EP1127952A1 - Procédé de fabrication de corps creux sous pression en alliage ALZnMgCu - Google Patents
Procédé de fabrication de corps creux sous pression en alliage ALZnMgCu Download PDFInfo
- Publication number
- EP1127952A1 EP1127952A1 EP01420043A EP01420043A EP1127952A1 EP 1127952 A1 EP1127952 A1 EP 1127952A1 EP 01420043 A EP01420043 A EP 01420043A EP 01420043 A EP01420043 A EP 01420043A EP 1127952 A1 EP1127952 A1 EP 1127952A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- homogenization
- spinning
- billet
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Definitions
- the invention relates to a method for manufacturing hollow bodies under pressure, in particular compressed gas cylinders of aluminum alloy AlZnMgCu, that is to say of the 7000 series according to the nomenclature of the Aluminum Association.
- Patent FR 2510231 by the applicant describes the use, for this application, of a 7475 type alloy of composition (% by weight): Zn: 5.6 - 6.1 Mg: 2.0 - 2.4 Cu: 1.3 - 1.7 Cr: 0.15 - 0.25 Fe ⁇ 0.10 Fe + Si ⁇ 0.25.
- the reverse spinning operation can be done both hot and cold.
- Patent EP 0081441 of the applicant describes a process for manufacturing high strength and high tenacity spun products made of alloy 7049A of composition: Zn: 7.2 - 9.5 Mg: 2.1 - 3.5 Cu: 1.0 - 2.0 Cr: 0.07 - 0.17 Mn: 0.15 - 0.25 Fe ⁇ 0.10 Si ⁇ 0.08 Zr: 0.08 - 0.14.
- the product is spun at a temperature of the order of 400 ° C.
- the applicant's patent EP 0257167 provides for the use of an alloy 7060 of composition: Zn: 6.25 - 8.0 Mg: 1.2 - 2.2 Cu: 1.7 - 2.8 Cr: 0.15 - 0.28 Fe ⁇ 0.20 Fe + Si ⁇ 0.40 Mn ⁇ 0.20
- Patent EP 0589807 is a variant of the previous one in which Cr is replaced by Zr (0.10 - 0.25%). 7060 bottles are produced industrially by hot spinning.
- Patent application WO 94/24326 from Alcan International relates to a process for manufacturing a hollow body under pressure from an alloy of composition: Zn: 5.0 - 7.0 Mg: 1.5 - 3.0 Cu: 1.0 - 2.7 Fe ⁇ 0.30 Si ⁇ 0.15 a recrystallization inhibitor (Cr or Zr in particular): 0.05 - 0.4, with a microstructure such that the volume fraction of phase S (CuMgAl 2 ) is maintained below 1%, and preferably below 0, 2%.
- This microstructure is obtained, according to demand, by homogenizing the billet at approximately 475 ° C with a low rate of temperature rise when approaching this value.
- the spinning is preferably done, for cost reasons, cold or lukewarm.
- Tempering is an over-tempering leading to an elastic limit at around 20% below the peak, to improve toughness, resistance to fatigue and to crack propagation, as well as resistance to corrosion under stress.
- An alloy forming part of the claimed composition was subsequently registered with the Aluminum Association under the designation 7032.
- Patent application EP 0670377 from Pechineybericht relates to alloys with high mechanical resistance of composition: Zn: 7 - 13.5 Mg: 1.0 - 3.8 Cu: 0.6 - 2.7 Mn ⁇ 0.5 Cr ⁇ 0.4 Zr ⁇ 0.2 possibly transformed by spinning to obtain hollow bodies.
- the homogenization and dissolution operations are carried out at less than 10 ° C., and preferably less than 5 ° C., from the starting melting point of the eutectics, under conditions such as in the state T6, l 'specific energy associated with the AED signal (differential thermal analysis) or, in absolute value, less than 3 J / g.
