EP1112555B1 - Method and device for controlling the state of securities using a dark-field and a bright-field measurement. - Google Patents
Method and device for controlling the state of securities using a dark-field and a bright-field measurement. Download PDFInfo
- Publication number
- EP1112555B1 EP1112555B1 EP99944422A EP99944422A EP1112555B1 EP 1112555 B1 EP1112555 B1 EP 1112555B1 EP 99944422 A EP99944422 A EP 99944422A EP 99944422 A EP99944422 A EP 99944422A EP 1112555 B1 EP1112555 B1 EP 1112555B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- paper
- value
- area
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005259 measurement Methods 0.000 title abstract description 67
- 230000005855 radiation Effects 0.000 claims abstract description 196
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000011156 evaluation Methods 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 3
- 238000003491 array Methods 0.000 abstract 2
- 230000007547 defect Effects 0.000 description 17
- 230000008901 benefit Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/181—Testing mechanical properties or condition, e.g. wear or tear
- G07D7/185—Detecting holes or pores
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
Definitions
- the invention relates to a method for checking securities, in particular of banknotes, as well as an apparatus for carrying out the method with a measuring plane, a device for translational movement a security in the measurement plane, at least one radiation source for irradiating a first and a second area of the measuring plane and a detector arranged in the dark field with respect to a radiation source is, to detect the one irradiated by a security in the first Area of the measurement plane diffused transmitted radiation.
- the test can be based on so-called authenticity features of the securities and, on the other hand, the condition of the securities judge.
- the latter test is related to used banknotes application, as these due to their continuous use subject to greater wear.
- the banknotes are confiscated and reissued Banknotes replaced.
- Characteristics used to assess the condition of banknotes are used, e.g. Holes, cracks, missing parts, dog-ears, pollution and stains of banknotes.
- the banknotes in terms of their authenticity e.g. on IR-transmitting or - absorbent color imprints, dimensions such as length and width, color fastness, Print image, opacity and the like are checked.
- Bright field measurement means that the detector is direct is reached by the radiation of the radiation source, if no banknote is present, and in the event that a banknote is in the measurement plane detected he who transmitted directly from the radiation source through the banknote Radiation (bright field measurement).
- To measure the color reflection is additional a radiation in the visible wavelength range on the surface the banknote, and the one reflected from the banknote surface Radiation is detected by a reflectance sensor.
- the recorded transmission and reflection radiations are compared with reference values to to check the authenticity of the banknote. Checking the length of the banknote also takes place by means of the IR radiation source by using this the leading edge the bank note found when feeding the bill to the measuring station while the end of the bill is through a second sensor is determined. However, a condition check of the banknote does not take place.
- From DE-A-196 04 856 is an apparatus and a method for testing optical security features with metallically reflecting layers, like holograms and the like, to their exact positioning in the banknote, its margins (fissures of the contour) and their Completeness (holes, missing parts) known. This will change the state of this Security features of, for example, returning from circulation to the bank Banknotes checked.
- the condition test of this metallic Security features in transmitted light similar to those described above Opacity testing.
- a bright field measurement has been described previously was found to be unsuitable as an opposite one Arrangement of radiation source and detector a metrologically disadvantageous Oversteer of the detector due to direct radiation in the gaps between successive banknotes would. The same effect would have holes in the material to be measured.
- the detector becomes so Radiation source aligned so that it does not receive direct radiation from the Radiation source receives if there is no banknote but him essentially only reaches the radiation of the radiation source when a Banknote is present, wherein the transmitted through the banknote radiation is detected.
- the detector is related to the Transport plane of the banknote arranged so that in addition to the metal layer or by their damage (holes, abrasion in the area of folds) light passing through the banknote paper is only measured to that extent becomes as it is scattered by the paper. With this procedure let However, no holes or other imperfections of the paper but only determine the metallic coating.
- the dark field measurement not suitable for determining a defect in the paper itself, since the detector e.g. in case of a hole can not be determined clearly can, whether it is a particularly opaque and therefore opaque Place the banknote or just a hole in the banknote, because in In both cases, the detector located in the dark field would not emit radiation receive.
- EP 0 537 513 A1 discloses an improved authenticity testing device for banknotes described, with even the most good fakes to recognize should be.
- the device is correspondingly expensive and it is proposed on the one hand dark field measurements with both IR radiation and with Red light and on the other hand reflectance measurements both in terms of reflection red light radiated as well as with respect to the reflection of green light to pass through. The quality of the authenticity check Thus, by conducting multiple independent authenticity checks elevated. A condition check of the banknote is done with this device not done.
- a device for checking banknotes known, with the authenticity of banknotes are reliably tested may contain fluorescent fibers.
- the banknote becomes one-sided irradiated with a fluorescence exciting radiation and then Fluorescent radiation emanating from the banknote becomes bilateral the banknote detected.
- the detectors for the fluorescence radiation are arranged with respect to the excitation radiation source in the dark field, so another detector on the opposite of the excitation radiation source Side of the banknote in bright field can be arranged.
- the im Bright field detector is used to detect the condition of the security determined by a too low paper density, based on the opacity of the paper, Splices, cracks, inaccurate seams, faulty watermarks and missing security threads are detected. It also exists Here the problem that the direct light incident on the arranged in the bright field Detector can lead to overdriving the detector. Especially this detector arrangement makes the distinction between more translucent, e.g. thin or unprinted, paper and holes not reliable to.
- the aforesaid devices are for condition checking of securities either completely unsuitable because they only affect the authenticity test, or only conditionally suitable, because holes, cracks, missing parts, dog - ears and The like can not be reliably determined.
