 and
- the LED light is advantageously imaged via a pinhole 10a, which enables an exact adjustment of the keratometer measurement points.
- the focal length of the collimator should be more than 50 times the effective light source extension in order to achieve the desired measuring accuracy of the radius measurement regardless of the position.
- Light source can be selected (e.g. 400 - 600nm).
- a field no larger than approx. 6 mm is imaged on the eye 14 on the CCD camera 23.
- Achromat 22 is swung out.
- the telecentric aperture 21 pivoted or adjusted here must be larger
- the subject's eye is illuminated laterally at a fixed angle through the bright light gap.
- the resulting light cuts on the eye are visualized
- FIG. 8a b schematically shows the arrangement for determining the VKT, in Fig. 8a
- the light gap is formed by a row of bright LEDs 12, which have a defined one
- the gap 12a illuminated in this way is imaged by a cylindrical lens 13 as a gap image S on the subject's eye.
- the LEDs used typically have a lifespan of at least
- the subject's eye is imaged with the relevant image sections via a schematically illustrated imaging optics 18, 19, preferably on a CCD sensor 23.
- mapping is carried out telecentrically - telecentric aperture 21 to the influence of the
- the video signal is on a monitor or LC
- Display shown so that the operator can carry out the subject adjustment and measurement in a relaxed position.
- the measuring method is not based on the measurable shift of partial images; the pupil division can thus be omitted.
- the signal from the CCD camera 23 is stored in the memory of the
- VKT accuracy 0.1 mm
- An improvement in the relevant image content is achieved by switching the lighting LEDs on and off in a suitable form, synchronized with the video fields.
- An achromatic lens with a defined focal length is sufficient to image the eye on the CCD camera.
- the focal length is determined depending on the desired image section on the eye that is to be imaged.
- the aperture 23, which fulfills the telecentric condition, is arranged in the image-side focal length of the achromatic lens.
- This simple structure of the imaging system ensures that it can be easily integrated into other systems.
- a fixation light 1.1a (LED) is faded in via beam splitter 8 in FIG. 8b.
- a light source is integrated in the observation system (e.g. LED la or laser diode 1, on which the test subject is fixed.
- the video signal from the camera is shown on a monitor or LC display.
- the operator can convince himself that the test person is correctly fixed - and thus the measurement result is unadulterated.
- the gap illuminated in this way is placed on the test person's eye through a cylindrical lens
- the subject's eye is imaged with the relevant image sections via imaging optics 18, 19, preferably on a CCD sensor 8.
- the imaging is carried out telecentrically in order to minimize the influence of subject adjustment.
- the video signal is displayed on a monitor or LC display, so that the operator can carry out the subject adjustment and measurement in a relaxed position.
- the signal from the CCD camera is e.g. into the memory of a
- VKT accuracy 0.1 mm
- An improvement in the relevant image content is achieved by synchronizing the lighting LED in a suitable form
- Video fields are clocked on and off.
- the image of the eye which is captured by the CCD camera, is shown with the reflection image FI of the adjustment laser or the fixing LED, and the scattered light SH of the cornea and the lens SL when the illumination 1 is switched on. Determination of the distance between the leading edges of the scatter images of the cornea and lens in digitized images
- the starting point of the image processing is (n times) a pair of images taken immediately after one another: image 1 with the slit illumination switched on ("bright image"), image 2 without slit illumination with the image of the fixing lamp ("dark image”).
- image 1 with the slit illumination switched on (“bright image")
- image 2 without slit illumination with the image of the fixing lamp (“dark image”).
- Detection of the pupil in the dark image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Determination of an ellipse circumscribing the pupil by evaluating the covariance matrix of the binary image.
- Detection of the fixation point in the pupil in the dark image determination of all connected regions whose gray values lie above the 0.9 quantile of the gray value distribution in the dark image. Determination of a probability measure for each region, which depends on the area, shape and distance from the center of the pupil. Selection of the focus of the most likely region as a fixed point.
- Determination of the edge profile of the scatter images of the slit lighting in the difference image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Rough detection of the edges as the location of the threshold value being exceeded in a predetermined area around the fixing point. Fine detection of the edges as the location of the turning point of the gray value curve in the line profile that is closest to the roughly detected position. Elimination of reflex edges by outlier detection in the edge course (removal of a predetermined proportion of points which is furthest from the middle edge course).
- This formula applies exactly when the image of the fixing lamp is at the front edge of the lens scattering image, as shown in FIG. 7; otherwise the distance of the fixation lamp image from the front edge of the lens scatter image can be determined and from the amount of this "decentering" a correction value for the anterior chamber depth can be determined according to known imaging formulas.
- the corneal radius is preferably measured using the keratometer device described above.
- Wavelength IR e.g. 880nm
- 780nm e.g. 880nm
- VIS e.g. 400-600nm
- the divider cubes 8 and 15 come here are of great importance because the lighting, observation and measuring beam paths are separated from each other at these points.
- the laser light coming from the interferometer should be reflected at most in the direction of eye 14; the laser light coming from the eye 14 should have maximum transmission.
- LD 1 for example LT 023 Sharp
- a dielectric multilayer with a polarizing effect can preferably be used
- the vertically polarized light coming from 1 (s-pol, 780 nm) is reflected as far as possible (approx. 98%).
- Circularly polarized light is generated by the Lamba / 4 plate.
- the light reflected by the eye 14 is thus linearly polarized again after passing through the lambda / 4 plate; however, the direction of polarization is rotated by 90 ° (parallel polarized, p-pol).
- the dividing layer exhibits approximately 100% transmission in the direction of vibration.
- the IR and VIS LEDs emit unpolarized light.
- Wavelength range from 420 to 580 nm and in the range from 870 to 1000 nm greater than 90% for unpolarized light.
- this pole dividing cube fulfills the additional requirements of high transmission in the visual wavelength range (420 ... 560nm) and in the near infrared range (870 .... 1000nm).
- the layer design meets these requirements for a narrow angle of incidence around 46 °.
- L n 1.48
- the design consists of 17 alternating layers H L.
- HFO2 is H
- SIO2 is L.
- suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
- the laser light coming from divider cube 8 should be reflected to approx. 80-95% with approximately 20-5% transmission.
- the divider layer should have max.
- This layer is also implemented by means of a pole divider, the properties of which approximate the divider layer in FIG. 8.
- the lambda / 2 plate arranged on divider cubes 15 rotates the polarization direction of the incoming light by 90 °, so that the s-pol component falls again on divider cubes 15.
- the transmission is greater than 90% for unpolarized light in the IR and VIS range.
- This divider cube fulfills the requirements of the reflection s-pol of 80 ... 95% at one
- the layer design meets these requirements for a narrow angle of incidence around 46 °.
- the materials used are in terms of refractive index substrate, putty index and
- L n 1.48
- the design consists of 13 alternating layers H L.
- suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
- a central control is provided according to FIG. 5 for setting and controlling all adjustable units and optical elements such as optics 18, 19, 22, aperture 21, etc.
- the various imaging scales taking into account the effect of the DOE, require switching processes in the device. These are preferably motorized and program-controlled.
- a compact device was implemented in which the essential electronic components are integrated.
- the centerpiece is an embedded Pentium Controller C, to which a display D (display of the examined eye 14 and menu navigation for the operator), keyboard, mouse, foot switch and printer are connected as peripheral devices.
- a display D display of the examined eye 14 and menu navigation for the operator
- keyboard mouse
- foot switch printer
- the control of the laser diode 1 and the interferometer slide IS takes place via the controller C.
- a short measuring time (less than 0.5 sec) must be implemented.
- the signal generated by the APD 17 arrives in a signal processing unit SE Dependence of the signal size amplified, then frequency-selective amplification and with a
- Sampling frequency which corresponds to about 4 times the frequency of the useful signal, converted from analog to digital.
- the digital samples are taken from the high-speed port HS of the Pentium platform.
- the signal is shown on the display; the measuring system provides the associated
- the controller C is connected to the control of the CCD camera 23 and the diodes 10.
- the diodes 10 are preferably operated in the continuous light mode in order to flicker those shown on the LCD
- these diodes are switched on and off picture-wise;
- Controller C the diodes 10 in synchronism with the image pulse of the CCD camera 23, i.e. the
- Diodes are on for one picture and off for the next.
- the reflex images created on the camera 23 are digitized using the frame grabber FG and stored in the RAM of the Pentium platform (
- the controller C is still connected to the diodes 12.
- the diodes 12 are preferably operated in continuous light mode, similar to the keratometer.
- the lighting diodes for the left and right eyes are optionally clocked by the controller (analogous to keratometers)
- the device is moved to the left or right and adjusted to the center of the eye using ...
- the edge position of the scatter images is determined by means of image processing
- the VKT is calculated from the distance between the corneal and lens scattering images, as already described.
- the controller C is connected to the diodes 24.
- the IR diodes 24 for illuminating the eye can be switched on at any time
- Controllers can be switched on (controlled within the program or controlled by the operator)
- the controller is still (not shown) with the controls for the input and
- the IOL is calculated using the internationally customary calculation formulas, which are stored in the device memory and can be called up, from the measured values AL, HHR, VKT and are printed out on a printer.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
- Prostheses (AREA)
Abstract
Description
Titel :Title:
Anordnung und Verfahren zur berührungslosen Messung der Achslänge und/oder der Hornhautkrümmung und/oder der Vorderkammertiefe des Auges, vorzugsweise zur IOL- Berechnung.Arrangement and method for contactless measurement of the axis length and / or the corneal curvature and / or the anterior chamber depth of the eye, preferably for IOL calculation.
In Fig. 1 ist schematisch ein Längsschnitt durch das menschliche Auge dargestellt. Die Achslänge AL des menschlichen Auges wird üblicherweise mittels Ultraschall im Kontaktverfahren gemessen.In Fig. 1, a longitudinal section through the human eye is shown schematically. The axis length AL of the human eye is usually measured using ultrasound using the contact method.
Andere Meßverfahren sind beschrieben in DE 3201801 und US 5673096, DE 4446183 AI. Die Krümmung der Hornhaut - Hornhautradius HHR wird mittels bekannter Keratometer / Ophthalmometer bestimmt (DD 251497, US 4572628, US 4660946, US 5212507, 5325134). Die Messung der Vorderkammertiefe VKT kann mittels Ultraschalles oder mittels einer Zusatzeinheit zu einer Spaltlampe ( Vorderkammertiefenmesser, Einstellung über das Spaltlampenbild) erfolgen.Other measurement methods are described in DE 3201801 and US 5673096, DE 4446183 AI. The curvature of the corneal radius HHR is determined using known keratometers / ophthalmometers (DD 251497, US 4572628, US 4660946, US 5212507, 5325134). The anterior chamber depth VKT can be measured by means of ultrasound or by means of an additional unit for a slit lamp (anterior chamber depth meter, adjustment via the slit lamp image).
Insbesondere vor einer Katarakt - Operation, aber auch bei der Verlaufskontrolle der Schulmyopie und der Aniseikoniebestimmung müssen diese Meßgrößen bestimmt werden, die auch für die Auswahl der zu implantierenden Intraokularlinse IOL wichtig sind In der klinischen Praxis ist es üblich, diese Größen zumindest mittels zweier Geräte (zB Ultraschall a-scan und automatisches Keratometer) zu messen Die Meßgrößen werden in Formeln eingesetzt, welche die optische Wirkung der IOL errechnen. Je nach eingesetztem Gerätetyp kann es zu unterschiedlichen Fehlern kommen, welche die Auswahl der IOL beeinflussen.In particular before a cataract operation, but also when monitoring the course of school myopia and determining the aniseicon, these parameters must be determined, which are also important for the selection of the IOL intraocular lens to be implanted. In clinical practice, it is common to use these devices at least with two devices ( eg ultrasound a-scan and automatic keratometer) to be measured. The measured variables are used in formulas which calculate the optical effect of the IOL. Depending on the type of device used, there may be various errors that affect the selection of the IOL.
Aufgabe der Erfindung ist es, diese geräteabhängigen Meßfehler auf ein Minimum zu reduzieren.The object of the invention is to reduce these device-dependent measurement errors to a minimum.
Die Aufgabe wird erfindungsgemäß durch die Merkmale unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.The object is achieved by the features of independent claims. Preferred developments are the subject of the dependent claims.