- the invention thus aims to develop a range of body manufacturing high pressure 7000 alloy pressure trough, such as 7060 alloy, using cold or lukewarm spinning under acceptable industrial conditions, so as to obtain a high mechanical resistance without prejudice to others properties required for this application.
- the chemical composition of the alloy is within the limits defined in patents EP 0257167 (chromium alloy) or EP 0589807 (zirconium alloy). Chromium or zirconium can be replaced by vanadium, hafnium or scandium. Preferably, individually or in combination: Zn> 6.75% Mg ⁇ 1.95% Fe ⁇ 0.12% Fe + Si ⁇ 0.25% Mn ⁇ 0.10%
- the alloy is cast in billets in a manner known per se, for example by casting semi-continuous.
- Homogenization takes place according to a temperature profile such that at all times the alloy temperature is a few degrees C lower than the temperature of starting alloy melting (burn temperature), which can vary from 470 to 485 ° C depending on the composition of the alloy. It is important that the homogenization is sufficient, otherwise there is a risk of seeing cracks due to coarse phase alignments with copper (e.g. AlCuZn), and cause the dissolution of local mergers, causing decohesions, burns or porosities.
- the quality of the homogenization can be assessed by analysis differential enthalpy. Insufficient homogenization translates into a beginning fusion with a significant endothermic peak, indicating the fusion metastable eutectic ( ⁇ A1 + S, M, T).
- the AED thermogram indicates a specific energy, associated with the melting peak, of less than 3 J / g (in absolute value), and preferably at 2 J / g. We can also do this check only on the product put solution, and then judge the quality of the homogenization - solutionization pair.
- the temperature of the first level also depends on the composition of the alloy. It is believed that when the composition is such that:% Mg ⁇ 0.5% Cu + 0.15% Zn, the temperature of the first bearing must not exceed 465 ° C, and when Mg> 0.5Cu + 0.15Zn, it must not exceed 470 ° C.
- the billets thus homogenized have high hardness which requires very significant efforts on the press during cold or lukewarm spinning, which results a reduction in the life of the tools. For this reason, it is essential to proceed to a softening annealing leading to an acceptable level of hardness, which can be situated at 54 HB, this Brinell hardness being measured with a ball of 2.5 mm in diameter and a load of 62.5 kg.
- This annealing preferably comprises several insulated bearings at decreasing temperatures between 400 and 200 ° C, total duration between 20 and 40 h, followed by a temperature drop fairly slow, less than 50 ° C / h, up to a temperature ⁇ 100 ° C.
- the hardness obtained on softened billets no longer evolves by maturing at room temperature.
- the softened billets are then cut into pieces corresponding to the quantity of metal necessary to obtain by cold or lukewarm spinning a blank bottle cylindrical case shape.
- the part obtained is then dissolved in a temperature as close as possible of the starting melting temperature of the alloy, while avoiding the burn.
- the quality of the solution which depends on both the quality of the prior homogenization, and of the conditions of the solution setting properly said, is also assessed by differential enthalpy analysis on samples in state T6.
- the specific energy (in absolute value) associated with the peak fusion of the AED thermogram must be less than 3 J / g, and preferably ⁇ 2 J / g, regardless of the place of collection on the bottle. The result can indeed be different for the top and bottom of the bottle due to the variation in the speed of quench cooling. Indeed, if we immerse the bottle in the liquid of quench from the top, this part will undergo rapid cooling, while the bottom will cooled more slowly.
- the tempering is carried out at a temperature between 100 and 180 ° C for a duration between 5 and 25 h. It is preferably an income comprising two insulating bearings at increasing temperature, the first at a temperature between 100 and 120 ° C lasting 4 to 8 hours, and the second at a temperature between 150 and 180 ° C and a duration between 5 and 20 h.
- This income must be adjusted for obtain a good compromise between the mechanical resistance, which decreases when the income is higher, and resistance to corrosion, especially corrosion under constraint, which increases with overrevenue.
- We get after income a structure recrystallized with fine grains leading to excellent ductility.
