EP1125046B1 - Fuel injection system for an internal combustion engine with a pressure amplifier - Google Patents
Fuel injection system for an internal combustion engine with a pressure amplifier Download PDFInfo
- Publication number
- EP1125046B1 EP1125046B1 EP00958196A EP00958196A EP1125046B1 EP 1125046 B1 EP1125046 B1 EP 1125046B1 EP 00958196 A EP00958196 A EP 00958196A EP 00958196 A EP00958196 A EP 00958196A EP 1125046 B1 EP1125046 B1 EP 1125046B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- fuel
- injection system
- unit
- fuel injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 174
- 238000002347 injection Methods 0.000 title claims description 120
- 239000007924 injection Substances 0.000 title claims description 120
- 238000002485 combustion reaction Methods 0.000 title claims description 11
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
- F02M63/0275—Arrangement of common rails
- F02M63/0285—Arrangement of common rails having more than one common rail
- F02M63/029—Arrangement of common rails having more than one common rail per cylinder bank, e.g. storing different fuels or fuels at different pressure levels per cylinder bank
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M41/00—Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
- F02M41/16—Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor characterised by the distributor being fed from a constant pressure source, e.g. accumulator or constant pressure positive displacement pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
- F02M45/04—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M57/00—Fuel-injectors combined or associated with other devices
- F02M57/02—Injectors structurally combined with fuel-injection pumps
- F02M57/022—Injectors structurally combined with fuel-injection pumps characterised by the pump drive
- F02M57/025—Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/02—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
- F02M59/10—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
- F02M59/105—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0003—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
- F02M63/0007—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
Definitions
- the invention is based on a fuel injection system for an internal combustion engine according to the preamble of the claim 1.
- Such an injection system is, for example, by EP 0 711 914 A1 has become known.
- a valve body for example a nozzle needle
- a closing force for example a closing force
- the pressure at which fuel emerges from the nozzle chamber into the cylinder is referred to as the injection pressure
- a system pressure is understood to mean the pressure under which fuel is available or is stored in the injection system.
- a stroke-controlled fuel injection system is understood in the context of the invention that the opening and closing of the injection opening of an injector take place with the aid of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle chamber and in a control chamber. Furthermore, in the following an arrangement is referred to as central if it is intended for all cylinders together and as local if it is intended for only a single cylinder.
- Fuel injection system is using a high pressure pump Fuel to a first high fuel pressure compressed by about 1200 bar and in a first pressure accumulator saved. Furthermore, it is under high pressure standing fuel also in a second pressure accumulator promoted in which by regulating its fuel supply a second high fuel pressure by means of a 2/2-way valve of approximately 400 bar is maintained.
- a Valve control unit is either the lower or higher Fuel pressure passed into the injector nozzle area. There is a spring-loaded valve body due to the pressure lifted off its valve seat so that fuel can emerge from the nozzle opening.
- a disadvantage of this known fuel injection system is that initially all of the fuel only on the higher Pressure level must be compressed to then one Part of the fuel back to the lower pressure level relieve.
- the high pressure pump since it is from the Camshaft of the engine is driven, continuously in operation even if the desired pressure in the respective Pressure accumulator is already set up. This permanent High pressure generation and the subsequent relief on the low pressure level stand a better efficiency opposite.
- EP 0691471 shows an injection system with a pressure translation unit between the fuel pump and the injector.
- the injection system according to the invention shows improvement of the efficiency the characteristic features of the Claim 1 on.
- a higher pressure level by means of a central pressure translation unit to create.
- the pressure translation unit is independent of the camshaft, if necessary selectively controllable, so that the high pressure can be better regulated is. Because the pressure translation unit is not permanent is in operation, the Friction losses.
- first embodiment of a pressure-controlled Kraftstofeinspritzsystems 1 is a volume-controlled fuel pump 2 fuel 3 from a storage tank 4 via a feed line 5 in a first central pressure accumulator 6 (common rail), from which a plurality of the number of individual cylinders corresponding pressure lines 7 to the individual pressure-controlled injectors 9 (injection device) projecting into the combustion chamber 8 of the internal combustion engine to be supplied.
- a first (lower) fuel pressure (for example approx. 300 bar) is generated and stored in the first pressure accumulator 6 (common rail).
- This fuel pressure can be used for pre-injection and, if necessary, for post-injection (HC enrichment for exhaust gas aftertreatment) as well as for displaying an injection course with a plateau (boat injection).
- Downstream of the first pressure accumulator 6 is a central pressure translation unit 10 , by means of which fuel from the first pressure accumulator 6 is compressed to a second, higher fuel pressure for a main injection.
- the higher fuel pressure is stored in a second pressure accumulator 11 (common rail), from which a plurality of pressure lines 12 corresponding to the number of cylinders also lead to the individual injectors 9.
- a fuel pressure of approximately 300 bar to 1800 bar can be stored in this pressure accumulator 11.
- the pressure booster unit 10 comprises a valve unit 13 for pressure booster control, a pressure booster 14 with a pressure medium 14 ' in the form of a displaceable piston element, and two check valves 15 and 16 .
- the pressure medium 14 ' can be connected at one end with the aid of the valve unit 13 to the first pressure accumulator 6, so that it is pressurized at one end by the fuel in a primary chamber 17 .
- a differential space 18 is relieved of pressure by means of a leakage line 19 , so that the pressure medium 14 'can be displaced in the compression direction in order to reduce the volume of a pressure chamber 20 .
- the fuel located in the pressure chamber 20 is compressed to a second higher fuel pressure in accordance with the area ratio of the primary chamber 17 and the pressure chamber 20 and supplied to the second pressure accumulator 11.
- the check valve 15 prevents the backflow of compressed fuel from the second pressure accumulator 11. If the primary chamber 17 is connected to a leakage line 21 with the aid of the valve unit 13, the pressure medium 14 ′ is reset and the pressure chamber 20 is refilled, via the check valve 16 is connected to the pressure line 7. Due to the pressure conditions in the primary chamber 17 and in the pressure chamber 20, the check valve 16 opens, so that the pressure chamber 20 is under the first fuel pressure (rail pressure of the first pressure accumulator 6) and the pressure medium 14 'is hydraulically returned to its starting position. To improve the resetting behavior, one or more springs can be arranged in rooms 17, 18 and 20. In the exemplary embodiment shown, the valve unit 13 is only shown as an example as a 3/2-way valve.
- a fuel metering with either the lower or the higher fuel pressure is carried out separately for each cylinder or injector 9, in each case via a local valve arrangement 22 , which in the exemplary embodiment shown is a 3/2-way valve 23 for the lower fuel pressure and a 2 / 2-way valve 24 is formed for the higher fuel pressure.
- the prevailing pressure is then passed via a pressure line 25 into a nozzle chamber 26 of the injector 9.
- the injection is pressure-controlled with the aid of a piston-shaped valve member 27 (nozzle needle) which is axially displaceable in a guide bore and whose conical valve sealing surface 28 interacts with a valve seat surface on the injector housing 29 and thus closes the injection openings 30 provided there.
- a pressure surface of the valve member 27 pointing in the opening direction of the valve member 27 is exposed to the pressure prevailing there, the nozzle chamber 26 continuing through an annular gap between the valve member 27 and the guide bore up to the valve sealing surface 28 of the injector 9. Due to the pressure prevailing in the nozzle chamber 26, the valve member 27 sealing the injection openings 29 is opened against the action of a closing force (closing spring 31 ), the spring chamber 32 being relieved of pressure by means of a leakage line 33 . The injection with the lower fuel pressure takes place when the 2/2-way valve 24 is not energized by energizing the 3/2-way valve 23.
- the local valve arrangement 22 can be arranged inside the injector housing 29 (FIG. 1a) or, as shown in FIG. 1b, outside the injector housing, for example in the region of the pressure accumulators 6, 11.
- a smaller size of the injector housing and an increased injection pressure can be achieved by utilizing wave reflections in the now longer pressure line 25.
- FIG. 2 shows another local valve arrangement 22a , which can either be arranged inside the injector housing (FIG. 2a) or outside the injector housing (FIG. 2b).
- This local valve arrangement 22a comprises a 2/2-way valve 35 as a switching element for the higher fuel pressure, a check valve 36 in the pressure line 7 and a 3/2-way valve 37 in the pressure line 25 for switching the respective pressure Injection with the lower fuel pressure takes place when the 2/2-way valve 35 is deenergized by energizing the 3/2-way valve 37.
- the check valve 36 prevents unwanted return into the pressure line 7.
- the 3/2-way valve 37 is switched back to leakage 34.
- the fuel from the second pressure accumulator 11, controlled by a central valve unit 38 (for example a 3/2-way valve), is distributed centrally to the individual pressure-controlled injectors via a distributor device 39 .
- the injection with the lower fuel pressure takes place when the valve unit 38 is de-energized by energizing the 3/2-way valve 37 which alone forms the local valve arrangement 22b .
- the injection with the higher fuel pressure takes place when the valve unit 37 is de-energized and the central valve unit 38 is energized via the distributor device 39.
- the central valve unit 38 is switched back to leakage 40 and the distributor device 39 and the injector are thus relieved.
- the local valve unit 22b can either be part of the injector housing (FIG. 3a) or be arranged outside the injector housing (FIG. 3b).
- FIG. 4 shows that, unlike in FIG. 3, the lower fuel pressure can also be metered centrally by means of the distributor device 39.
- the fuel metering with either the lower or the higher fuel pressure takes place here by means of a centrally arranged valve arrangement 41, which switches through either the pressure line 42 leading away from the first pressure accumulator 6 or the pressure line 43 leading away from the second pressure accumulator 11 to the central distributor device 39.
- the central valve arrangement 41 is constructed analogously to the local valve arrangement 22a (FIG. 2).
- the injection in the fuel injection system 50 shown in FIG. 5 is stroke-controlled by means of stroke-controlled injectors 51, only one of which is shown in more detail.
- stroke-controlled injectors 51 Starting from the pressure-controlled injector 9 of FIG. 1 engages with a stroke-controlled injector 51 on the valve member 27 is coaxial with the valve spring 31, a pressure piece 52, the end face 53 remote from its valve sealing surface 28 delimits a control space 54.
- the control chamber 54 From the pressure line 25, the control chamber 54 has a fuel inlet with a first throttle 55 and a fuel outlet to a pressure relief line 56 with a second throttle 57 , which can be controlled for leakage 59 by a 2/2-way valve 58 .
