EP1115904A1 - Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe - Google Patents
Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobeInfo
- Publication number
- EP1115904A1 EP1115904A1 EP99968687A EP99968687A EP1115904A1 EP 1115904 A1 EP1115904 A1 EP 1115904A1 EP 99968687 A EP99968687 A EP 99968687A EP 99968687 A EP99968687 A EP 99968687A EP 1115904 A1 EP1115904 A1 EP 1115904A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- raw material
- plasma
- raw materials
- blanks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 55
- 238000000576 coating method Methods 0.000 title claims description 62
- 239000011248 coating agent Substances 0.000 title claims description 33
- 230000003075 superhydrophobic effect Effects 0.000 title description 8
- 239000008187 granular material Substances 0.000 claims abstract description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 230000003068 static effect Effects 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 7
- 239000003599 detergent Substances 0.000 abstract description 5
- 239000011236 particulate material Substances 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 229920003023 plastic Polymers 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 37
- 210000002381 plasma Anatomy 0.000 description 33
- 239000000178 monomer Substances 0.000 description 31
- 208000028659 discharge Diseases 0.000 description 29
- 239000000463 material Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 15
- 239000010408 film Substances 0.000 description 13
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000005871 repellent Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 7
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 7
- -1 polyethylene Polymers 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000005495 cold plasma Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- ZYMKZMDQUPCXRP-UHFFFAOYSA-N fluoro prop-2-enoate Chemical compound FOC(=O)C=C ZYMKZMDQUPCXRP-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000005670 ethenylalkyl group Chemical group 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- FAEGGADNHFKDQX-UHFFFAOYSA-N 1,1,1,3,4,4,5,5,5-nonafluoro-2-(trifluoromethyl)pent-2-ene Chemical compound FC(F)(F)C(C(F)(F)F)=C(F)C(F)(F)C(F)(F)F FAEGGADNHFKDQX-UHFFFAOYSA-N 0.000 description 1
- ZWSICHXNVFXDHH-UHFFFAOYSA-N 1,2,2,3,3,4,4,5,5,6-decafluoro-7-oxabicyclo[4.1.0]heptane Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)C2(F)C1(F)O2 ZWSICHXNVFXDHH-UHFFFAOYSA-N 0.000 description 1
- SUTQSIHGGHVXFK-UHFFFAOYSA-N 1,2,2-trifluoroethenylbenzene Chemical compound FC(F)=C(F)C1=CC=CC=C1 SUTQSIHGGHVXFK-UHFFFAOYSA-N 0.000 description 1
- BZPCMSSQHRAJCC-UHFFFAOYSA-N 1,2,3,3,4,4,5,5,5-nonafluoro-1-(1,2,3,3,4,4,5,5,5-nonafluoropent-1-enoxy)pent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)C(F)(F)F BZPCMSSQHRAJCC-UHFFFAOYSA-N 0.000 description 1
- UEVFYGLYGZACQJ-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=C(F)C(F)=C(F)C(F)=C1F UEVFYGLYGZACQJ-UHFFFAOYSA-N 0.000 description 1
- ARAOLTCZMIFYMK-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-prop-1-enylbenzene Chemical compound CC=CC1=C(F)C(F)=C(F)C(F)=C1F ARAOLTCZMIFYMK-UHFFFAOYSA-N 0.000 description 1
- LVJZCPNIJXVIAT-UHFFFAOYSA-N 1-ethenyl-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(C=C)C(F)=C1F LVJZCPNIJXVIAT-UHFFFAOYSA-N 0.000 description 1
- DAEXAGHVEUWODX-UHFFFAOYSA-N 1-fluoroethenylbenzene Chemical compound FC(=C)C1=CC=CC=C1 DAEXAGHVEUWODX-UHFFFAOYSA-N 0.000 description 1
- YSQGYEYXKXGAQA-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)COC(=O)C=C YSQGYEYXKXGAQA-UHFFFAOYSA-N 0.000 description 1
- DPYJMQGTOTVJBV-UHFFFAOYSA-N 2,2-difluoroethenylbenzene Chemical compound FC(F)=CC1=CC=CC=C1 DPYJMQGTOTVJBV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- ZAZJGBCGMUKZEL-UHFFFAOYSA-N 2-[ethyl(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctylsulfonyl)amino]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN(CC)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZAZJGBCGMUKZEL-UHFFFAOYSA-N 0.000 description 1
- HTRLKEJGRJZZPW-UHFFFAOYSA-N 2-ethenyl-1,3,5-tris(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=C(C=C)C(C(F)(F)F)=C1 HTRLKEJGRJZZPW-UHFFFAOYSA-N 0.000 description 1
- KBKNKFIRGXQLDB-UHFFFAOYSA-N 2-fluoroethenylbenzene Chemical compound FC=CC1=CC=CC=C1 KBKNKFIRGXQLDB-UHFFFAOYSA-N 0.000 description 1
- RQXPGOCXZHCXDG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-en-2-ylbenzene Chemical compound FC(F)(F)C(=C)C1=CC=CC=C1 RQXPGOCXZHCXDG-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 125000006519 CCH3 Chemical group 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010053317 Hydrophobia Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- KBKNKFIRGXQLDB-VOTSOKGWSA-N [(e)-2-fluoroethenyl]benzene Chemical compound F\C=C\C1=CC=CC=C1 KBKNKFIRGXQLDB-VOTSOKGWSA-N 0.000 description 1
- MRYRJRWSHBRIDR-VURMDHGXSA-N [(z)-1,2-difluoroethenyl]benzene Chemical compound F\C=C(/F)C1=CC=CC=C1 MRYRJRWSHBRIDR-VURMDHGXSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical compound OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000004446 fluoropolymer coating Substances 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920003936 perfluorinated ionomer Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000011364 vaporized material Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/32—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/006—Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
- B05D5/083—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
- C03C2217/282—Carbides, silicides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/28—Other inorganic materials
- C03C2217/284—Halides
- C03C2217/285—Fluorides
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/76—Hydrophobic and oleophobic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/152—Deposition methods from the vapour phase by cvd
- C03C2218/153—Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
Definitions
- the present invention relates to raw materials or blanks as for example particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
- particulate material such as detergent powder, plastic granulate
- toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
- U.S. Pat. No. 3,498,527 teaches that paper board containers for liquids can be waterproofed by application of a waterproofing coating such as wax or polyethylene, and a similar method is shown in U.S. Pat. No. 2,708,645 for waterproofing paper drinking cups and in U.S. Pat. No. 3,212,697 for paper grocery sacks.