- the method according to the invention makes it possible to obtain a remarkable set of properties, namely a breaking strength R m > 490 MPa, a guaranteed yield strength R 0.2 > 460 MPa, an elongation at break A> 12%, an absence of intercrystalline corrosion, an absence of breakage at 30 days in stress corrosion under 350 MPa, while using, under acceptable industrial conditions, a cold or warm spinning technique more economical than hot spinning .
- the process applies to the manufacture of high pressure cylinders intended including fire extinguishers, brewery gases, breathing apparatus, industrial gases. It is economically suitable for the production of used bottles unique, which simplifies distribution. It is also applicable to the manufacture of metallic liners for composite bottles wound with glass fibers, carbon or aramid.
- a deposit optimized for this treatment consists of a first stage of 1 p.m. at 460 ° C and a second stop at 2 p.m. at 470 ° C.
- the volume fraction of phase S which was 1.5% in the raw state of expansion, changes to 0.62% at the end of the first level at 460 ° C, and 0.17% at the end of the second level.
- Billet of the same alloy as in the previous example have been homogenized according to the set point from 1 p.m. to 460 ° C + 2 p.m. to 470 ° C. After returning to the at room temperature, they have a hardness greater than 70 HB. This hardness is not stable and grows over time.
- an annealing treatment comprising a 3 h stage at 400 ° C, a 6 h stage at 300 ° C, a 6 hour plateau at 230 ° C and cooling at a speed of 20 ° C / h until the metal drops below 100 ° C. After return to temperature ambient, the billet has a hardness of 52 HB which does not change over time.
- Differential enthalpy analysis shows the good quality of the solution in all parts of the bottle.
- the peak areas are all less than 1 J / g (in absolute value), even if those corresponding to the bottom of the bottle have absolute values slightly higher than those corresponding to the middle or the top of the bottle.
- the bottles were immersed in a tank of cold water, then subjected to two-stage tempering, with a first stage of 6 hours at 105 ° C. and a second stage at 160, 165 or 170 ° C, with a duration of 10, 13.5 or 17 h.
- the tensile strength R m in MPa
- the elastic limit at measurement was measured from samples taken halfway up the body of the bottle, in the long direction and full thickness. 0.2% elongation R 0.2 (in MPa), elongation A (in%) and electrical conductivity (in MS / m).
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Of Metal (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Forging (AREA)
Abstract
Description
Zn : 5,6 - 6,1 Mg : 2,0 - 2,4 Cu : 1,3 - 1,7 Cr : 0,15 - 0,25
Fe < 0,10 Fe + Si < 0,25. L'opération de filage inverse peut se faire aussi bien à chaud qu'à froid.
Zn : 7,2 - 9,5 Mg : 2,1 - 3,5 Cu: 1,0 - 2,0 Cr : 0,07 - 0,17
Mn : 0,15 - 0,25 Fe < 0,10 Si < 0,08 Zr : 0,08 - 0,14.
Zn : 6,25 - 8,0 Mg : 1,2 - 2,2 Cu : 1,7 - 2,8 Cr : 0,15 - 0,28
Fe < 0,20 Fe + Si < 0,40 Mn < 0,20
Zn : 5,0 - 7,0 Mg : 1,5 - 3,0 Cu : 1,0 - 2,7 Fe < 0,30 Si < 0,15
un inhibiteur de recristallisation (Cr ou Zr notamment) : 0,05 - 0,4, avec une microstructure telle que la fraction volumique de phase S (CuMgAl2) soit maintenue en dessous de 1%, et de préférence en dessous de 0,2%. Cette microstructure est obtenue, selon la demande, par une homogénéisation de la billette à environ 475°C avec une faible vitesse de montée en température à l'approche de cette valeur. Le filage se fait de préférence, pour des raisons de coût, à froid ou à tiède. Le revenu est un sur-revenu conduisant à une limite élastique à environ 20% en dessous du pic, pour améliorer la ténacité, la résistance à la fatigue et à la propagation de criques, ainsi que la résistance à la corrosion sous tension. Un alliage entrant dans la composition revendiquée a été ultérieurement enregistré à l'Aluminum Association sous la désignation 7032.