- the dark field measurement the problem arises that the detector both in the detection a defect as well as in the detection of a highly opaque area no measured value is determined, so that a distinction between hole and strong opacity is not possible.
- the bright field measurement leads the Detecting a hole to override the detector or at least to a high reading that is not reliable from one too high reading of a very weakly opaque area of the banknote can be.
- Object of the present invention is therefore to provide a method and a To propose a device for checking securities, with which a reliable detection of defects in banknotes in a cost-effective manner is possible.
- the opacity of a bill is both in the bright field and measured in the dark field, and the measured values are compared to each other. Because neither the brightfield measurement nor the dark field measurement taken alone a reliable statement allows a defect of the bill, see the solution of the invention a comparison of the two measured values before to see if it is a defect or a low opaque or heavily opaque area of Banknote is trading. If namely a slightly opaque area of the banknote is detected, then the bright field measurement gives no meaningful Value, but the dark field measurement is unique. If against a strongly opaque area of the bank note is detected, although the dark field measurement is not a meaningful value, but the bright field measurement is clearly.
- This principle is therefore a comparatively inexpensive Solution because that is usually used to check the opacity of banknotes used Transmissionsmeß Kunststoffmaschine (bright field or dark field) not be equipped with an additional ultrasonic sensor as a hole detector must, but instead another transmission measurement (Dark field or bright field) takes place, so that, for example, a special evaluation can be saved for the ultrasonic sensor. by virtue of the duplicity of several components, such a tester is much cheaper to produce as a mass-produced article.
- test result is the more accurate the better the resolution is, i.e. the smaller the distances between the detected banknote areas are and the higher the degree of overlap measured in the bright field and is the banknote areas measured in the dark field.
- An optimal result is reached when the banknote areas measured in the bright field and the banknote areas measured in the dark field coincide identically and check the entire banknote in as small a step as possible.
- procedure can be significantly accelerated if adjacent Banknote areas measured alternately in the brightfield and the darkfield become.
- only flaws of the banknote can be reliably are detected so large that they are both from the bright field measurement as well as the dark field measurement.
- This principle can be procedural and device technology in various Realize way.
- one radiation source and one each Detector can be used.
- a cost reduction can be achieved, however if instead of a detector and a radiation source respectively for the Bright field measurement and for the dark field measurement, i. instead of two detectors and two radiation sources, either only a common radiation source with two detectors or just a common detector with two radiation sources are used.
- a common detector In the case that a common detector is used with two radiation sources there are also two options for using the two radiation sources either two different areas of the measurement plane or else can irradiate the same area of the measuring plane, in both cases the radiation sources are to be arranged so that the common detector with respect to the first radiation source in the dark field and with respect to the second radiation source is in the bright field. Besides, it is in the execution with a common detector required that the brightfield and the dark field measurement are performed separated from each other in time. This can be achieved by appropriate activation of the radiation sources or in the event that two different areas of the banknote be irradiated, by darkening the detector against each one certain area or by respectively aligning the detector to a certain area. Technically the cheapest is the separate Driving the first and the second radiation source.
- a particular embodiment of the invention provides that at least a radiation source is designed as an IR radiation source. This makes possible a simultaneous examination of the banknote on IR permeability, because Many banknotes are printed with special colors, which are either IR radiation absorb or, as is more often the case, IR radiation transmissive are.
- the embodiment with two separate radiation sources also offers the possibility of an additional remission measurement by using a Remission receiver on the side of the radiation sources the printed image a banknote on the basis of the reflected light from the banknote can be.
- FIG. 1 shows a preferred embodiment of a device according to the invention Device as a schematic diagram.
- FIGS 2a to 2e show five different embodiments of the invention as schematic sketches.
- Figure 3 shows a cross section of the device of Figure 1 along III-III.
- FIG. 4 shows a timing diagram for the detection of a banknote and evaluation the detected results.
- FIGs 1 and 3 is schematically a preferred embodiment of 3 shows a cross section along the line III-III of the device shown in Figure 1 shows.
- a banknote 1 is along a measuring plane 2 between an upper window 3 and a lower window 4 moves.
- Below the window 4 are two LED rows with LEDs 5 and 6 arranged so that each LED the measurement level in one irradiated area.
- the radiation paths of the LEDs 5 and 6 are with indicated by dashed lines.
- Above the window 3 is a line of Detectors 7 arranged so that each detector 7 in the direct radiation area the LEDs 5 is located. The detectors 7 are thus in relation to the LEDs 5 in the bright field.
- the arrangement of the detectors 7 is so chosen that the detectors are not directly irradiated by the LEDs 6.
- the detectors 7 are thus with respect to the LEDs 6 in the dark field.
- the detectors 7 are aligned so that they each of the opposite LEDs 5 and 6 irradiated defined areas on the banknote to capture. That is, a detector 7 detects on the one hand in the bright field by a Banknote 1 transmitted radiation of the directly opposite LEDs 5 and on the other hand, the transmitted in the dark field through the bill Radiation of the diagonally opposite LEDs 6.
- the transmitted radiation Before the transmitted radiation reaches the detector, it can by means of a simple radiation collimator 10 are focused. An easy Selfoc array may be enough.
- the invention is also without any Focusing the transmitted radiation executable when the transmitted radiation of the area to be tested by channeling on the detector is directed.
- An evaluation unit 20 is connected to the detector 7 to detect the detected Evaluate radiation values and by comparing the values from the Determine bright field measurement with the values from the dark field measurement, if the detected area of the bill possibly a defect such as a hole, a crack, etc.
- the entire banknote can be checked for defects.
- the comparison of light and dark field measurements leaves the detection the outer contours of a banknote, so that length and width Banknotes can be determined relatively accurately.
