EP1138407A1 - Method of hydroforming a structural member - Google Patents
Method of hydroforming a structural member Download PDFInfo
- Publication number
- EP1138407A1 EP1138407A1 EP00201094A EP00201094A EP1138407A1 EP 1138407 A1 EP1138407 A1 EP 1138407A1 EP 00201094 A EP00201094 A EP 00201094A EP 00201094 A EP00201094 A EP 00201094A EP 1138407 A1 EP1138407 A1 EP 1138407A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydroforming
- metal product
- intermediate metal
- range
- structural member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 229910000838 Al alloy Inorganic materials 0.000 claims description 16
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 239000000047 product Substances 0.000 description 20
- 239000004411 aluminium Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000005452 bending Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/053—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
- B21D26/055—Blanks having super-plastic properties
Definitions
- the invention relates to a method of manufacturing a shaped and hollow structural member, in particular of aluminium, via a hydroforming process. Further the invention relates to a product obtained via such a method.
- aluminium refers also to aluminium alloys.
- forming is an important tool in manufacturing complex shapes with as main materials steel and aluminium.
- Suppliers are urged to improve the formability of their materials and to integrate their processes because of, amongst others, costs and environmental aspects.
- a part of this objective can be achieved using a relative novel forming technology such as hydroforming.
- hydroforming In a typical hydroforming operation, for example a cylindrical metal tube is bent into the overall shape desired for the final part, then placed between a pair of dies. The dies provide a cavity around the tube which has an interior shape matching the exterior shape desired for the part.
- An object of the invention is to provide an improved method of manufacturing a shaped and hollow structural member via a hydroforming process using an extruded or welded tubular or hollow metal product as starting material.
- Another object of the invention is to provide an improved method of manufacturing a shaped and hollow structural member via a hydroforming process using an extruded or welded tubular or hollow aluminium product as starting material.
- the pressure medium used during hydroforming is a hydraulic oil which can withstand the relatively high temperatures.
- the intermediate metal product and/or the hydroforming dies are pre-warmed, when possibly they may are be pre-warmed locally. This further improves the method and optimises the hydroforming behaviour of the metal used.
- the metal product can be pre-heated, locally, to a temperature in a range of 200 to 400°C in for example an air circulating furnace prior to placing the metal product in the hydroforming dies.
- the method in accordance with the invention is particularly suitable for aluminium alloys, and more in particular for aluminium alloys from the Aluminium Association (AA)5xxx-series having Mg as major alloying element in a typical range of 2 to 6 weight percent, and preferably produced on an industrial annealing furnace with a controlled heating-rate between 2 to 200 °C/sec, and a soaking time in the range up to 40 sec. at a soaking temperature in the range of 400 to 550°C, followed by a controlled cooling rate in the range of 10 to 500 °C/sec.
- AA Aluminium Association
- a typical property of a good warm hydroforming behaviour aluminium alloy are those which show a good necking resistance (high m at elevated temperature) with relative moderate strain rates ( ⁇ '), such as AA5182 material in an O-temper condition providing good dimensional rigidity.
- ⁇ ' relative moderate strain rates
- the improved forming characteristics of aluminium at elevated temperature are used to manufacture complex structural members via hydroforming.
- the ductility is superior to standards steel grades under ambient conditions.
- Another suitable aluminium alloy is the aluminium alloy obtained from the method as described in the European patent no. EP-A-0818553, which is incorporated here by reference.
- a suitable process comprises more preferably the following subsequent processing steps:-
- a structural component or members for a vehicle obtained via the method of the invention as set forth above.
- a particular embodiment of such a structural component or member is the A-, B-, or C-pillar of a vehicle.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Method of manufacturing a shaped and hollow structural member via a
hydroforming process, comprising the steps of subsequently:-
- providing an extruded or welded tubular or hollow intermediate metal product;
- placing the intermediate metal product in a die for hydroforming;
- hydroforming the intermediate metal product to a hydroformed structural member by the introduction of a heated pressure medium having a temperature in the range of 50 to 300°C.