Vorteilhaft werden erfindungsgemäß alle jeweils notwendigen Parameter des Auges mittels einer Geräteanordnung und entsprechender Meßverfahren bestimmt. Notwendige Einstellungen, welche das Justieren des Gerätes zum Patienten ermöglichen, werden ebenfalls in dieser Anordnung realisiert.According to the invention, all the necessary parameters of the eye are advantageously determined by means of a device arrangement and corresponding measuring methods. Necessary settings that enable the device to be adjusted to the patient are also implemented in this arrangement.
Die Berechnung der IOL wird ebenfalls mittels dieser Geräteanordnung durchgeführt. Damit entfallen auch Datenverluste oder Datenverfälschungen bei der Übertragung der Meßwerte von verschiedenen Geräten zu dem Rechner, der die IOL- Berechnung durchführt. Die Erfindung und ihre Vorteile werden nachstehend anhand der schematischen Darstellungen näher erläutert.The calculation of the IOL is also carried out using this device arrangement. This also eliminates data loss or data falsification when the measured values are transmitted from various devices to the computer which carries out the IOL calculation. The invention and its advantages are explained below with reference to the schematic representations.
Der schematische Aufbau des Gerätes ist in Fig.2 dargestellt.The schematic structure of the device is shown in Fig.2.
Zur Vermessung der Achslänge wird das Licht einer Laserdiode 1 über ein Michelson- Interferometer (3-5), bestehend aus einem feststehenden Referenzarm Rl mit einem Reflektor 4 , hier ein Tripelprisma und einem anhand von verschiedenen Positionen eines weiteren Reflektors 5 ( Tripelprisma) dargestellten verstellbaren Referenzarm R2, sowie einem Strahl teilerwürfel 3 zur Überlagerung der in Rl und R2 reflektierten Strahlungsanteile, einen Teilerwürfel 8 sowie ein diffraktiv-optisches Element DOE 9 auf das Patientenauge 14 abgebildet. Eine Diode 7 überwacht die Lichtleistung der Laserdiode 1. Die von Hornhaut und Netzhaut des Auges 14 reflektierten Teilstrahlen überlagern sich und werden mittels DOE 9, Teilerwürfel 8, der eine Lambda/4 Platte Pl zur Drehung der Polarisationsebene aufweist , Teilerwürfel 15 mit einer Lambda/2 Platte P2 über ein Fokussierelement, hier ein Achromat 16 auf eine Avalanche-Photodiode APD 17 abgebildet. Die Achslängenmessung erfolgt hierbei gemäß bekannter Verfahren , beispielsweise beschrieben in US5673096.To measure the axis length, the light of a laser diode 1 is adjustable via a Michelson interferometer (3-5), consisting of a fixed reference arm R1 with a reflector 4, here a triple prism and one based on different positions of a further reflector 5 (triple prism) Reference arm R2, and a beam splitter cube 3 for superimposing the radiation components reflected in Rl and R2, a splitter cube 8 and a diffractive optical element DOE 9 are imaged on the patient's eye 14. A diode 7 monitors the light output of the laser diode 1. The partial beams reflected by the cornea and retina of the eye 14 overlap and are divided by means of DOE 9, divider cubes 8, which has a lambda / 4 plate Pl for rotating the polarization plane, divider cubes 15 with a lambda / 2 plate P2 via a focusing element, here an achromatic 16 mapped onto an avalanche photodiode APD 17. The axis length measurement is carried out according to known methods, for example described in US5673096.
Zur Beobachtung des Auges und der entstehenden Reflexe wird ein Teil des Reflexlichts ( vom Auge kommendes Licht) mittels eines Achromaten 22 über Spiegel 20 auf eine CCD -To observe the eye and the resulting reflexes, part of the reflected light (light coming from the eye) is applied to a CCD using an achromatic lens 22 via mirror 20.
Kamera 23 abgebildet.Camera 23 shown.
Achromate 18,19 sind hier ausgeschwenkt.Achromats 18, 19 are swung out here.
Eine Blende 21 befindet sich hierbei in ausgeschalteter Stellung.An aperture 21 is in the switched-off position.
Zur Vermessung der Hornhautkrümmung HHK wird das Auge 14 analog zu DD 251497 unter einem Winkel von ca. 18° zur optischen Achse AI mittels 6 vorzugsweise infraroter LED Λs 10 beleuchtet, von denen in Fig.l beispielhaft zwei in der Zeichenebene befindliche dargestellt sind. Den LED sind zur Erzeugung punktförmiger Beleuchtungsbilder Lochblenden 10 a nachgeordnet.To measure the corneal curvature HHK, the eye 14 is illuminated analogously to DD 251497 at an angle of approximately 18 ° to the optical axis AI by means of 6 preferably infrared LEDs Λ s 10, two of which are shown in FIG. 1 by way of example in the plane of the drawing are shown. Pinhole diaphragms 10 a are arranged downstream of the LEDs for generating point-shaped lighting images.
Zur Kollimation des Diodenlichtes sind den LED in Beleuchtungsrichtung sechs Linsen 11 nachgeordnet. Die im Auge ( als Reflex der Hornhaut) entstehenden Bilder dieser Lichtquellen werden über Teilerwürfel 8 und 15 sowie Achromaten 18 und 19 auf die CCD- Kamera abgebildet. Das DOE 9 ist hier vorteilhaft ausgeschwenkt, kann aber auch im Strahlengang verbleiben. Der Achromat 22 ist ausgeschwenkt.To collimate the diode light, six lenses 11 are arranged downstream of the LEDs in the direction of illumination. The images of these light sources created in the eye (as a reflex of the cornea) are imaged on the CCD camera via divider cubes 8 and 15 and achromats 18 and 19. The DOE 9 is advantageously pivoted out here, but can also remain in the beam path. The achromat 22 is pivoted out.
Für die Bestimmung der VKT wird jedes Auge unter einem Winkel von ca. 33° mittels LEDTo determine the VKT, each eye is LED at an angle of approx. 33 °
12, Spaltblende 12a und Zylinderlinse 13 spaltformig beleuchtet.12, slit diaphragm 12a and cylindrical lens 13 illuminated in the form of a slit.
Die sich ergebenden Streubilder von Hornhaut und Linsenvorderfläche werden überThe resulting scatter images of the cornea and front surface of the lens are over
Teilerwürfel 8 und 15 sowie Achromaten 18 und 19 auf die CCD-Kamera 23 bei vorzugsweise ausgeschwenktem DOE abgebildet.Divider cubes 8 and 15 and achromats 18 and 19 are imaged on the CCD camera 23 with the DOE preferably pivoted out.
Der Achromat 22 ist ausgeschwenkt.The achromat 22 is pivoted out.
Fig.3 stellt eine Vorderansicht des Gerätes in Richtung der Beobachtung dar , wobei auf die Darstellung eines bekannten Spaltlampen- Kreuztisches zur x y/ z - Verstellung verzichtet wurde.3 shows a front view of the device in the direction of the observation, with the illustration of a known slit lamp cross table for x y / z adjustment being dispensed with.
Zu sehen ist das DOE 9 (kennzeichnet in seinem Mittelpunkt AI die Lage der optischen Achse im Gerät), die Linsen 11 für die Bestimmung der Hornhautkrümmung mit dahinter befindlichen, nicht sichtbaren LED 10, die Zylinderlinsen 13 für die Spaltabbildung zur Vermessung der VKT und sechs IR-Dioden 24 zur Beleuchtung und Justierung des Auges 14.You can see the DOE 9 (at its center AI indicates the position of the optical axis in the device), the lenses 11 for the determination of the corneal curvature with an invisible LED 10 behind it, the cylindrical lenses 13 for the slit image for measuring the VKT and six IR diodes 24 for illuminating and adjusting the eye 14.
Anhand Fig 4 sollen die Meßaufgaben anhand des Strahlenganges A-D vom Auge 14 zur CCD- Kamera 23 genauer erläutert werden.4, the measurement tasks are to be explained in more detail with the aid of the beam path A-D from the eye 14 to the CCD camera 23.
Strahlengang C: Justierung des Gerätes zum AugeBeam path C: adjustment of the device to the eye
Das Auge befindet sich in der Brennweite von Achromat 18, wird nach unendlich abgebildet und über Achromat 22 in die Ebene der CCD - Kamera abgebildet. Achromat 19 ist hier ausgeschwenkt. Dem Patienten wird ein Fixierlicht mittels Laserdiode (LD) oder LED 1 angeboten, damit er die Augenpupille in Richtung der optischen Achse ausrichtet . Es macht sich erforderlich, einen größeren Abschnitt des Auges 14 (z.B. 15 mm) auf die CCD - Kamera abzubilden. DasThe eye is at the focal length of Achromat 18, is imaged to infinity and is imaged via Achromat 22 in the plane of the CCD camera. Achromat 19 is swung out here. The patient is offered a fixation light by means of a laser diode (LD) or LED 1 so that he can align the eye pupil in the direction of the optical axis. It is necessary to image a larger section of the eye 14 (for example 15 mm) on the CCD camera. The
DOE ist durch seinen geringen Wirkungsgrad (ca 5% im fokussierenden Teil) für dieDue to its low efficiency (approx. 5% in the focusing part) DOE is for the
Abbildung der Irisstrukturen weniger geeignet, so daß ein optisches System mit festemImage of the iris structures less suitable, so that an optical system with a fixed
Abbildungsmaßstab , bestehend aus den Achromaten 18 und 22 die Abbildung realisiert.Image scale, consisting of achromats 18 and 22 realizes the image.
Das DOE wird dabei vorzugsweise ausgeschwenkt.The DOE is preferably swung out.
Um für den Patienten keine zusätzlichen Fixieranreize zu schaffen, erfolgt eine Beleuchtung des Auges 14 mittels IR - Dioden 24 ( Fig.2) (z.B. 880 nm), die vorzugsweise durch eine breite Abstrahlcharakteristik (großer Halbwertswinkel) gekennzeichnet sind.In order not to create additional fixation incentives for the patient, the eye 14 is illuminated by means of IR diodes 24 (FIG. 2) (e.g. 880 nm), which are preferably characterized by a broad radiation characteristic (large half-value angle).
Die Justierung des Gerätes zum Patienten erfolgt über den bekannten , in x,y,z-Richtung verstellbaren Spaltlampen- Kreuztisch,The device is adjusted to the patient via the well-known slit lamp cross table, which can be adjusted in the x, y, z direction.
Als CCD - Kamera kann beispielsweise eine VCM 3405 von Phillips verwendet werden.For example, a VCM 3405 from Phillips can be used as the CCD camera.
Es ist eine Beleuchtung des Auges notwendig, um auch in dunkleren Räumen den Patienten zum Gerät einjustieren zu können.Illumination of the eye is necessary in order to be able to adjust the patient to the device even in darker rooms.
Diese Beleuchtung sollte möglichst diffus für ein Feld von 15 mm erfolgen, eine Abbildung der Lichtquelle durch die Hornhaut läßt sich jedoch nicht vermeiden (da die Hornhaut als Konvexspiegel wirkt).This illumination should be as diffuse as possible for a field of 15 mm, but an image of the light source through the cornea cannot be avoided (since the cornea acts as a convex mirror).
Die Grundidee ist hier, vorteilhaft die Mittel zur Beleuchtung gleichzeitig zur Justierung des Patientenauges zu verwenden.The basic idea here is to advantageously use the means for lighting to adjust the patient's eye at the same time.
Es werden auf einem Kreisumfang (evtl. gleicher Kreisumfang wie bei der Keratometermessung) sechs infrarote LED 24 mit relativ großem Halbwertswinkel angeordnet. Diese erzeugen 6 Punkte auf der Hornhaut, welche auf die CCD - Kamera abgebildet werden.Six infrared LEDs 24 with a relatively large half-value angle are arranged on a circumference (possibly the same circumference as in the keratome measurement). These create 6 points on the cornea, which are imaged on the CCD camera.
Auf einem LC - Display oder Monitor wird das Patientenauge live dargestellt; zusätzlich wird zur Mittenmarkierung auf dem LCD / Monitor ein Kreis / Fadenkreuz dargestellt. Zur Positionierung des Auges müssen die 6 Punkte zentrisch zum dargestellten Kreis eingestellt werden - dieses geschieht durch Bewegung des Kreuztisches; der Patient ist in Höhe / Seite / Tiefe richtig eingestellt, wenn die Punkte mittig und scharf zu sehen sind. Der Patient selber blickt in das Gerät - von dort wird ein Justierlaser 1 oder LED la projiziert, aufweichen der Patient fixieren muß. Der Laserreflex ist in der Mitte der Pupille zu sehen. Eine zusätzliche Einstellhilfe soll auf dem LC Display / Monitor dargestellt werden.The patient's eye is shown live on an LC display or monitor; In addition, a circle / crosshair is shown on the LCD / monitor for center marking. To position the eye, the 6 points must be set centrally to the circle shown - this is done by moving the cross table; the patient is correctly adjusted in height / side / depth when the points can be seen in the center and in focus. The patient himself looks into the device - from there an alignment laser 1 or LED la is projected, onto which the patient has to fixate. The laser reflex can be seen in the middle of the pupil. An additional setting aid should be shown on the LC display / monitor.