Zn : 7 - 13,5 Mg: 1,0 - 3,8 Cu : 0,6 - 2,7 Mn < 0,5 Cr<0,4
Zr < 0,2
éventuellement transformés par filage pour obtenir des corps creux. Les opérations d'homogénéisation et de mise en solution sont effectuées à moins de 10°C, et de préférence moins de 5°C, de la température de fusion commençante des eutectiques, dans des conditions telles qu'à l'état T6, l'énergie spécifique associée au signal AED (analyse thermique différentielle) soit, en valeur absolue, inférieure à 3 J/g.
Zn : 6,25 - 8,0 Mg : 1,2 - 2,2 Cu : 1,7 - 2,8 Fe < 0,20 Fe + Si < 0,40
l'un au moins des éléments appartenant au groupe : Mn, Cr, Zr, V, Hf, Sc : 0,05 - 0,3 autres éléments < 0,05 chacun et < 0,15 au total,
Zn > 6,75% Mg < 1,95% Fe < 0,12% Fe + Si < 0,25% Mn < 0,10%
Si = 0,02 Fe = 0,04 Cu = 2,07 Zn = 6,92 Mg = 1,76 Cr=0,20
Repère | Homogénéisation | Temps total | Indice |
1 | 5h 465° + 25h 470° | 30 h | 1 |
2 | 19h 465° + 9h 470° | 28 h | 1 |
3 | 11h 460° + 13h 470° | 24 h | 2 |
4 | 11h 460° + 19h 470° | 30 h | 3 |
5 | 11h 465° + 13h 470° | 24 h | 3 |
6 | 5h 460° + 19h 470° | 24 h | 4 |
7 | 17h 460° + 13h 470° | 30 h | 4 |
8 | 11h 460° + 7h 470° | 18 h | 5 |
9 | 17h 460° + 7h 470° | 24 h | 6 |
10 | 7h 465° + 9h 470° | 16 h | 6 |
11 | 5h 460° + 13h 470° | 18 h | 7 |
12 | 5h 460° + 25h 470° | 30 h | 7 |
Si = 0,02 Fe = 0,040 Cu = 2,06 Mg = 1,67 Zn = 7,14 Cr = 0,20
Prélèvement bord | Hauteur prélèvement | Temp. Début pic °C | Aire du pic (J/g) |
Extérieur | Haut | 452,0 | - 0,13 |
Extérieur | Milieu | 453,8 | - 0,10 |
Extérieur | Bas | 451,3 | - 0,21 |
Intérieur | Haut | 449,5 | - 0,19 |
Intérieur | Milieu | 450,0 | - 0,09 |
Intérieur | bas | 449,5 | - 0,25 |
2ème palier revenu | Rm MPa | R0,2 MPa | A % | Conductivité MS/m |
10 h 160° | 554,7 | 514,0 | 13,8 | 22,5 |
13,5 h 160° | 542,0 | 498,3 | 16,4 | 23,0 |
17 h 160° | 520,7 | 465,0 | 14,8 | 23,8 |
10 h 165° | 519,3 | 463,3 | 14,4 | 23,8 |
13,5 h 165° | 501,7 | 442,7 | 14,9 | 24,2 |
17 h 165° | 485,7 | 419,0 | 16,3 | 24,5 |
10 h 170° | 491,3 | 424,3 | 14,9 | 24,5 |
13,5 h 170° | 486,0 | 414,7 | 12,5 | 24,8 |
17 h 170° | 471,7 | 397,3 | 14,5 | 25,1 |
Claims (13)
- Procédé de fabrication de corps creux sous pression, notamment de bouteilles de gaz comprimés, comportant les étapes suivantes :a) coulée d'une billette en alliage de composition (% en poids) :
Zn : 6,25 - 8,0 Mg : 1,2 - 2,2 Cu : 1,7 - 2,8 Fe < 0,20 Fe + Si < 0,40
un au moins des éléments du groupe : Mn, Cr, Zr, V, Hf, Sc : 0,05 - 0,3 autres éléments < 0,05 chacun et < 0,15 au total,b) homogénéisation de cette billette selon un profil de température tel que la température du métal soit à tout moment légèrement inférieure à sa température de fusion commençante,c) recuit d'adoucissement d'une durée de 20 à 40 h entre 200 et 400°C, avec un refroidissement de moins de 50°C/h jusqu'à une température inférieure à 100°C, de telle manière que la dureté