- the pressure piece 52 is pressurized in the closing direction by the pressure in the control chamber 54.
- Fuel under the first or second fuel pressure constantly fills the nozzle chamber 26 and the control chamber 54.
- the pressure in the control chamber 54 can be reduced, so that the opening direction is subsequently increased the valve member 27 pressure force in the nozzle chamber 26 exceeds the pressure force acting on the valve member 27 in the closing direction.
- the valve sealing surface 28 lifts off the valve seat surface and fuel is injected.
- the pressure relief process of the control chamber 54 and thus the stroke control of the valve member 27 can be influenced by the dimensioning of the two throttles 55 and 57.
- the end of the injection is initiated by renewed actuation (closing) of the 2/2-way valve 58, which decouples the control chamber 54 from the leakage line 59 again, so that a pressure builds up again in the control chamber 54, which presses the pressure piece 52 in the closing direction can move.
- the switching of the fuel to either the lower or the higher fuel pressure takes place locally for each injector 51 by means of a valve arrangement 60, which is formed from a 2/2-way valve 24 and a check valve 62 preventing an undesired return into the pressure line 7.
- the valve arrangement can either be arranged inside the injector housing 61 (FIG. 5a) or outside (FIG. 5b).
- the 2/2-way valve 58 is used for metering the fuel for both pressures.
- FIG. 6 shows that, unlike in FIG. 5, the higher fuel pressure, as in FIG. 3a, can also be metered centrally via the distributor device 39.
- the central valve unit 38 When the central valve unit 38 is not energized, the nozzle chamber 26 and control chamber 54 are filled with fuel from the first pressure accumulator 6, so that the fuel is injected at the lower fuel pressure.
- the central valve unit 38 When the central valve unit 38 is energized, only the nozzle chamber 26 is connected to the second pressure accumulator 11 because of the check valve 63 , so that the fuel injection takes place with the higher fuel pressure.
- the 2/2-way valve 58 is opened for injection with the lower fuel pressure.
- the fuel is metered in under high pressure, the opening being stroke-controlled at the lower fuel pressure and pressure-controlled at the higher fuel pressure.
- FIG. 7 shows a pressure-controlled injection system 70, in which, unlike in FIG. 2, the fuel stored in the first pressure accumulator 6 is not discharged for an injection.
- the fuel from the second pressure accumulator 11 is supplied via the pressure line 12 to each individual injector 9 as a higher fuel pressure, which can be reduced to the lower fuel pressure by means of a local control unit 71 if required.
- the control unit 71 comprises a 3/2-way valve 72 in order to either switch through the higher fuel pressure or to control it dissipatively by means of a throttle 73 and a pressure limiting valve 75 set to the lower fuel pressure and connected to a leakage line 74 .
- the respective pressure present is then passed on to the injector 9 via the 3/2-way valve 37, as in FIG. 2, a check valve 76 preventing the higher fuel pressure from flowing out via the check valve 75.
- FIG. 8 shows an injection system 80 corresponding to FIG. 7, but stroke-controlled , in which the fuel from the second pressure accumulator 11 can be reduced to the lower fuel pressure via the local control unit 71. The injection takes place via the stroke-controlled injectors 51.
- the fuel pressure stored in the second pressure accumulator 11 is used as the lower fuel pressure. If necessary, a higher fuel pressure can then be generated from this by means of a local pressure booster 91 , which is arranged in a bypass line 92 of the pressure line 12.
- the local pressure booster 91 which is constructed analogously to the central pressure booster 14, can be switched on by means of a valve unit 93 (3/2-way valve) in the bypass line 92.
- the pressure chamber 94 of the local pressure booster 91 is filled with fuel from the second pressure accumulator 11, a check valve 95 preventing the return of compressed fuel back into the second pressure accumulator 11.
- the pressure booster 91, the valve unit 93 and the check valve 95 form the local pressure booster unit 96 , which is located within the injector housing in the exemplary embodiment shown.
- the fuel is metered with the prevailing fuel pressure via the 3/2-way valve 37 by means of pressure-controlled injectors 9.
- the pressure chamber 20 of the central pressure transmission unit 10 can be supplied with fuel from the first pressure accumulator 6 instead of as in FIG. 9a can also be filled with fuel 3 ' , which a quantity-controlled fuel pump 2' conveys from a further storage tank 4 ' into the pressure chamber 20 via a delivery line 5' . Since the high pressure side and the low pressure side of the central pressure translation unit are hydraulically decoupled from one another, different operating materials, for example oil for the low pressure side and fuel for the high pressure side, can also be used for both sides.
- the injection system 100 of FIG. 10 with its local pressure translation unit 96 corresponds to the injection system 90 (FIG. 9), but with stroke-controlled injectors 51.
- the central pressure translation unit 10 is filled either with the fuel from the first pressure accumulator 6 (FIG. 10a) or with the fuel 3 'from the further storage tank 4' (Fig. 10b).
- the stroke-controlled injection system 110 of FIG. 11 corresponds to the injection system 80 (FIG. 8), but with a differently designed local control unit 111.
- Its pressure line 112 can either be connected directly to the second pressure accumulator 11 or by means of a 3/2-way valve 113 a leakage line 115 containing a pressure relief valve 114 can be connected.
- the connection to the second pressure accumulator 11 is used for the main injection and the simultaneous filling of an accumulator space 116. During this connection, fuel under higher fuel pressure can fill the control space 54 and the nozzle space 26.
- the pressure line 112 is continuously connected to the leakage line 115 during the pre-injection and post-injection.
- the pressure relief valve 114 opens above a pressure of, for example, 300 bar, so that the fuel flowing out of the accumulator space 116 is reduced to this lower fuel pressure.
- the start and end of the main injection and the pre-injection and post-injection can be controlled by means of the 2/2-way valve 58.
- the central distributor device 39 distributes the higher fuel pressure generated by the central pressure translation unit 10 to the individual injectors 9.
- the local fuel control unit 71 already described above can then either use the higher fuel pressure for an injection switched through or reduced to a lower fuel pressure in a dissipative manner.
- a check valve arrangement 122 is provided for each injector 9, which allows the fuel in the direction of the injector 9 through a first check valve 123 and the return flow of fuel from the injector 9 by means of a throttle 124 and a second check valve 125 to relieve the distributor device 39 and allows for pressure reduction.
- either the higher fuel pressure can be switched through or a lower fuel pressure can be generated via a throttle 127 via a 2/2-way valve 126 , a check valve 128 preventing a backflow via the throttle 127.
- the parts 126, 127 and 128 form the local pressure limiting or throttling unit, designated overall by 129 .
- the central pressure transmission unit 10 ′ is designed here without a check valve 15.
- the pressure-controlled injection system 130 of FIG. 13 manages completely without local control, since the central pressure translation unit 131 with its pressure converter 132 is used not only to generate the higher fuel pressure, but also to throttle the lower fuel pressure.
- the pressure chamber 20 is connected to a leakage line 134 via a pressure relief valve 133 set to the lower fuel pressure, whereby the injection pressure is initially limited to the lower fuel pressure, for example 300 bar.
- the connection between pressure chamber 20 and pressure limiting valve 133 is closed by the pressure medium 14 ' (pressure booster piston) after only a slight movement. This means that the higher fuel pressure is available for the subsequent injection process.
- Suitable non-return valves are to be arranged for refilling the pressure chamber 20, with a spring force acting on the pressure medium 14 ′ promoting the filling.
- the pressure chamber 20 is connected to the primary chamber 17 via a check valve 135 arranged in the pressure medium 14 ′. While in Fig. 13a the injection quantity that is injected with the lower fuel pressure is predetermined, this injection quantity, i.e. the pressure level of the pre-injection and the course of the main injection (boat injection), can be performed by a central control unit 136 (2/2-way -Valve) can be controlled before the pressure relief valve 133 (Fig. 13b). In another variant (FIG.
- the pressure chamber 20 can also be connected directly to the pressure accumulator 6 via the line 137 , so that its fuel is passed on to the pressure-controlled injectors 9 for injection at the lower fuel pressure. This allows the leakage quantities to be reduced.
- the pressure accumulator 6 of FIG. 13a is omitted and the pressure is built up by energizing a 2/2-way valve 138 .
- the high pressure pump 5 can generate a fuel pressure of approximately 300 to approximately 1000 bar and can be, for example, a cam pump. High-pressure pump 5 and 2/2-way valve 138 form the pressure unit 139 .
- the injection - as in FIG. 13b - can also be controlled by the control unit 136.
- the pressure-controlled injection system 140 shown in FIG. 14 which otherwise corresponds to the injection system of FIG. 13c, comprises in its pressure translation unit 141 a piezoelectric valve unit 142, the valve cross section of which is controlled by means of a piezo actuator (actuator, actuator), or a fast-switching solenoid valve.
- the piezo actuators which have a necessary temperature compensation and possibly a required force or displacement ratio, are used to control the cross-section and thus to shape the injection process.
- a completely independent pre-injection becomes possible both in terms of time and in the injection quantity and in the injection pressure.
- the main injection can be flexibly adapted to any required injection process and additionally enables split injection or post-injection, which can be added almost anywhere close to the main injection.
- the pressure-controlled injection system 150 of FIG. 15 which is based on the injection system of FIG. 12, uses the pressure unit 139 to generate a pressure of approximately 200 bar to approximately 1000 bar as the operating medium for the central pressure translation unit 151, which is operated solely by the pressure converter 132 ( 13a) is formed.
- the lowering to the lower fuel pressure takes place in FIG. 15a by means of the local control unit 71 having a pressure relief valve (FIG. 7) and in FIG. 15b by means of the local pressure control or throttle unit 129 (FIG. 12b).
- the pressure-controlled injection system 160 of FIG. 16 differs from that of FIG. 13d in that the central pressure booster 132 can be bypassed by a parallel bypass line 161 and activated by means of a valve unit 162 (FIG. 16a) or 162a (FIG. 16b) or can be deactivated.
- the valve unit 162 is designed upstream of the pressure booster 132 and as a 3/2-way valve
- the valve unit 162 a is downstream of the pressure booster 132 and as a 2/2-way valve which is decoupled via a check valve 163 is.
- the parts 132, 161, 162 and 132, 162a, 163 form the central pressure transmission unit 164 and 164a.
