EP1135564A1 - Load-bearing structures - Google Patents
Load-bearing structuresInfo
- Publication number
- EP1135564A1 EP1135564A1 EP99956172A EP99956172A EP1135564A1 EP 1135564 A1 EP1135564 A1 EP 1135564A1 EP 99956172 A EP99956172 A EP 99956172A EP 99956172 A EP99956172 A EP 99956172A EP 1135564 A1 EP1135564 A1 EP 1135564A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- boards
- board
- glass fibres
- plastics material
- extruded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/10—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
- E04C2/20—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
- E04C2/22—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics reinforced
Definitions
- This invention relates to static and dynamic load- bearing structures, in particular but not exclusively to structures for walking on or for retaining wet concrete.
- the invention relates in particular to scaffold boards, formwork beams and formwork panels.
- Scaffold boards and formwork have traditionally been made of wood.
- Conventional wooden boards used in the construction industry have a gross weight in the range of from about 17 to 30 kg. They are thus heavier than might be desired for handling by a single person and are themselves environmentally undesirable insofar as they represent use of only slowly renewable resources .
- Cheaper and more rapidly renewable forms of timber are generally unsuitable for reasons, inter alia, of strength.
- all wood boards, formwork panels and beams are subject to degradation caused by entry of water. This leads to deterioration of mechanical character, warping and cracking.
- Particular problems in the tropics are excessive warping because of elevated temperatures and that of attack by insects, for example termites. For this reason, timber boards utilised at outside locations tend only to have a useful life of from about six months to about 15 months.
- a further problem with wood scaffolding boards is that timber has a roughish surface in which water can accumulate. This can prove a significant problem under icy conditions when the existence of ice will be difficult to identify and can lead to accidents. Even under normal conditions, the coefficient of friction of wood surfaces is somewhat low and can make scaffold boards slippery, especially when wet.
- a common general problem at building sites is the theft, inter alia, of scaffold boards and formwork panels. The best chat has been achieved hitherto with timber scaffold boards in countering their theft has been to apply a rough printing to the board by continuous rubber stamping or to paint the ends of the board using a characteristic colour combination. The first type of security measure may be difficult to observe and the second can be readily circumvented by a thief merely by sawing off the ends .
- a load bearing structural element formed from a preferably recycled thermoplastic plastics material which is compounded so that the element has a flexural modulus of 4000 Pa or above.
- the flexural modulus is 5500 MPa or above .
- a characteristic feature of the material used to form structural elements embodying the invention is flexural modulus, also known as flexural stiffness or elastic modulus. This can be predicted by supporting the structural element across its recommended maximum span, applying a centred load and using the following equation:
- E Elastic modulus (in Pascals)
- F Load (in Newtons)
- i 2nd moment of inertia of structural element's cross section (in m 4 )
- L Span (in metres)
- b Centred space of load distribution (in metres)
- y maximum deflection, absolute value (in metres) .
- duration of load 168 hours
- the flexural modulus will be greater than 5500 MPa.
- the flexural modulus (elastic modulus) of a structural element embodying this invention can be calculated from the deflections. Rods made of the compositions and having a diameter of less than 35 mm are simply supported across a span greater than 340 mm. A sustained load of 31 kilograms is applied to the centre of the rods so that the "ultimate elastic modulus" is considered to be reached when deflection remains unchanged for five days under a constant temperature of 45 °C.
- a structural element in accordance with the present invention has a ratio of flexural modulus (in Megapascals) to density (kg/m 3 ) of at least 2.5:1.
- the ratio is at least 3:1, more preferably at least 4.2:1.
- the density of a particular structural element can be easily determined and, using the equation above, the ratio can be easily calculated.
- the ratio of flexural modulus to density will be 4.2:1.