Für die Detektierung der Interferenzsignale des Achslängenmessers ist eine Avalanche -For the detection of the interference signals of the axis length meter, an avalanche is
Photodiode APD vorgesehen.Photodiode APD provided.
Wenn das Patientenauge auf der optischen Achse des Meßgerätes ist, wird der Justierlaser 1 oder LED la von der Hornhautvorderfläche reflektiert; das reflektierte Licht wird auf dieWhen the patient's eye is on the optical axis of the measuring device, the alignment laser 1 or LED 1a is reflected by the anterior surface of the cornea; the reflected light is reflected on the
APD abgebildet. Damit wird ein Gleichspannungssignal durch die APD erzeugt, dessenAPD pictured. This generates a DC voltage signal from the APD
(relative) Höhe ein Maß für die Zentrierung des Patientenauges darstellt.(Relative) height represents a measure of the centering of the patient's eye.
Dieses Gleichspannungssignal wird über einen A/D - Wandler dem internen Rechner zugeführt und von dort in geeigneter Form (zB ein Balken / Kreis) auf dem LCD dargestellt.This DC voltage signal is fed to the internal computer via an A / D converter and from there is displayed in a suitable form (eg a bar / circle) on the LCD.
Dem Bediener wird somit durch die unterschiedliche Größe des Balkens / Kreises eine weitere Information zum Justierzustand des Patientenauges vermittelt.The operator is thus provided with further information on the adjustment state of the patient's eye by the different size of the bar / circle.
Strahlengang D: ALMBeam path D: ALM
Die Reflexe der Laserdiode 1 (z.B. 780 nm) werden über das DOE als paralleler Strahlengang und den Achromaten 22 auf die CCD - Kamera 23 abgebildet wobei ein Augenabschnitt von ca. 5mm bei ausgeschwenkter Optik 18,19 zur Beobachtung und Reflexeinstellung dargestellt wird. Um eine maximale Energie auf die APD 17 zu übertragen, wird am in Fig.2 dargestellten Teilerwürfel 15 ein großer Teil, vorteilhaft mehr als ca. 80- 95% der Gesamtenergie auf die APD ausgekoppelt; auf die CCD - Kamera fallen somit nur ca. 20 - 5% des Lichtes.The reflections of the laser diode 1 (e.g. 780 nm) are imaged on the CCD camera 23 via the DOE as a parallel beam path and the achromatic lens 22, an eye segment of approximately 5 mm being shown with the optics 18, 19 pivoted out for observation and reflex adjustment. In order to transmit a maximum energy to the APD 17, a large part, advantageously more than approx. 80-95% of the total energy, is coupled out to the APD on the divider cube 15 shown in FIG. 2; only about 20 - 5% of the light falls on the CCD camera.
Strahlengang B: KeratometerBeam path B: keratometer
Die Beleuchtung erfolgt vorzugsweise analog DD 251497 mittels sechs IR - Dioden 10 (z.B. 880 nm), um die Fixation des Patientenauges 14 auf das Fixierlicht der LD 1 oder der LED la nicht zu behindern.Illumination is preferably carried out analogously to DD 251497 by means of six IR diodes 10 (e.g. 880 nm) in order not to impede the fixation of the patient's eye 14 to the fixation light of the LD 1 or the LED 1a.
Die vorgegebene Auflösung der CCD Kamera 23 erfordert die Abbildung eines Feldes nicht größer als ca. 6 mm am Auge 14, um eine Meßgenauigkeit von 0,05mm zu erreichen. Die Wirkung des DOE wird vorzugsweise wiederum durch Ausschwenken ausgeschaltet und die Achromaten 18 und 19 realisieren die Abbildung der 6 Hornhautreflexbilder. Zur Erhöhung einer vom Abstand des Patientenauges zum Gerät weitgehend unabhängigen Meßgenauigkeit dienenThe predetermined resolution of the CCD camera 23 requires the imaging of a field no larger than approx. 6 mm on the eye 14 in order to achieve a measuring accuracy of 0.05 mm. The effect of the DOE is preferably switched off again by swiveling out and the achromats 18 and 19 realize the 6 corneal reflex images. Serve to increase a measuring accuracy largely independent of the distance between the patient's eye and the device
- eine telezentrische Blende 21, die die Apertur für die Messung auf vorzugsweise weniger als 0,05 begrenzt unda telecentric aperture 21 which limits the aperture for the measurement to preferably less than 0.05 and
- zwischen LED und Patientenauge befindliche Kollimatoren 11, die den Einfallswinkel unabhängig von der axialen Lage des Patientenauges konstant halten.- Collimators 11 located between the LED and the patient's eye, which keep the angle of incidence constant irrespective of the axial position of the patient's eye.
Vorteilhaft erfolgt die Abbildung des LED - Lichtes über eine Lochblende 10a, die eine exakte Justierung der Keratometermeßpunkte ermöglicht. Die Kollimatorbrennweite sollte mehr als das 50 fache der wirksamen Lichtquellenausdehnung betragen, um die gewünschte Meßgenauigkeit der Radienmessung lageunabhängig zu erreichen.The LED light is advantageously imaged via a pinhole 10a, which enables an exact adjustment of the keratometer measurement points. The focal length of the collimator should be more than 50 times the effective light source extension in order to achieve the desired measuring accuracy of the radius measurement regardless of the position.
Strahlengang A: VKTBeam path A: VKT
Da bei der Beobachtung von Lichtschnitten im menschlichen Auge die Lichtstreuung die entscheidende Rolle spielt, muß zur Beleuchtung des Auges 14 eine möglichst kurzwelligeSince light scattering plays a decisive role in the observation of light sections in the human eye, the shortest possible wavelength must be used to illuminate the eye 14
Lichtquelle ausgewählt werden (z.B. 400 - 600nm).Light source can be selected (e.g. 400 - 600nm).
Auch bei der Bestimmung der VKT muß zur Erzielung der geforderten Meßgenauigkeit vonWhen determining the VKT, the required measurement accuracy of
0,1 mm ein Feld von nicht größer als ca. 6mm am Auge 14 auf die CCD - Kamera 23 abgebildet werden.0.1 mm, a field no larger than approx. 6 mm is imaged on the eye 14 on the CCD camera 23.
Unter Umgehung der DOE- Wirkung oder bei ausgeschwenktem DOE wird dieses durch dieBypassing the DOE effect or when the DOE is swung out, this is done by the
Achromaten 18 und 19 realisiert. Achromat 22 ist ausgeschwenkt.Achromats 18 and 19 realized. Achromat 22 is swung out.
Die hier eingeschwenkte oder eingestellte telezentrische Blende 21 muß einen größerenThe telecentric aperture 21 pivoted or adjusted here must be larger
Durchmesser (für eine Apertur von vorzugsweise größer 0,07 -z.B. 13mm) besitzen, um dieHave diameters (for an aperture of preferably greater than 0.07 - e.g. 13mm) to the
Lichtintensität der bei der VKT - Messung entstehenden lichtschwachen Streubilder nur minimal zu reduzieren. Sie ist also in mindestens zwei Stellungen einstellbar oder gegen eine zweite Blende austauschbar .To only minimally reduce the light intensity of the faint light scattering images that arise during the VKT measurement. It can therefore be adjusted in at least two positions or exchanged for a second screen.
Das Probandenauge wird seitlich unter einem festen Winkel durch den hellen Lichtspalt beleuchtet. Die dabei entstehenden Lichtschnitte am Auge werden mit einem optischenThe subject's eye is illuminated laterally at a fixed angle through the bright light gap. The resulting light cuts on the eye are visualized
System 18,19,21 auf die CCD - Kamera abgebildet. Beleuchtung und Beobachtung bilden dabei einen festen Winkel, vorzugsweise ca. 33°.System 18, 19, 21 imaged on the CCD camera. Illumination and observation form a fixed angle, preferably approximately 33 °.
Fig.8a,b zeigt schematisch die Anordnung zur Ermittlung der VKT , in Fig. 8a die8a, b schematically shows the arrangement for determining the VKT, in Fig. 8a
Beleuchtungsrichtung und in Fig.δb die Detektionsrichtung. Der Lichtspalt wird durch eine Zeile lichtstarker LED 's 12 gebildet, welche einen definiertenIllumination direction and in Fig.δb the detection direction. The light gap is formed by a row of bright LEDs 12, which have a defined one
Abstand zu einem Spalt fester Breite 12a besitzen.Have a distance to a gap of fixed width 12a.
Der auf diese Weise beleuchtete Spalt 12a wird durch eine Zylinderlinse 13 als Spaltbild S auf das Probandenauge abgebildet.The gap 12a illuminated in this way is imaged by a cylindrical lens 13 as a gap image S on the subject's eye.
Die zum Einsatz kommenden LED haben typischerweise eine Lebensdauer von mindestensThe LEDs used typically have a lifespan of at least
10 000 Stunden. (Im Vergleich: Halogenlampe 100-200 Stunden).10,000 hours. (In comparison: halogen lamp 100-200 hours).
Es gibt keine Verschleißerscheinungen durch hohe Temperaturbelastung wie bei einerThere are no signs of wear due to high temperature loads like one
Halogenlampe.Halogen lamp.
Es erfolgt eine Abbildung des Probandenauges mit den relevanten Bildausschnitten über eine schematisch dargestellte Abbildungsoptik 18,19 auf vorzugsweise einen CCD- Sensor 23.The subject's eye is imaged with the relevant image sections via a schematically illustrated imaging optics 18, 19, preferably on a CCD sensor 23.
Die Abbildung wird telezentrisch durchgeführt- Telezentrieblende 21 , um den Einfluß derThe mapping is carried out telecentrically - telecentric aperture 21 to the influence of the
Probandenjustierung zu minimieren. Das Videosignal wird auf einem Monitor oder LCMinimize subject adjustment. The video signal is on a monitor or LC
Display dargestellt, so daß der Bediener in ungezwungener Haltung die Probandenjustierung und Vermessung vornehmen kann.Display shown so that the operator can carry out the subject adjustment and measurement in a relaxed position.
Das Meßverfahren beruht nicht auf der meßbaren Verschiebung von Teilbildern; somit kann die Pupillenteilung entfallen.The measuring method is not based on the measurable shift of partial images; the pupil division can thus be omitted.
Das Signal der CCD - Kamera 23 wird mittels Frame Grabber FG in den Speicher desThe signal from the CCD camera 23 is stored in the memory of the
Rechners C übernommen.Computer C taken over.
Mit Hilfe geeigneter Bildverarbeitungssoftware werden Abstände im Schnittbild ermittelt, aus denen die VKT (Genauigkeit 0, 1 mm) errechnet wird.With the help of suitable image processing software, distances in the sectional image are determined, from which the VKT (accuracy 0.1 mm) is calculated.
Eine Verbesserung der relevanten Bildinhalte (zB durch Ausschalten von Umgebungslicht) wird erreicht, indem die Beleuchtungs-LED in geeigneter Form synchron zu den Videohalbbildern getaktet ein-und ausgeschaltet werden.An improvement in the relevant image content (for example by switching off ambient light) is achieved by switching the lighting LEDs on and off in a suitable form, synchronized with the video fields.
Zur Abbildung des Auges auf die CCD - Kamera genügt ein Achromat definierter Brennweite. Die Festlegung der Brennweite erfolgt in Abhängigkeit vom gewünschten Bildausschnitt am Auge, der abgebildet werden soll.An achromatic lens with a defined focal length is sufficient to image the eye on the CCD camera. The focal length is determined depending on the desired image section on the eye that is to be imaged.
In der bildseitigen Brennweite des Achromaten wird die Blende 23 angeordnet, welche die Telezentrie-bedingung erfüllt.The aperture 23, which fulfills the telecentric condition, is arranged in the image-side focal length of the achromatic lens.