- either the lower fuel pressure stored in the central pressure accumulator 6 or the higher fuel pressure generated via the central pressure translation unit 10 ′ is distributed centrally to the individual injectors 9.
- the injection of the respective fuel pressure is controlled via the central valve unit 171 (3/2-way valve), the function of which corresponds to that of the valve unit 37 (FIG. 2a).
- the valve units shown in the figures can each of electromagnets for opening or closing or Toggle.
- the electromagnets are from controlled by a control unit that has various operating parameters (Engine speed, .9) of the internal combustion engine to be supplied can monitor and process.
- Piezo actuators can also be used for solenoid-controlled valve units (Actuator, actuator) can be used, the one necessary temperature compensation and possibly a necessary one Have power or path translation.
- a fuel injection system (1) for an internal combustion engine where the by means of a high pressure pump (5) fuel delivered with at least two different high fuel pressures via injectors (9) in the Combustion chamber (8) of the internal combustion engine are injected can, is between the high pressure pump (5) and the injectors (9) at least one central pressure translation unit (10) for all injectors (9).
- the pressure translation unit can be controlled if necessary, which means the fuel under the higher pressure better quantity is adjustable and so are the losses reduced by friction.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung geht aus von einem Kraftstoffeinspritzsystem für eine Brennkraftmaschine nach der Gattung des Patentanspruchs 1. The invention is based on a fuel injection system for an internal combustion engine according to the preamble of the claim 1.
Ein derartiges Einpritzsystem ist beispielsweise durch die EP 0 711 914 A1 bekanntgeworden.Such an injection system is, for example, by EP 0 711 914 A1 has become known.
Zum besseren Verständnis der nachfolgenden Beschreibung werden zunächst einige Begriffe näher erläutert: Bei einem druckgesteuerten Kraftstoffeinspritzsystem wird durch den im Düsenraum eines Injektors herrschenden Kraftstoffdruck ein Ventilkörper (z.B. eine Düsennadel) gegen die Wirkung einer Schließkraft aufgesteuert und so die Einspritzöffnung für eine Einspritzung des Kraftstoffes freigegeben. Der Druck, mit dem Kraftstoff aus dem Düsenraum in den Zylinder austritt, wird als Einspritzdruck bezeichnet, während unter einem Systemdruck der Druck verstanden wird, unter dem Kraftstoff im Einspritzsystem zur Verfügung steht bzw. bevorratet ist. Unter einem hubgesteuerten Kraftstoffeinspritzsystem wird im Rahmen der Erfindung verstanden, daß das Öffnen und Schließen der Einspritzöffnung eines Injektors mit Hilfe eines verschieblichen Ventilglieds aufgrund des hydraulischen Zusammenwirkens der Kraftstoffdrücke in einem Düsenraum und in einem Steuerraum erfolgen. Weiterhin ist im folgenden eine Anordnung als zentral bezeichnet, wenn sie gemeinsam für alle Zylinder vorgesehen ist, und als lokal, wenn sie für nur einen einzelnen Zylinder vorgesehen ist.For a better understanding of the following description, a few terms are first explained in more detail: In a pressure-controlled fuel injection system , the fuel pressure prevailing in the nozzle space of an injector opens a valve body (for example a nozzle needle) against the action of a closing force and thus releases the injection opening for an injection of the fuel. The pressure at which fuel emerges from the nozzle chamber into the cylinder is referred to as the injection pressure , while a system pressure is understood to mean the pressure under which fuel is available or is stored in the injection system. A stroke-controlled fuel injection system is understood in the context of the invention that the opening and closing of the injection opening of an injector take place with the aid of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle chamber and in a control chamber. Furthermore, in the following an arrangement is referred to as central if it is intended for all cylinders together and as local if it is intended for only a single cylinder.
Bei dem aus der EP 0 711 914 A1 bekannten druckgesteuerten Kraftstoffeinspritzsystem wird mit Hilfe einer Hochdruckpumpe Kraftstoff auf einen ersten hohen Kraftstoffdruck von etwa 1200 bar komprimiert und in einem ersten Druckspeicher gespeichert. Weiterhin wird der unter Hochdruck stehende Kraftstoff auch in einen zweiten Druckspeicher gefördert, in welchem durch Regelung seiner Kraftstoffzufuhr mittels eines 2/2-Wegventils ein zweiter hoher Kraftstoffdruck von ca. 400 bar aufrechterhalten wird. Über eine Ventilsteuereinheit wird entweder der tiefere oder höhere Kraftstoffdruck in den Düsenraum eines Injektors geleitet. Dort wird durch den Druck ein federbelasteter Ventilkörper von seinem Ventilsitz abgehoben, so daß Kraftstoff aus der Düsenöffnung austreten kann.In the pressure-controlled known from EP 0 711 914 A1 Fuel injection system is using a high pressure pump Fuel to a first high fuel pressure compressed by about 1200 bar and in a first pressure accumulator saved. Furthermore, it is under high pressure standing fuel also in a second pressure accumulator promoted in which by regulating its fuel supply a second high fuel pressure by means of a 2/2-way valve of approximately 400 bar is maintained. Over a Valve control unit is either the lower or higher Fuel pressure passed into the injector nozzle area. There is a spring-loaded valve body due to the pressure lifted off its valve seat so that fuel can emerge from the nozzle opening.
Nachteilig bei diesem bekannten Kraftstoffeinspritzsystem ist, daß zunächst der gesamte Kraftstoff erst auf das höhere Druckniveau komprimiert werden muß, um dann einen Teil des Kraftstoffs wieder auf das tiefere Druckniveau zu entlasten. Außerdem ist die Hochdruckpumpe, da sie von der Nockenwelle des Motors angetrieben wird, dauerhaft im Betrieb und zwar auch dann, wenn der gewünschte Druck im jeweiligen Druckspeicher bereits aufgebaut ist. Diese permanente Hochdruckerzeugung und die nachfolgende Entlastung auf das Niederdruckniveau stehen einem besseren Wirkungsgrad entgegen.A disadvantage of this known fuel injection system is that initially all of the fuel only on the higher Pressure level must be compressed to then one Part of the fuel back to the lower pressure level relieve. In addition, the high pressure pump, since it is from the Camshaft of the engine is driven, continuously in operation even if the desired pressure in the respective Pressure accumulator is already set up. This permanent High pressure generation and the subsequent relief on the low pressure level stand a better efficiency opposite.
EP 0691471 zeigt ein Einspritzsystem mit einer Druckübersetzungseinheit zwischen der Kraftstoffpumpe und dem Injektor.EP 0691471 shows an injection system with a pressure translation unit between the fuel pump and the injector.
Das erfindungsgemäße Einspritzsystem weist zur Verbesserung des Wirkungsgrads die kennzeichnenden Merkmale des Patentanspruchs 1 auf. Erfindungsgemäß wird vorgeschlagen, ein höheres Druckniveau mittels einer zentralen Druckübersetzungseinheit zu erzeugen. Die Druckübersetzungseinheit ist, da er unabhängig von der Nockenwelle ist, bei Bedarf gezielt ansteuerbar, wodurch der Hochdruck besser mengenregelbar ist. Da die Druckübersetzungseinheit nicht permanent im Betrieb ist, reduzieren sich entsprechend auch die Verluste durch Reibung. The injection system according to the invention shows improvement of the efficiency the characteristic features of the Claim 1 on. According to the invention, it is proposed a higher pressure level by means of a central pressure translation unit to create. The pressure translation unit is independent of the camshaft, if necessary selectively controllable, so that the high pressure can be better regulated is. Because the pressure translation unit is not permanent is in operation, the Friction losses.
Wenn die Hochdruckseite und die Niederdruckseite der zentralen Druckübersetzungseinheit voneinander hydraulisch entkoppelt sind, können für beide Seiten unterschiedliche Betriebsstoffe, z.B. Öl für die Niederdruckseite und Kraftstoff für die Hochdruckseite, verwendet werden.When the high pressure side and the low pressure side of the central Hydraulic pressure booster unit are decoupled, can be different for both sides Operating materials, e.g. Oil for the low pressure side and Fuel for the high pressure side.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.Further advantages and advantageous configurations of the object the invention are the description, the drawing and removable from the claims.
Verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzsystems mit einer zentralen Druckübersetzungseinheit sind in der Zeichnung schematisch dargestellt und in der nachfolgenden Beschreibung erläutert. Es zeigen:
- Fig. 1
- ein druckgesteuertes Kraftstoffeinspritzsystem für eine Einspritzung mit zwei, unterschiedlich hohen Kraftstoffdrücken, mit einer zentralen Druckübersetzungseinheit zwischen zwei zentralen Druckspeichern und jeweils einer lokalen Ventilanordnung für jeden Injektor;
- Fig. 2
- das Kraftstoffeinspritzsystem der Fig. 1 mit einer modifizierten lokalen Ventilanordnung;
- Fig. 3
- das Kraftstoffeinspritzsystem der Fig. 1 mit einer zentralen Verteilereinrichtung für den höheren Kraftstoffdruck und einer modifizierten lokalen Ventilanordnung;
- Fig. 4
- das Kraftstoffeinspritzsystem der Fig. 3, wobei auch der tiefere Kraftstoffdruck mittels der zentralen Verteilereinrichtung zugemessen wird;
- Fig. 5
- ein hubgesteuertes Kraftstoffeinspritzsystem für eine Einspritzung mit zwei, unterschiedlich hohen Kraftstoffdrücken, mit einer zentralen Druckübersetzungseinheit zwischen zwei zentralen Druckspeichern und einer lokalen Ventilanordnung;
- Fig. 6
- das Kraftstoffeinspritzsystem der Fig. 5, jedoch mit einer zentralen Verteilereinrichtung für den höheren Kraftstoffdruck;
- Fig. 7
- ein druckgesteuertes Kraftstoffeinspritzsystem, bei dem der höhere Kraftstoffdruck mittels einer lokalen Absteuereinheit auf einen tieferen Kraftstoffdruck abgesenkt werden kann;
- Fig. 8
- ein der Fig. 7 entsprechendes, allerdings hubgesteuertes Kraftstoffeinspritzsystem;
- Fig. 9
- ein druckgesteuertes Kraftstoffeinspritzsystem, bei dem ein höherer Kraftstoffdruck mittels einer lokalen Druckübersetzungseinheit erzeugt werden kann;
- Fig. 10
- ein der Fig. 9 entsprechendes, allerdings hubgesteuertes Kraftstoffeinspritzsystem;
- Fig. 11
- ein der Fig. 8 entsprechendes hubgesteuertes Kraftstoffeinspritzsystem mit einer modifizierten lokalen Absteuereinheit;
- Fig. 12
- ein der Fig. 7 entsprechendes druckgesteuertes Kraftstoffeinspritzsystem, allerdings ohne zweiten Druckspeicher, wobei der jeweilige Kraftstoffdruck mittels einer zentralen Verteilereinrichtung zugemessen wird;
- Fig. 13
- verschiedene der Fig. 12 entsprechende druckgesteuerte Kraftstoffeinspritzsysteme, jedoch mit jeweils modifizierter zentraler Druckübersetzungseinheit;
- Fig. 14
- ein der Fig. 13c entsprechendes druckgesteuertes Kraftstoffeinspritzsystem mit einer piezoelektrischen Ventileinheit in der zentralen Druckübersetzungseinheit;
- Fig. 15
- ein der Fig. 12 entsprechendes druckgesteuertes Einspritzsystem, allerdings ohne Druckspeicher und mit modifizierter zentraler Druckübersetzungseinheit;
- Fig. 16
- ein der Fig. 15 entsprechendes Kraftstoffeinspritzsystem, jedoch mit modifizierter zentraler Druckübersetzungseinheit und ohne lokale Absteuereinheit; und
- Fig. 17
- ein weiteres druckgesteuertes Kraftstoffeinspritzsystem mit einer zentralen Druckübersetzungseinheit zwischen einem zentralem Druckspeicher und einer zentralen Verteilereinrichtung.