- a waterproofing coating such as wax or polyethylene
- temporary wet strength is imparted to paper by coating it with a polymeric alcohol-polymeric aldehyde reaction product.
- a disposable sanitary napkin which consists of an adsorbent layer having a liquid-repellent backing of poiyvinyl alcohol or similar material capable of initially repelling water but eventually solubilizing.
- the degree of water-repellency therefore the lifetime of the napkin, is controlled by varying the thickness of the backing. Because the necessary life of the napkin cannot be predicted by manufacturer or user, the backing must be sufficiently thick to take account of all normal contingencies.
- 3,542,028 is directed to a flushable sanitary napkin consisting of a cellulosic sheet treated with a fluoropolymer coating.
- U.S. Pat. No. 3,559,650 teaches the preparation of a sanitary napkin having two flush-disposable sides separated by a waterproof film too thin to support itself once both faces of the napkin have disintegrated upon disposal.
- Analogous to the process of coating a surface with a waterproofing substance is the concept of reacting a surface with another material so as to form a reaction product on the surface which has water-repellent properties.
- U.S. Pat. Nos. 2,130,212 and 3,137,540 teach that materials such as polymeric alcohols may be reacted with other materials to increase their water-repellent properties.
- the latter patent teaches treating poiyvinyl alcohol articles with an aqueous emulsion of an aldehyde to impart water-repellency thereto.
- U.S. Pat. No. 3,626,943 teaches that disposable diapers can be made from poiyvinyl alcohol and waterproofed on one side by reaction with formaldehyde.
- reaction-type coating processes suffer from drawbacks. They are carried out in the aqueous phase which is complicated and requires relatively large quantities of reagents. Most of the processes which employ some form of in situ chemical reaction to produce a water-repellent surface are carried out in the liquid phase, some vapor phase treatments are taught by U.S. Pat. Nos. 2,306,222; 2,961 ,388; and 3,017,290.
- a known method of water and oil repellent finishing of textiles includes plasma treatment in a glow discharge in an atmosphere of inorganic gases, followed by treatment with a fluorine containing acrylic monomer in gas phase.
- Another prior method of achieving film plasma polymerization described in U.S. Pat. No. 4,188,426, includes treatment in a glow discharge of per-fluoro-cyclo-butane or hexafluoroethane to reduce the friction coefficient and to improve the surface hydrophobia of organic and inorganic substrates (e.g. polyethylene films, metals).
- organic and inorganic substrates e.g. polyethylene films, metals.
- Plasma-deposited fluorocarbon coatings are often cited in the literature as "teflon- like coatings" because their CFx (0 ⁇ x ⁇ 2) composition and surface energy can be made very close to that of polytetrafluoroethylene (PTFE,-(CF 2 -CF 2 -) n ), known on the market as Teflon®.
- PTFE polytetrafluoroethylene
- Plasma coating processes of metals, polymers, and other substrates, with fluorocarbon films are known in the art. As an example, it is known from USP
- Glow discharges treatments are also considered in US-A-5 462 781 for improving the bondabiiity of an implantable polymer medical device or for changing the wettability of a polymer fabric.
- Several of the references discussed in this patent confirm non modulated, continuous plasma treatments as a means for varying the inherent WCA of a surface.
- US-A-5 034 265 discloses a non modulated, continuous plasma treatment for improving the biocompatibility of vascular grafts with a CF ⁇ fluorocarbon coating deposited at the inside wall of the grafts in a proper plasma reactor fed with tetrafluoroethylene (C 2 F 4 , TFE) at 0.2 Torr.
- C 2 F 4 , TFE tetrafluoroethylene
- U.S. Pat No 5,328,576 discloses a method for imparting water and oil repellent surface properties to fabrics or paper that includes pretreatment in a low pressure oxygen plasma in the presence of water vapor followed by plasma polymerization of methane in a high frequency glow discharge carried out in the same treatment chamber. This method doesn't deliver durable, permanent coatings with a WCA higher than about 120°.
- U.S. Pat. No. 5,262,208 discloses an gas plasma treatment for archival preservation of paper manuscripts by a thin film protective polymer film.
- the treatment time is ranging from 30-3600 seconds.
- Other methods have been used to obtain thin coatings on the web materials with short treatment periods.
- Providing surface treatment is disclosed in US Patent No. 4,842,893 and 4,954,371 which describe a process for high speed coating of substrates with a complete and uniformly adhering layer and using electron beam radiation curing of the vapor deposited monomers for multilayer capacitators.
- U.S. Pat. No. 4,842,893 discloses high speed coating process including flash vaporization system and electron beam curing. Both of these electron beam disclosures are incorporated herein by reference.
- Other uses of electron beam coatings in the electronic industry field have been reported by Westinghouse science & technology center USA (Adv. Mat. Newsletter Volume 13, No 9, 1991 page 4).
- the present invention relates ⁇ to raw materials or blanks as for example particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
- particulate material such as detergent powder, plastic granulate; toothbrush and hairbrush blanks or bristles which have at least part of their surface provided with super hydrophobicity.
- Bodys refers to semi finished products, comparable to intermediates in chemical conversions, which are not substantially altered before being assembled into a finished product.
- raw material or blanks are referred to as raw materials in particular the present invention relates to raw materials which are coated by means of modulated plasma deposition of fluorocarbons.
- the present invention having the features mentioned in the annexed claims, relates to raw materials having at least part of their surface coated with a thin, well adherent, nonporous, fluorocarbon coating with super hydrophobic properties, i.e. characterized by static water contact angle (WCA) values, measured on a smooth and plane surface, higher than about 120°, preferably higher than 130°, more preferably higher than 150°.
- WCA static water contact angle
- raw materials being treated with this method have their hydrophobicity markedly improved. They can for example provide improvements in water repellency, soil/dirt sticking prevention, reduced build-up on surface, reduced lumping of powders or reduced bacterial build-up .