Dieser einfache Aufbau des Abbildungssystems sichert die unkomplizierte Integrationsmöglichkeit in andere Systeme.This simple structure of the imaging system ensures that it can be easily integrated into other systems.
Die Einblendung eines Fixierlichtes 1,1a ( LED ) erfolgt über Strahlteiler 8 in Fig. 8b. Im Beobachtungssystem ist eine Lichtquelle integriert (zB. LED la oder Laserdiode 1, auf welche der Proband fixiert.A fixation light 1.1a (LED) is faded in via beam splitter 8 in FIG. 8b. A light source is integrated in the observation system (e.g. LED la or laser diode 1, on which the test subject is fixed.
Das Videosignal der Kamera wird auf einem Monitor oder LC Display dargestellt.The video signal from the camera is shown on a monitor or LC display.
Der Bediener kann sich während der Einjustierung und der Vermessung des Probanden davon überzeugen, daß der Proband richtig fixiert - und somit das Meßergebnis unverfälscht ist.During the adjustment and measurement of the test person, the operator can convince himself that the test person is correctly fixed - and thus the measurement result is unadulterated.
Der auf diese Weise beleuchtete Spalt wird durch eine Zylinderlinse auf das ProbandenaugeThe gap illuminated in this way is placed on the test person's eye through a cylindrical lens
(4) abgebildet.(4) shown.
Als besonders vorteilhaft erwiesen sich eine geringfügig von einer 1 : 1 Abbildung abweichende Abbildung eines 0,3 mm breiten Spaltes mit einer Apertur von größer 0, 1 sowie der Einsatz von Weißlicht-LED.A picture of a 0.3 mm wide slit with an aperture greater than 0.1, and the use of white light LEDs, which turned out to be slightly different from a 1: 1 picture, proved to be particularly advantageous.
Es erfolgt eine Abbildung des Probandenauges mit den relevanten Bildausschnitten über eine Abbildungsoptik 18,19 auf vorzugsweise einen CCD- Sensor 8. Die Abbildung wird telezentrisch durchgeführt, um den Einfluß der Probandenjustierung zu minimieren. Das Videosignal wird auf einem Monitor oder LC Display dargestellt, so daß der Bediener in ungezwungener Haltung die Probandenjustierung und Vermessung vornehmen kann.The subject's eye is imaged with the relevant image sections via imaging optics 18, 19, preferably on a CCD sensor 8. The imaging is carried out telecentrically in order to minimize the influence of subject adjustment. The video signal is displayed on a monitor or LC display, so that the operator can carry out the subject adjustment and measurement in a relaxed position.
Das Signal der CCD - Kamera wird z.B. mittels Frame Grabber in den Speicher einesThe signal from the CCD camera is e.g. into the memory of a
Rechners übernommen.Computer.
Mit Hilfe geeigneter Bildverarbeitungssoftware werden Abstände im Schnittbild ermittelt, aus denen die VKT (Genauigkeit 0,1 mm) errechnet wird.With the help of suitable image processing software, distances in the sectional image are determined, from which the VKT (accuracy 0.1 mm) is calculated.
Eine Verbesserung der relevanten Bildinhalte (z.B .durch Ausschalten von Umgebungslicht) wird erreicht, indem die Beleuchtungs-LED in geeigneter Form synchron zu denAn improvement in the relevant image content (e.g. by switching off ambient light) is achieved by synchronizing the lighting LED in a suitable form
Videohalbbildern getaktet ein- und ausgeschaltet werden.Video fields are clocked on and off.
Nachstehend wird anhand von Fig.7 dargestellt, wie anhand des Bildes auf der CCD- Matrix die VKT ermittelt wird.7 shows how the VKT is determined on the basis of the image on the CCD matrix.
Dargestellt ist das Bild des Auges, das durch die CCD- Kamera erfaßt wird, mit dem Reflexbild FI des Justierlasers bzw. der FixierLED sowie das Streulicht SH der Hornhaut und der Linse SL bei eingeschalteter Beleuchtung 1. Bestimmung des Abstandes der Vorderkanten der Streubilder von Hornhaut und Linse in digitalisierten AufnahmenThe image of the eye, which is captured by the CCD camera, is shown with the reflection image FI of the adjustment laser or the fixing LED, and the scattered light SH of the cornea and the lens SL when the illumination 1 is switched on. Determination of the distance between the leading edges of the scatter images of the cornea and lens in digitized images
Ausgangspunkt der Bildverarbeitung ist (n mal) ein Paar unmittelbar nacheinander aufgenommener Bilder: Bild 1 mit eingeschaltener Spaltbeleuchtung ("Hellbild"), Bild 2 ohne Spaltbeleuchtung mit Bild der Fixierlampe ("Dunkelbild"). Die Verarbeitung vollzieht sich in folgenden wesentlichen Schritten:The starting point of the image processing is (n times) a pair of images taken immediately after one another: image 1 with the slit illumination switched on ("bright image"), image 2 without slit illumination with the image of the fixing lamp ("dark image"). The processing takes place in the following essential steps:
• Detektion der Pupille im Dunkelbild: histogrammbasierte Auswahl eines Schwellwertes zur Binarisierung bei Berücksichtigung von Randbedingungen. Bestimmung einer die Pupille umschreibenden Ellipse durch Auswertung der Kovarianzmatrix des Binärbildes.• Detection of the pupil in the dark image: histogram-based selection of a threshold value for binarization taking into account boundary conditions. Determination of an ellipse circumscribing the pupil by evaluating the covariance matrix of the binary image.
• Detektion des Fixierpunktes in der Pupille im Dunkelbild: Bestimmung aller zusammenhängender Regionen, deren Grauwerte oberhalb des 0.9-Quantils der Grauwertverteilung im Dunkelbild liegen. Bestimmung eines Wahrscheinlichkeitsmaßes für jede Region, das von Fläche, Form und Abstand zum Pupillenmittelpunkt abhängt. Auswahl des Schwerpunktes der wahrscheinlichsten Region als Fixpunkt.Detection of the fixation point in the pupil in the dark image: determination of all connected regions whose gray values lie above the 0.9 quantile of the gray value distribution in the dark image. Determination of a probability measure for each region, which depends on the area, shape and distance from the center of the pupil. Selection of the focus of the most likely region as a fixed point.
• Berechnung des Differenzbildes (Hellbild minus Dunkelbild) und Rauschunterdrückung im Differenzbild durch Medianfilterung• Calculation of the difference image (light image minus dark image) and noise suppression in the difference image by median filtering
• Bestimmung des Kantenverlaufs der Streubilder der Spaltbeleuchtung im Differenzbild: histogrammbasierte Auswahl eines Schwellwertes zur Binarisierung bei Berücksichtigung von Randbedingungen. Grobdetektion der Kanten als Ort der Schwellwertüberschreitung in vorgegebenem Bereich um den Fixierpunkt. Feindetektion der Kanten als Ort des Wendepunktes des Grauwertverlaufs im Zeilenprofil, der der grobdetektierten Position am nächsten liegt. Eliminierung von Reflexkanten durch Ausreißerdetektion im Kantenverlauf (Entfernung eines vorgegebenen Anteils von Punkten, der am weitesten vom mittleren Kantenverlauf entfernt ist).• Determination of the edge profile of the scatter images of the slit lighting in the difference image: histogram-based selection of a threshold value for binarization taking into account boundary conditions. Rough detection of the edges as the location of the threshold value being exceeded in a predetermined area around the fixing point. Fine detection of the edges as the location of the turning point of the gray value curve in the line profile that is closest to the roughly detected position. Elimination of reflex edges by outlier detection in the edge course (removal of a predetermined proportion of points which is furthest from the middle edge course).
• Bestimmung des Abstandes X der Vorderkanten von Hornhaut- und Linsenstreubild SH, SL (in Pixeln): Approximation des Kantenverlaufs durch Ellipsen (restringierte Minimierung der Quadratfehlersumme). Berechnung des Abstandes der Schnittpunkte dieser Ellipsen mit der Horizontalen durch den Fixierpunkt.• Determination of the distance X of the front edges of the corneal and lens scattering image SH, SL (in pixels): Approximation of the edge profile by means of ellipses (restricted minimization of the square error sum). Calculation of the distance of the intersection of these ellipses with the horizontal through the fixation point.
Berechnung der Vorderkammertiefe aus o.g. Abstand:Calculation of the anterior chamber depth from the above Distance:
Umrechnung des in Pixel vorliegenden Abstandes X in mm (Abbildungsmaßstab der Optik und Pixelgröße der CCD-Matrix gehen ein) r = Hornhautradius, n = Brechzahl des Kammerwasseres, ω = Winkel zw. Beleuchtung und BeobachtungConversion of the distance X in mm in mm (image scale of the optics and pixel size of the CCD matrix are included) r = corneal radius, n = refractive index of the aqueous humor, ω = angle between illumination and observation
Diese Formel gilt exakt, wenn sich das Bild der Fixierlampe an der Vorderkante des Linsenstreubildes befindet, wie in Figur 7 dargestellt; anderenfalls kann der Abstand des Fixierlampenbildes von der Vorderkante des Linsenstreubildes ermittelt werden und aus dem Betrag dieser "Dezentrierung" kann nach bekannten Abbildungsformeln ein Korrekturwert für die Vorderkammertiefe ermittelt werden.This formula applies exactly when the image of the fixing lamp is at the front edge of the lens scattering image, as shown in FIG. 7; otherwise the distance of the fixation lamp image from the front edge of the lens scatter image can be determined and from the amount of this "decentering" a correction value for the anterior chamber depth can be determined according to known imaging formulas.
Der Hornhautradius wird vorzugsweise mittels der oben beschriebenen Keratometer- Einrichtung gemessen..The corneal radius is preferably measured using the keratometer device described above.
Es folgt zusammenfassend eine Übersicht von charakteristischen Einstellungen , welche bei der Kombination der 3 erforderlichen Meßwerte sowie des Justiervorganges zu beachten sind:The following is a summary of characteristic settings, which must be observed when combining the 3 required measured values and the adjustment process:
Justierung ALM Kerat VKTALM Kerat VKT adjustment
Feldgröße ca. 15mm ca. 5mm ca. 6mm ca. 6mmField size approx.15mm approx.5mm approx.6mm approx.6mm
Wellenlänge IR (zB 880nm) zB ca 780nm IR (zB 880nm) VIS(zB400-600nm)Wavelength IR (e.g. 880nm) e.g. approx 780nm IR (e.g. 880nm) VIS (e.g. 400-600nm)
Strahlblende ausgeschwenkt ausgeschwenkt ca.6 mm ca. 13 mmBeam aperture swung out swung approx. 6 mm approx. 13 mm
DOE ohne Wirkung wirkt ohne Wirkung ohne WirkungDOE without effect works without effect without effect
( ausgeschwenkt) ( ausgeschwenkt) ( ausgeschwenkt)(swung out) (swung out) (swung out)
Wie dieser Übersicht zu entnehmen ist, werden bei den verschiedenen Meßaufgaben unterschiedliche Wellenlängenbereiche verwendet. Den Teilerwürfeln 8 und 15 kommt dabei eine große Bedeutung zu, da an diesen Stellen Beleuchtungs-, Beobachtungs- und Meßstrahlengang voneinander getrennt werden.As can be seen from this overview, different wavelength ranges are used for the different measuring tasks. The divider cubes 8 and 15 come here are of great importance because the lighting, observation and measuring beam paths are separated from each other at these points.
Spezielle Teilerschichten realisieren diese Aufgabe unter Berücksichtigung der linearenSpecial divider layers realize this task taking into account the linear
Polarisation der Laserdiode 1.Polarization of the laser diode 1.
Teilerwürfel 8 :Divider cube 8:
Das aus dem Interferometer kommende Laserlicht soll maximal in Richtung Auge 14 reflektiert werden; das vom Auge 14 kommende Laserlicht soll maximale Transmission besitzen.The laser light coming from the interferometer should be reflected at most in the direction of eye 14; the laser light coming from the eye 14 should have maximum transmission.
Zusätzlich muß die Teilerschicht im Würfel 8 für die IR- und VIS Lichtanteile derIn addition, the divider layer in the cube 8 for the IR and VIS light components
Keratometer- und VKT-Messung maximale Transmission aufweisen.Keratometer and VKT measurements have maximum transmission.