- Fig. 1
- a pressure-controlled fuel injection system for an injection with two different fuel pressures, with a central pressure translation unit between two central pressure accumulators and a local valve arrangement for each injector;
- Fig. 2
- the fuel injection system of Figure 1 with a modified local valve assembly.
- Fig. 3
- the fuel injection system of Figure 1 with a central manifold for the higher fuel pressure and a modified local valve assembly.
- Fig. 4
- the fuel injection system of Figure 3, wherein the lower fuel pressure is metered by means of the central distributor.
- Fig. 5
- a stroke-controlled fuel injection system for an injection with two different fuel pressures, with a central pressure translation unit between two central pressure accumulators and a local valve arrangement;
- Fig. 6
- the fuel injection system of Figure 5, but with a central distributor for the higher fuel pressure.
- Fig. 7
- a pressure-controlled fuel injection system in which the higher fuel pressure can be reduced to a lower fuel pressure by means of a local control unit;
- Fig. 8
- a fuel injection system corresponding to FIG. 7, but stroke-controlled;
- Fig. 9
- a pressure controlled fuel injection system in which a higher fuel pressure can be generated by means of a local pressure translation unit;
- Fig. 10
- a fuel injection system corresponding to FIG. 9, but stroke-controlled;
- Fig. 11
- a stroke-controlled fuel injection system corresponding to FIG. 8 with a modified local control unit;
- Fig. 12
- a pressure-controlled fuel injection system corresponding to FIG. 7, but without a second pressure accumulator, the respective fuel pressure being metered by means of a central distributor device;
- Fig. 13
- various pressure-controlled fuel injection systems corresponding to FIG. 12, but each with a modified central pressure translation unit;
- Fig. 14
- a pressure-controlled fuel injection system corresponding to FIG. 13c with a piezoelectric valve unit in the central pressure translation unit;
- Fig. 15
- a pressure-controlled injection system corresponding to FIG. 12, but without a pressure accumulator and with a modified central pressure translation unit;
- Fig. 16
- a fuel injection system corresponding to FIG. 15, but with a modified central pressure transmission unit and without a local control unit; and
- Fig. 17
- a further pressure-controlled fuel injection system with a central pressure translation unit between a central pressure accumulator and a central distributor device.
Bei dem in Fig. 1 dargestellten ersten Ausführungsbeispiel
eines druckgesteuerten Kraftstofeinspritzsystems 1 fördert
eine mengengeregelte Kraftstoffpumpe 2 Kraftstoff 3
aus einem Vorratstank 4 über eine Förderleitung 5 in einen
ersten zentralen Druckspeicher 6 (Common-Rail), von dem
mehrere, der Anzahl einzelner Zylinder entsprechende
Druckleitungen 7 zu den einzelnen, in den Brennraum 8 der
zu versorgenden Brennkraftmaschine ragenden druckgesteuerten
Injektoren 9 (Einspritzeinrichtung) abführen. Mit Hilfe
der Kraftstoffpumpe 2 wird so ein erster (tieferer)
Kraftstoffdruck (z.B. ca. 300 bar) erzeugt und im ersten
Druckspeicher 6 (Common Rail) gelagert. Dieser Kraftstoffdruck
kann zur Voreinspritzung und bei Bedarf zur Nacheinspritzung
(HC-Anreicherung zur Abgasnachbehandlung) sowie
zur Darstellung eines Einspritzverlaufs mit Plateau (Bootinjektion)
verwendet werden. Dem ersten Druckspeicher 6
ist eine zentrale Druckübersetzungseinheit 10 nachgeordnet,
mittels der Kraftstoff aus dem ersten Druckspeicher 6
auf einen zweiten, höheren Kraftstoffdruck für eine Haupteinspritzung
komprimiert wird. Der höhere Kraftstoffdruck
wird in einem zweiten Druckspeicher 11 (Common Rail) gelagert,
von dem ebenfalls mehrere, der Anzahl der Zylinder
entsprechende Druckleitungen 12 zu den einzelnen Injektoren
9 abführen. In diesem Druckspeicher 11 kann ein Kraftstoffdruck
von ca. 300 bar bis 1800 bar gelagert werden.In the example shown in Fig. 1 first embodiment of a pressure-controlled Kraftstofeinspritzsystems 1 is a volume-controlled
Die Druckübersetzungseinheit 10 umfaßt eine Ventileinheit
13 zur Druckübersetzungsansteuerung, einen Druckübersetzer
14 mit einem Druckmittel 14' in Form eines verschieblichen
Kolbenelements sowie zwei Rückschlagventile 15 und 16. Das
Druckmittel 14' kann einenends mit Hilfe der Ventileinheit
13 an den ersten Druckspeicher 6 angeschlossen werden, so
daß es durch den in einer Primärkammer 17 befindlichen
Kraftstoff einenends druckbeaufschlagt wird. Ein Differenzraum
18 ist mittels einer Leckageleitung 19 druckentlastet,
so daß das Druckmittel 14' zur Verringerung des
Volumens einer Druckkammer 20 in Kompressionsrichtung verschoben
werden kann. Dadurch wird der in der Druckkammer
20 befindliche Kraftstoff entsprechend dem Flächenverhältnis
von Primärkammer 17 und Druckkammer 20 auf einen zweiten
höheren Kraftstoffdruck verdichtet und dem zweiten
Druckspeicher 11 zugeführt. Das Rückschlagventil 15 verhindert
den Rückfluß von komprimiertem Kraftstoff aus dem
zweiten Druckspeicher 11. Wird die Primärkammer 17 mit
Hilfe der Ventileinheit 13 an eine Leckageleitung 21 angeschlossen,
so erfolgen die Rückstellung des Druckmittels
14' und die Wiederbefüllung der Druckkammer 20, die über
das Rückschlagventil 16 an die Druckleitung 7 angeschlossen
ist. Aufgrund der Druckverhältnisse in der Primärkammer
17 und in der Druckkammer 20 öffnet das Rückschlagventil
16, so daß die Druckkammer 20 unter dem ersten Kraftstoffdruck
(Raildruck des ersten Druckspeichers 6) steht
und das Druckmittel 14' hydraulisch in seine Ausgangsstellung
zurückgefahren wird. Zur Verbesserung des Rückstellverhaltens
können eine oder mehrere Federn in den Räumen
17, 18 und 20 angeordnet sein. Im dargestellten Ausführungsbeispiel
ist die Ventileinheit 13 lediglich beispielhaft
als 3/2-Wege-Ventil dargestellt.The
Eine Kraftstoffzumessung mit entweder dem tieferen oder
dem höheren Kraftstoffdruck erfolgt für jeden Zylinder
bzw. Injektor 9 getrennt und zwar jeweils über eine lokale
Ventilanordnung 22, die im dargestellten Ausführungsbeispiel
durch ein 3/2-Wege-Ventil 23 für den tieferen Kraftstoffdruck
und ein 2/2-Wege-Ventil 24 für den höheren
Kraftstoffdruck gebildet ist. Der jeweils anstehende Druck
wird dann über eine Druckleitung 25 in einen Düsenraum 26
des Injektors 9 geleitet. Die Einspritzung erfolgt druckgesteuert
mit Hilfe eines in einer Führungsbohrung axial
verschiebbaren kolbenförmigen Ventilglieds 27 (Düsennadel),
dessen konische Ventildichtfläche 28 mit einer Ventilsitzfläche
am Injektorgehäuse 29 zusammenwirkt und so
die dort vorgesehenen Einspritzöffnungen 30 verschließt.
Innerhalb des Düsenraums 26 ist eine in Öffnungsrichtung
des Ventilglieds 27 weisende Druckfläche des Ventilgliedes
27 dem dort herrschenden Druck ausgesetzt, wobei sich der
Düsenraum 26 über einen Ringspalt zwischen dem Ventilglied
27 und der Führungsbohrung bis an die Ventildichtfläche 28
des Injektors 9 fortsetzt. Durch den im Düsenraum 26 herrschenden
Druck wird das die Einspritzöffnungen 29 abdichtende
Ventilglied 27 gegen die Wirkung einer Schließkraft
(Schließfeder 31) aufgesteuert, wobei der Federraum 32
mittels einer Leckageleitung 33 druckentlastet ist. Die
Einspritzung mit dem tieferen Kraftstoffdruck erfolgt bei
unbestromtem 2/2-Wege-Ventil 24 durch Bestromen des 3/2-Wege-Ventils
23. Die Einspritzung mit dem höheren Kraftstoffdruck
erfolgt bei bestromtem 3/2-Wege-Ventil 23 durch
Bestromen des 2/2-Wegventils 24, wobei ein Rückschlagventil
36 einen ungewollten Rücklauf in die Druckleitung 7
verhindert. Am Ende der Einspritzung wird bei unbestromtem
2/2-Wege-Ventil 24 das 3/2-Wege-Ventil 23 auf Leckage 34
geschaltet. Dadurch werden die Druckleitung 25 und der Düsenraum
26 druckentlastet, so daß das federbelastete Ventilglied
27 die Einspritzöffnungen 30 wieder verschließt. A fuel metering with either the lower or the higher fuel pressure is carried out separately for each cylinder or
Die lokale Ventilanordnung 22 kann innerhalb des Injektorgehäuses
29 (Fig. 1a) oder auch, wie in Fig. 1b gezeigt,
außerhalb des Injektorgehäuses, z.B. im Bereich der Druckspeicher
6, 11 angeordnet sein. So läßt sich eine kleinere
Baugröße des Injektorgehäuses und durch Ausnutzung von
Wellenreflexionen in der nun längeren Druckleitung 25 ein
erhöhter Einspritzdruck erreichen.