Description
- The invention relates to a method of manufacturing a shaped and hollow structural member, in particular of aluminium, via a hydroforming process. Further the invention relates to a product obtained via such a method.
- As is conventional, the term "aluminium" refers also to aluminium alloys. In the industry, and in particular in the automotive sector, forming is an important tool in manufacturing complex shapes with as main materials steel and aluminium. Suppliers are urged to improve the formability of their materials and to integrate their processes because of, amongst others, costs and environmental aspects. A part of this objective can be achieved using a relative novel forming technology such as hydroforming. In a typical hydroforming operation, for example a cylindrical metal tube is bent into the overall shape desired for the final part, then placed between a pair of dies. The dies provide a cavity around the tube which has an interior shape matching the exterior shape desired for the part. Then, the ends of the tube are sealed and it is internally pressurised to expand it into the shape of the dies' cavity. A similar approach is used when hydroforming one or more planar metal sheets. This technique is becoming an important tool in the forming technology for automotive and other applications. By means of hydroforming different forming steps can be integrated and much more complex shapes can be formed which in turn is saving costs and efforts compared with conventional made products. There is a need in the industry, in particular in the automotive industry, for methods of hydroforming which allow more complex hydroformed shapes of the final product, such as structural members.
- An object of the invention is to provide an improved method of manufacturing a shaped and hollow structural member via a hydroforming process using an extruded or welded tubular or hollow metal product as starting material.
- Another object of the invention is to provide an improved method of manufacturing a shaped and hollow structural member via a hydroforming process using an extruded or welded tubular or hollow aluminium product as starting material.
- To achieve this object there is provided in accordance with the invention a method comprising the steps of subsequently:-
- providing an extruded or welded tubular or hollow intermediate metal product;
- placing the intermediate metal product between a pair of hydroforming dies forming an interior space that matches the desired exterior cross sectional shape of said structural member;
- pressurising the interior of intermediate metal product so as to force it out into the interior space of said dies by the introduction of a heated pressure medium having a temperature in the range of 50 to 300°C, preferably in the range of 140 to 300°C, and more preferably in the range of 160 to 270°C.
- With this method there is achieved that more complex hydroformed members can be manufactured as compared to hydroforming at ambient temperatures. In particular the combination of the initial shape of the intermediate product and the hydroforming at elevated temperatures results allows to the manufacture of complex hydroformed members.
- In an embodiment of the method according to the invention the pressure medium used during hydroforming is a hydraulic oil which can withstand the relatively high temperatures.
- In a further embodiment of the method according to the invention the intermediate metal product and/or the hydroforming dies are pre-warmed, when possibly they may are be pre-warmed locally. This further improves the method and optimises the hydroforming behaviour of the metal used. The metal product can be pre-heated, locally, to a temperature in a range of 200 to 400°C in for example an air circulating furnace prior to placing the metal product in the hydroforming dies.
- It has been found that the method in accordance with the invention is particularly suitable for aluminium alloys, and more in particular for aluminium alloys from the Aluminium Association (AA)5xxx-series having Mg as major alloying element in a typical range of 2 to 6 weight percent, and preferably produced on an industrial annealing furnace with a controlled heating-rate between 2 to 200 °C/sec, and a soaking time in the range up to 40 sec. at a soaking temperature in the range of 400 to 550°C, followed by a controlled cooling rate in the range of 10 to 500 °C/sec. A typical property of a good warm hydroforming behaviour aluminium alloy are those which show a good necking resistance (high m at elevated temperature) with relative moderate strain rates (ε'), such as AA5182 material in an O-temper condition providing good dimensional rigidity. In this embodiment the improved forming characteristics of aluminium at elevated temperature are used to manufacture complex structural members via hydroforming. In particular in the given temperature range the ductility is superior to standards steel grades under ambient conditions. Another suitable aluminium alloy is the aluminium alloy obtained from the method as described in the European patent no. EP-A-0818553, which is incorporated here by reference.