soit < 54 HB,d) découpe d'un lopin,e) filage à froid ou à tiède (température de début de filage < 300°C) d'un étui,f) ogivage de l'étui,g) mise en solution à une température légèrement inférieure à la température de fusion commençante, d'une durée telle que l'énergie spécifique associée au signal AED soit inférieure (en valeur absolue) à 3 J/g (de préférence < 2 J/g).h) trempe à l'eau froide,i) revenu entre 100 et 200°C, d'une durée comprise entre 5 et 25 h. - Procédé selon la revendication 1, caractérisé en ce que Zn > 6,75%.
- Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que Mg < 1,95%
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que Fe < 0,12% et Fe + Si < 0,25%.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que Mn < 0,10%.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'homogénéisation est telle que l'énergie spécifique associée au pic de fusion du thermogramme AED est < 3 J/g.
- Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'homogénéisation se fait en 2 paliers isothermes à température croissante.
- Procédé selon la revendication 7, caractérisé en ce que Mg < (0,5Cu + 0,15Zn) et que la température du premier palier est < 465°C.
- Procédé selon la revendication 7, caractérisé en ce que Mg > (0,5Cu + 0,15Zn) et que la température du premier palier est < 470°C.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le recuit d'adoucissement se fait par paliers isothermes à température décroissante.
- Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le revenu est effectué en 2 paliers isothermes, le premier à une température comprise entre 100 et 120°C et d'une durée entre 4 et 8 h, et le second entre 150 et 180°C d'une durée comprise entre 5 et 20 h.
- Corps creux sous pression fabriqué par un procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'il présente une résistance à la rupture Rm > 490 MPa, une limite élastique R0,2 > 460 Mpa, un allongement A > 12% et une résistance à la corrosion sous contrainte telle qu'il n'y ait aucune casse en 30 jours sous une contrainte de 353 MPa.
- Corps creux selon la revendication 12, caractérisé en ce qu'il est renforcé extérieurement par un bobinage de fibres de verre, de carbone ou d'aramide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0002273A FR2805282B1 (fr) | 2000-02-23 | 2000-02-23 | Procede de fabrication de corps creux sous pression en alliage a1znmgcu |
FR0002273 | 2000-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1127952A1 true EP1127952A1 (fr) | 2001-08-29 |
Family
ID=8847320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01420043A Ceased EP1127952A1 (fr) | 2000-02-23 | 2001-02-20 | Procédé de fabrication de corps creux sous pression en alliage ALZnMgCu |
Country Status (7)
Country | Link |
---|---|
US (1) | US6565684B2 (fr) |
EP (1) | EP1127952A1 (fr) |
JP (1) | JP4763141B2 (fr) |
AU (1) | AU773692B2 (fr) |