Nachfolgend werden in der Beschreibung zu den weiteren Figuren
lediglich die Unterschiede zum Kraftstoffeinspritzsystem
nach Fig. 1 behandelt. Identische bzw. funktionsgleiche
Bauteile sind mit gleichen Bezugsziffern bezeichnet
und werden nicht näher erläutert.The
In the following, only the differences from the fuel injection system according to FIG. 1 are dealt with in the description of the other figures. Identical or functionally identical components are identified by the same reference numerals and are not explained in more detail.
Fig. 2 zeigt eine andere lokale Ventilanordnung 22a, die
entweder innerhalb des Injektorgehäuses (Fig. 2a) oder außerhalb
des Injektorgehäuses (Fig. 2b) angeordnet sein
kann. Diese lokale Ventilanordnung 22a umfaßt ein 2/2-Wege-Ventil
35 als Schaltelement für den höheren Kraftstoffdruck,
ein Rückschlagventil 36 in der Druckleitung 7 und
zum Schalten des jeweils anstehenden Druckes ein 3/2-Wege-Ventil
37 in der Druckleitung 25. Eine Einspritzung mit
dem tieferen Kraftstoffdruck erfolgt bei unbestromtem 2/2-Wege-Ventil
35 durch Bestromen des 3/2-Wegventils 37.
Durch Bestromen auch des 2/2-Wege-Ventil 35 kann auf eine
Einspritzung mit dem höheren Kraftstoffdruck umgeschaltet
werden, wobei das Rückschlagventil 36 einen ungewollten
Rücklauf in die Druckleitung 7 verhindert. Am Ende der
Einspritzung wird das 3/2-Wege-Ventil 37 auf Leckage 34
zurückgeschaltet. FIG. 2 shows another
In Fig. 3 wird der Kraftstoff aus dem zweiten Druckspeicher
11, gesteuert über eine zentrale Ventileinheit 38
(z.B. ein 3/2-Wegventil), zentral über eine Verteilereinrichtung
39 auf die einzelnen druckgesteuerten Injektoren
verteilt. Die Einspritzung mit dem tieferen Kraftstoffdruck
erfolgt bei stromloser Ventileinheit 38 durch Bestromen
des allein die lokale Ventilanordnung 22b bildenden
3/2-Wege-Ventils 37. Die Einspritzung mit dem höheren
Kraftstoffdruck erfolgt bei unbestromter Ventileinheit 37
und bestromter zentraler Ventileinheit 38 über die Verteilereinrichtung
39. Am Ende dieser Einspritzung wird die
zentrale Ventileinheit 38 auf Leckage 40 zurückgeschaltet
und damit die Verteilereinrichtung 39 und der Injektor
entlastet. Die lokale Ventileinheit 22b kann entweder Teil
des Injektorgehäuses sein (Fig. 3a) oder außerhalb des Injektorgehäuses
angeordnet sein (Fig. 3b) sein.In FIG. 3 , the fuel from the
In Fig. 4 ist gezeigt, daß anders als in Fig. 3 auch der
tiefere Kraftstoffdruck mittels der Verteilereinrichtung
39 zentral zugemessen werden kann. Die Kraftstoffzumessung
mit entweder dem tieferen oder dem höheren Kraftstoffdruck
erfolgt hier mittels einer zentral angeordneten Ventilanordnung
41, die entweder die vom ersten Druckspeicher 6
abführende Druckleitung 42 oder die vom zweiten Druckspeicher
11 abführende Druckleitung 43 zu der zentralen Verteilereinrichtung
39 durchschaltet. Die zentrale Ventilanordnung
41 ist analog der lokalen Ventilanordnung 22a
(Fig. 2) aufgebaut. FIG. 4 shows that, unlike in FIG. 3, the lower fuel pressure can also be metered centrally by means of the
Anders als beim druckgesteuerten Kraftstoffeinspritzsystem
1 der Fig. 1 erfolgt die Einspritzung bei dem in Fig. 5
gezeigten Kraftstoffeinspritzsystem 50 hubgesteuert mittels
hubgesteuerter Injektoren 51, von denen lediglich einer
näher dargestellt ist. Ausgehend von dem druckgesteuerten
Injektor 9 der Fig. 1 greift bei einem hubgesteuerten
Injektor 51 an dem Ventilglied 27 koaxial zu der Ventilfeder
31 ein Druckstück 52 an, das mit seiner der Ventildichtfläche
28 abgewandten Stirnseite 53 einen Steuerraum
54 begrenzt. Der Steuerraum 54 hat von der Druckleitung
25 her einen Kraftstoffzulauf mit einer ersten Drossel
55 und einen Kraftstoffablauf zu einer Druckentlastungsleitung
56 mit einer zweiten Drossel 57, die durch
ein 2/2-Wege-Ventil 58 auf Leckage 59 steuerbar ist. Über
den Druck im Steuerraum 54 wird das Druckstück 52 in
Schließrichtung druckbeaufschlagt. Unter dem ersten oder
zweiten Kraftstoffdruck stehender Kraftstoff füllt ständig
den Düsenraum 26 und den Steuerraum 54. Bei Betätigung
(Öffnen) des 2/2-Wege-Ventils 58 kann der Druck im Steuerraum
54 abgebaut werden, so daß in der Folge die in Öffnungsrichtung
auf das Ventilglied 27 wirkende Druckkraft
im Düsenraum 26 die in Schließrichtung auf das Ventilglied
27 wirkende Druckkraft übersteigt. Die Ventildichtfläche
28 hebt von der Ventilsitzfläche ab, und Kraftstoff wird
eingespritzt. Dabei läßt sich der Druckentlastungsvorgang
des Steuerraums 54 und somit die Hubsteuerung des Ventilglieds
27 über die Dimensionierung der beiden Drosseln 55
und 57 beeinflussen. Das Ende der Einspritzung wird durch
erneutes Betätigen (Schließen) des 2/2-Wege-Ventils 58
eingeleitet, das den Steuerraum 54 wieder von der Leckageleitung
59 abkoppelt, so daß sich im Steuerraum 54 erneut
ein Druck aufbaut, der das Druckstück 52 in Schließrichtung
bewegen kann. Die Umschaltung des Kraftstoffs auf
entweder den tieferen oder den höheren Kraftstoffdruck erfolgt
für jeden Injektor 51 lokal mittels einer Ventilanordnung
60, die aus einem 2/2-Wege-Ventil 24 und einem einen
ungewollten Rücklauf in die Druckleitung 7 verhindernden
Rückschlagventil 62 gebildet ist. Die Ventilanordnung
kann entweder innerhalb des Injektorgehäuses 61 (Fig. 5a)
oder außerhalb (Fig. 5b) angeordnet sein kann. Zum Zumessen
des Kraftstoffs wird für beide Drücke das 2/2-Wege-Ventil
58 verwendet.In contrast to the pressure-controlled fuel injection system 1 in FIG. 1, the injection in the
In Fig. 6 ist gezeigt, daß anders als in Fig. 5 der höhere
Kraftstoffdruck wie in Fig. 3a auch zentral über die Verteilereinrichtung
39 zugemessen werden kann. Bei nicht
bestromter zentraler Ventileinheit 38 werden Düsenraum 26
und Steuerraum 54 mit Kraftstoff aus dem ersten Druckspeicher
6 gefüllt, so daß die Kraftstoffeinspritzung mit dem
tieferen Kraftstoffdruck erfolgt. Bei bestromter zentraler
Ventileinheit 38 wird wegen des Rückschlagventils 63 nur
der Düsenraum 26 mit dem zweiten Druckspeicher 11 verbunden,
so daß die Kraftstoffeinspritzung mit dem höheren
Kraftstoffdruck erfolgt. Zur Einspritzung mit dem tieferen
Kraftstoffdruck wird das 2/2-Wegeventil 58 geöffnet. Durch
Zuschalten des 3/2-Wegeventils 38 wird der Kraftstoff unter
Hochdruck zugemessen, wobei das Öffnen bei dem tieferen
Kraftstoffdruck hubgesteuert und bei dem höheren
Kraftstoffdruck druckgesteuert erfolgt. FIG. 6 shows that, unlike in FIG. 5, the higher fuel pressure, as in FIG. 3a, can also be metered centrally via the
Fig. 7 zeigt ein druckgesteuertes Einspritzsystem 70, bei
dem anders als in Fig. 2 der im ersten Druckspeicher 6 gelagerte
Kraftstoff nicht für eine Einspritzung abgeführt
wird. Der Kraftstoff aus dem zweiten Druckspeicher 11 wird
über die Druckleitung 12 jedem einzelnen Injektor 9 als
höherer Kraftstoffdruck zugeführt, der bei Bedarf mittels
einer lokalen Absteuereinheit 71 auf den tieferen Kraftstoffdruck
abgesenkt werden kann. Im dargestellten Ausführungsbeispiel
umfaßt die Absteuereinheit 71 ein 3/2-Wegeventil
72, um den höheren Kraftstoffdruck entweder durchzuschalten
oder dissipativ mittels einer Drossel 73 und
eines auf den tieferen Kraftstoffdruck eingestellten und
mit einer Leckageleitung 74 verbundenen Druckbegrenzungsventils 75 abzusteuern. Der jeweils anstehende Druck wird
dann wie in Fig. 2 über das 3/2-Wegeventil 37 zum Injektor
9 weitergeleitet, wobei ein Rückschlagventil 76 ein Abströmen
des höheren Kraftstoffdruckes über das Rückschlagventil
75 verhindert. FIG. 7 shows a pressure-controlled
Fig. 8 zeigt ein der Fig. 7 entsprechendes, allerdings
hubgesteuertes Einspritzsystem 80, bei dem der Kraftstoff
aus dem zweiten Druckspeicher 11 über die lokale Absteuereinheit
71 auf den tieferen Kraftstoffdruck abgesenkt werden
kann. Die Einspritzung erfolgt über die hubgesteuerten
Injektoren 51. FIG. 8 shows an
Bei dem druckgesteuerten Kraftstoffeinspritzsystem 90 der
Fig. 9 wird anders als beim Einspritzsystem 70 (Fig. 7)
der im zweiten Druckspeicher 11 gelagerte Kraftstoffdruck
als tieferer Kraftstoffdruck genutzt. Aus diesem kann dann
bei Bedarf auch ein höherer Kraftstoffdruck mittels eines
lokalen Druckübersetzers 91 erzeugt werden, der in einer
Bypaßleitung 92 der Druckleitung 12 angeordnet ist. Mittels
einer Ventileinheit 93 (3/2-Wegeventil) in der Bypaßleitung
92 kann der lokale Druckübersetzer 91, der analog
dem zentralen Druckübersetzer 14 aufgebaut ist, zugeschaltet
werden. Die Druckkammer 94 des lokalen Druckübersetzers
91 wird mit Kraftstoff aus dem zweiten Druckspeicher
11 befüllt, wobei ein Rückschlagventil 95 den Rücklauf von
komprimiertem Kraftstoff zurück in den zweiten Druckspeicher
11 verhindert. Der Druckübersetzer 91, die Ventileinheit
93 und das Rückschlagventil 95 bilden die lokale
Druckübersetzungseinheit 96, die sich im dargestellten
Ausführungsbeispiel innerhalb des Injektorgehäuses befindet.