- the present invention deals with raw materials having their surface treated i.e. characterized by static water contact angle (WCA) values higher than about 120°, preferably higher than 130°, more preferably higher than 150°.
- WCA static water contact angle
- the raw materials are preferably subjected to a modulated glow discharge plasma treatment performed with a fluorocarbon gas or vapor compound fed in a properly configured reactor vessel where the raw materials are positioned.
- the plasma process deposits a continuous, fluorocarbon thin film with super hydrophobic surface characteristics, tightly bound to the surface of the raw materials.
- a more conventional thin film coating process followed by high energy surface curing can be used.
- This is the method of using a high speed vacuum coating process for producing durable and thin water-repellent coatings on a raw material. It uses e.g. a movable support such as rotating drum in a vacuum chamber. The surface of the support is maintained at a temperature sufficient to permit condensation of a vaporized material deposited in the chamber.
- the material is a curable monomer with a relatively low molecular weight.
- the monomer vapor is created using a flash vaporizer.
- the desired amount of curable monomer is metered to a heated flash vaporizer system where the material is vaporized. It is then transported e.g.
- the raw material is then transported to a curing means such as an energy source which emits an electron beam, UV-light radiation or exposure to an electro magnetic field.
- a curing means such as an energy source which emits an electron beam, UV-light radiation or exposure to an electro magnetic field.
- the curable monomer can also be transferred into radicals by passing through a plasma zone (zone of high voltage discharge).
- the curing of the monomer by the curing means then provides a coating on the raw material surface which has a static water contact angle of more than 120°.
- the method for delivering the curable monomer to the raw material for minimizing the amount of monomers can use an ultrasonic atomizer producing micro droplets of curable monomer. They are released into a vaporization tube heated by band heaters. The atomized droplets impinge on the inner wall of the vaporization tube and are instantaneously vaporized, i.e., flash vaporized. This reduces the opportunity for polymerization prior to being deposited on the raw material.
- “Plasma,” as used herein, is used in the sense of "low-temperature plasma” or “cold plasma” produced by igniting a glow discharge in a low pressure gas through a power supply.
- Glow discharges contain a variety of species chemically active and energetic enough to cause chemical reactions with surfaces exposed, i.e. covalent bonding to a suitable substrate material.
- Cold plasmas, or glow discharges are generally produced with high frequency (from KHz to MHz and GHz) power supply (HF plasmas). Electrons, positive and negative ions, atoms, excited molecules, free radicals, and photons of various energies are formed in a cold plasma.
- Modemated plasma means a non continuos plasma, HF plasma, i.e. a glow discharge whose driving power is pulsed between a maximum value and zero (ON/OFF pulse) or a fraction of it, at a certain frequency, with a proper pulse generator connected to the main power supply.
- ON/OFF pulsed systems the time ON and time OFF values are among the experimental parameters of the process.
- superimposing a triggering ON/OFF pulse to the main high frequency field which generally drives a glow discharge alternates short continuous discharges with plasma OFF time intervals where active species still exists in the gas phase, but the effects of ions and electrons are strongly reduced. This alternating exposure to two different processes leads to unique surface modifications of the raw materials, which can be very different from those of continuous plasma process, as it will be shown.
- Plasma deposition or “plasma polymerization” is the plasma process that leads to the formation of thin (0.01 - 2 ⁇ m), partly crosslinked, void-free, continuous coatings well adherent to surfaces.
- the molecules of the gas phase are fragmented by energetic electrons, which are able to break chemical bonds; this process leads to radicals and other chemical species which are able to deposit at surfaces inside the vacuum chamber and form a thin, uniform film.
- the action of the plasma may also affect the surface of a polymer material in the early deposition time; energetic species may break bonds in the surface with possible evolution of gas products, such as hydrogen, and formation of free radical sites which contribute to form covalent bonds between the growing film and the raw material.
- the present invention thus refers to raw materials coated with fluorocarbon films characterized by a WCA value higher than 120°, preferably higher than 130°, more preferably higher than 150°.
- fluorocarbon coatings with F/C ratio from about 1.50 to about 2.00 deposited on different raw materials and characterized by WCA values higher than about 120°, such as between about 155° and about 165° find useful application.
- the F/C ratio could be theoretically up to 3, if the coating would be formed only by a mono-molecular layer of CF 3 groups.
- the formation of intermolecular cross-links and the formation of claims (containing CF 2 fragments) which are grafted onto the surface lowers the above theoretical value so that the obtained coatings, notwithstanding the fact that they contain many CF 3 groups, have a general F/C ratio in the range of about 1.50 to about 2.00.
- the thickness of the coatings depends on the duration of the plasma process at different conditions, and can be kept between 0.01 and 2 ⁇ m. It has been found that the nature of the raw materials does not influence the chemical composition or the thickness of the coatings. Coatings with WCA values up to about 165° (e.g. 165° ⁇ 5°) were obtained. Raw materials to be treated are subjected to modulated plasma gas discharge in the presence of at least one fluorocarbon gas or vapor.
- fluorocarbon gases or vapors such as tetrafluoroethylene (TFE,C 2 F 4 ), hexafluoropropene (HFP,C 3 F 6 ), perfluoro-(2-trifluoromethyl-)pentene, perfluoro-(2-methylpent-2-ene) or its trimer may be used, TFE being the presently preferred choice.
- the plasma deposition process is preferably performed by positioning the raw material in a properly arranged plasma reactor, connecting the reactor to a source of a fluorocarbon gas or vapor, regulating flow and pressure of the gas inside the reactor, and sustaining a glow discharge in the reactor with a high frequency electric field in a pulsed (modulated) mode by means of a suitable pulsed power supply.
- a pulsed (modulated) mode by means of a suitable pulsed power supply.
- an agitation action in form of a fluidized bed of simple mixer can be beneficial.
- the parameters which define the glow discharge treatment includes the feed gas or vapor, its flow rate, its pressure, the position of the raw material inside the reactor, the design of the reactor, the exciting frequency of the power supply, the input power, the time ON and the time OFF of the pulsing system.