CA (1) | CA2337625C (fr) |
FR (1) | FR2805282B1 (fr) |
ZA (1) | ZA200101099B (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004104258A1 (fr) * | 2003-05-20 | 2004-12-02 | Pechiney Rhenalu | Procede de soudage par friction agitation de pieces en alliage d’aluminium avec traitement thermique avant soudage |
CN104668300A (zh) * | 2015-01-30 | 2015-06-03 | 深圳市江为五金螺丝有限公司 | 铝合金挤压件加工工艺 |
CN104741873A (zh) * | 2015-01-30 | 2015-07-01 | 深圳市江为五金螺丝有限公司 | 一种数控挤压工艺 |
CN106834985A (zh) * | 2017-01-24 | 2017-06-13 | 湖南人文科技学院 | 一种显著提高铝锌镁合金综合性能的热机械处理工艺 |
CN109097646A (zh) * | 2018-08-27 | 2018-12-28 | 江苏大学 | 780-820MPa超高强度铝合金及其制备方法 |
US10301710B2 (en) | 2005-01-19 | 2019-05-28 | Otto Fuchs Kg | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
CN110042288A (zh) * | 2019-05-10 | 2019-07-23 | 西北铝业有限责任公司 | 一种航天用铝合金u型框架型材及其制备方法 |
CN111057915A (zh) * | 2019-12-23 | 2020-04-24 | 广东坚美铝型材厂(集团)有限公司 | 一种Al-Mg-Si铝合金棒材及其热处理方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1489637A (zh) | 2000-12-21 | 2004-04-14 | �Ƹ��� | 铝合金产品及人工时效方法 |
FR2835533B1 (fr) * | 2002-02-05 | 2004-10-08 | Pechiney Rhenalu | TOLE EN ALLIAGE Al-Si-Mg POUR PEAU DE CARROSSERIE AUTOMOBILE |
US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
JP5128124B2 (ja) * | 2003-04-10 | 2013-01-23 | アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | Al−Zn−Mg−Cu合金 |
DE04767427T1 (de) * | 2003-06-24 | 2006-10-12 | Alcan Rhenalu | Produkte aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
US20060289093A1 (en) * | 2005-05-25 | 2006-12-28 | Howmet Corporation | Al-Zn-Mg-Ag high-strength alloy for aerospace and automotive castings |
US8157932B2 (en) * | 2005-05-25 | 2012-04-17 | Alcoa Inc. | Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings |
US20070151636A1 (en) * | 2005-07-21 | 2007-07-05 | Corus Aluminium Walzprodukte Gmbh | Wrought aluminium AA7000-series alloy product and method of producing said product |
US8083871B2 (en) | 2005-10-28 | 2011-12-27 | Automotive Casting Technology, Inc. | High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting |
FR2907796B1 (fr) * | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication |
WO2008003504A2 (fr) | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Produits en alliage d'aluminium série aa7000, et procédé de fabrication correspondant |
CN105274454A (zh) * | 2015-09-22 | 2016-01-27 | 无锡海特铝业有限公司 | 挤压汽车转向控制臂棒料专用铝合金铸棒均匀化工艺 |
CN106435418A (zh) * | 2016-11-23 | 2017-02-22 | 重庆大学 | 改善7系铝合金抗晶间与抗应力腐蚀性能的热处理工艺 |
CN106834988B (zh) * | 2017-01-24 | 2018-07-27 | 湖南人文科技学院 | 一种铝铜镁合金获得高综合性能的热机械处理工艺 |
CN107937745A (zh) * | 2017-11-28 | 2018-04-20 | 广西南宁桂启科技发展有限公司 | 铝‑钛‑锆‑铈合金中间体、铝合金材料及其制备方法 |
CN108265171B (zh) * | 2018-02-01 | 2019-07-30 | 中国兵器工业第五九研究所 | 防变形热处理工装及收口筒体高强韧耐蚀热处理工艺 |
CN110172623A (zh) * | 2019-03-11 | 2019-08-27 | 中国航发北京航空材料研究院 | 一种高强韧铝合金及其制备方法 |
CN110172624A (zh) * | 2019-03-11 | 2019-08-27 | 中国航发北京航空材料研究院 | 一种高强韧铝合金锻件及其制备方法 |