Die Kraftstoffzumessung mit dem jeweils anstehenden
Kraftstoffdruck erfolgt über das 3/2-Wege-Ventil 37 mittels
druckgesteuerter Injektoren 9. Wie Fig. 9b zeigt,
kann die Druckkammer 20 der zentralen Druckübersetzungseinheit
10 anstatt wie in Fig. 9a mit Kraftstoff aus dem
ersten Druckspeichers 6 auch mit Kraftstoff 3' befüllt
werden, den eine mengengeregelte Kraftstoffpumpe 2' über
eine Förderleitung 5' aus einem weiteren Vorratstank 4' in
die Druckkammer 20 fördert. Da die Hochdruckseite und die
Niederdruckseite der zentralen Druckübersetzungseinheit
voneinander hydraulisch entkoppelt sind, können für beide
Seiten auch unterschiedliche Betriebsstoffe, z.B. Öl für
die Niederdruckseite und Kraftstoff für die Hochdruckseite,
verwendet werden.In the pressure-controlled
Das Einspritzsystem 100 der Fig. 10 mit seiner lokalen
Druckübersetzungseinheit 96 entspricht dem Einspritzsystem
90 (Fig. 9), allerdings mit hubgesteuerten Injektoren 51.
Die Befüllung der zentralen Druckübersetzungseinheit 10
erfolgt entweder mit dem Kraftstoff aus dem ersten Druckspeicher
6 (Fig. 10a) oder mit dem Kraftstoff 3' aus dem
weiteren Vorratstank 4' (Fig. 10b).The
Das hubgesteuerte Einspritzsystem 110 der Fig. 11 entspricht
dem Einspritzsystem 80 (Fig. 8), allerdings mit
einer anders aufgebauten lokalen Absteuereinheit 111. Deren
Druckleitung 112 kann mittels eines 3/2-Ventils 113
entweder direkt an den zweiten Druckspeicher 11 angeschlossen
oder mit einer ein Druckbegrenzungsventil 114
enthaltenden Leckageleitung 115 verbunden werden. Der Anschluß
an den zweiten Druckspeicher 11 dient der Haupteinspritzung
und der gleichzeitigen Befüllung eines Akkumulatorraumes
116. Während dieses Anschlusses kann unter höherem
Kraftstoffdruck stehender Kraftstoff den Steuerraum 54
und den Düsenraum 26 füllen. Während der Vor- und Nacheinspritzung
ist die Druckleitung 112 mit der Leckageleitung
115 durchgängig verbunden. Das Druckbegrenzungsventil 114
öffnet oberhalb eines Druckes von z.B. 300 bar, so daß der
aus dem Akkumulatorraum 116 ausströmende Kraftstoff auf
diesen tieferen Kraftstoffdruck abgesenkt wird. Start und
Ende der Haupteinspritzung sowie der Vor- und Nacheinspritzung
können mittels des 2/2-Wege-Ventils 58 gesteuert
werden.The stroke-controlled
Bei dem in Fig. 12a gezeigten druckgesteuerten Einspritzsystem
120 ohne zweiten Druckspeicher verteilt die zentrale
Verteilereinrichtung 39 den mittels der zentralen
Druckübersetzungseinheit 10 erzeugten höheren Kraftstoffdruck
auf die einzelnen Injektoren 9. Über die bereits
oben beschriebene lokale Absteuereinheit 71 kann der höhere
Kraftstoffdruck für eine Einspritzung dann entweder
durchgeschaltet oder dissipativ auf einen tieferen Kraftstoffdruck
abgesenkt werden. Hinter der Verteilereinrichtung
39 ist für jeden Injektor 9 noch eine Rückschlagventilanordnung
122 vorgesehen, die den Kraftstoff in Richtung
Injektor 9 über ein erstes Rückschlagventil 123
durchläßt und den Rückfluß von Kraftstoff aus dem Injektor
9 mittels einer Drossel 124 und eines zweiten Rückschlagventils
125 zur Entlastung der Verteilereinrichtung 39 und
zum Druckabbau zuläßt.In the pressure-controlled
Im Ausführungsbeispiel nach Fig. 12b läßt sich über ein
2/2-Wege-Ventil 126 entweder der höhere Kraftstoffdruck
durchschalten oder ein tieferer Kraftstoffdruck über eine
Drossel 127 erzeugen, wobei ein Rückschlagventil 128 einen
Rückfluß über die Drossel 127 verhindert. Die Teile 126,
127 und 128 bilden die insgesamt mit 129 bezeichnete lokale
Druckbegrenzungs- bzw. Drosseleinheit. Anders als in
Fig. 1 gezeigt, ist hier die zentrale Druckübersetzungseinheit
10' ohne Rückschlagventil 15 ausgebildet.In the exemplary embodiment according to FIG. 12 b, either the higher fuel pressure can be switched through or a lower fuel pressure can be generated via a
Anders als das Einspritzsystem 120 kommt das druckgesteuerte
Einspritzsystem 130 der Fig. 13 vollständig ohne lokale
Steuerung aus, da die zentrale Druckübersetzungseinheit
131 mit ihrem Druckübersetzer 132 außer zur Erzeugung
des höheren Kraftstoffdruckes auch für eine Drosselung auf
den tieferen Kraftstoffdruck genutzt wird. Dazu ist die
Druckkammer 20 über ein auf den tieferen Kraftstoffdruck
eingestelltes Druckbegrenzungsventil 133 an eine Leckageleitung
134 angeschlossen, wodurch der Einspritzdruck zunächst
auf den tieferen Kraftstoffdruck, z.B. 300 bar, begrenzt
ist. Die Verbindung von Druckkammer 20 und Druckbegrenzungsventil
133 wird allerdings bereits nach einer geringen
Bewegung des Druckmittels 14' (Druckverstärkerkolben)
von diesem verschlossen. Damit steht für den anschließenden
Einspritzvorgang der höhere Kraftstoffdruck
zur Verfügung. Zur Wiederbefüllung der Druckkammer 20 sind
geeignete Rückschlagventile anzuordnen, wobei eine auf das
Druckmittel 14' wirkende Federkraft die Befüllung begünstigt.
Im dargestellten Ausführungsbeispiel ist die Druckkammer
20 über ein im Druckmittel 14' angeordnetes Rückschlagventil
135 mit der Primärkammer 17 verbunden. Während
dabei in Fig. 13a die Einspritzmenge, die mit dem
tieferen Kraftstoffdruck eingespritzt wird, konstruktiv
vorgegeben ist, kann diese Einspritzmenge, d.h. das Druckniveau
der Voreinspritzung und der Verlauf der Haupteinspritzung
(Bootinjektion), durch eine zentrale Absteuereinheit
136 (2/2-Wege-Ventil) vor dem Druckbegrenzungsventil
133 gesteuert werden (Fig. 13b). In einer anderen Variante
(Fig. 13c) ist die Druckkammer 20 über die Leitung
137 auch direkt mit dem Druckspeicher 6 verbindbar, so daß
dessen Kraftstoff für eine Einspritzung mit dem tieferen
Kraftstoffdruck zu den druckgesteuerten Injektoren 9 weitergeleitet
wird. Dadurch lassen sich die abströmenden
Leckagemengen reduzieren. Im Ausführungsbeispiel nach
Fig. 13d ist der Druckspeicher 6 der Fig. 13a ausgelassen
und erfolgt der Druckaufbau durch Bestromen eines 2/2-Wege-Ventils
138. Die Hochdruckpumpe 5 kann einen Kraftstoffdruck
von ca. 300 bis ca. 1000 bar erzeugen und z.B.
eine Nockenpumpe sein. Hochdruckpumpe 5 und 2/2-Wegeventil
138 bilden die Druckeinheit 139. Wie in Fig. 13e gezeigt,
läßt sich die Einspritzung - wie in Fig. 13b - durch die
Absteuereinheit 136 zusätzlich steuern.In contrast to the
Das in Fig. 14 dargestellte druckgesteuerte Einspritzsystem
140, das ansonsten dem Einspritzsystem der Fig. 13c
entspricht, umfaßt in seiner Druckübersetzungseinheit 141
eine piezoelektrische Ventileinheit 142, deren Ventilquerschnitt
mittels eines Piezostellelements (Aktuator, Aktor)
gesteuert wird, oder ein schnell schaltendes Magnetventil.
Die Piezostellelemente, die einen notwendigen Temperaturausgleich
und evtl. eine erforderliche Kraft- bzw. Wegübersetzung
besitzen, dienen der Querschnittssteuerung und
damit der Formung des Einspritzverlaufs. Es wird eine
vollkommen unabhängige Voreinspritzung sowohl in der Zeit
und in der Einspritzmenge als auch im Einspritzdruck möglich.