- Raw material may be positioned in the "glow" region of the discharge, i.e. directly exposed to the plasma, or in the "afterglow” region, i.e. downstream in respect to the visible glow.
- the two positions generally result in coatings with different composition and properties; treating the raw material with modulated glow discharge results also in different coatings respect to continuous treatments.
- FIG. 2 portrays a typical scheme of a plasma reactor adapted for use within the context of the invention
- FIG. 3 shows a C1s ESCA signal of an uncoated polyethylene raw material wherein the signal is due only to C-H, C-C bonds of the substrate;
- FIG. 4 shows a C1 s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (glow position, continuous mode), with WCA'of 100 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination;
- FIG. 5 shows a C1s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (afterglow position, continuous mode), with WCA of 120 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination; and
- FIG. 6 shows a C1s ESCA signal of a PE raw material coated with a fluorocarbon coating deposited as described in example 1 (glow position, modulated mode), with WCA of 165 ⁇ 5°; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination.
- Figure 1 compares a conventional "continuous" plasma (figure 1a) with the modulated process of the invention, (figure 1b) showing pulsed alternating plasma ON with plasma OFF (i.e. no plasma) times.
- the two processes are schematized by referring to their driving signals.
- the reactor 1 schematically shown in figure 2 was utilized not exclusively for developing the deposition method object of the present invention.
- the reactor vacuum chamber 1 is made of Pyrex glass, is provided with an external RF powered electrode 2 and an internal grounded electrode 3.
- the external electrode is connected to a power supply 4 (typically a radiofrequency generator operating at e.g. 13.56 MHz) through a matching network and an ON/OFF pulse generator 5.
- the raw material can be treated in the "glow” region of the reactor, onto the grounded electrode 3, as well as in its "afterglow” position i.e. at an afterglow raw material holder 6.
- the gas/vapor is fed through a proper mass flowmeter through a gas/vapor feeding manifold 7, and its pressure, measured at the pump out exit 8 of the reactor, kept at a certain constant value with a manual valve on the vacuum connection between the reactor and its pumping unit.
- the deposition process is performed with an RF (13.56 MHz) generator.
- the RF power delivered to the external electrode of the reactor is kept in the 1-500 Watts range for a power density of 0.02-10 Watt/cm 2 .
- the reactor is fed with a fluorocarbon compound at a 1-100 seem flow rate and is kept at a constant pressure of 50-1000 mTorr during the process.
- the glow discharges are modulated through the pulse generator, preferably at 1-500 ms time ON and 1-1000 ms time OFF values, with respective values of about 10 ms and about 190 ms being the most preferred choice at present.
- the deposition process may range from a few seconds to many hours; during this time a uniform fluorocarbon coating is deposited on the raw materials positioned in the glow as well as on those in the afterglow region.
- the deposition rate a typical one being in the 20 - 400 A/min range, was measured by weighing (weight/time) the raw material before and after the discharge, or by measuring the thickness of the coatings (thickness/time) with an Alpha Step profilometer.
- the deposition rate and the chemical composition of the coating depend on the experimental conditions (pressure, power, material position, time ON, time OFF, gas feed and flow rate) of the discharge.
- the coatings obtained are uniform over the entire surface of the raw material; when deposited on flat (i.e. plane) smooth surfaces, their hydrophobic character has been estimated through their static WCA value, as measured with a WCA goniometer. The measurement is done on a flat, i.e. plane, and smooth surface of a substrate after coating.
- the term smooth as used herein for water contact angle measurements refers to a roughness of no more than 5 microns in accordance with standard roughness measurements on continuous surfaces.
- WCA values in the range about 120° to about 165°, corresponding to a critical surface tension lower than that of PTFE (18 dynes/cm) have been measured for fluorocarbon CFx coatings, when x ranges between about 1.50 and about 2.00.
- the chemical composition of coatings is preferably determined by Electron Spectroscopy for Chemical Analysis (ESCA) within the sampling depth of the technique (about 100 A). The adherence of the coating to the raw material is very good.
- the RF generator was connected to the reactor and allowed to sustain the discharge with 50 Watt of input power for 90 min, then switched off.
- the substrates were extracted from the reactor and their WCA measured.
- the WCA values shown in Table 1 were found, which are compared to the WCA values of the unprocessed substrates.
- a deposition rate of 30 ⁇ 5 A min was measured for the coatings deposited in the modulated mode.
- the method of thin film coating with a monomer followed by surface curing can be used.
- the coating formed by the method of the present invention has a thickness of less than 5 microns, and preferably less than 2 microns and most preferably in the range of 0.001 to 1 microns.
- the coatings are formed by depositing a vapor of curable monomer, under vacuum, on a movable raw material which is mounted in thermal contact with a support, for continuos processing preferably a rotating drum, which is maintained at a temperature below the boiling point of the vaporized monomer under the environmental conditions in vacuum chamber . As a result of this temperature differential, the monomer vapor condenses on the surface of the raw material.
- the monomer materials utilized in the present invention are relatively low in molecular weight, between 150 and 1000 Atomic Mass Units (AMU) , and preferably in the range 200 to 300 AMU.
- AMU Atomic Mass Unit
- Polyfunctional flurocarbons and especially fluoroacrylates or mixtures of monofunctional fluoroacryiates and polyfunctional fluoroacrylates are preferred.
- the monomers or monomer mixtures employed have an average of about two or more double bonds (i.e., a plurality of olefinic groups) and have a vapor pressure such that they condense on the raw material surface.
- Such vapor pressures are for example pressure between about 1.33 10 "6 mbar and 1.33 10 "1 mbar, most preferably a vapor pressure of approximately 1.33 10 "2 mbar at standard temperature and pressure, (i.e., relatively low boiling materials) are selected.
- high-vapor-pressure monomers can be flash vaporized already at low temperatures and thus are not degraded (cracked) by the heating process.
- the absence or low amount of unreactive degradation products results in coatings with a reduced levels of volatile components in which substantially all of the deposited monomer is reactive and will cure to form an integral film when exposed to a source of radiation.
- These properties make it possible to provide a substantially continuous coating despite the fact that the deposited film is very thin.