- Structural elements in accordance with the invention can have a stiffness which exceeds the deflection standards set out in European draft legislation EN12811, a creep which satisfies creep standards established by the European Health & Safety Executive over an ambient temperature range of -20 to 50°C, an impact resistance in excess of standards set by the European Health & Safety Executive and as measured at a temperature of -20°C and which has twice the impact strength of dry timber at 20 °C.
- the element meets the specification for a timber scaffold board as described by BS2482:1971
- a structural element which preferably comprises an extruded plastics composition which comprises 30-90 wt% of thermoplastic polymer, and 10-60 wt% of elastic modulus increasing material.
- Preferred amounts of the respective materials are 40-75 wt%, more preferably 50-65 wt%, of thermoplastic polymer, and 25-50 wt%, more preferably 30-45 wt%, of an elastic modulus increasing material.
- the thermoplastic polymer may be polyethylene, polypropylene, or polyethylene terephthalate .
- polypropylene is better at resisting creep and is better able to resist lower temperatures, having an operating range generally of -20 + 45°C.
- the polypropylene is preferably bi-axially oriented polypropylene (BOPP) , which is a common material in packaging and has a low cost for recycling purposes, especially if contaminated with printing inks whose presence precludes most conventional processing techniques.
- BOPP bi-axially oriented polypropylene
- the elastic modulus increasing material may be glass beads, talcum powder, etc, but it is preferred if it is glass fibres. Such glass fibres are preferably recycled glass fibres because of cost considerations and it is even possible to use glass fibre "fluff". It is preferred if the glass fibres have a length of greater than about 5mm, preferably in the range 8-12 mm, in order to provide the product with additional rigidity.
- the composition may additionally comprise a coupling agent, to enhance bonding between polymer and elastic modulus increasing material and/or a nucleating agent, the latter ensuring a uniform compact microcrystalline structure, in relatively low amounts, such as 1 to 3 , preferably 2 wt%, and from 0.1 to 2 wt%, preferably 0.5 wt%, respectively.
- a coupling agent to enhance bonding between polymer and elastic modulus increasing material and/or a nucleating agent, the latter ensuring a uniform compact microcrystalline structure, in relatively low amounts, such as 1 to 3 , preferably 2 wt%, and from 0.1 to 2 wt%, preferably 0.5 wt%, respectively.
- Polymer materials employed in the production of product, especially board structures, embodying the invention may have incorporated therein in particular, fire retardants, UN stabilisers and friction increasers .
- fire retardants UN stabilisers and friction increasers .
- the materials utilised can be compounded so as to ensure low emission of toxic fumes in a fire, low emission of smoke in a fire and absence cf molten droplets in a fire.
- Such materials are preferably present in an outer layer on the product or board which may have a thickness of up to 1 mm, preferably 0.5 mm. Mention has already been made of problems of slipping on timber scaffold boards. This problem can readily be addressed in the practice of the present invention when, instead of producing the board material as a single extrusion, it is produced as a co-extrusion with an anti-slip surface being provided thereon.
- a thermoplastic polyethylene or polyolefin material such as EPDN or TPO may be provided.
- Such layer can also contain the other additives mentioned hereinabove as suitable for inclusion in a co-extruded outer layer or be a separate layer. Such a material is however not suitable for use alone because of its inability to meet structural requirements.
- a preferred composition of the outer layer comprises up to 80 wt%, preferably about 52 wt%, of thermoplastic olefin (TPO) and up to 20 wt %, preferably 10 wt%, of low density polyethylene (LDPE) which provide anti-slip properties on for example scaffold boards.
- TPO thermoplastic olefin
- LDPE low density polyethylene
- Such layers provides for easy release of concrete where formwork boards and panels such layers also protecting the board or panel front abrasion and scuffing and weaknesses that may be caused by scratching or impact.
- the composition may have 25 wt% of a brominated organic compound such as decabromodiphenyl oxide and 12.5 wt% of Sb0 3 as flame retardants .
- a pigment may be added to 0.5 wt%, and a UN additive such as tinuvin to 0.5 wt%.