Die Haupteinspritzung kann voll flexibel an jeden
benötigten Einspritzverlauf angepaßt werden und ermöglicht
zusätzlich eine Splitinjektion bzw. eine Nacheinspritzung,
die nahezu beliebig nahe an die Haupteinspritzung angelagert
werden kann. The pressure-controlled
Das auf dem Einspritzsystem der Fig. 12 basierende druckgesteuerte
Einspritzsystem 150 der Fig. 15 verwendet jeweils
die Druckeinheit 139 zur Erzeugung eines Druckes von
ca. 200 bar bis ca. 1000 bar als Betriebsmittel für die
zentrale Druckübersetzungseinheit 151, die allein durch
den Druckübersetzer 132 (Fig. 13a) gebildet ist. Die Absenkung
auf den tieferen Kraftstoffdruck erfolgt in
Fig. 15a mittels der ein Druckbegrenzungsventil aufweisenden
lokalen Absteuereinheit 71 (Fig. 7) und in Fig. 15b
mittels der lokalen Druckbegrenzungs- bzw. Drosseleinheit
129 (Fig. 12b).The pressure-controlled
Das druckgesteuerte Einspritzsystem 160 der Fig. 16 unterscheidet
sich von dem der Fig. 13d dadurch, daß der zentrale
Druckübersetzer 132 durch eine parallele Bypaßleitung
161 umgangen werden kann und mittels einer Ventileinheit
162 (Fig. 16a) bzw. 162a (Fig. 16b) aktivierbar bzw.
deaktivierbar ist. In Fig. 16a ist die Ventileinheit 162
vor dem Druckübersetzer 132 und als 3/2-Wege-Ventil ausgebildet,
in Fig. 16b die Ventileinheit 162a hinter dem
Druckübersetzer 132 und als 2/2-Wege-Ventil, das über ein
Rückschlagventil 163 abgekoppelt ist. Die Teile 132, 161,
162 bzw. 132, 162a, 163 bilden die zentrale Druckübersetzungseinheit
164 bzw. 164a. The pressure-controlled
Bei dem in Fig. 17 gezeigten druckgesteuerten Einspritzsystem
170 wird entweder der im zentralen Druckspeicher 6
gelagerte tiefere Kraftstoffdruck oder der über die zentrale
Druckübersetzungseinheit 10' bei Bedarf erzeugte höhere
Kraftstoffdruck zentral auf die einzelnen Injektoren
9 verteilt. Die Einspritzung des jeweiligen Kraftstoffdruckes
wird über die zentrale Ventileinheit 171 (3/2-Wege-Ventil)
gesteuert, die in ihrer Funktion der Ventileinheit
37 (Fig. 2a) entspricht.In the pressure-controlled
Die in den Figuren gezeigten Ventileinheiten können jeweils von Elektromagneten zum Öffnen oder Schließen bzw. Umschalten betätigt werden. Die Elektromagnete werden von einem Steuergerät angesteuert, das verschiedene Betriebsparameter (Motordrehzahl, ....) der zu versorgenden Brennkraftmaschine überwachen und verarbeiten kann. Anstelle von magnetgesteuerten Ventileinheiten können auch Piezostellelemente (Aktuator, Aktor) verwendet werden, die einen notwendigen Temperaturausgleich und evtl. eine erforderliche Kraft- bzw. Wegübersetzung besitzen.The valve units shown in the figures can each of electromagnets for opening or closing or Toggle. The electromagnets are from controlled by a control unit that has various operating parameters (Engine speed, ....) of the internal combustion engine to be supplied can monitor and process. Instead of Piezo actuators can also be used for solenoid-controlled valve units (Actuator, actuator) can be used, the one necessary temperature compensation and possibly a necessary one Have power or path translation.
Bei einem Kraftstoffeinspritzsystem (1) für eine Brennkraftmaschine, bei dem der mittels einer Hochdruckpumpe (5) geförderte Kraftstoff mit mindestens zwei unterschiedlich hohen Kraftstoffdrücken über Injektoren (9) in den Brennraum (8) der Brennkraftmaschine eingespritzt werden kann, ist zwischen der Hochdruckpumpe (5) und den Injektoren (9) mindestens eine zentrale Druckübersetzungseinheit (10) für alle Injektoren (9) vorgesehen. Die Druckübersetzungseinheit ist bei Bedarf gezielt ansteuerbar, wodurch der unter dem höheren Druck stehende Kraftstoff besser mengenregelbar ist und sich entsprechend auch die Verluste durch Reibung reduzieren lassen.In a fuel injection system (1) for an internal combustion engine, where the by means of a high pressure pump (5) fuel delivered with at least two different high fuel pressures via injectors (9) in the Combustion chamber (8) of the internal combustion engine are injected can, is between the high pressure pump (5) and the injectors (9) at least one central pressure translation unit (10) for all injectors (9). The pressure translation unit can be controlled if necessary, which means the fuel under the higher pressure better quantity is adjustable and so are the losses reduced by friction.
Claims (13)
- Fuel injection system (1; 50; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160; 170) for an internal combustion engine, in which the fuel conveyed by means of a high-pressure pump (5) can be injected into the combustion space (8) of the internal combustion engine at at least two different fuel pressures via injectors (9; 51), at least one pressure intensifier unit (10; 10'; 131; 141; 164; 164a) being present between the high-pressure pump (5) and the injectors (9; 51), characterized in that the pressure intensifier unit is provided centrally for all the injectors.
- Fuel injection system according to Claim 1, characterized in that each central pressure intensifier unit (10; 10'; 131; 141; 164; 164a) is assigned at least one non-return valve (15, 16; 135; 163) which allows a refilling of the pressure intensifier unit (10; 10'; 131; 141; 164; 164a) and/or decouples a higher fuel pressure from a lower fuel pressure.
- Fuel injection system according to Claim 1 or 2, characterized in that the central pressure intensifier unit (10; 10'; 131; 141; 164; 164a) is followed by a central distributor device (39) which distributes the fuel to the individual injectors (9; 51).
- Fuel injection system according to one of the preceding claims, characterized in that the central pressure intensifier unit (10; 10'; 131; 141) is preceded by a pressure accumulator (6).
- Fuel injection system according to one of the preceding claims, characterized in that the central pressure intensifier unit (10) is followed by a pressure accumulator (11).
- Fuel injection system according to one of the preceding claims, characterized in that each injector (9; 51) is assigned a central valve unit (22; 22a; 22b) or a local valve unit (41; 72; 93; 113; 126), by means of which a changeover can be made between the two fuel pressures.
- Fuel injection system according to one of the preceding claims, characterized in that each injector (9; 51) is assigned at least one local pressure intensifier unit (96) for generating the higher fuel pressure from the lower fuel pressure.
- Fuel injection system according to one of the preceding claims, characterized in that the central pressure intensifier unit (164a) and/or the local pressure intensifier unit (96) has a pressure intensifier (132; 91) which is capable of being cut in and cut out and which is arranged parallel to a bypass line (161; 92).
- Fuel injection system according to one of the preceding claims, characterized in that a central spill unit (136) and/or a local spill unit (71; 111) is provided for generating the lower fuel pressure from the higher fuel pressure.
- Fuel injection system according to one of the preceding claims, characterized in that the cross section of a valve unit (142) can be controlled in order to generate the lower fuel pressure.
- Fuel injection system according to one of the preceding claims, characterized in that the injectors (9) are designed for pressure control.