- the resolution depends on the number of measurements over the width and over the length of the banknote. This will be special clearly in Figure 3, in which the radiation paths of the LEDs 5 and the Detection areas of the detectors 7 shown in dashed lines are.
- the bank note 1 located in the measurement level 2 interrupts only the light path of the third (from left) to penultimate LED 5.
- the evaluation that of the first and second (from left) and the last detector 7 brightfield and darkfield measured values is therefore on the the entire length of the banknote examined lead to the result "defect", from which it can be concluded that the outer edges of the banknote in Range of the third and penultimate detector is located.
- Deviating from the Representation in Figure 3 are preferably 60 detectors as detector line arranged across the width, each detector having two sensitive pixels can.
- the detector line can be between the detectors and pixels Have gaps, so that it can be saved detectors.
- this affects the resolution capability of the overall device out.
- a resolution of 1 mm across the transport direction can for simple purposes be sufficient.
- the two outer of the 60 detectors in addition to the actual Measuring range can be arranged for the banknote examination. These can then be e.g. to form a reference value for the brightness of be used by the LEDs emitted radiation.
- the LEDs emit at least one row of LEDs IR light, to authenticity features, namely the presence of IR-transmitting or IR-absorbing imprints.
- IR-absorbing inks are used less frequently than IR-transmitting inks Colors, are preferably the LEDs 6, i. the Radiation source for the dark field illumination, as an IR radiation source selected. This reduces the likelihood that a highly IR-absorbing Print image is rated as a defect.
- the second LED row in this case the LEDs 5, emits light in the visible wavelength range.
- a remission measurement of from the surface of a bill reflected radiation 12 can by means of a remission sensor 13 additionally the print image and / or the Denomination of the banknote to be recognized.
- this will be red light LEDs used.
- FIG. 2a to 2e are principal embodiments of the above a particularly preferred embodiment described invention shown.
- Figure 2b shows the already described with reference to Figure 1 particularly preferred embodiment, wherein the two light sources 5 and 6 illuminate a common, defined area of the measurement plane 2, which a single one arranged on the opposite side of the measuring plane 2 Detector 7 is associated with which both the transmitted in the bright field Radiation of the red light radiation source 5 as well as the transmitted in the dark field IR radiation of the radiation source 6 is detected.
- FIG. 2 a shows a structure similar to that of FIG. 2 b with two radiation sources 5 and 6 and a common detector 7, but wherein the radiation source 6 a first region of the measurement plane and the radiation source 5 a second area of the measuring level 2 is illuminated and the detector in the Bright field transmitted radiation of the radiation source 5 and in the dark field Transmitted radiation of the radiation source 6 detected.
- the first and the In principle, the second irradiated area of the measuring plane can also overlap be.
- FIG. 2a and 2b set because the use of only a single detector that the detector. 7 the radiation transmitted in the bright field and that transmitted in the dark field Radiation independently, i. offset in time, grasped, with it Based on the separately recorded bright field and dark field measured values a comparison in the evaluation unit 20 for detecting defects of the banknotes can be carried out.
- the staggered detection becomes preferably by temporally offset irradiation of the first and second Reaches areas. But it is also possible in principle that the detector temporarily over the first and temporarily over the second area is shielded. It is also conceivable that the detector is temporary directed only at first and intermittently only to the second area.
- a particular advantage is the use of two different Radiation types, for example, the radiation sources in the color spectrum differ, e.g. Emit IR radiation and visible light.
- Figures 2c and 2d are embodiments with a reversal of the previously described principle. Instead of two radiation sources and a common detector, these embodiments see a common radiation source and two detectors before. Illuminated in Figure 2c the radiation source 6 a defined area of the measuring plane 2, on the both a detector 7 arranged in the dark field and one in the bright field arranged detector 8 are directed. In contrast, in FIG. 2d, two are obtained illuminates different areas of the measuring plane 2 from the radiation source 6, by e.g. the remaining radiation of the radiation source 6 by a Aperture 9 is shielded. The detector 7 is irradiated with respect to the first one Range in the dark field, while the detector 8 with respect the second irradiated area is arranged in the bright field.
- Figure 2e is another but more complex and therefore less interesting Embodiment of the present invention shown in which a first Detector 7 in the dark field of a first radiation source 6 and a second Detector 8 in the bright field of a second radiation source 5 are arranged.
- this embodiment is more complicated than the one described above, but offers the benefits of using two radiation sources and has two detectors, namely simultaneous measurement in the bright and dark field and using different wavelengths.
- Each detector 7 defines its own measuring range.
- the leading edge of a banknote is then determined by one of the two radiation sources and preferably by dark field measurement by means of the radiation source 6, since the edge region of banknotes is usually not completely opaque, so that a Determination of the leading edge of the banknote by means of the dark field measurement reliable is possible.
- the radiation source 5 is meanwhile switched off or shielded to the measurement result of the dark field measurement not to influence.
- the radiation transmitted by the banknote 1 in a first area the dark field radiation source 6 is detected by the detector 7.
- To Expiration of a predetermined detection time becomes the detected radiation read out by an evaluation unit.
- the detector is 7 is inaccessible to the reception of further radiation, e.g. the Radiation source 6 is switched off or shielded.
- First and second Banknote area can be identical in extreme cases, but can also overlap - e.g. each 50% - or completely adjacent to each other.
- the radiation thereby transmitted through the banknote in the second area is detected by the detector 7.
- the detector 7 in the second area detected transmitted radiation read out. This process repeats until the entire bill detects area by area has been.