Da es sich bei der LD 1( beispielsweise LT 023 Sharp) um linear polarisiertes Licht handelt, kann vorzugsweise eine dielektrische Mehrfachschicht mit polarisierender Wirkung zumSince the LD 1 (for example LT 023 Sharp) is linearly polarized light, a dielectric multilayer with a polarizing effect can preferably be used
Einsatz kommen. Der charakteristische Transmissionsverlauf ist in Abbildung 4 dargestellt.Come into play. The characteristic transmission curve is shown in Figure 4.
Das von 1 kommende senkrecht polarisierte Licht (s-pol, 780 nm) wird soweit wie möglich ( ca. 98%) reflektiert.The vertically polarized light coming from 1 (s-pol, 780 nm) is reflected as far as possible (approx. 98%).
Durch die Lamba/4 Platte wird zirkulär polarisiertes Licht erzeugt. Das vom Auge 14 reflektierte Licht wird somit nach Durchlaufen der Lambda/4 Platte wieder linear polarisiert; jedoch ist die Polarisationsrichtung um 90° gedreht (parallel polarisiert, p-pol). Für dieseCircularly polarized light is generated by the Lamba / 4 plate. The light reflected by the eye 14 is thus linearly polarized again after passing through the lambda / 4 plate; however, the direction of polarization is rotated by 90 ° (parallel polarized, p-pol). For this
Schwingungsrichtung weist die Teilerschicht bei 780 nm annähernd 100% Transmission auf.At 780 nm, the dividing layer exhibits approximately 100% transmission in the direction of vibration.
Die IR und VIS LED senden unpolarisiert.es Licht aus.The IR and VIS LEDs emit unpolarized light.
Wie aus Abb. 6 a zu entnehmen ist, ist die Transmission der Teilerschicht imAs can be seen from Fig. 6 a, the transmission of the divider layer is in the
Wellenlängenbereich von 420 bis 580 nm sowie im Bereich von 870 bis 1000 nm größer 90% für unpolarisiertes Licht.Wavelength range from 420 to 580 nm and in the range from 870 to 1000 nm greater than 90% for unpolarized light.
Aufbau der Schicht: Teilerwürfel 8:Structure of the layer: divider cube 8:
Dieser Polteilerwürfel erfüllt neben seiner normalen Funktion - hohe Polteilerwirkung in einem definierten Wellenlängenbereich - die zusätzlichen Forderungen der hohen Transmission im visuellen Wellenlängenbereich (420...560nm) und im nahem Infrarotbereich (870....1000nm).In addition to its normal function - high pole dividing effect in a defined wavelength range - this pole dividing cube fulfills the additional requirements of high transmission in the visual wavelength range (420 ... 560nm) and in the near infrared range (870 .... 1000nm).
Das Schichtdesign erfüllt diese Forderungen für einen engen Einfallswinkelbereich um 46°. Die eingesetzten Materialien sind bezüglich Brechzahl Substrat, Kittbrechzahl und der Brechzahl der Beschichtungssubstanzen aufeinander abgestimmt. Für diesen speziellen Einsatz wurden folgende Materialien ausgewählt: Substrat: SF2 n = l,64The layer design meets these requirements for a narrow angle of incidence around 46 °. The materials used are in terms of refractive index substrate, putty index and Refractive index of the coating substances matched to one another. The following materials were selected for this special application: Substrate: SF2 n = 1.64
Kitt n = l,64Putty n = 1.64
H n = l,93H n = 1.93
L n = 1.48 Das Design besteht aus 17Wechselschichten H L. HFO2 ist H, SIO2 ist L.L n = 1.48 The design consists of 17 alternating layers H L. HFO2 is H, SIO2 is L.
Für vergleichbare Teiler können durch eine geeignete Wahl der Brechzahlen von Substrat und Beschichtungssubstanzen sowie des Einfallswinkels geeignete Teiler gefertigt werden.For comparable dividers, suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
Parameter: hohe Transmission von 420... 560 nm, unpol. hohe Transmission von 870....1000 nm, unpol. Polteilung 780 ± 20 nmParameters: high transmission from 420 ... 560 nm, nonpol. high transmission of 870 .... 1000 nm, non-polar. Pole pitch 780 ± 20 nm
Beispiel:Example:
1 HFO2 156.8 nm1 HFO2 156.8 nm
2 SIO2 118.1 nm2 SIO2 118.1 nm
3 HFO2 166.4 nm3 HFO2 166.4 nm
4 SIO2 95.8 nm4 SIO2 95.8 nm
5 HFO2 160.2 nm5 HFO2 160.2 nm
6 SIO2 147.3 nm6 SIO2 147.3 nm
7 HFO2 145.6 nm7 HFO2 145.6 nm
8 SIO2 151.0 nm8 SIO2 151.0 nm
9 HFO2 144.9 nm9 HFO2 144.9 nm
10 SIO2 148.2 nm10 SIO2 148.2 nm
11 HFO2 149.2 nm11 HFO2 149.2 nm
12 SIO2 139.9 nm12 SIO2 139.9 nm
13 HFO2 161.3 nm13 HFO2 161.3 nm
14 SIO2 103.9 nm14 SIO2 103.9 nm
15 HFO2 179.5 nm15 HFO2 179.5 nm
16 SIO2 64.9 nm16 SIO2 64.9 nm
17 HFO2 170.9 nm Teilerwürfel 15:17 HFO2 170.9 nm Divider cube 15:
Das von Teilerwürfel 8 kommende Laserlicht soll zu ca.80 - 95% reflektiert werden bei annähernd 20 - 5% Transmission. Die Teilerschicht soll für die IR und VIS Lichtanteile max.The laser light coming from divider cube 8 should be reflected to approx. 80-95% with approximately 20-5% transmission. The divider layer should have max.
Transmission aufweisen.Have transmission.
Realisiert wird diese Schicht ebenfalls durch einen Polteiler, welcher in seinen Eigenschaften der Teilerschicht in 8 nahekommt. Die auf Teilerwürfel 15 angeordnete Lambda/2 Platte dreht die Polarisationsrichtung des ankommenden Lichtes um 90°, so daß auf Teilerwürfel 15 wieder die s-pol Komponente fällt.This layer is also implemented by means of a pole divider, the properties of which approximate the divider layer in FIG. 8. The lambda / 2 plate arranged on divider cubes 15 rotates the polarization direction of the incoming light by 90 °, so that the s-pol component falls again on divider cubes 15.
Durch Modifizierung der Schicht 8 wird das o.g. Teilerverhältnis eingestellt.By modifying layer 8, the above Divider ratio set.
Für unpolarisiertes Licht im IR und VIS Bereich beträgt die Transmission größer 90%.The transmission is greater than 90% for unpolarized light in the IR and VIS range.
Aufbau der Schicht: Teilerwürfel 15:Structure of the layer: divider cube 15:
Dieser Teilerwürfel erfüllt neben der Forderungen der Reflexion s-pol von 80...95 % bei einerThis divider cube fulfills the requirements of the reflection s-pol of 80 ... 95% at one
Wellenlänge von 780nm ± 20 nm - die zusätzlichen Forderungen der hohen Transmission im visuellen Wellenlängenbereich (420...560nm) und im nahem Infrarotbereich (870....1000nm)Wavelength of 780nm ± 20 nm - the additional requirements of high transmission in the visual wavelength range (420 ... 560nm) and in the near infrared range (870 .... 1000nm)
( Fig. 6b).(Fig. 6b).
Das Schichtdesign erfüllt diese Forderungen für einen engen Einfallswinkelbereich um 46°.The layer design meets these requirements for a narrow angle of incidence around 46 °.
Die eingesetzten Materialien sind bezüglich Brechzahl Substrat, Kittbrechzahl und derThe materials used are in terms of refractive index substrate, putty index and
Brechzahl der Beschichtungssubstanzen aufeinander abgestimmt. Für diesen speziellenRefractive index of the coating substances matched to one another. For that special
Einsatz wurden folgende Materialien ausgewählt:The following materials were selected:
Substrat: BK7 n = l,52Substrate: BK7 n = 1.52
Kitt n = l,52Putty n = 1.52
H n = l,93H n = 1.93
L n = 1.48 Das Design besteht aus 13 Wechselschichten H L.L n = 1.48 The design consists of 13 alternating layers H L.
Für vergleichbare Teiler können durch eine geeignete Wahl der Brechzahlen von Substrat und Beschichtungssubstanzen sowie des Einfallswinkels geeignete Teiler gefertigt werden.For comparable dividers, suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
Parameter: hohe Transmission von 420... 560 nm, unpol. hohe Transmission von 870....1000 nm, unpol. Reflexion s-pol ca. 80..95 % 780 ± 20 nm Beispiel:Parameters: high transmission from 420 ... 560 nm, nonpol. high transmission of 870 .... 1000 nm, non-polar. Reflection s-pole approx. 80..95% 780 ± 20 nm Example:
1 HFO2 130.2 nm1 HFO2 130.2 nm
2 SIO2 215.4 nm2 SIO2 215.4 nm
3 HFO2 130.6 nm3 HFO2 130.6 nm
4 SIO2 17.8 nm4 SIO2 17.8 nm
5 HFO2 160.7 nm5 HFO2 160.7 nm
6 SIO2 241.6 nm6 SIO2 241.6 nm
7 HFO2 136.6 nm7 HFO2 136.6 nm
8 SIO2 240.0 nm8 SIO2 240.0 nm
9 HFO2 156.4 nm9 HFO2 156.4 nm
10 SIO2 18.0 nm10 SIO2 18.0 nm
11 HFO2 135.1 nm11 HFO2 135.1 nm
12 SIO2 214.1 nm12 SIO2 214.1 nm
13 HFO2 131.3 nm13 HFO2 131.3 nm
Zur Einstellung und Ansteuerung aller verstellbaren Einheiten und optischen Glieder wie Optik 18,19, 22, Blende 21 usw. ist gemäß Fig. 5 eine zentrale Ansteuerung vorgesehen.A central control is provided according to FIG. 5 for setting and controlling all adjustable units and optical elements such as optics 18, 19, 22, aperture 21, etc.
Die verschiedenen Abbildungsmaßstäbe unter Berücksichtigung der Wirkung des DOE machen Umschaltvorgänge im Gerät erforderlich. Diese erfolgen vorzugsweise motorisch und programmgesteuert .The various imaging scales, taking into account the effect of the DOE, require switching processes in the device. These are preferably motorized and program-controlled.
Es wurde ein kompaktes Gerät realisiert, in welches die wesentlichen Elektronikbausteine integriert sind.A compact device was implemented in which the essential electronic components are integrated.
Kernstück ist ein embedded Pentium Controller C, an welchen ein Display D (Darstellung des untersuchten Auges 14 und Menüführung für den Bediener ), Tastatur, Maus, Fußschalter und Drucker als periphere Geräte angeschlossen werden.The centerpiece is an embedded Pentium Controller C, to which a display D (display of the examined eye 14 and menu navigation for the operator), keyboard, mouse, foot switch and printer are connected as peripheral devices.
ALMALM
Die Ansteuerung der Laserdiode 1 sowie des Interferometerschlittens IS (bewegliches Prisma5, mit Meßsystem verbunden ) erfolgt über den Controller C . Zur Reduzierung des Einflusses von Augenbewegungen muß eine kurze Meßzeit (kleiner 0,5 sec) realisiert werden. Das von der APD 17 erzeugte Signal gelangt in eine Signalverarbeitungseinheit SE wird in Abhängigkeit der Signalgröße verstärkt, anschließend frequenzselektiv verstärkt und mit einerThe control of the laser diode 1 and the interferometer slide IS (movable prism 5, connected to the measuring system) takes place via the controller C. To reduce the influence of eye movements, a short measuring time (less than 0.5 sec) must be implemented. The signal generated by the APD 17 arrives in a signal processing unit SE Dependence of the signal size amplified, then frequency-selective amplification and with a
Abtastfrequenz, die etwa der 4 fachen Frequenz des Nutzsignals entspricht, analog - digital gewandelt. Die digitalen Abtastwerte werden vom high-speed Port HS der Pentium Plattform übernommen.Sampling frequency, which corresponds to about 4 times the frequency of the useful signal, converted from analog to digital. The digital samples are taken from the high-speed port HS of the Pentium platform.
Dort erfolgt eine digitale Signalverarbeitung mittels Fouriertransformation ohne extern erzeugte Referenzfrequenz.There, digital signal processing takes place by means of Fourier transformation without an externally generated reference frequency.
Das Signal wird auf dem Display dargestellt; das Wegmeßsystem liefert den dazugehörigenThe signal is shown on the display; the measuring system provides the associated
Achslängenbetrag.Axis length amount.