- Fuel injection system according to one of the preceding claims, characterized in that the injectors (51) are designed for stroke control
- Fuel injection system according to one of the preceding claims, characterized in that the high-pressure side and the low-pressure side of the central pressure intensifier unit (10) are decoupled hydraulically from one another.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939422 | 1999-08-20 | ||
DE19939422A DE19939422A1 (en) | 1999-08-20 | 1999-08-20 | Fuel injection system for an internal combustion engine |
PCT/DE2000/002551 WO2001014711A1 (en) | 1999-08-20 | 2000-08-02 | Fuel injection system for an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1125046A1 EP1125046A1 (en) | 2001-08-22 |
EP1125046B1 true EP1125046B1 (en) | 2004-11-03 |
Family
ID=7918957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00958196A Expired - Lifetime EP1125046B1 (en) | 1999-08-20 | 2000-08-02 | Fuel injection system for an internal combustion engine with a pressure amplifier |
Country Status (5)
Country | Link |
---|---|
US (1) | US6619263B1 (en) |
EP (1) | EP1125046B1 (en) |
JP (1) | JP2003507637A (en) |
DE (2) | DE19939422A1 (en) |
WO (1) | WO2001014711A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007014455A1 (en) | 2007-03-21 | 2008-09-25 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Fuel injection system for internal combustion engine, has pressure intensifier, where amplification chamber of pressure intensifier is connected with accumulator by cable provided with control valve |
DE102007021326A1 (en) | 2007-05-07 | 2008-11-13 | Robert Bosch Gmbh | Pressure boosting system for at least one fuel injector |
DE102007021327A1 (en) | 2007-05-07 | 2008-11-13 | Robert Bosch Gmbh | Fuel injection system with pressure boost |
DE102007022857A1 (en) | 2007-05-15 | 2008-11-20 | Robert Bosch Gmbh | Pressure amplifier with integrated pressure accumulator |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19939422A1 (en) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Fuel injection system for an internal combustion engine |
US6568369B1 (en) * | 2000-12-05 | 2003-05-27 | Caterpillar Inc | Common rail injector with separately controlled pilot and main injection |
DE10112154A1 (en) * | 2001-03-14 | 2002-09-26 | Bosch Gmbh Robert | Fuel injection system |
DE10115324A1 (en) * | 2001-03-28 | 2002-10-17 | Bosch Gmbh Robert | Fuel system |
DE10124207A1 (en) * | 2001-05-11 | 2002-11-21 | Bosch Gmbh Robert | Fuel injection device pressure amplifier has control channel in low pressure chamber connected to difference chamber, opening closed/opened depending on piston unit part movement |
US6513371B1 (en) * | 2001-07-31 | 2003-02-04 | Diesel Technology Company | Method for determining fuel injection rate shaping current in an engine fuel injection system |
WO2003033903A1 (en) * | 2001-10-16 | 2003-04-24 | Mitsubishi Heavy Industries, Ltd. | Fuel injection device and diesel engine having the same, and fuel injection device controlling method |
DE10151885A1 (en) * | 2001-10-20 | 2003-05-08 | Bosch Gmbh Robert | Fuel injection system has gear pump to supply fuel at medium pressure before booster |
DE10229412A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Fuel injector with pressure intensifier for multiple injection |
ATE421040T1 (en) * | 2002-07-01 | 2009-01-15 | Mitsubishi Heavy Ind Ltd | FUEL INJECTION VALVE AND DIESEL ENGINE WITH IT |
US6786202B2 (en) * | 2002-09-24 | 2004-09-07 | Caterpillar Inc | Hydraulic pump circuit |
DE102004010760A1 (en) * | 2004-03-05 | 2005-09-22 | Robert Bosch Gmbh | Fuel injection device for internal combustion engines with Nadelhubdämpfung |
ES2268613T3 (en) | 2004-06-30 | 2007-03-16 | C.R.F. Societa Consortile Per Azioni | A FUEL PRESSURE REGULATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE. |
EP1717434A1 (en) * | 2005-04-28 | 2006-11-02 | Delphi Technologies, Inc. | Improvements relating to fuel injection systems |
US7588012B2 (en) * | 2005-11-09 | 2009-09-15 | Caterpillar Inc. | Fuel system having variable injection pressure |
US7398763B2 (en) | 2005-11-09 | 2008-07-15 | Caterpillar Inc. | Multi-source fuel system for variable pressure injection |
ATE393876T1 (en) * | 2005-12-02 | 2008-05-15 | Omt Ohg Torino S P A | INJECTOR FOR LARGE HEAVY FUEL DIESEL ENGINES WITH AN ELECTRONICALLY CONTROLLED CONTROL VALVE |
US7392791B2 (en) * | 2006-05-31 | 2008-07-01 | Caterpillar Inc. | Multi-source fuel system for variable pressure injection |
US7431017B2 (en) | 2006-05-24 | 2008-10-07 | Caterpillar Inc. | Multi-source fuel system having closed loop pressure control |
JP5380281B2 (en) * | 2006-05-24 | 2014-01-08 | キャタピラー インコーポレイテッド | Multi-source fuel system for variable pressure injection |
US7353800B2 (en) | 2006-05-24 | 2008-04-08 | Caterpillar Inc. | Multi-source fuel system having grouped injector pressure control |
KR101063688B1 (en) * | 2008-12-03 | 2011-09-07 | 현대자동차주식회사 | Engine fuel supply and injector therefor |
DE102009059672B4 (en) * | 2009-12-19 | 2013-05-08 | Deutz Ag | Internal combustion engine with a high pressure injection system and method |
DE102012012420A1 (en) * | 2012-06-25 | 2014-01-02 | L'orange Gmbh | Injector and fuel injection device with such |
JP6583304B2 (en) * | 2017-02-17 | 2019-10-02 | トヨタ自動車株式会社 | Control device for internal combustion engine |
GB2574841A (en) * | 2018-06-19 | 2019-12-25 | Rklab Ag | Injector apparatus |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH616235A5 (en) * | 1976-09-16 | 1980-03-14 | Fuji Shoten | Device for testing fuel injection valves. |
JPS57124032A (en) * | 1981-01-24 | 1982-08-02 | Diesel Kiki Co Ltd | Fuel injector |
JPS57124073A (en) * | 1981-01-24 | 1982-08-02 | Diesel Kiki Co Ltd | Fuel injection device |
JPS5820959A (en) * | 1981-07-30 | 1983-02-07 | Diesel Kiki Co Ltd | Valve device for controlling supply of pressurized fuel to pressure booster for fuel injection device |
US4691674A (en) * | 1984-10-13 | 1987-09-08 | Diesel Kiki Co., Ltd. | Multistage fuel injection system for internal combustion engines |
JPS61286540A (en) * | 1985-06-14 | 1986-12-17 | Nippon Denso Co Ltd | Fuel injection controller |
DE3618447A1 (en) * | 1986-05-31 | 1987-12-03 | Bosch Gmbh Robert | Fuel injection device for internal combustion engines |
AT408133B (en) * | 1990-06-08 | 2001-09-25 | Avl Verbrennungskraft Messtech | INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES |
US5299919A (en) * | 1991-11-01 | 1994-04-05 | Paul Marius A | Fuel injector system |
US5355856A (en) * | 1992-07-23 | 1994-10-18 | Paul Marius A | High pressure differential fuel injector |
AU6828294A (en) * | 1993-05-06 | 1994-12-12 | Cummins Engine Company Inc. | Distributor for a high pressure fuel system |
JP2885076B2 (en) | 1994-07-08 | 1999-04-19 | 三菱自動車工業株式会社 | Accumulator type fuel injection device |
GB9422864D0 (en) * | 1994-11-12 | 1995-01-04 | Lucas Ind Plc | Fuel system |
AT1628U1 (en) | 1995-03-30 | 1997-08-25 | Avl Verbrennungskraft Messtech | INJECTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE WITH DIRECT INJECTION |
US5732679A (en) * | 1995-04-27 | 1998-03-31 | Isuzu Motors Limited | Accumulator-type fuel injection system |
US5878720A (en) * | 1997-02-26 | 1999-03-09 | Caterpillar Inc. | Hydraulically actuated fuel injector with proportional control |
DE19738397A1 (en) * | 1997-09-03 | 1999-03-18 | Bosch Gmbh Robert | Fuel injection system for an internal combustion engine |
JP4574762B2 (en) * | 1998-08-28 | 2010-11-04 | ヴェルトジィレ シュヴァイツ アクチェンゲゼルシャフト | Fuel injection device for reciprocating piston engine |
DE19939428A1 (en) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Method and device for performing a fuel injection |
DE19939423A1 (en) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Fuel injection system for an internal combustion engine |
DE19939422A1 (en) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Fuel injection system for an internal combustion engine |
DE19939425B4 (en) * | 1999-08-20 | 2005-05-04 | Robert Bosch Gmbh | Fuel injection system for an internal combustion engine |
DE19939421A1 (en) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Combined stroke / pressure controlled fuel injection method and system for an internal combustion engine |
DE10024268B4 (en) * | 2000-05-17 | 2012-11-29 | Robert Bosch Gmbh | Device for gasoline direct injection in a reciprocating internal combustion engine |
JP2002004975A (en) * | 2000-06-21 | 2002-01-09 | Toyota Motor Corp | High pressure fuel supply |
JP2002089405A (en) * | 2000-09-11 | 2002-03-27 | Toyota Motor Corp | High pressure fuel supply |
DE10063545C1 (en) * | 2000-12-20 | 2002-08-01 | Bosch Gmbh Robert | Fuel injection system |
-
1999
- 1999-08-20 DE DE19939422A patent/DE19939422A1/en not_active Ceased
-
2000
- 2000-08-02 EP EP00958196A patent/EP1125046B1/en not_active Expired - Lifetime
- 2000-08-02 JP JP2001518560A patent/JP2003507637A/en active Pending
- 2000-08-02 DE DE50008497T patent/DE50008497D1/en not_active Expired - Lifetime
- 2000-08-02 WO PCT/DE2000/002551 patent/WO2001014711A1/en active IP Right Grant
- 2000-08-02 US US09/807,923 patent/US6619263B1/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007014455A1 (en) | 2007-03-21 | 2008-09-25 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Fuel injection system for internal combustion engine, has pressure intensifier, where amplification chamber of pressure intensifier is connected with accumulator by cable provided with control valve |
DE102007021326A1 (en) | 2007-05-07 | 2008-11-13 | Robert Bosch Gmbh | Pressure boosting system for at least one fuel injector |
WO2008135349A1 (en) | 2007-05-07 | 2008-11-13 | Robert Bosch Gmbh | Pressure boosting system for at least one fuel injector |
DE102007021327A1 (en) | 2007-05-07 | 2008-11-13 | Robert Bosch Gmbh | Fuel injection system with pressure boost |
DE102007022857A1 (en) | 2007-05-15 | 2008-11-20 | Robert Bosch Gmbh | Pressure amplifier with integrated pressure accumulator |
US8281767B2 (en) | 2007-05-15 | 2012-10-09 | Robert Bosch Gmbh | Pressure booster with integrated pressure reservoir |
Also Published As
Publication number | Publication date |
---|---|
DE50008497D1 (en) | 2004-12-09 |
DE19939422A1 (en) | 2001-03-01 |
JP2003507637A (en) | 2003-02-25 |
US6619263B1 (en) | 2003-09-16 |
WO2001014711A1 (en) | 2001-03-01 |
EP1125046A1 (en) | 2001-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1125046B1 (en) | Fuel injection system for an internal combustion engine with a pressure amplifier | |
EP1125049B1 (en) | Combined stroke/pressure controlled fuel injection method and system for an internal combustion engine | |
EP1078160B1 (en) | Fuel injection system | |
DE19939429A1 (en) | Fuel injector | |
DE19939418A1 (en) | Fuel injection system for an internal combustion engine | |
DE19939420B4 (en) | Fuel injection method and system for an internal combustion engine | |
EP1520099B1 (en) | Boosted fuel injector with rapid pressure reduction at end of injection | |
DE102007021327A1 (en) | Fuel injection system with pressure boost | |
EP1125054B1 (en) | Fuel injection method and device | |
EP1125045B1 (en) | Fuel injection system for an internal combustion engine | |
DE112006002672T5 (en) | A fuel injection system having a flow control valve separate from a fuel injector | |
EP1123463B1 (en) | Fuel injection system for an internal combustion engine | |
EP1252437A2 (en) | Injection device and method for injecting a fluid | |
EP1520100A1 (en) | Device for attenuating the stroke of the needle in pressure-controlled fuel injectors | |
WO2004040118A1 (en) | Fuel injection system comprising a pressure intensifier and a delivery rate-reduced low-pressure circuit | |
DE19939425B4 (en) | Fuel injection system for an internal combustion engine | |
EP2156050B1 (en) | Pressure boosting system for at least one fuel injector | |
EP1392965B1 (en) | Pressure amplifier for a fuel injection device | |
EP1483499A1 (en) | Installation for the pressure-modulated formation of the injection behavior | |
WO2005124145A1 (en) | Fuel injection device | |
WO2002079638A1 (en) | Fuel injection device for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 20010903 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE WITH A PRESSURE AMPLIFIER |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50008497 Country of ref document: DE Date of ref document: 20041209 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050214 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050303 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050720 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050804 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060428 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060428 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060802 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141024 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50008497 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 |