- the cured films exhibit excellent adhesion and are resistant to chemical attack by organic solvents and inorganic salts.
- the high speed vacuum coating process require a curable monomer component.
- the curable monomer for obtaining water-repellent coatings comprises fluoro-containing group.
- any suitable fluoromonomer may be used, including, but not limited to, fluoroacrylate monomers, fluoro olefin monomers, fluorostyrene monomers, fluoroalkylene oxide monomers (e.g., perfluoropropylene oxide, perfluorocyclohexene oxide), fluorinated vinyl alkyl ether monomers, and the copolymers thereof with suitable comonomers, wherein the comonomers are fluorinated or unfluorinated. Fluoromonomers which are polymerized by a free radical polymerization process are preferred.
- fluorostyrenes and fluorinated vinyl alkyl ether monomers which may be used in the method of the present invention include, but are not limited to, ⁇ -fluorostyrene; ⁇ -fluorostyrene; ⁇ , ⁇ -difluorostyrene; ⁇ , ⁇ - difluorostyrene; ⁇ , ⁇ , ⁇ -trifluorostyrene; ⁇ -trifluoromethylstyrene; 2,4,6-Tris (trifluoromethyl)styrene; 2,3,4, 5,6-pentafluorostyrene; 2,3,4, 5,6-pentafluoro- ⁇ - methylstyrene; and 2, 3,4, 5,6-pentafluoro- ⁇ -methylstyrene.
- tetrafluoroethylene can also be used in the method of the present invention and include, but are not limited to, tetrafluoroethylene- hexafluoropropylene copolymers, tetrafluoroethylene-perfluorovinyl ether copolymers (e.g., copolymers of tetrafluoroethylene with perfluoropropyl vinyl ether), tetrafluoroethylene-ethylene copolymers, and perfluorinated ionomers (e.g., perfluorosulfonate ionomers; perfluorocarboxylate ionomers).
- tetrafluoroethylene- hexafluoropropylene copolymers etrafluoroethylene-perfluorovinyl ether copolymers
- tetrafluoroethylene-perfluorovinyl ether copolymers e.g., copolymers of tetrafluoroethylene
- fluorocarbon elastomers are a group of fluoro olefin polymers which can also be used in the process of the present invention and include, but are not limited to, poly(vinylidene fluoride-co-hexafluoropropylene); poly(vinylidene fluoride-co-hexafluoropropylene-co-tetrafluoroethylene); poly[vinylidene fluoride- co-tetrafluoroethylene-co-perfluoro(methyl vinyl ether)]; poly[tetrafluoroethylene- co-perfluoro(methyl vinyl ether)]; poly(tetrafluoroethylene-co-propylene; and poly(vinylidene fluoride-co-chlorotrifluoroethylene).
- fluoroacrylates are particularly useful monomeric materials.
- R 2 is a C, to C 8 perfluoroalkyl or - CH 2 - NR 3 - S0 2 - R 4 , wherein R 3 is C ⁇ C;, alkyl and R 4 is C 1 to C 8 perfluoroalkyl.
- perfluorinated means that all or essentially all hydrogen atoms on an organic group are replaced with fluorine.
- EtFOSEA 2-(N-ethylperfluorooctanesulfonamido) ethyl acrylate
- EtFOSEMA 2-(N-ethylperflooctanesulfonamido) ethyl methacrylate
- MeFOSEA 2-(N-methyiperfluorooctanesulfonamido) ethyl acrylate
- MeFOSEMA 2-(N-methylperflooctanesulfonamido) ethyl methacrylate
- the curable monomer component can also include polyfunctional acrylates, which are set forth in U.S. Patent 4,842,893.
- particulate or granule materials can be small single particles or agglomerates while granules are relatively large and typically not agglomerated
- the relative moveability between particles is significantly increased. This provides a much better flow performance of such materials due to reduced sticking to each other. In addition their flowability relative to another surface is also improved and the probability of the material sticking to a hard surface is reduced.
- detergent powder usually agglomerated particles
- the superhydrophobicity can be provided to reduce the probability of bacterial build up and soiling build up on the surfaces.
- the mechanism is to increase the speed at which water can be shaken from the toothbrush head after brushing. This increased speed will also increase the probability of bacteria to be removed from the toothbrush head.
- the surface energy situation at the bottom of the bristles where they enter the toothbrush blank is such that no liquid will remain there (which was previously the case due to the capillary attraction between the bristles in each bundle of bristles) such that a reduced or even no bacterial growth can be observed at the toothbrush head.