- the second area of the banknote irradiated by the radiation source 5 lies in the embodiment shown in Figure 1 in the same area of Measuring level 2, which was also illuminated by the radiation source 6. That means but not that the irradiated areas of the bill are identical are. Only in the case of a correspondingly timed feed movement the banknote 1 within the measuring plane 2 fall from that of the radiation source 5 irradiated banknote areas with the previously from the radiation source. 6 irradiated banknote areas identical. Thus, e.g. the movement the banknote in two stages, the banknote only between the bright field and dark field measurements is moved and the measured radiation respectively read during banknote advance becomes.
- FIG. 4 for example, a chronological sequence of the irradiation of the banknote is shown 1 with the radiation sources 5 and 6 and the intervening time for reading out the detected radiation over a time axis.
- the banknote becomes first during 170 ⁇ s irradiated with the dark field light source 6.
- a time gap of about 30 microseconds provided to ensure that the reading of the detector before the next Radiation is completed.
- the irradiation of the second area of the banknote 1 by means of the radiation source 5 also takes place for a period of 170 ⁇ s, as shown in graph c. This is followed by a readout of the the detector 7 in the bright field detected transmitted radiation for more 170 ⁇ s followed by another safety window of 30 ⁇ s. After that a next first area of the banknote is again in the dark field measured, as indicated in curve a. A complete measuring cycle lasts thus e.g. 740 ⁇ s.
- the above-described timing is particularly advantageous because he the Using cheaper detectors 7 allows, during the readout time have enough time to discharge themselves, so they are ready for detection the transmitted radiation of the next banknote area be available again. With more complex systems would be self-evident a simultaneous detection, reading and adding the detected transmitted radiation possible, so that the necessary period of time would be saved to evaluate the detected radiation. In order to Although the test time can be reduced, but the equipment cost is significantly higher.
- banknote 1 For the purposes of the condition check in circulation banknotes has It turned out that with a continuously moving in the measuring plane 2 Banknote 1 and time-sequential brightfield and darkfield measurement a sufficient resolution is achieved when the banknote at the one shown in Figure 4 e.g. 740 ⁇ s lasting cycle over a transport distance of 2 mm is moved. It goes without saying that only a resolution of e.g. maximum 2 mm is reached, as in the case of defects underneath scale either the brightfield measurement or the dark field measurement does not provide a unique value based on the presence of banknote material.
- holes, cracks, missing parts, Dog-ears and the like which are within the resolution range of the device, reliably recognize each by the dark field of the first Banknote area and measured in the bright field of the second banknote area Transmission radiation values are compared. Lies the value measured in the bright field exceeds a predetermined limit, the either on thin unprinted paper or on a defect in the paper indicates by comparison with the value measured in the dark field the second area found that it is actually a defect if the dark field measurement is close to zero has resulted. If the dark field measurement, however, give a value which is relatively high, then this is a sign that actually thin unprinted paper was present in the measuring plane.
- the evaluation of the values measured in bright field and dark field can immediately after reading the measured values, so that by means of a Comparison of these values immediately a statement about defects is possible.
- the read measured values can also be cached initially and be evaluated after the banknote has been checked. In addition to the detection of defects can then simultaneously a comparison of authenticity with reference data of standard banknotes stored in an EEPROM occur.
- one of the light sources preferably the light source of the dark field measurement, radiation in the IR wavelength range sending out.
- This can be used to recognize print images that printed with IR ink.
- Such colors can be at the same time Impermeability in lighting with red light both permeable and be absorbing for IR light, so that the evaluation of the detected transmitted IR radiation, a conclusion on the authenticity of the bill allows.
- the other of the two radiation sources can instead of IR radiation a Radiation in the visible wavelength range, e.g. pure red light, radiate. By evaluating the detected transmitted red radiation is a Conclusion on the printed image and on the denomination possible.
- remission sensor 13 can be based on the light reflected from the irradiated banknote area 12 the color fastness, the printed image and the IR reflection properties of banknote 1 to verify. In an evaluation unit, the measured reflection values compared with reference values of standard banknotes.
- Figure 2e provides procedurally the advantages of in the figures 2c and 2d illustrated basic embodiments and also allows one of the two radiation sources to be visible Forming light emitting radiation source.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Paper (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Prüfen von Wertpapieren, insbesondere von Banknoten, sowie eine Vorrichtung zur Durchführung des Verfahrens mit einer Meßebene, einer Einrichtung zum translatorischen Bewegen eines Wertpapiers in der Meßebene, mindestens einer Strahlungsquelle zum Bestrahlen eines ersten und eines zweiten Bereichs der Meßebene und einem Detektor, der bezüglich einer Strahlungsquelle im Dunkelfeld angeordnet ist, zum Detektieren der von einem Wertpapier im ersten bestrahlten Bereich der Meßebene diffus transmittierten Strahlung.The invention relates to a method for checking securities, in particular of banknotes, as well as an apparatus for carrying out the method with a measuring plane, a device for translational movement a security in the measurement plane, at least one radiation source for irradiating a first and a second area of the measuring plane and a detector arranged in the dark field with respect to a radiation source is, to detect the one irradiated by a security in the first Area of the measurement plane diffused transmitted radiation.