KeratometerKeratometer
Der Controler C ist mit der Ansteuerung der CCD - Kamera 23 und den Dioden 10 verbunden.The controller C is connected to the control of the CCD camera 23 and the diodes 10.
Beim Einstellvorgang zur Messung der Hornhautkrümmung werden die Dioden 10 vorzugsweise im Dauerlichtmodus betrieben, um ein Flackern der auf dem LCD dargestelltenDuring the adjustment process for measuring the corneal curvature, the diodes 10 are preferably operated in the continuous light mode in order to flicker those shown on the LCD
Hornhautreflexbilder zu verhindern.To prevent corneal reflex images.
Beim Meßvorgang werden diese Dioden bildweise ein- und ausgeschaltet; dazu steuert derDuring the measuring process, these diodes are switched on and off picture-wise; the
Controler C die Dioden 10 synchron zum Bildimpuls der CCD - Kamera 23, d.h. dieController C the diodes 10 in synchronism with the image pulse of the CCD camera 23, i.e. the
Dioden sind bei einem Bild eingeschaltet und beim nächsten ausgeschaltet.Diodes are on for one picture and off for the next.
Nach Abzug ( Differenzbildung) zweier aufeinanderfolgender Bilder erhält manAfter subtracting (forming the difference) two successive images, you get
Bildpaarweise nur noch die Reflexe von der Hornhaut, die von den LED 10 erzeugt wurden und störende Reflexe von Umgebungslicht werden ausgeschaltet.In pairs, only the reflections from the cornea that were generated by the LED 10 and disturbing reflections from ambient light are switched off.
Die auf der Kamera 23 entstehenden Reflexbilder werden mittels Framegrabber FG digitalisiert und im Arbeitsspeicher der Pentium Plattform (The reflex images created on the camera 23 are digitized using the frame grabber FG and stored in the RAM of the Pentium platform (
Controler C) abgelegt.Controler C) filed.
Im Anschluß erfolgt die Bestimmung der Schwerpunktslagen der Reflexbilder der Dioden mittels Bildverarbeitung sowie die Berechnung der Hornhautradien mittels der in DD 251497 beschriebenen Näherungsformeln.This is followed by determining the center of gravity of the reflective images of the diodes using image processing and calculating the corneal radii using the approximate formulas described in DD 251497.
Zur Erhöhung der Reproduzierbarkeit der Meßresultate werden pro Meßvorgang ca. 5 Bildserien (bestehen aus je zwei Halbbildern mit und ohne Belichtung durch die synchron getakteten LED) aufgenommen.To increase the reproducibility of the measurement results, approx. 5 image series (each consisting of two fields with and without exposure by the synchronously clocked LED) are recorded per measurement process.
VKTVKT
Der Controler C ist weiterhin mit den Dioden 12 verbunden.The controller C is still connected to the diodes 12.
Beim Einstellvorgang ( Justierung) werden analog zum Keratometer die Dioden 12 vorzugsweise im Dauerlichtmodus betrieben. Beim Meßvorgang werden die Beleuchtungsdioden für linkes und rechtes Auge wahlweise durch den Controller getaktet (analog zu Keratometer)During the setting process (adjustment), the diodes 12 are preferably operated in continuous light mode, similar to the keratometer. During the measuring process, the lighting diodes for the left and right eyes are optionally clocked by the controller (analogous to keratometers)
Nach Vorgabe des Bedieners wird das Gerät nach links oder rechts verschoben und mittels ... auf den Augenmittelpunkt justiert.According to the operator's instructions, the device is moved to the left or right and adjusted to the center of the eye using ...
Mittels Bildverarbeitung wird die Kantenlage der Streubilder ermitteltThe edge position of the scatter images is determined by means of image processing
Die VKT errechnet sich aus dem Abstand der Hornhaut- und Linsenstreubilder, wie bereits beschrieben.The VKT is calculated from the distance between the corneal and lens scattering images, as already described.
Es werden ebenfalls ca. 5 Bildserien pro Meßvorgang aufgenommen.Approximately 5 series of images per measurement are also recorded.
Beleuchtunglighting
Der Controler C ist mit den Dioden 24 verbunden.The controller C is connected to the diodes 24.
Die IR Dioden 24 zur Beleuchtung des Auges können zu beliebigem Zeitpunkt über denThe IR diodes 24 for illuminating the eye can be switched on at any time
Controller zugeschaltet werden (programmintern oder durch den Bediener gesteuert)Controllers can be switched on (controlled within the program or controlled by the operator)
Der Controler ist weiterhin ( nicht dargestellt) mit den Ansteuerungen zur Ein- undThe controller is still (not shown) with the controls for the input and
Ausschwenkung/ Verstellung des DOE 9, der Linsen 18,19,22 und der Blenden 21 verbunden.Swinging out / adjustment of the DOE 9, the lenses 18, 19, 22 and the diaphragms 21 connected.
Die Berechnung der IOL erfolgt über international übliche Berechnungsformeln , die im Gerätespeicher abrufbar gespeichert sind, aus den ermittelten Meßwerten AL, HHR, VKT und werden über Drucker ausgedruckt . The IOL is calculated using the internationally customary calculation formulas, which are stored in the device memory and can be called up, from the measured values AL, HHR, VKT and are printed out on a printer.
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19857000 | 1998-12-10 | ||
DE1998157000 DE19857000A1 (en) | 1998-12-10 | 1998-12-10 | Method and set-up for measuring and surveying partial eye sections, especially main chamber depth, includes split light beamed onto eye and CCD camera to record scatter images coming from eye through achromatic lens |
DE19857001 | 1998-12-10 | ||
DE1998157001 DE19857001A1 (en) | 1998-12-10 | 1998-12-10 | Non-contact method and device for measuring eye's length of axis, cornea's curvature and eye's main chamber depth assists selection of intra-ocular lenses to be implanted in eye |
PCT/EP1999/009766 WO2000033729A2 (en) | 1998-12-10 | 1999-12-10 | System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1139857A2 true EP1139857A2 (en) | 2001-10-10 |
Family
ID=26050675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99963480A Ceased EP1139857A2 (en) | 1998-12-10 | 1999-12-10 | System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation |
Country Status (8)
Country | Link |
---|---|
US (5) | US6779891B1 (en) |
EP (1) | EP1139857A2 (en) |
JP (3) | JP4769923B2 (en) |
CN (2) | CN100502762C (en) |
CA (2) | CA2648334C (en) |
EA (1) | EA004236B1 (en) |
HK (1) | HK1043031B (en) |
WO (1) | WO2000033729A2 (en) |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043808A1 (en) * | 1994-05-06 | 2005-02-24 | Advanced Bio Surfaces, Inc. | Knee joint prosthesis |
CN100502762C (en) * | 1998-12-10 | 2009-06-24 | 卡尔蔡斯耶拿有限公司 | Combined instrument for measuring the axial length of the eye and the radius of curvature of the cornea without contact |
DE29913603U1 (en) | 1999-08-04 | 1999-11-25 | Oculus Optikgeräte GmbH, 35582 Wetzlar | Slit projector |
DE10042751A1 (en) * | 2000-08-31 | 2002-03-14 | Thomas Hellmuth | System for the contactless measurement of the optical image quality of an eye |
DE10108797A1 (en) * | 2001-02-21 | 2002-09-05 | Zeiss Carl Jena Gmbh | Procedure for determining distances at the anterior segment of the eye |
DE10307741A1 (en) * | 2003-02-24 | 2004-09-02 | Carl Zeiss Meditec Ag | Arrangement for improving the image field in ophthalmic devices |
DE10323920A1 (en) * | 2003-05-22 | 2004-12-16 | Carl Zeiss Meditec Ag | Method and arrangement for measuring the anterior segment of the eye |
DE20313745U1 (en) | 2003-09-02 | 2003-11-20 | Oculus Optikgeräte GmbH, 35582 Wetzlar | Ophthalmological analysis system |
DE10349230A1 (en) * | 2003-10-23 | 2005-07-07 | Carl Zeiss Meditec Ag | Apparatus for interferometric eye length measurement with increased sensitivity |
AU2005234778B2 (en) | 2004-04-20 | 2011-04-21 | Alcon Inc. | Integrated surgical microscope and wavefront sensor |
BRPI0401628B1 (en) * | 2004-04-22 | 2017-04-11 | Fundação De Amparo À Pesquisa Do Estado de São Paulo | projection light for accurate measurement of the curvature radii of spherical and non-spherical reflective surfaces |
US7884945B2 (en) * | 2005-01-21 | 2011-02-08 | Massachusetts Institute Of Technology | Methods and apparatus for optical coherence tomography scanning |
EP1858447B8 (en) * | 2005-02-25 | 2010-09-29 | Acri. Tec GmbH | System and device for compensating a local deformation of the cornea of an eye |
US7347554B2 (en) * | 2005-03-15 | 2008-03-25 | Carl Zeiss Meditec, Inc. | Determining criteria for phakic intraocular lens implant procedures |
DE102005059923A1 (en) * | 2005-12-13 | 2007-06-14 | Oculus Optikgeräte GmbH | Eye tissue surface measuring point determining method, involves deriving length of optical path through measuring point to light sensor from measured value of frequency and specific light speed on basis of impulse light source |
US9545338B2 (en) | 2006-01-20 | 2017-01-17 | Lensar, Llc. | System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser |
US10842675B2 (en) | 2006-01-20 | 2020-11-24 | Lensar, Inc. | System and method for treating the structure of the human lens with a laser |
US9889043B2 (en) | 2006-01-20 | 2018-02-13 | Lensar, Inc. | System and apparatus for delivering a laser beam to the lens of an eye |
US8262646B2 (en) * | 2006-01-20 | 2012-09-11 | Lensar, Inc. | System and method for providing the shaped structural weakening of the human lens with a laser |
JP4907227B2 (en) | 2006-05-29 | 2012-03-28 | 株式会社ニデック | Intraocular dimension measuring device |
DE102006054774A1 (en) * | 2006-11-17 | 2008-05-21 | Carl Zeiss Meditec Ag | Ophthalmological examination device |
JP5172141B2 (en) * | 2006-12-26 | 2013-03-27 | 株式会社ニデック | Axial length measuring device |
US20080218692A1 (en) * | 2007-03-06 | 2008-09-11 | Hopler Mark D | Reflectometry/Interferometry System and Method for Corneal Plane Positioning |
DE102007017599A1 (en) | 2007-04-13 | 2008-10-16 | Carl Zeiss Meditec Ag | Apparatus and method for axial length measurement with extended measurement function in the anterior segment of the eye |
DE102007027683A1 (en) * | 2007-06-15 | 2008-12-18 | Carl Zeiss Meditec Ag | Apparatus and method for determining anterior chamber depth and eye length of an eye |
US8727532B2 (en) | 2007-07-24 | 2014-05-20 | Sis Ag, Surgical Instrument Systems | Ophthalmological measurement apparatus and measurement method |
EP2359743B1 (en) | 2007-07-24 | 2012-12-05 | SIS AG, Surgical Instrument Systems | Ophthalmologic measuring device and measuring method |
US7594729B2 (en) | 2007-10-31 | 2009-09-29 | Wf Systems, Llc | Wavefront sensor |
US7800759B2 (en) * | 2007-12-11 | 2010-09-21 | Bausch & Lomb Incorporated | Eye length measurement apparatus |
US9186059B2 (en) * | 2007-12-21 | 2015-11-17 | Bausch & Lomb Incorporated | Ophthalmic instrument alignment apparatus and method of using same |
WO2010064150A2 (en) * | 2008-04-04 | 2010-06-10 | Amo Regional Holdings | Systems and methods for determing intraocular lens power |