- the structural elements in accordance with the present invention can also be used for decking, system batons, access platforms, boardwalks, walkways, piers, jetties, staging, shuttering, lintels, shelving, telegraph poles, pallets, road humps, fencing, barriers, seating, benches etc.
- the invention will be described hereinafter primarily with reference to scaffold boards.
- Such boards can readily be made by a continuous extrusion process and cut to length so as to be compatible with timber scaffold boards which generally are available in lengths of 3.9 metres, 3.0 metres and 2.4 metres, in each case ⁇ 20 mm and having a width of 225 mm + 2 mm and a thickness of 45.5 mm + 0.5 mm.
- planks or boards embodying the invention will be hollow and to ensure that they satisfy the aforementioned physical parameters, they may be provided with internal walls extending longitudinally thereof.
- Many advantages are attainable with boards embodying the invention. Firstly, there is a considerable weight reduction.
- a 3.9 metre long board which is to bridge a 1.5 metre span may have a weight of 18.3 kg compared with 24 kg for a wet timber board. If only a 1.2 metre span has to be bridged, then such a board may be made so as to have only a weight of only about 16.8 kg.
- Boards embodying the invention will be free from hazardous metal plates as are generally used as end protection on wooden scaffold boards and formwork girders. Extrusion methods make it possible to produce radiussed edges. In addition to the safe handling thus made possible, the ends of hollow scaffold boards can be closed off by tightly fitting injection moulded end caps knocked firmly into the open ends of the profile before it has fully cooled down after extrusion. These end caps can be manufactured from unbreakable and resilient plastic material and in a colour which may be indicative of the source of the plank. They can also be employed as water-tight connectors between formwork panels.
- Extrusion of mixes of materials to be utilised in the production of the planks or boards may take place using a high efficiency venting screw such as a Ventus screw. Additionally, one can utilise a rotary channel pump according to WO97/42019 for dosing into an extruder consistent quantities of particulate material such as recycled polymer material, in particular chopped film which may be printed film, ie. low grade material, but not liquid or powder. Such a dosing method avoids granulation of plastics material. In order to achieve a product with relatively long glass fibres in it, it is necessary to add these fibres after working by the extruder screw used in compounding the material for the board which would otherwise fragment glass fibres to too great an extent.
- Dispensing of glass fibres and other solid material into matrix passing through the downstream portion of an extruder may be achieved using a flow pump according to EP-A-0467842 for transferring and compacting particulate solids.
- the glass fibres are also preferably oriented in planes parallel to a load bearing surface thereof by passage through a known multi-layer grid producing multi-layering of glass fibres in the extrudate obtained. This ensures a maximum strength of product. It has also been found that the stiffness of the product is improved if the glass fibres are not of a uniform length.
- Figure 1 shows a set of boards embodying the invention, these being shown in cross -section and each board having an internal web thickness of 5 mm;
- Figure 2 is a bar chart showing the results of impact tests on prior art scaffold planks and scaffold planks embodying the invention.
- Figure 3 is a graph of deflection against time for one board embodying this invention.
- a series of extruded boards embodying the invention and having the following dimensions and weights.
- the plank has a weight of 19.8 kg.
- the plank has a weight of 24.8 kg. f) plastics plank 225 mm x 65 mm in cross- section with 7 mm wall thickness and 2.4 m long to be supported at 2.4 m max centres.
- the plank has a weight of 13.1 kg. g) plastics system scaffold batten 375 mm x 65 mm in cross-section with 7 mm wall thickness and 2.4 m long, to be supported at 2.4 m max centres.
- the batten has a weight of 18.5 kg.
- the masterbatch comprises :
- Coupling agent maleic anhydride 2 parts by wt nucleating agent (MDBS) 0.2 part by wt
- the amount of glass fibre in the composition is increased when increased stiffness is required, for example, when the boards are intended to be used across larger spans .