Es sind zahlreiche Verfahren und Vorrichtungen zur Prüfung von Wertpapieren bekannt. Die Prüfung kann sich einerseits auf sogenannte Echtheitsmerkmale der Wertpapiere und andererseits auf den Zustand der Wertpapiere richten. Insbesondere letztere Prüfung findet in Zusammenhang mit gebrauchten Banknoten Anwendung, da diese infolge ihres dauernden Gebrauchs größerem Verschleiß unterliegen. Je nach Art und Umfang des Verschleißes werden die Banknoten eingezogen und durch neu ausgegebene Banknoten ersetzt. Merkmale, die zur Beurteilung des Zustands von Banknoten herangezogen werden, sind z.B. Löcher, Risse, Fehlteile, Eselsohren, Verschmutzung und Flecken der Banknoten. Demgegenüber können die Banknoten hinsichtlich ihrer Echtheit z.B. auf IR-transmittierende oder - absorbierende Farbaufdrucke, Abmessungen wie Länge und Breite, Farbechtheit, Druckbild, Opazität und dergleichen geprüft werden. Manche Vorrichtungen sehen auch eine kombinierte Prüfung von Zustands- und Echtheitsmerkmalen vor.There are numerous methods and devices for auditing securities known. On the one hand, the test can be based on so-called authenticity features of the securities and, on the other hand, the condition of the securities judge. In particular, the latter test is related to used banknotes application, as these due to their continuous use subject to greater wear. Depending on the type and extent of wear the banknotes are confiscated and reissued Banknotes replaced. Characteristics used to assess the condition of banknotes are used, e.g. Holes, cracks, missing parts, dog-ears, pollution and stains of banknotes. In contrast, the banknotes in terms of their authenticity, e.g. on IR-transmitting or - absorbent color imprints, dimensions such as length and width, color fastness, Print image, opacity and the like are checked. Some devices also see a combined test of state and authenticity features in front.
Aus der, GB-A-2 107 911 ist eine Vorrichtung zur Prüfung von Banknoten bekannt, mit der allein die Echtheit.einer Banknote sowohl anhand eines optischen Tests betreffend die Farbreflexion und IR-Opazität als auch anhand eines Längentests bewertet wird. Dazu wird die Banknote entlang einer Meßebene bewegt und entlang drei Linien gescannt, um die IR-Opazität und Farbreflexion zu ermitteln, Die Opazitätsmessung erfolgt durch Bestrahlen der Banknote mit Licht im Infrarot-Wellenlängenbereich und Detektieren der durch die Banknote transmittierten IR-Strahlung mittels einem "im Hellfeld" angeordneten Detektor. Hellfeld-Messung bedeutet, daß der Detektor direkt von der Strahlung der Strahlungsquelle erreicht wird, wenn keine Banknote vorhanden ist, und im Falle, daß eine Banknote in der Meßebene liegt, erfaßt er die direkt von der Strahlungsquelle durch die Banknote transmittierte Strahlung (Hellfeld-Messung). Zur Messung der Farbreflexion wird zusätzlich eine Strahlung im sichtbaren Wellenlängenbereich auf die Oberfläche der Banknote gerichtet, und die von der Banknotenoberfläche reflektierte Strahlung wird mit einem Remissionssensor erfaßt. Die erfaßten Transmissions- und Reflexionsstrahlungen werden mit Referenzwerten verglichen, um die Echtheit der Banknote zu prüfen. Die Prüfung der Länge der Banknote erfolgt ebenfalls mittels der IR-Strahlungsquelle, indem mit dieser die Führungskante der Banknote beim Zuführen der Banknote zur Meßstation festgestellt wird, während das Ende der Banknote durch einen zweiten Sensor ermittelt wird. Eine Zustandsprüfung der Banknote erfolgt jedoch nicht.From GB-A-2 107 911 there is an apparatus for checking banknotes known, with the only the authenticity of a banknote both by means of an optical Tests concerning color reflection and IR opacity as well as by a length test is evaluated. For this, the banknote along a Measurement plane moved and scanned along three lines to IR opacity and Determine color reflection, The opacity measurement is carried out by irradiation the banknote with light in the infrared wavelength range and detecting the transmitted by the banknote IR radiation by means of a "in the bright field" arranged detector. Bright field measurement means that the detector is direct is reached by the radiation of the radiation source, if no banknote is present, and in the event that a banknote is in the measurement plane detected he who transmitted directly from the radiation source through the banknote Radiation (bright field measurement). To measure the color reflection is additional a radiation in the visible wavelength range on the surface the banknote, and the one reflected from the banknote surface Radiation is detected by a reflectance sensor. The recorded transmission and reflection radiations are compared with reference values to to check the authenticity of the banknote. Checking the length of the banknote also takes place by means of the IR radiation source by using this the leading edge the bank note found when feeding the bill to the measuring station while the end of the bill is through a second sensor is determined. However, a condition check of the banknote does not take place.