US8295903B2 (en) * | 2008-05-25 | 2012-10-23 | Auraprobe, Inc. | Electron avalanche putative energy field analyzer |
ES2656406T3 (en) * | 2008-06-30 | 2018-02-27 | Wavelight Gmbh | Device for ophthalmic surgery, especially for laser refractive surgery |
US8480659B2 (en) | 2008-07-25 | 2013-07-09 | Lensar, Inc. | Method and system for removal and replacement of lens material from the lens of an eye |
US8500723B2 (en) | 2008-07-25 | 2013-08-06 | Lensar, Inc. | Liquid filled index matching device for ophthalmic laser procedures |
EP2346386B1 (en) * | 2008-08-12 | 2013-04-10 | Carl Zeiss Meditec AG | Optical coherence reflectometry with depth resolution |
DE102008051147A1 (en) * | 2008-10-10 | 2010-04-15 | Carl Zeiss Meditec Ag | Arrangement and method for recording and evaluating slit images of predominantly transparent media, especially in the eye |
DE102008055755A1 (en) | 2008-11-04 | 2010-05-06 | Carl Zeiss Meditec Ag | Ophthalmologic measurement system i.e. optical biometer, for obtaining biometric data of eyes of patient, has test unit i.e. test eye, with test eye receiving device for varying position of test unit with respect to evaluating unit |
US8967808B2 (en) | 2008-11-04 | 2015-03-03 | Carl Zeiss Meditec Ag | Ophthalmological measuring system and method for calibrating and/or adjusting the same |
US8294971B2 (en) * | 2008-12-18 | 2012-10-23 | Bausch • Lomb Incorporated | Apparatus comprising an optical path delay scanner |
DE102008063225A1 (en) | 2008-12-23 | 2010-07-01 | Carl Zeiss Meditec Ag | Device for Swept Source Optical Coherence Domain Reflectometry |
JP5232038B2 (en) * | 2009-02-12 | 2013-07-10 | 株式会社ニデック | Eye size measuring device |
US9119565B2 (en) * | 2009-02-19 | 2015-09-01 | Alcon Research, Ltd. | Intraocular lens alignment |
DE102009022958A1 (en) * | 2009-05-28 | 2010-12-02 | Carl Zeiss Meditec Ag | Device and method for the optical measurement of relative distances |
JP5545618B2 (en) * | 2009-07-06 | 2014-07-09 | 株式会社ニデック | Eye size measuring device |
ES2542903T3 (en) * | 2009-07-14 | 2015-08-12 | Wavetec Vision Systems, Inc. | Measurement system for ophthalmic surgery |
EP2456384B1 (en) | 2009-07-24 | 2023-09-20 | LENSAR, Inc. | System for providing laser shot patterns to the lens of an eye |
US8382745B2 (en) | 2009-07-24 | 2013-02-26 | Lensar, Inc. | Laser system and method for astigmatic corrections in association with cataract treatment |
US8758332B2 (en) | 2009-07-24 | 2014-06-24 | Lensar, Inc. | Laser system and method for performing and sealing corneal incisions in the eye |
AU2010275380A1 (en) | 2009-07-24 | 2012-02-16 | Lensar, Inc. | System and method for performing ladar assisted procedures on the lens of an eye |
US8617146B2 (en) | 2009-07-24 | 2013-12-31 | Lensar, Inc. | Laser system and method for correction of induced astigmatism |
US8210683B2 (en) * | 2009-08-27 | 2012-07-03 | Virginia Mason Medical Center | No-history method for intraocular lens power adjustment after excimer laser refractive surgery |
DE102009041995A1 (en) | 2009-09-18 | 2011-03-24 | Carl Zeiss Meditec Ag | Optical deflection unit for scanning, ophthalmic measuring and therapy systems |
JP5426339B2 (en) | 2009-12-02 | 2014-02-26 | 株式会社ニデック | Eye size measuring device |
JP5410954B2 (en) * | 2009-12-29 | 2014-02-05 | 株式会社ニデック | Axial length measuring device |
CN102843955A (en) | 2010-02-01 | 2012-12-26 | 雷萨公司 | Purkinjie image-based alignment of suction ring in ophthalmic applications |
JP5484157B2 (en) * | 2010-03-30 | 2014-05-07 | 株式会社ニデック | Ophthalmic equipment |
DE102010014114B4 (en) | 2010-04-07 | 2024-03-07 | Carl Zeiss Meditec Ag | Ophthalmological device with imaging modes for adjustment and measuring tasks |
DE102010019657A1 (en) | 2010-05-03 | 2011-11-03 | Carl Zeiss Meditec Ag | Arrangement for improved imaging of eye structures |
DE102010047053A1 (en) | 2010-09-29 | 2012-03-29 | Carl Zeiss Meditec Ag | Method and device for the interferometric determination of different biometric parameters of an eye |
DE102010047010B4 (en) * | 2010-09-30 | 2017-03-09 | Carl Zeiss Meditec Ag | Control device for an ophthalmic surgical system |
USD694890S1 (en) | 2010-10-15 | 2013-12-03 | Lensar, Inc. | Laser system for treatment of the eye |
USD695408S1 (en) | 2010-10-15 | 2013-12-10 | Lensar, Inc. | Laser system for treatment of the eye |
US8801186B2 (en) | 2010-10-15 | 2014-08-12 | Lensar, Inc. | System and method of scan controlled illumination of structures within an eye |
JP6007466B2 (en) * | 2010-12-27 | 2016-10-12 | 株式会社ニデック | Corneal shape measuring device |
US20140088573A1 (en) * | 2011-03-04 | 2014-03-27 | Eyesight & Vision Gmbh | Projector device, and medical device comprising the projector device |
EP4223264A1 (en) * | 2011-03-25 | 2023-08-09 | Lensar, Inc. | A laser system configured to eliminate systematic error in perform a cataract produced |
US10463541B2 (en) | 2011-03-25 | 2019-11-05 | Lensar, Inc. | System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions |
JP6301246B2 (en) * | 2011-03-25 | 2018-04-11 | ノバルティス エージー | Method and system for imaging optical elements |
DE102011106288A1 (en) | 2011-07-01 | 2013-01-03 | Carl Zeiss Meditec Ag | Device for non-contact measurement of eye parameters |
DE102011082500A1 (en) * | 2011-08-26 | 2013-02-28 | Oculus Optikgeräte GmbH | Ophthalmological analyzer and method |
US10159565B2 (en) | 2011-10-14 | 2018-12-25 | Amo Groningen B.V. | Apparatus, system and method to account for spherical aberration at the iris plane in the design of an intraocular lens |
US8556421B2 (en) * | 2011-10-19 | 2013-10-15 | Novartis Ag | Calculating an intraocular lens (IOL) power according to a directly determined IOL location |
CN103654710B (en) * | 2012-09-03 | 2015-10-28 | 华晶科技股份有限公司 | Image detection device and image detection method |
US9072462B2 (en) | 2012-09-27 | 2015-07-07 | Wavetec Vision Systems, Inc. | Geometric optical power measurement device |
DE102012019469A1 (en) | 2012-09-28 | 2014-04-03 | Carl Zeiss Meditec Ag | Method for the realization of OCT and other image recordings of an eye |
DE102012019474A1 (en) * | 2012-09-28 | 2014-04-03 | Carl Zeiss Meditec Ag | Device for the reliable determination of biometric measurements of the entire eye |
WO2014072402A1 (en) | 2012-11-08 | 2014-05-15 | Carl Zeiss Meditec Ag | Method for determining the total refractive power of the cornea of an eye |
DE102012022059A1 (en) | 2012-11-08 | 2014-05-08 | Carl Zeiss Meditec Ag | Method for determining total refracting power of cornea of e.g. astigmatic eye, involves determining refracting power of cornea front side, and determining central thickness of cornea based on total refracting power of cornea |
DE102013002828A1 (en) | 2013-02-15 | 2014-08-21 | Carl Zeiss Meditec Ag | Method for determining total refractive power of eye cornea, involves determining refractive power of front side of cornea, refractive power of rear side of cornea and total refractive power of cornea |
EP2962627A4 (en) * | 2013-02-28 | 2016-04-06 | Tecnología Pro Informática S L | System for obtaining parameters for adjusting frames with lenses for a user |
US10117572B2 (en) * | 2013-04-26 | 2018-11-06 | Carl Zeiss Meditec Ag | Method, ophthalmic measuring system and computer-readable storage medium for selecting an intraocular lens |
JP5650810B2 (en) * | 2013-06-24 | 2015-01-07 | 株式会社ニデック | Axial length measuring device |
DE102014210786A1 (en) | 2014-06-05 | 2015-12-17 | Carl Zeiss Meditec Ag | Topography module for ophthalmic devices with distance-independent keratometry measuring device and method for its use |
DE102014210787A1 (en) | 2014-06-05 | 2015-12-17 | Carl Zeiss Meditec Ag | Distance-compensated measuring device for topographical and keratometric measurements on the eye |
CN104116494B (en) * | 2014-08-21 | 2016-08-24 | 太原中北新缘科技中心 | Keratometry device based on telecentric system |
JP5958525B2 (en) * | 2014-11-26 | 2016-08-02 | 富士ゼロックス株式会社 | Eyeball optical measuring device |
JP5958635B2 (en) * | 2014-11-26 | 2016-08-02 | 富士ゼロックス株式会社 | Eyeball optical measuring device |
US10048513B2 (en) * | 2015-11-02 | 2018-08-14 | Focure Inc. | Continuous autofocusing eyewear |
CN105640486B (en) * | 2015-12-16 | 2018-01-12 | 上海杰视医疗科技有限公司 | A kind of method and device for determining camera oculi anterior volume |
JP6994472B2 (en) * | 2016-05-13 | 2022-02-04 | エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル) | Systems, methods, and equipment for retinal absorption, phase and darkfield imaging with tilted illumination |
US10591648B2 (en) * | 2016-06-01 | 2020-03-17 | Arlo Technologies, Inc. | Camera with polygonal lens |
AU2017287014B2 (en) | 2016-07-01 | 2022-06-23 | Cylite Pty Ltd | Apparatus and method for confocal microscopy using dispersed structured illumination |
WO2018009704A1 (en) | 2016-07-06 | 2018-01-11 | Amo Wavefront Sciences, Llc | Retinal imaging for reference during laser eye surgery |
DE102016216615A1 (en) * | 2016-09-02 | 2018-03-08 | Carl Zeiss Meditec Ag | Illumination system for determining the topography of the cornea of an eye |
WO2018047832A1 (en) * | 2016-09-06 | 2018-03-15 | Nikon Corporation | Catadioptric unit-magnification afocal pupil relay and optical imaging system employing the same |
US11064184B2 (en) * | 2017-08-25 | 2021-07-13 | Aurora Flight Sciences Corporation | Aerial vehicle imaging and targeting system |
US10495421B2 (en) | 2017-08-25 | 2019-12-03 | Aurora Flight Sciences Corporation | Aerial vehicle interception system |
AU2018330603B2 (en) | 2017-09-11 | 2024-07-18 | Amo Groningen B.V. | Intraocular lenses with customized add power |
US10864075B2 (en) | 2017-12-31 | 2020-12-15 | Rxsight, Inc. | Intraocular lens visualization and tracking system |
KR102140486B1 (en) * | 2018-03-27 | 2020-08-03 | (주)위키옵틱스 | Illumination apparatus for retina observation and fundus camera having the same |
DE102018216674A1 (en) | 2018-09-28 | 2020-04-02 | Carl Zeiss Meditec Ag | Method for the biometric measurement of an eye |
US20240041318A1 (en) * | 2020-12-23 | 2024-02-08 | Essilor International | Method of evaluating the efficiency of a myopia control solution |
CN112945131B (en) * | 2021-02-09 | 2022-12-09 | 中国商用飞机有限责任公司 | Scratch depth measuring device and method |
CN114129125B (en) * | 2021-12-02 | 2024-07-26 | 广西秒看科技有限公司 | Intelligent conversion system for calculating required diopter of different near distances |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE251497C (en) | ||||
US3785723A (en) * | 1973-02-27 | 1974-01-15 | D Guyton | Method and apparatus for locating a principal meridian of an astigmatic optical system |
US4019813A (en) * | 1976-01-19 | 1977-04-26 | Baylor College Of Medicine | Optical apparatus for obtaining measurements of portions of the eye |
US4420228A (en) * | 1980-06-12 | 1983-12-13 | Humphrey Instruments, Inc. | Method and apparatus for analysis of corneal shape |
US4572628A (en) | 1981-05-29 | 1986-02-25 | Nippon Kogaku K.K. | Method of and apparatus for measuring radius |