EP3842561B1 (fr) * | 2019-12-23 | 2022-08-17 | Novelis Koblenz GmbH | Procédé de fabrication d'un produit laminé en alliage d'aluminium |
CN112195377A (zh) * | 2020-08-14 | 2021-01-08 | 山东南山铝业股份有限公司 | 一种飞机舱门铝合金型材及其制备方法 |
CN119160879A (zh) * | 2024-11-06 | 2024-12-20 | 天府永兴实验室 | 一种纳米空心碳球及其制备方法、应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0257167A1 (fr) * | 1986-07-24 | 1988-03-02 | Societe Metallurgique De Gerzat | Alliage à base d'A1 pour corps creux sous pression |
EP0589807A1 (fr) * | 1992-09-22 | 1994-03-30 | Société Métallurgique de Gerzat | Alliage d'aluminium pour corps creux sous pression |
EP0670377A1 (fr) * | 1994-03-02 | 1995-09-06 | Pechiney Recherche (Gie) | Alliage d'aluminium 7000 à haute résistance mécanique et procédé d'obtention |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794700B2 (ja) * | 1991-02-12 | 1995-10-11 | 住友軽金属工業株式会社 | 高強度アルミニウム合金押出材の製造方法 |
EP0694084B1 (fr) * | 1993-04-15 | 2001-09-19 | Luxfer Group Limited | Procede de fabrication de corps creux |
-
2000
- 2000-02-23 FR FR0002273A patent/FR2805282B1/fr not_active Expired - Lifetime
-
2001
- 2001-01-23 US US09/766,674 patent/US6565684B2/en not_active Expired - Lifetime
- 2001-02-08 ZA ZA200101099A patent/ZA200101099B/xx unknown
- 2001-02-14 AU AU21215/01A patent/AU773692B2/en not_active Expired
- 2001-02-20 EP EP01420043A patent/EP1127952A1/fr not_active Ceased
- 2001-02-21 CA CA002337625A patent/CA2337625C/fr not_active Expired - Lifetime
- 2001-02-23 JP JP2001048271A patent/JP4763141B2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0257167A1 (fr) * | 1986-07-24 | 1988-03-02 | Societe Metallurgique De Gerzat | Alliage à base d'A1 pour corps creux sous pression |
EP0589807A1 (fr) * | 1992-09-22 | 1994-03-30 | Société Métallurgique de Gerzat | Alliage d'aluminium pour corps creux sous pression |
EP0670377A1 (fr) * | 1994-03-02 | 1995-09-06 | Pechiney Recherche (Gie) | Alliage d'aluminium 7000 à haute résistance mécanique et procédé d'obtention |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004104258A1 (fr) * | 2003-05-20 | 2004-12-02 | Pechiney Rhenalu | Procede de soudage par friction agitation de pieces en alliage d’aluminium avec traitement thermique avant soudage |
US10301710B2 (en) | 2005-01-19 | 2019-05-28 | Otto Fuchs Kg | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
CN104668300A (zh) * | 2015-01-30 | 2015-06-03 | 深圳市江为五金螺丝有限公司 | 铝合金挤压件加工工艺 |
CN104741873A (zh) * | 2015-01-30 | 2015-07-01 | 深圳市江为五金螺丝有限公司 | 一种数控挤压工艺 |
CN106834985A (zh) * | 2017-01-24 | 2017-06-13 | 湖南人文科技学院 | 一种显著提高铝锌镁合金综合性能的热机械处理工艺 |
CN106834985B (zh) * | 2017-01-24 | 2018-07-27 | 湖南人文科技学院 | 一种显著提高铝锌镁合金综合性能的热机械处理工艺 |
CN109097646A (zh) * | 2018-08-27 | 2018-12-28 | 江苏大学 | 780-820MPa超高强度铝合金及其制备方法 |
CN109097646B (zh) * | 2018-08-27 | 2020-09-25 | 江苏大学 | 780-820MPa超高强度铝合金及其制备方法 |
CN110042288A (zh) * | 2019-05-10 | 2019-07-23 | 西北铝业有限责任公司 | 一种航天用铝合金u型框架型材及其制备方法 |