Aus der DE-A-196 04 856 ist eine Vorrichtung und ein Verfahren zur Prüfung optischer Sicherheitsmerkmale mit metallisch reflektierenden Schichten, wie Hologrammen und dergleichen, auf ihre exakte Positionierung in der Banknote, ihre Randausprägung (Ausfransungen der Kontour) und ihre Vollständigkeit (Löcher, Fehlteile) bekannt. Damit wird der Zustand dieser Sicherheitsmerkmale von zum Beispiel aus dem Umlauf zur Bank zurückkehrenden Banknoten geprüft. Die Zustandsprüfung dieser metallischen Sicherheitsmerkmale erfolgt im Durchlicht, ähnlich der zuvor beschriebenen Opazitätsprüfung. Jedoch hat sich eine Hellfeld-Messung, wie sie zuvor beschrieben wurde, als ungeeignet herausgestellt, da eine gegenüberliegende Anordnung von Strahlungsquelle und Detektor ein meßtechnisch nachteiliges Übersteuern des Detektors durch direkten Strahlungseinfall in den Zwischenräumen zwischen den aufeinanderfolgenden Banknoten zur Folge haben würde. Den gleichen Effekt würden auch Löcher im Meßgut haben. Dementsprechend wird in der DE-A-196 04 856 eine Dunkelfeld-Messung vorgeschlagen. Bei der Dunkelfeld-Messung wird der Detektor so zur Strahlungsquelle ausgerichtet, daß er keine direkte Strahlung von der Strahlungsquelle empfängt wenn keine Banknote vorhanden ist sondern ihn im wesentlichen nur die Strahlung der Strahlungsquelle erreicht, wenn eine Banknote vorhanden ist, wobei die durch die Banknote transmittierte Strahlung detektiert wird. Dementsprechend ist der Detektor bezüglich der Transportebene der Banknote so angeordnet, daß das neben der Metallschicht oder durch deren Beschädigung (Löcher, Abrieb im Bereich von Falten) durch das Banknotenpapier hindurchtretende Licht nur insoweit gemessen wird, als es von dem Papier gestreut wird. Mit diesem Verfahren lassen sich allerdings keine Löcher oder sonstigen Fehlstellen des Papiers sondern nur der metallischen Beschichtung bestimmen. Im übrigen ist die Dunkelfeld-Messung nicht zur Bestimmung einer Fehlstelle im Papier selbst geeignet, da der Detektor z.B. im Falle eines Lochs nicht eindeutig feststellen kann, ob es sich um eine besonders opake und daher lichtundurchlässige Stelle der Banknote oder eben um ein Loch in der Banknote handelt, denn in beiden Fällen würde der im Dunkelfeld angeordnete Detektor keine Strahlung empfangen.From DE-A-196 04 856 is an apparatus and a method for testing optical security features with metallically reflecting layers, like holograms and the like, to their exact positioning in the banknote, its margins (fissures of the contour) and their Completeness (holes, missing parts) known. This will change the state of this Security features of, for example, returning from circulation to the bank Banknotes checked. The condition test of this metallic Security features in transmitted light, similar to those described above Opacity testing. However, a bright field measurement has been described previously was found to be unsuitable as an opposite one Arrangement of radiation source and detector a metrologically disadvantageous Oversteer of the detector due to direct radiation in the gaps between successive banknotes would. The same effect would have holes in the material to be measured. Accordingly, in DE-A-196 04 856 a dark field measurement proposed. In the dark field measurement, the detector becomes so Radiation source aligned so that it does not receive direct radiation from the Radiation source receives if there is no banknote but him essentially only reaches the radiation of the radiation source when a Banknote is present, wherein the transmitted through the banknote radiation is detected. Accordingly, the detector is related to the Transport plane of the banknote arranged so that in addition to the metal layer or by their damage (holes, abrasion in the area of folds) light passing through the banknote paper is only measured to that extent becomes as it is scattered by the paper. With this procedure let However, no holes or other imperfections of the paper but only determine the metallic coating. Otherwise, the dark field measurement not suitable for determining a defect in the paper itself, since the detector e.g. in case of a hole can not be determined clearly can, whether it is a particularly opaque and therefore opaque Place the banknote or just a hole in the banknote, because in In both cases, the detector located in the dark field would not emit radiation receive.
Aus der EP 0 537 513 A1 ist ein verbessertes Echtheitsprüfgerät für Banknoten beschrieben, mit dem sogar besonders gute Fälschungen zu erkennen sein sollen. Das Gerät ist entsprechend aufwendig und es wird vorgeschlagen, einerseits Dunkelfeld-Messungen sowohl mit IR-Strahlung als auch mit Rotlicht und andererseits Remissionsmessungen sowohl bezüglich der Reflexion von rot eingestrahltem Licht als auch bezüglich der Reflexion von grün eingestrahltem Licht durchzufahren. Die Qualität der Echtheitsprüfung wird somit durch die Durchführung mehrerer unabhängiger Echtheitsprüfungen erhöht. Eine Zustandsprüfung der Banknote wird mit diesem Gerät nicht durchgeführt.EP 0 537 513 A1 discloses an improved authenticity testing device for banknotes described, with even the most good fakes to recognize should be. The device is correspondingly expensive and it is proposed on the one hand dark field measurements with both IR radiation and with Red light and on the other hand reflectance measurements both in terms of reflection red light radiated as well as with respect to the reflection of green light to pass through. The quality of the authenticity check Thus, by conducting multiple independent authenticity checks elevated. A condition check of the banknote is done with this device not done.
Aus der DE-PS 20 37 755 ist eine Vorrichtung zum Prüfen von Wertscheinen bekannt, mit der die Echtheit von Banknoten zuverlässig geprüft werden kann, die fluoreszierende Fasern enthalten. Dazu wird die Banknote einseitig mit einer die Fluoreszenzstoffe anregenden Strahlung bestrahlt und die daraufhin von der Banknote ausgehende Fluoreszenzstrahlung wird beidseitig der Banknote detektiert. Die Detektoren für die Fluoreszenzstrahlung sind bezüglich der Anregungsstrahlungsquelle im Dunkelfeld angeordnet, damit ein weiterer Detektor auf der der Anregungsstrahlungsquelle gegenüberliegenden Seite der Banknote im Hellfeld angeordnet werden kann. Der im Hellfeld angeordnete Detektor ist zur Erkennung des Zustands des Wertpapiers bestimmt, indem anhand der Opazität des Papiers eine zu geringe Papierdichte, Klebstellen, Risse, ungenaue Nahtstellen, fehlerhafte Wasserzeichen und fehlende Sicherheitsfäden erkannt werden. Es besteht aber auch hier das Problem, daß der direkte Lichteinfall auf den im Hellfeld angeordneten Detektor zu einem Übersteuern des Detektors führen kann. Insbesondere läßt diese Detektoranordnung die Unterscheidung zwischen lichtdurchlässigerem, z.B. dünnem oder unbedrucktem, Papier und Löchern nicht zuverlässig zu.From DE-PS 20 37 755 is a device for checking banknotes known, with the authenticity of banknotes are reliably tested may contain fluorescent fibers. For this, the banknote becomes one-sided irradiated with a fluorescence exciting radiation and then Fluorescent radiation emanating from the banknote becomes bilateral the banknote detected. The detectors for the fluorescence radiation are arranged with respect to the excitation radiation source in the dark field, so another detector on the opposite of the excitation radiation source Side of the banknote in bright field can be arranged. The im Bright field detector is used to detect the condition of the security determined by a too low paper density, based on the opacity of the paper, Splices, cracks, inaccurate seams, faulty watermarks and missing security threads are detected. It also exists Here the problem that the direct light incident on the arranged in the bright field Detector can lead to overdriving the detector. Especially this detector arrangement makes the distinction between more translucent, e.g. thin or unprinted, paper and holes not reliable to.