- a silver or golden (or other metal having antibacterial properties without toxic side effects) electrode in the plasma coating system in addition to the hydrophobic coating an effective amount of antibacterial metal can be deposited on the blanks and bristles or other surfaces.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
- Sanitary Device For Flush Toilet (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
La présente invention concerne des matériaux bruts ou des flancs et notamment du matériau particulaire tel que poudre détergente, granulé de plastique; flancs ou crins pour brosses à dents et brosse à cheveux dont une partie au moins de la surface est rendue super-hydrophobe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99968687A EP1115904A1 (fr) | 1998-09-07 | 1999-09-07 | Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98116895A EP0985741A1 (fr) | 1998-09-07 | 1998-09-07 | Traitements par plasma de décharge luminescente pour la fabrication de substrats super-hydrophobiques |
EP98116895 | 1998-09-07 | ||
PCT/US1999/020925 WO2000014299A1 (fr) | 1998-09-07 | 1999-09-07 | Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe |
EP99968687A EP1115904A1 (fr) | 1998-09-07 | 1999-09-07 | Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1115904A1 true EP1115904A1 (fr) | 2001-07-18 |
Family
ID=8232590
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98116895A Withdrawn EP0985741A1 (fr) | 1998-09-07 | 1998-09-07 | Traitements par plasma de décharge luminescente pour la fabrication de substrats super-hydrophobiques |
EP99968690A Withdrawn EP1112404A1 (fr) | 1998-09-07 | 1999-09-07 | Articles textiles ou vetements pourvus d'un revetement super hydrophobe |
EP99945559A Expired - Lifetime EP1112391B1 (fr) | 1998-09-07 | 1999-09-07 | Traitements par decharge luminescente au plasma non continu, servant a fabriquer des substrats extremement hydrophobes |
EP99968687A Withdrawn EP1115904A1 (fr) | 1998-09-07 | 1999-09-07 | Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe |
EP99945652A Withdrawn EP1115902A1 (fr) | 1998-09-07 | 1999-09-07 | Articles a surfaces dures pourvus d'un revetement super-hydrophobe |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98116895A Withdrawn EP0985741A1 (fr) | 1998-09-07 | 1998-09-07 | Traitements par plasma de décharge luminescente pour la fabrication de substrats super-hydrophobiques |
EP99968690A Withdrawn EP1112404A1 (fr) | 1998-09-07 | 1999-09-07 | Articles textiles ou vetements pourvus d'un revetement super hydrophobe |
EP99945559A Expired - Lifetime EP1112391B1 (fr) | 1998-09-07 | 1999-09-07 | Traitements par decharge luminescente au plasma non continu, servant a fabriquer des substrats extremement hydrophobes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99945652A Withdrawn EP1115902A1 (fr) | 1998-09-07 | 1999-09-07 | Articles a surfaces dures pourvus d'un revetement super-hydrophobe |
Country Status (9)
Country | Link |
---|---|
EP (5) | EP0985741A1 (fr) |
JP (4) | JP2003514983A (fr) |
CN (1) | CN1322264A (fr) |
AU (4) | AU5821699A (fr) |
BR (1) | BR9913497A (fr) |
CA (4) | CA2343160A1 (fr) |
DE (1) | DE69916468T2 (fr) |
ES (1) | ES2220112T3 (fr) |
WO (4) | WO2000014298A1 (fr) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635801B1 (en) | 1999-05-14 | 2003-10-21 | The Procter & Gamble Company | Disposable absorbent article combining low viscosity liquid handling and high viscosity liquid handling |
US7033340B1 (en) | 1999-05-14 | 2006-04-25 | The Procter & Gamble Company | Disposable absorbent article having reduced impact on surface tension of acquired liquid |
US6617490B1 (en) | 1999-10-14 | 2003-09-09 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with molded cellulosic webs |
US6692603B1 (en) | 1999-10-14 | 2004-02-17 | Kimberly-Clark Worldwide, Inc. | Method of making molded cellulosic webs for use in absorbent articles |
US6786894B2 (en) | 1999-11-29 | 2004-09-07 | The Procter & Gamble Company | Absorbent article having liquid handling member which collapses under high pressures |
EP1112728A1 (fr) | 1999-12-23 | 2001-07-04 | The Procter & Gamble Company | Système de drainage de liquide qui assure une surface de contact plus séche |
DE10019816A1 (de) * | 2000-04-20 | 2001-10-31 | Asten Ag Eupen | Verfahren zur Beschichtung eines Garns sowie dadurch hergestelltes textiles Flächengebilde |
RU2190484C1 (ru) * | 2001-06-04 | 2002-10-10 | Бугров Глеб Эльмирович | Способ плазменного осаждения полимерных покрытий и способ генерации плазмы |
US7887889B2 (en) | 2001-12-14 | 2011-02-15 | 3M Innovative Properties Company | Plasma fluorination treatment of porous materials |
US6878419B2 (en) | 2001-12-14 | 2005-04-12 | 3M Innovative Properties Co. | Plasma treatment of porous materials |
GB0206930D0 (en) | 2002-03-23 | 2002-05-08 | Univ Durham | Method and apparatus for the formation of hydrophobic surfaces |
US7381666B2 (en) | 2002-12-20 | 2008-06-03 | Kimberly-Clark Worldwide, Inc. | Breathable film and fabric having liquid and viral barrier |
JP3836797B2 (ja) * | 2003-02-18 | 2006-10-25 | 株式会社東芝 | 粒子堆積層形成装置及び粒子堆積層形成方法 |
DE10330394A1 (de) * | 2003-07-04 | 2005-01-27 | Sustech Gmbh & Co. Kg | Verfahren zur Herstellung oberflächenbeschichteter nanoskaliger Teilchen durch Polymerbeschichtung in der Gasphase |
EP1649100A1 (fr) * | 2003-07-25 | 2006-04-26 | Universita' Degli Studi di Milano-Bicocca | Procede d'usinage au plasma de materiaux polymeres et inorganiques |