CN110042288B (zh) * | 2019-05-10 | 2021-02-26 | 西北铝业有限责任公司 | 一种航天用铝合金u型框架型材及其制备方法 |
CN111057915A (zh) * | 2019-12-23 | 2020-04-24 | 广东坚美铝型材厂(集团)有限公司 | 一种Al-Mg-Si铝合金棒材及其热处理方法 |
CN111057915B (zh) * | 2019-12-23 | 2021-09-21 | 广东坚美铝型材厂(集团)有限公司 | 一种Al-Mg-Si铝合金棒材及其热处理方法 |
Also Published As
Publication number | Publication date |
---|---|
FR2805282B1 (fr) | 2002-04-12 |
FR2805282A1 (fr) | 2001-08-24 |
CA2337625C (fr) | 2009-09-01 |
US20010039982A1 (en) | 2001-11-15 |
CA2337625A1 (fr) | 2001-08-23 |
JP4763141B2 (ja) | 2011-08-31 |
ZA200101099B (en) | 2001-08-14 |
AU773692B2 (en) | 2004-06-03 |
US6565684B2 (en) | 2003-05-20 |
JP2001303221A (ja) | 2001-10-31 |
AU2121501A (en) | 2001-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2337625C (fr) | Procede de fabrication de corps creux sous pression en alliage alznmgcu | |
CN102812141B (zh) | 用于高压氢气储存容器的铝合金材料 | |
CN102634705B (zh) | 一种能降低淬火敏感性的中高强度铝合金及生产工艺和型材加工方法 | |
CN1061103C (zh) | 中空壳体制造法 | |
JP5925667B2 (ja) | 高圧水素ガス容器用アルミニウム合金材とその製造方法 | |
CA2835533C (fr) | Procede de fabrication d'acier martensitique a tres haute resistance et tole ou piece ainsi obtenue | |
CN105331858A (zh) | 高强高韧超细晶铝合金的制备方法 | |
FR2802946A1 (fr) | Element de structure d'avion en alliage al-cu-mg | |
WO2009043993A1 (fr) | Produits filés en alliage d'aluminium al-mn à résistance mécanique améliorée | |
CA2961712C (fr) | Toles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion | |
CN103695735A (zh) | 铝合金焊丝及其制备方法 | |
CN108165907A (zh) | 汽车碰撞吸能部件用铝型材生产工艺及生产的铝型材 | |
EP1644546B1 (fr) | Utilisation de tubes en alliages al-zn-mg-cu ayant un compromis ameliore entre des caracteristiques mecaniques statiques et la tolerance aux dommages | |
FR3004464A1 (fr) | Procede de transformation de toles en alliage al-cu-li ameliorant la formabilite et la resistance a la corrosion | |
JP2009221566A (ja) | 耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材 | |
FR2938553A1 (fr) | Produits en alliage aluminium-cuivre-lithium | |
WO2009043992A1 (fr) | Produit file en alliage d'aluminium al-mg-si a resistance a la corrosion amelioree | |
CA3105902A1 (fr) | Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage | |
JP2009293799A (ja) | Cr−Mo鋼製ライナーを用いた高圧水素貯蔵用FRP容器 | |
FR2543461A1 (fr) | Procede pour fabriquer des tubes d'acier sans soudure | |
CN107557625B (zh) | 一种新能源汽车用高韧性铝板带材及其生产方法 | |
FR2509325A1 (fr) | Procede de fabrication de tubes d'acier sans soudure pour l'industrie du petrole | |
CN111394626A (zh) | 一种3005Mod铝合金长寿命扁管料及其制造方法 | |
JPH10121177A (ja) | 高速しごき成形性の優れたdi缶胴用アルミニウム合金板およびその製造方法 | |
JP2018178193A (ja) | アルミニウム合金製加工品およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE ES FR GB IT Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20011101 |
|
AKX | Designation fees paid |
Free format text: AT DE ES FR GB IT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20051202 |