Die vorgenannten Vorrichtungen sind zur Zustandsprüfung von Wertpapieren entweder völlig ungeeignet, weil sie nur die Echtheitsprüfung betreffen, oder nur bedingt geeignet, weil Löcher, Risse, Fehlteile, Eselsohren und dergleichen nicht zuverlässig bestimmt werden können. Bei der Dunkelfeld-Messung stellt sich das Problem, daß der Detektor sowohl bei der Detektierung einer Fehlstelle als auch bei der Detektierung eines stark opaken Bereiches keinen Meßwert ermittelt, so daß eine Unterscheidung zwischen Loch und starker Opazität nicht möglich ist. Bei der Hellfeld-Messung führt die Detektierung eines Lochs zu einer Übersteuerung des Detektors oder zumindest zu einem hohen Meßwert, der nicht zuverlässig von einem ebenfalls hohen Meßwert eines sehr schwach opaken Bereichs der Banknote unterschieden werden kann.The aforesaid devices are for condition checking of securities either completely unsuitable because they only affect the authenticity test, or only conditionally suitable, because holes, cracks, missing parts, dog - ears and The like can not be reliably determined. In the dark field measurement the problem arises that the detector both in the detection a defect as well as in the detection of a highly opaque area no measured value is determined, so that a distinction between hole and strong opacity is not possible. In the bright field measurement leads the Detecting a hole to override the detector or at least to a high reading that is not reliable from one too high reading of a very weakly opaque area of the banknote can be.
Aus diesem Grund wird für die Bestimmung von Fehlstellen in Banknoten üblicherweise ein separater Lochdetektor, der zumeist als Ultraschallsensor ausgeführt ist, eingesetzt. Dieser zusätzliche Lochdetektor ist aber mit zusätzlichen Kosten verbunden, die nicht in jedem Falle zu vertreten sind. So wäre für den Einsatz in kleineren Banken, Wechselstuben, Spielbanken und dergleichen häufig ein Gerät zur Prüfung von Banknoten ausreichend, mit dem der Zustand der Banknoten und gegebenenfalls einfach prüfbare Echtheitsmerkmale feststellbar sind.For this reason is used for the determination of defects in banknotes usually a separate hole detector, usually as an ultrasonic sensor is executed, used. This additional hole detector is but with additional Costs that are not always accountable. So would be for use in smaller banks, bureaux de change, casinos and Such a device is often sufficient for checking banknotes, with the state of the banknotes and possibly easily verifiable authenticity features are detectable.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung zum Prüfen von Wertpapieren vorzuschlagen, mit denen eine zuverlässige Erkennung von Fehlstellen in Banknoten auf preiswerte Weise möglich ist.Object of the present invention is therefore to provide a method and a To propose a device for checking securities, with which a reliable detection of defects in banknotes in a cost-effective manner is possible.
Die Aufgabe wird gelöst durch ein Verfahren und eine Vorrichtung gemäß
den nebengeordneten Ansprüchen 1, 16, 21 und 24.The object is achieved by a method and a device according to
the
Gemäß der Erfindung wird die Opazität einer Banknote sowohl im Hellfeld als auch im Dunkelfeld gemessen, und die ermittelten Meßwerte werden miteinander verglichen. Da weder die Hellfeld-Messung noch die Dunkel feld-Messung jeweils für sich alleine genommen eine zuverlässige Aussage über eine Fehlstelle der Banknote zuläßt, sieht die erfindungsgemäße Lösung einen Vergleich der beiden Meßwerte vor, um zu erkennen, ob es sich um eine Fehlstelle oder um einen gering opaken bzw. stark opaken Bereich der Banknote handelt. Wenn nämlich ein gering opaker Bereich der Banknote detektiert wird, dann gibt zwar die Hellfeld-Messung keinen aussagekräftigen Wert an, aber die Dunkelfeld-Messung ist eindeutig. Wenn dagegen ein stark opaker Bereich der Banknote detektiert wird, gibt zwar die Dunkelfeld-Messung keinen aussagekräftigen Wert an, aber die Hellfeld-Messung ist eindeutig.According to the invention, the opacity of a bill is both in the bright field and measured in the dark field, and the measured values are compared to each other. Because neither the brightfield measurement nor the dark field measurement taken alone a reliable statement allows a defect of the bill, see the solution of the invention a comparison of the two measured values before to see if it is a defect or a low opaque or heavily opaque area of Banknote is trading. If namely a slightly opaque area of the banknote is detected, then the bright field measurement gives no meaningful Value, but the dark field measurement is unique. If against a strongly opaque area of the bank note is detected, although the dark field measurement is not a meaningful value, but the bright field measurement is clearly.