US7931944B2 (en) | 2003-11-25 | 2011-04-26 | Kimberly-Clark Worldwide, Inc. | Method of treating substrates with ionic fluoropolymers |
US7811949B2 (en) | 2003-11-25 | 2010-10-12 | Kimberly-Clark Worldwide, Inc. | Method of treating nonwoven fabrics with non-ionic fluoropolymers |
ITPD20030312A1 (it) * | 2003-12-30 | 2005-06-30 | Geox Spa | Suola traspirante ed impermeabile per calzature |
US7213309B2 (en) | 2004-02-24 | 2007-05-08 | Yunzhang Wang | Treated textile substrate and method for making a textile substrate |
FR2866643B1 (fr) * | 2004-02-24 | 2006-05-26 | Saint Gobain | Substrat, notamment verrier, a surface hydrophobe, avec une durabilite amelioree des proprietes hydrophobes |
CN100585059C (zh) * | 2004-10-28 | 2010-01-27 | 福懋兴业股份有限公司 | 具有荷叶效应的织物的制备及具有荷叶效应的织物 |
WO2008014607A1 (fr) * | 2006-07-31 | 2008-02-07 | Tekna Plasma Systems Inc. | Traitement de surface par plasma au moyen de décharges à barrière diélectrique |
WO2008063641A1 (fr) | 2006-11-22 | 2008-05-29 | The Procter & Gamble Company | Compositions traitantes de textile et procédés correspondants |
GB0810326D0 (en) * | 2008-06-06 | 2008-07-09 | P2I Ltd | Filtration media |
US8286561B2 (en) | 2008-06-27 | 2012-10-16 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
CA2739903C (fr) | 2008-10-07 | 2016-12-06 | Ross Technology Corporation | Revetements super hydrophobes, oleophobes et antigivre a haute durabilite, et procedes et compositions pour leur preparation |
US20100252047A1 (en) | 2009-04-03 | 2010-10-07 | Kirk Seth M | Remote fluorination of fibrous filter webs |
US8987632B2 (en) | 2009-10-09 | 2015-03-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Modification of surface energy via direct laser ablative surface patterning |
MX343584B (es) | 2009-11-04 | 2016-11-10 | Ssw Holding Co Inc | Superficies de equipos de coccion que tienen una estructura para la contencion de derrames y metodos de fabricarlas. |
BR112012023312A2 (pt) | 2010-03-15 | 2019-09-24 | Ross Tech Corporation | desentupidor e métodos de produção de superfícies hidrofóbicas |
BR112013021231A2 (pt) | 2011-02-21 | 2019-09-24 | Ross Tech Corporation | revestimentos super-hidrofóbicos e oleofóbicos com sistemas ligantes de baixo voc |
DE102011085428A1 (de) | 2011-10-28 | 2013-05-02 | Schott Ag | Einlegeboden |
WO2013090939A1 (fr) | 2011-12-15 | 2013-06-20 | Ross Technology Corporation | Composition et revêtement pour une performance superhydrophobe |
US10259258B2 (en) | 2011-12-15 | 2019-04-16 | 3M Innovative Properties Company | Adhesive film and method of making a graphic |
US9237973B2 (en) | 2012-01-31 | 2016-01-19 | Kimberly-Clark Worldwide, Inc. | Treated apertures |
US9278374B2 (en) | 2012-06-08 | 2016-03-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Modified surface having low adhesion properties to mitigate insect residue adhesion |
WO2014003852A2 (fr) | 2012-06-25 | 2014-01-03 | Ross Technology Corporation | Revêtements élastomères ayant des propriétés hydrophobes et/ou oléophobes |
CN104838058B (zh) * | 2012-10-09 | 2018-01-19 | 欧洲等离子公司 | 表面涂层 |
US20140165271A1 (en) * | 2012-12-18 | 2014-06-19 | Ansell Limited | Encapsulating protective suits with enhanced water repellency |
CN103085380A (zh) * | 2013-01-29 | 2013-05-08 | 上海交通大学 | 一种具有耐腐蚀性能的铜超疏水表面及其制备方法 |
DE102013224951A1 (de) * | 2013-12-05 | 2015-06-11 | BSH Hausgeräte GmbH | Haushaltsgerät |
JP7053260B2 (ja) * | 2014-05-30 | 2022-04-12 | アモーレパシフィック コーポレーション | 非透過性シートを含む化粧料組成物塗布具 |
US9968963B2 (en) * | 2015-08-31 | 2018-05-15 | Sigma Laboratories Of Arizona, Llc | Functional coating |
US10060895B2 (en) * | 2015-12-27 | 2018-08-28 | Light of Detection, Ltd. | Devices and methods for identifying a biological or chemical residue in an liquid sample |
CA3009993A1 (fr) | 2016-01-08 | 2017-07-13 | Clarcor Inc. | Utilisation de microfibres et/ou nanofibres dans des vetements et chaussures |
JP6786820B2 (ja) * | 2016-03-09 | 2020-11-18 | ダイキン工業株式会社 | 成形体の製造方法 |
CN105648770B (zh) * | 2016-03-25 | 2018-04-13 | 广州拜费尔空气净化材料有限公司 | 一种超疏水表面的制备方法 |
US10524598B2 (en) | 2016-05-03 | 2020-01-07 | Benny Green | Easily cleanable drinking assembly |
CN107058979B (zh) * | 2017-01-23 | 2018-05-11 | 江苏菲沃泰纳米科技有限公司 | 一种防水耐电击穿涂层的制备方法 |
CN106906456B (zh) * | 2017-01-23 | 2018-04-20 | 江苏菲沃泰纳米科技有限公司 | 一种交联度可控的涂层的制备方法 |
CN107058981B (zh) * | 2017-01-23 | 2018-09-21 | 江苏菲沃泰纳米科技有限公司 | 一种低粘附、耐蚀涂层的制备方法 |
CN107058982B (zh) * | 2017-01-23 | 2018-06-19 | 江苏菲沃泰纳米科技有限公司 | 一种具有多层结构防液涂层的制备方法 |
CN106868473B (zh) * | 2017-01-23 | 2018-07-13 | 江苏菲沃泰纳米科技有限公司 | 一种梯度递减结构防液涂层的制备方法 |
CN106835075B (zh) * | 2017-01-23 | 2018-04-20 | 江苏菲沃泰纳米科技有限公司 | 一种梯度递增结构防液涂层的制备方法 |
CN109518468A (zh) * | 2018-11-13 | 2019-03-26 | 疏博(上海)纳米科技有限公司 | 一种有机硅聚合物超疏水织物整理剂的制备及应用 |
CN109322143A (zh) * | 2018-12-07 | 2019-02-12 | 东华大学 | 一种超疏水表面材料的硅氧烷类单体等离子体处理方法 |
CN110665768B (zh) * | 2019-07-26 | 2022-04-26 | 江苏菲沃泰纳米科技股份有限公司 | 防水纳米膜及其制备方法、应用和产品 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL85087C (fr) * | 1951-10-09 | |||
US4188426A (en) * | 1977-12-12 | 1980-02-12 | Lord Corporation | Cold plasma modification of organic and inorganic surfaces |
US4632842A (en) * | 1985-06-20 | 1986-12-30 | Atrium Medical Corporation | Glow discharge process for producing implantable devices |
JPH036204A (ja) * | 1989-06-01 | 1991-01-11 | Furukawa Electric Co Ltd:The | プラズマ重合膜の製膜方法 |