- When using an extruded or welded tubular or hollow aluminium alloy intermediate metal product a suitable process comprises more preferably the following subsequent processing steps:-
- providing an extruded or welded tubular or hollow intermediate metal product;
- bending the intermediate aluminium product, preferably by radial draw bending;
- preforming of the bend intermediate aluminium product, this is an intermediate forming step between the bending and hydroforming operation where the step from bending to directly hydroforming is to big;
- in the case of an AA6xxx-series aluminium alloy metal product an annealing or solution heat treatment of the preformed intermediate aluminium product followed by rapid cooling, preferably by means of water quenching, to below 50°C, and in the case of an AA5xxx-series aluminium alloy metal product it is preferred to preheat the product to a temperature in a range of 200 to 400°C.
- placing the intermediate metal product between a pair of hydroforming dies forming an interior space that matches the desired exterior cross sectional shape of said structural member;
- pressurising the interior of intermediate metal product so as to force it out into the interior space of said dies by the introduction of a heated pressure medium having a temperature in the range of 50 to 300°C, preferably in the range of 140 to 300°C, and more preferably in the range of 160 to 270°C.
- In a further aspect of the invention there is provided in a structural component or members for a vehicle obtained via the method of the invention as set forth above. A particular embodiment of such a structural component or member is the A-, B-, or C-pillar of a vehicle.
- While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
Claims (10)
- Method of manufacturing a shaped and hollow structural member via a hydroforming process, comprising the steps of subsequently:-providing an extruded or welded tubular or hollow intermediate metal product;placing the intermediate metal product in a die for hydroforming;hydroforming the intermediate metal product to a hydroformed structural member by the introduction of a heated pressure medium having a temperature in the range of 50 to 300°C.
- Method according to claim 1, wherein the pressure medium is an oil.
- Method according to any one of claims 1 to 2, wherein the heated pressure medium has a temperature in the range of 160 to 270°C.
- Method according to any one of claims 1 to 3, wherein the intermediate metal product is of an aluminium alloy.
- Method according to claim 4, where the aluminium alloy is an AA5xxx-series aluminium alloy.
- Method according to claim 5, wherein the aluminium alloy in an AA5182 alloy or a modification thereof.
- Method according to any one of claims 4 to 6, wherein the intermediate metal product is annealed prior to hydroforming.
- Method according to any one of claims 1 to 7, wherein the intermediate metal product is pre-formed prior to placing it in a die for hydroforming.
- Structural component for a vehicle obtained via the method in accordance with any one of claims 1 to 8.
- Structural component according to claim 9, wherein the structural component is an A-, B-, or C-pillar of a vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00201094A EP1138407A1 (en) | 2000-03-27 | 2000-03-27 | Method of hydroforming a structural member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00201094A EP1138407A1 (en) | 2000-03-27 | 2000-03-27 | Method of hydroforming a structural member |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1138407A1 true EP1138407A1 (en) | 2001-10-04 |
Family
ID=8171257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00201094A Withdrawn EP1138407A1 (en) | 2000-03-27 | 2000-03-27 | Method of hydroforming a structural member |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1138407A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022132610A1 (en) * | 2020-12-14 | 2022-06-23 | Novelis Inc. | Roll forming system with heat treatment and associated methods |