US4660946A (en) | 1981-09-21 | 1987-04-28 | Canon Kabushiki Kaisha | Cornea shape measuring method and apparatus |
DE3150124C2 (en) * | 1981-12-18 | 1985-01-31 | Fa. Carl Zeiss, 7920 Heidenheim | Device for examining the anterior segments of the eye |
DE3201801A1 (en) | 1982-01-21 | 1983-09-08 | Adolf Friedrich Prof. Dr.-Phys. 4300 Essen Fercher | Method and device for measuring the component sections of the living eye |
US4533221A (en) * | 1983-01-25 | 1985-08-06 | Trachtman Joseph N | Methods and apparatus for accommodation training |
US4711541A (en) * | 1984-02-02 | 1987-12-08 | Tokyo Kogaku Kikai Kabushiki Kaisha | Slit lamp and accessory device thereof |
US4582404A (en) * | 1984-07-16 | 1986-04-15 | Hamilton C B | Sagometer |
US4764006A (en) * | 1985-09-13 | 1988-08-16 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
DD251497A1 (en) * | 1986-07-31 | 1987-11-18 | Zeiss Jena Veb Carl | DEVICE FOR MEASURING THE CRUISES OF TORQUE REFLECTIVE FLAKES, IN PARTICULAR THE EYE FORESTRY |
JPS6357045A (en) * | 1986-08-26 | 1988-03-11 | ドナルド・プレジヤ− | Intraocular lens apparatus, myopia treatement method, lens slide and intraocular lens apparatus inserting method |
US5325135A (en) * | 1987-03-06 | 1994-06-28 | Canon Kabushiki Kaisha | Ophthalmologic apparatus having two measuring systems |
US4930512A (en) * | 1988-06-16 | 1990-06-05 | Sonomed, Inc. | Hand held spring-loaded ultrasonic probe |
US5092880A (en) * | 1988-10-21 | 1992-03-03 | Genjiro Ohmi | Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens |
JPH02295537A (en) * | 1989-05-09 | 1990-12-06 | Topcon Corp | Instrument for finding range between back and forth diameters of eye in organ |
US5042938A (en) | 1989-05-09 | 1991-08-27 | Kabushiki Kaisha Topcon | Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc. |
JP2763584B2 (en) * | 1989-05-09 | 1998-06-11 | 株式会社トプコン | Front and rear diameter distance measuring device for living eye |
JPH0779797B2 (en) | 1989-07-28 | 1995-08-30 | キヤノン株式会社 | Keratometer |
JP3042851B2 (en) | 1990-01-29 | 2000-05-22 | 株式会社ニデック | Corneal shape measuring device |
US5139022A (en) * | 1990-10-26 | 1992-08-18 | Philip Lempert | Method and apparatus for imaging and analysis of ocular tissue |
US5094521A (en) * | 1990-11-07 | 1992-03-10 | Vision Research Laboratories | Apparatus for evaluating eye alignment |
US5386258A (en) * | 1991-01-17 | 1995-01-31 | Canon Kabushiki Kaisha | Optical apparatus having a visual axis direction detecting device |
DE69213806T2 (en) * | 1991-04-15 | 1997-04-10 | Topcon Corp | Method and device for determining the axial length of the eye |
JPH05199993A (en) * | 1992-01-29 | 1993-08-10 | Canon Inc | Ophthalmoscopic device |
US5280313A (en) * | 1991-07-25 | 1994-01-18 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
JPH0531073A (en) * | 1991-07-25 | 1993-02-09 | Canon Inc | Ophthalmological measuring device |
DE4210384A1 (en) | 1992-03-30 | 1993-10-07 | Stiller Henning | Device and method for examining the eye |
JPH05277075A (en) * | 1992-04-03 | 1993-10-26 | Topcon Corp | Eye axis length measuring aparatus |
JP3221733B2 (en) | 1992-06-30 | 2001-10-22 | 株式会社ニデック | Lens measuring device |
US5463430A (en) * | 1992-07-31 | 1995-10-31 | Nidek Co., Ltd. | Examination apparatus for examining an object having a spheroidal reflective surface |
US5282852A (en) * | 1992-09-02 | 1994-02-01 | Alcon Surgical, Inc. | Method of calculating the required power of an intraocular lens |
JPH06137841A (en) * | 1992-10-29 | 1994-05-20 | Nikon Corp | Ophthalmological measuring device |
JPH06205739A (en) * | 1993-01-11 | 1994-07-26 | Topcon Corp | Organism eye measuring device |
US5331962A (en) * | 1993-04-16 | 1994-07-26 | Cornell Research Foundation Inc. | Ultrasound system for corneal biometry |
AU716040B2 (en) | 1993-06-24 | 2000-02-17 | Bausch & Lomb Incorporated | Ophthalmic pachymeter and method of making ophthalmic determinations |
JP3423030B2 (en) * | 1993-06-29 | 2003-07-07 | 株式会社トプコン | Ophthalmic equipment |
JP3408297B2 (en) * | 1993-10-29 | 2003-05-19 | 株式会社ニデック | Ophthalmic equipment |
US5493109A (en) | 1994-08-18 | 1996-02-20 | Carl Zeiss, Inc. | Optical coherence tomography assisted ophthalmologic surgical microscope |
US5491524A (en) * | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
DE4446183B4 (en) | 1994-12-23 | 2005-06-02 | Carl Zeiss Jena Gmbh | Arrangement for measuring intraocular distances |
JP3347514B2 (en) * | 1995-03-31 | 2002-11-20 | ホーヤ株式会社 | Eye optical system simulation device |
US5745176A (en) | 1995-10-12 | 1998-04-28 | Ppt Vision, Inc. | Machine-vision illumination system and method for delineating a lighted volume from an unlighted volume |
JP3592416B2 (en) | 1995-10-31 | 2004-11-24 | 晃敏 吉田 | Measuring device for intraocular substances |
US5784146A (en) * | 1995-12-28 | 1998-07-21 | Nidek Co., Ltd | Ophthalmic measurement apparatus |
US5828489A (en) | 1996-04-12 | 1998-10-27 | Rockwell International Corporation | Narrow wavelength polarizing beamsplitter |
JP3615871B2 (en) * | 1996-05-31 | 2005-02-02 | 株式会社ニデック | Anterior segment cross-section imaging device |
US5735283A (en) * | 1996-10-09 | 1998-04-07 | Snook; Richard Kieth | Surgical keratometer system for measuring surface topography of a cornea during surgery |
US6015435A (en) * | 1996-10-24 | 2000-01-18 | International Vision, Inc. | Self-centering phakic intraocular lens |
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
US6079831A (en) * | 1997-04-24 | 2000-06-27 | Orbtek, Inc. | Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements |
EP0941692B1 (en) * | 1998-03-09 | 2002-09-11 | Schwind eye-tech-solutions GmbH & Co. KG | Method and device for examining the eye |
GB2336657B (en) * | 1998-04-09 | 2001-01-24 | Iain Sinclair | Improvements in or relating to electric lights |
US6404984B1 (en) * | 1998-11-19 | 2002-06-11 | Sony Corporation | Lighted camera for dental examinations and method of using the same |
CN100502762C (en) * | 1998-12-10 | 2009-06-24 | 卡尔蔡斯耶拿有限公司 | Combined instrument for measuring the axial length of the eye and the radius of curvature of the cornea without contact |
DE10042751A1 (en) * | 2000-08-31 | 2002-03-14 | Thomas Hellmuth | System for the contactless measurement of the optical image quality of an eye |
-
1999
- 1999-12-10 CN CNB998143537A patent/CN100502762C/en not_active Expired - Lifetime
- 1999-12-10 EP EP99963480A patent/EP1139857A2/en not_active Ceased
- 1999-12-10 CN CN200910140890.5A patent/CN101596096B/en not_active Expired - Lifetime
- 1999-12-10 US US09/857,599 patent/US6779891B1/en not_active Expired - Lifetime
- 1999-12-10 EA EA200100626A patent/EA004236B1/en not_active IP Right Cessation
- 1999-12-10 WO PCT/EP1999/009766 patent/WO2000033729A2/en active Application Filing
- 1999-12-10 JP JP2000586226A patent/JP4769923B2/en not_active Expired - Lifetime
- 1999-12-10 CA CA2648334A patent/CA2648334C/en not_active Expired - Lifetime
- 1999-12-10 HK HK02104760.8A patent/HK1043031B/en not_active IP Right Cessation
- 1999-12-10 CA CA002353921A patent/CA2353921C/en not_active Expired - Fee Related
-
2004
- 2004-08-10 US US10/916,151 patent/US7322699B2/en not_active Expired - Fee Related
-
2007
- 2007-10-31 US US11/932,170 patent/US20080111972A1/en not_active Abandoned
-
2011
- 2011-01-24 JP JP2011012236A patent/JP5184662B2/en not_active Expired - Lifetime
-
2012
- 2012-04-12 US US13/445,669 patent/US8764195B2/en not_active Expired - Fee Related
- 2012-09-13 JP JP2012201426A patent/JP5417507B2/en not_active Expired - Fee Related
-
2014
- 2014-06-27 US US14/318,022 patent/US9504381B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0033729A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002531205A (en) | 2002-09-24 |
CA2353921A1 (en) | 2000-06-15 |
CN1330524A (en) | 2002-01-09 |
JP4769923B2 (en) | 2011-09-07 |
US6779891B1 (en) | 2004-08-24 |
JP5417507B2 (en) | 2014-02-19 |
CA2648334A1 (en) | 2000-06-15 |
CA2648334C (en) | 2016-02-02 |
US7322699B2 (en) | 2008-01-29 |
WO2000033729A2 (en) | 2000-06-15 |
US8764195B2 (en) | 2014-07-01 |
HK1043031B (en) | 2010-03-12 |
WO2000033729A3 (en) | 2000-10-26 |
CN101596096B (en) | 2015-11-25 |
CN100502762C (en) | 2009-06-24 |
JP2013006068A (en) | 2013-01-10 |
EA004236B1 (en) | 2004-02-26 |
CA2353921C (en) | 2009-03-10 |
HK1043031A1 (en) | 2002-09-06 |
JP5184662B2 (en) | 2013-04-17 |
US20050018137A1 (en) | 2005-01-27 |
US20120287399A1 (en) | 2012-11-15 |
JP2011098220A (en) | 2011-05-19 |
US9504381B2 (en) | 2016-11-29 |
US20080111972A1 (en) | 2008-05-15 |
CN101596096A (en) | 2009-12-09 |
EA200100626A1 (en) | 2002-06-27 |
US20140375951A1 (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000033729A2 (en) | System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation | |
DE19857001A1 (en) | Non-contact method and device for measuring eye's length of axis, cornea's curvature and eye's main chamber depth assists selection of intra-ocular lenses to be implanted in eye | |
DE69420196T2 (en) | Ophthalmic device for the anterior eye area | |
EP2134247B1 (en) | Method for axial length measurement having expanded measuring function in the anterior eye segment | |
DE69528024T2 (en) | Surgical apparatus controlled with optical coherence tomography | |
DE60121123T2 (en) | METHOD AND DEVICE FOR MEASURING REFRACTIVE ERRORS OF AN EYE | |
DE60038008T2 (en) | DEVICE FOR IMAGING EYE TISSUE | |
DE60105874T2 (en) | Ophthalmic device | |
WO2005045362A1 (en) | Apparatus for interferometric eye length measurement with increased sensitivity | |
DE69020411T2 (en) | Method and device for optical measurements. | |
DE10108797A1 (en) | Procedure for determining distances at the anterior segment of the eye | |
DE2654608C3 (en) | Refractometer for the automatic objective determination of the refractive state of an eye | |
DE60206510T2 (en) | SYSTEM FOR CALCULATING THE DIAMETER OF THE FRONT CHAMBER FROM MEASUREMENTS OF THE LIMBUS RING | |
DE68911975T2 (en) | Ophthalmoscopic diagnostic method and device. | |
EP3313262B1 (en) | Purkinje meter and method for automatic evaluation | |
DE69020410T2 (en) | Method and device for optical measurements. | |
EP1308128A2 (en) | Apparatus and method for measuring the refraction of the eye | |
EP2465412B1 (en) | Method for measuring the front section of the eye | |
AT518602A1 (en) | Ophthalmic length measurement using a double-beam space-time domain Wavelength Tuning Short-coherence interferometry | |
EP0979634B1 (en) | Device for the confocal measurement of light reflection of a body part | |
WO1998013665A1 (en) | Process and device for measuring a bump on a surface, in particular on the retina of the eye | |
AT511014B1 (en) | OPTICAL ADAPTER FOR A DOUBLE JETTING SHORT COHERENCE INTERFEROMETRY PROCEDURE AND ARRANGEMENT FOR INTRAOCULAR DISTANCE MEASUREMENT | |
DE3831461A1 (en) | Method and arrangement for comparing objects in reflected light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010608 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20080415 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20200203 |