- a board embodying the invention was tested to a new standard proposed under BS draft document EN12811 and HD1000. For this purpose, measurement was made of the deflection caused by a load of 1.5 KN applied to an area of 500 mm x 230 mm at the centre of the board, with the board supported between 1.5 metre centres. It is a requirement that deflection must not exceed 1% of the span (a maximum of 15 mm) . Measurements were carried out daily after extrusion and cooling. The plank utilised is made of the plastic sample of the second plastics board utilised in the impact test.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9825958 | 1998-11-26 | ||
GBGB9825958.3A GB9825958D0 (en) | 1998-11-26 | 1998-11-26 | Load-bearing structures |
PCT/GB1999/003880 WO2000031356A1 (en) | 1998-11-26 | 1999-11-19 | Load-bearing structures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1135564A1 true EP1135564A1 (en) | 2001-09-26 |
EP1135564B1 EP1135564B1 (en) | 2006-08-09 |
Family
ID=10843122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99956172A Expired - Lifetime EP1135564B1 (en) | 1998-11-26 | 1999-11-19 | Scaffold boards |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP1135564B1 (en) |
AR (1) | AR022111A1 (en) |
AT (1) | ATE335890T1 (en) |
AU (1) | AU747714B2 (en) |
CA (1) | CA2352368A1 (en) |
DE (1) | DE69932735D1 (en) |
GB (1) | GB9825958D0 (en) |
TW (1) | TW469319B (en) |
WO (1) | WO2000031356A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6251691B1 (en) | 1996-04-25 | 2001-06-26 | Bioarray Solutions, Llc | Light-controlled electrokinetic assembly of particles near surfaces |
US9709559B2 (en) | 2000-06-21 | 2017-07-18 | Bioarray Solutions, Ltd. | Multianalyte molecular analysis using application-specific random particle arrays |
WO2001098765A1 (en) | 2000-06-21 | 2001-12-27 | Bioarray Solutions, Ltd. | Multianalyte molecular analysis |
US7262063B2 (en) | 2001-06-21 | 2007-08-28 | Bio Array Solutions, Ltd. | Directed assembly of functional heterostructures |
KR20040068122A (en) | 2001-10-15 | 2004-07-30 | 바이오어레이 솔루션스 리미티드 | Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection |
AU2003298655A1 (en) | 2002-11-15 | 2004-06-15 | Bioarray Solutions, Ltd. | Analysis, secure access to, and transmission of array images |
EP1664722B1 (en) | 2003-09-22 | 2011-11-02 | Bioarray Solutions Ltd | Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules |
CA2544041C (en) | 2003-10-28 | 2015-12-08 | Bioarray Solutions Ltd. | Optimization of gene expression analysis using immobilized capture probes |
US7848889B2 (en) | 2004-08-02 | 2010-12-07 | Bioarray Solutions, Ltd. | Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification |
NL1034570C2 (en) * | 2007-10-23 | 2009-04-27 | Inxtru Bv | Method for manufacturing an endless, fiber-reinforced plastic element, as well as such an element. |
WO2010068971A1 (en) * | 2008-12-18 | 2010-06-24 | Dymon Pallets Pty Ltd | Biaxially oriented polyethylene terephthalate (pet) pallet |
WO2013117196A1 (en) * | 2012-02-06 | 2013-08-15 | Nordic Platform P/S | Deck for scaffolding and method for its adaptation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1391622A (en) * | 1969-06-23 | 1975-04-23 | Tba Industrial Products Ltd | Reinforcement of thermoplastic polymers |
AU2656588A (en) * | 1987-12-11 | 1989-06-15 | B.F. Goodrich Company, The | Modular buildinjg structure and prefabricated components therefor and related methods |
CA2232203A1 (en) * | 1993-05-28 | 1994-11-29 | Royal Building Systems (Cdn) Limited | Thermoplastic structural components and structures formed therefrom |
US5783286A (en) * | 1996-04-04 | 1998-07-21 | Dinicola; James L. | Hollow-core plastic structural lumber alternative |
-
1998
- 1998-11-26 GB GBGB9825958.3A patent/GB9825958D0/en not_active Ceased
-
1999
- 1999-11-19 AT AT99956172T patent/ATE335890T1/en not_active IP Right Cessation