CN115846497A (en) * | 2022-12-20 | 2023-03-28 | 烟台丛林精密机械有限公司 | Superplastic forming equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0733539A1 (en) * | 1995-03-22 | 1996-09-25 | Dr.Ing.h.c. F. Porsche Aktiengesellschaft | Hollow beam for a structural frame of a motor vehicle |
EP0818553A1 (en) * | 1996-06-28 | 1998-01-14 | Hoogovens Aluminium N.V. | Aluminium sheet of the AA5000 type and a method for its manufacture |
DE19642824A1 (en) * | 1996-10-17 | 1998-04-23 | Hermann Bartels | Method and device for deforming metal hollow profile workpieces |
WO1998024940A1 (en) * | 1996-12-04 | 1998-06-11 | Alcan International Limited | A1 alloy and method |
EP0913277A1 (en) * | 1997-10-29 | 1999-05-06 | TRW Canada Ltd. | Control arm and method of manufacturing the control arm |
-
2000
- 2000-03-27 EP EP00201094A patent/EP1138407A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0733539A1 (en) * | 1995-03-22 | 1996-09-25 | Dr.Ing.h.c. F. Porsche Aktiengesellschaft | Hollow beam for a structural frame of a motor vehicle |
EP0818553A1 (en) * | 1996-06-28 | 1998-01-14 | Hoogovens Aluminium N.V. | Aluminium sheet of the AA5000 type and a method for its manufacture |
DE19642824A1 (en) * | 1996-10-17 | 1998-04-23 | Hermann Bartels | Method and device for deforming metal hollow profile workpieces |
WO1998024940A1 (en) * | 1996-12-04 | 1998-06-11 | Alcan International Limited | A1 alloy and method |
EP0913277A1 (en) * | 1997-10-29 | 1999-05-06 | TRW Canada Ltd. | Control arm and method of manufacturing the control arm |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022132610A1 (en) * | 2020-12-14 | 2022-06-23 | Novelis Inc. | Roll forming system with heat treatment and associated methods |
CN115846497A (en) * | 2022-12-20 | 2023-03-28 | 烟台丛林精密机械有限公司 | Superplastic forming equipment |
CN115846497B (en) * | 2022-12-20 | 2024-02-23 | 烟台丛林精密机械有限公司 | Superplastic forming equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107580635B (en) | Impact heat treatment of aluminum alloy articles | |
US12104238B2 (en) | High strength aluminum stamping | |
EP0245464B2 (en) | Aluminum alloy vehicular member | |
CN105033015A (en) | Induction annealing as a method for expanded hydroformed tube formability | |
US20100218860A1 (en) | Method for producing a molded sheet metal part from an as-rolled, non-hardenable aluminum alloy | |
JP6206620B2 (en) | Manufacturing method of panel-shaped molded product | |
JP2007508452A6 (en) | Low carbon alloy steel pipe with ultra high strength and excellent toughness at low temperature and its manufacturing method | |
WO2009130175A1 (en) | Method of manufacturing a structural aluminium alloy part | |
US8778101B2 (en) | Method of production of steel sheet pressed parts with locally modified properties | |
JP2010227954A (en) | Method of press-forming aluminum alloy sheet | |
MXPA04010403A (en) | Method for producing seamless steel pipe for inflator of air bag. | |
IL113060A (en) | Process for the manufacture of metal tube | |
WO1992007966A1 (en) | High-strength steel parts and method of making | |
Günzel et al. | Development of a process chain for multi-stage sheet metal forming of high-strength aluminium alloys | |
EP1138407A1 (en) | Method of hydroforming a structural member | |
EP1737590B1 (en) | Method for local forming of a hollow workpiece | |
KR20190120205A (en) | How to make parts by further molding preformed contours | |
WO2009102233A1 (en) | Method for pressing blanks made of nanostructural titanium alloys | |
JP5185558B2 (en) | Press molding blank and press molding method | |
US6299709B1 (en) | Bow-formed bumper, a method of forming a bow-formed bumper, and a method of hydroforming a blank therefor | |
Kratky | Laser assisted forming techniques | |
CN109642262B (en) | Method and apparatus for forming and hardening steel material | |
KR100722060B1 (en) | Molding method of aluminum alloy material | |
JP2002113527A (en) | Manufacturing method for steel plate press formed body and steel plate press formed body formed by the manufacturing method | |
WO2005084845A1 (en) | An article made of a magnesium alloy tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20020405 |