DE3939341A1 (de) * | 1989-11-29 | 1991-06-06 | Bayer Ag | Hydrophobierungs- und oleophobierungsmittel |
EP0492545B1 (fr) * | 1990-12-25 | 1998-03-25 | Matsushita Electric Industrial Co., Ltd. | Substrat transparent avec film unimoléculaire sur cela et procédé de préparation de celui-ci |
DE69225743T2 (de) * | 1991-03-14 | 1998-09-24 | Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka | Oberflächenbehandeltes Material für Bekleidung |
CA2072384A1 (fr) * | 1991-08-29 | 1993-03-01 | Clifford L. Spiro | Compositions a base de fluorure de carbone |
JPH07222624A (ja) * | 1994-02-16 | 1995-08-22 | Matsushita Electric Ind Co Ltd | 歯ブラシ |
US5888591A (en) * | 1996-05-06 | 1999-03-30 | Massachusetts Institute Of Technology | Chemical vapor deposition of fluorocarbon polymer thin films |
JPH10273617A (ja) * | 1997-03-31 | 1998-10-13 | Toray Ind Inc | 撥水性コーティング膜 |
-
1998
- 1998-09-07 EP EP98116895A patent/EP0985741A1/fr not_active Withdrawn
-
1999
- 1999-09-07 WO PCT/US1999/020923 patent/WO2000014298A1/fr not_active Application Discontinuation
- 1999-09-07 AU AU58216/99A patent/AU5821699A/en not_active Abandoned
- 1999-09-07 JP JP2000569036A patent/JP2003514983A/ja not_active Withdrawn
- 1999-09-07 CA CA002343160A patent/CA2343160A1/fr not_active Abandoned
- 1999-09-07 WO PCT/US1999/020925 patent/WO2000014299A1/fr not_active Application Discontinuation
- 1999-09-07 CA CA002340448A patent/CA2340448A1/fr not_active Abandoned
- 1999-09-07 EP EP99968690A patent/EP1112404A1/fr not_active Withdrawn
- 1999-09-07 ES ES99945559T patent/ES2220112T3/es not_active Expired - Lifetime
- 1999-09-07 DE DE69916468T patent/DE69916468T2/de not_active Expired - Fee Related
- 1999-09-07 JP JP2000569037A patent/JP2003514984A/ja not_active Withdrawn
- 1999-09-07 JP JP2000569055A patent/JP2003521588A/ja not_active Withdrawn
- 1999-09-07 WO PCT/US1999/020926 patent/WO2000014323A1/fr not_active Application Discontinuation
- 1999-09-07 EP EP99945559A patent/EP1112391B1/fr not_active Expired - Lifetime
- 1999-09-07 AU AU60355/99A patent/AU6035599A/en not_active Abandoned
- 1999-09-07 AU AU60354/99A patent/AU6035499A/en not_active Abandoned
- 1999-09-07 EP EP99968687A patent/EP1115904A1/fr not_active Withdrawn
- 1999-09-07 JP JP2000569035A patent/JP2002524660A/ja not_active Withdrawn
- 1999-09-07 CA CA002343154A patent/CA2343154A1/fr not_active Abandoned
- 1999-09-07 CA CA002342330A patent/CA2342330A1/fr not_active Abandoned
- 1999-09-07 CN CN 99811889 patent/CN1322264A/zh active Pending
- 1999-09-07 AU AU58139/99A patent/AU5813999A/en not_active Abandoned
- 1999-09-07 EP EP99945652A patent/EP1115902A1/fr not_active Withdrawn
- 1999-09-07 WO PCT/US1999/020504 patent/WO2000014297A1/fr active IP Right Grant
- 1999-09-07 BR BR9913497-7A patent/BR9913497A/pt not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO0014299A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2003521588A (ja) | 2003-07-15 |
EP1112391A1 (fr) | 2001-07-04 |
CA2342330A1 (fr) | 2000-03-16 |
WO2000014323A1 (fr) | 2000-03-16 |
CA2340448A1 (fr) | 2000-03-16 |
EP1115902A1 (fr) | 2001-07-18 |
AU5821699A (en) | 2000-03-27 |
EP0985741A1 (fr) | 2000-03-15 |
DE69916468D1 (de) | 2004-05-19 |
JP2003514983A (ja) | 2003-04-22 |
JP2002524660A (ja) | 2002-08-06 |
CA2343154A1 (fr) | 2000-03-16 |
AU6035599A (en) | 2000-03-27 |
EP1112391B1 (fr) | 2004-04-14 |
ES2220112T3 (es) | 2004-12-01 |
WO2000014297A1 (fr) | 2000-03-16 |
WO2000014298A1 (fr) | 2000-03-16 |
AU5813999A (en) | 2000-03-27 |
CN1322264A (zh) | 2001-11-14 |
DE69916468T2 (de) | 2005-05-25 |
EP1112404A1 (fr) | 2001-07-04 |
WO2000014299A1 (fr) | 2000-03-16 |
BR9913497A (pt) | 2001-06-05 |
JP2003514984A (ja) | 2003-04-22 |
CA2343160A1 (fr) | 2000-03-16 |
AU6035499A (en) | 2000-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1115904A1 (fr) | Materiaux bruts ou flancs pourvus d'un revetement super-hydrophobe | |
WO2000014296A1 (fr) | Substrats recouverts, extremement hydrophobes | |
US6649222B1 (en) | Modulated plasma glow discharge treatments for making superhydrophobic substrates | |
US6660339B1 (en) | Process for hydrophobic treatment of water vapor permeable substrates | |
KR100341565B1 (ko) | 젖음성이 우수한 표면을 갖는 불소계 수지 | |
JP5247149B2 (ja) | プラズマを用いて基材をコーティングする方法 | |
Abourayana et al. | Plasma processing for tailoring the surface properties of polymers | |
Li et al. | Thin film deposition technologies and processing of biomaterials | |
WO2001017696A1 (fr) | Procede de traitement hydrophobe pour substrats permeables a la vapeur d'eau | |
EP1343596A1 (fr) | Procede de modification de surface | |
JP7084394B2 (ja) | 優れた安定性及び耐久性を有する親水性の多機能性超薄コーティング | |
Michelmore et al. | Where physics meets chemistry: Thin film deposition from reactive plasmas | |
EP2275598B1 (fr) | Revêtements de surface | |
Van Os | Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility | |
Gilman et al. | Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma | |
CN1312870A (zh) | 表面涂层 | |
MXPA01002388A (en) | Super hydrophobic coated substrates | |
MXPA01002432A (en) | Textile articles or clothing having super hydrophobic coating | |
MXPA01002425A (en) | Modulated plasma glow discharge treatments for making superhydrophobic substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010326 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20010802 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20020213 |