- 1999-11-19 DE DE69932735T patent/DE69932735D1/en not_active Expired - Lifetime
- 1999-11-19 EP EP99956172A patent/EP1135564B1/en not_active Expired - Lifetime
- 1999-11-19 CA CA002352368A patent/CA2352368A1/en not_active Abandoned
- 1999-11-19 WO PCT/GB1999/003880 patent/WO2000031356A1/en active IP Right Grant
- 1999-11-19 AU AU12823/00A patent/AU747714B2/en not_active Ceased
- 1999-11-23 TW TW088120427A patent/TW469319B/en active
- 1999-11-26 AR ARP990106027A patent/AR022111A1/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO0031356A1 * |
Also Published As
Publication number | Publication date |
---|---|
GB9825958D0 (en) | 1999-01-20 |
AR022111A1 (en) | 2002-09-04 |
DE69932735D1 (en) | 2006-09-21 |
CA2352368A1 (en) | 2000-06-02 |
WO2000031356A1 (en) | 2000-06-02 |
AU747714B2 (en) | 2002-05-23 |
EP1135564B1 (en) | 2006-08-09 |
ATE335890T1 (en) | 2006-09-15 |
TW469319B (en) | 2001-12-21 |
AU1282300A (en) | 2000-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU747714B2 (en) | Load-bearing structures | |
US20090123770A1 (en) | Rubber and Plastic Compsite Material Having Reinforcing Layer | |
US6256937B1 (en) | Prevention of damages of construction materials by termites | |
US7011253B2 (en) | Engineered railroad ties | |
AU2002300638B2 (en) | Formworking | |
CA2699731C (en) | Method of making a sheet of building material | |
EP2351891A1 (en) | Insulation material with mechanical strength and building elements and composites made thereof | |
US20050019539A1 (en) | Fiber matrix composite material made from recycled carpet | |
US6855440B2 (en) | Construction material, composition and process for producing the same | |
CA2171150A1 (en) | Method for protecting waterproofed substrate surfaces and structures for accomplishing same | |
Sinturel et al. | Photooxidation of fire retarded polypropylene. I. Photoageing in accelerated conditions | |
US20220145096A1 (en) | Ceramic coating with ambient temperature cure | |
EP3430215A1 (en) | A scaffold board | |
GB2382598A (en) | A construction formed from a plurality of plastic elongate members | |
Saadeghvaziri et al. | Sound barrier applications of recycled plastics | |
KR20080048444A (en) | Use of recycled plastics for structural building forms | |
AU2015101387A4 (en) | Flexible composite material | |
US20230144278A1 (en) | Polyethylene terephthalate (pet) particulate composition for structural construction components | |
Krishnaswamy et al. | Recycled-plastic lumber standards: from waste plastics to markets for plastic-lumber bridges | |
AU2006235768A1 (en) | Encased Product Comprising a Core of Wood or Metal and a Shell of WPC | |
RU167116U1 (en) | PROFILED CONSTRUCTION ELEMENT | |
GB2499468A (en) | Recycling carpets into laminated structure, usable as building materials | |
Klyosov | Improving wood–polymer composite products: a case study | |
KR20000036281A (en) | Construction material using waste members | |
Strybos | The development of roadside safety hardware using recycled materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010618 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNIQ TECHNOLOGIES LIMITED |
|
17Q | First examination report despatched |
Effective date: 20021016 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMITH, JAMES LEONHARD |
|
RTI1 | Title (correction) |
Free format text: SCAFFOLD BOARDS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ISCHEBECK TITAN LTD. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69932735 Country of ref document: DE Date of ref document: 20060921 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20070129 Year of fee payment: 8 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061110 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090123 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20091119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091119 |