Dieses Prinzip stellt insbesondere deswegen eine vergleichsweise preiswerte Lösung dar, weil das zum Prüfen der Opazität von Banknoten üblicherweise verwendete Transmissionsmeßverfahren (Hellfeld oder Dunkelfeld) nicht mit einem zusätzlichen Ultraschallsensor als Lochdetektor ausgerüstet werden muß, sondern stattdessen eine weitere Transmissionsmessung (Dunkelfeld bzw. Hellfeld) erfolgt, so daß zum Beispiel eine besondere Auswerteeinheit für den Ultraschallsensor eingespart werden kann. Aufgrund der Duplizität mehrerer Bauteile ist ein solches Prüfgerät wesentlich preiswerter als Massenartikel herzustellen.This principle is therefore a comparatively inexpensive Solution because that is usually used to check the opacity of banknotes used Transmissionsmeßverfahren (bright field or dark field) not be equipped with an additional ultrasonic sensor as a hole detector must, but instead another transmission measurement (Dark field or bright field) takes place, so that, for example, a special evaluation can be saved for the ultrasonic sensor. by virtue of the duplicity of several components, such a tester is much cheaper to produce as a mass-produced article.
Das Prüfergebnis wird um so exakter je besser das Auflösungsvermögen ist, d.h. je geringer die Abstände zwischen den detektierten Banknotenbereichen sind und je höher der Überlappungsgrad der im Hellfeld gemessenen und der im Dunkelfeld gemessenen Banknotenbereiche ist. Ein optimales Ergebnis wird erreicht, wenn die im Hellfeld gemessenen Banknotenbereiche und die im Dunkelfeld gemessenen Banknotenbereiche identisch übereinstimmen und in möglichst kleinen Schritten die gesamte Banknote geprüft wird. Das Verfahren kann aber wesentlich beschleunigt werden, wenn benachbarte Banknotenbereiche abwechselnd im Hellfeld und im Dunkelfeld gemessen werden. Damit können allerdings nur Fehlstellen der Banknote zuverlässig detektiert werden, die so groß sind, daß sie sowohl von der Hellfeld-Messung als auch von der Dunkelfeld-Messung erfaßt werden.The test result is the more accurate the better the resolution is, i.e. the smaller the distances between the detected banknote areas are and the higher the degree of overlap measured in the bright field and is the banknote areas measured in the dark field. An optimal result is reached when the banknote areas measured in the bright field and the banknote areas measured in the dark field coincide identically and check the entire banknote in as small a step as possible. The However, procedure can be significantly accelerated if adjacent Banknote areas measured alternately in the brightfield and the darkfield become. However, only flaws of the banknote can be reliably are detected so large that they are both from the bright field measurement as well as the dark field measurement.
Dieses Prinzip läßt sich verfahrens- und vorrichtungstechnisch in verschiedener Weise realisieren. So kann sowohl für die Hellfeld-Messung als auch für die Dunkelfeld-Messung jeweils eine Strahlungsquelle und jeweils ein Detektor eingesetzt werden. Eine Kostenreduzierung läßt sich aber erreichen, wenn statt eines Detektors und einer Strahlungsquelle jeweils für die Hellfeld-Messung und für die Dunkelfeld-Messung, d.h. statt zweier Detektoren und zweier Strahlungsquellen, entweder nur eine gemeinsame Strahlungsquelle mit zwei Detektoren oder nur ein gemeinsamer Detektor mit zwei Strahlungsquellen eingesetzt werden.This principle can be procedural and device technology in various Realize way. Thus, both for the bright field measurement as well for the dark field measurement one radiation source and one each Detector can be used. A cost reduction can be achieved, however if instead of a detector and a radiation source respectively for the Bright field measurement and for the dark field measurement, i. instead of two detectors and two radiation sources, either only a common radiation source with two detectors or just a common detector with two radiation sources are used.
Im Falle des Einsatzes einer gemeinsamen Strahlungsquelle mit zwei Detektoren bestehen zwei Möglichkeiten: entweder bestrahlt die Strahlungsquelle zwei getrennte Bereiche der Meßebene wobei der erste Detektor im Dunkelfeld des einen bestrahlten Bereichs und der zweite Detektor im Hellfeld des anderen bestrahlten Bereichs angeordnet sind oder die Strahlungsquelle bestrahlt nur einen Bereich der Meßebene, wobei der erste Detektor im Dunkelfeld und der zweite Detektor im Hellfeld dieses bestrahlten Bereichs angeordnet sind.In the case of using a common radiation source with two detectors There are two possibilities: either irradiate the radiation source two separate areas of the measurement plane with the first detector in the dark field one irradiated area and the second detector in the bright field of other irradiated area are arranged or irradiated the radiation source only one area of the measurement plane, with the first detector in the dark field and the second detector is arranged in the bright field of this irradiated area are.
Im Falle, daß ein gemeinsamer Detektor mit zwei Strahlungsquellen eingesetzt wird, bestehen ebenfalls zwei Möglichkeiten, indem die beiden Strahlungsquellen entweder zwei verschiedene Bereiche der Meßebene oder aber denselben Bereich der Meßebene bestrahlen können, wobei in beiden Fällen die Strahlungsquellen so anzuordnen sind, daß der gemeinsame Detektor bezüglich der ersten Strahlungsquelle im Dunkelfeld und bezüglich der zweiten Strahlungsquelle im Hellfeld liegt. Außerdem ist es bei der Ausführung mit einem gemeinsamen Detektor erforderlich, daß die Hellfeld- und die Dunkelfeld-Messung zeitlich voneinander getrennt durchgeführt werden. Dies kann durch entsprechendes Ansteuern der Strahlungsquellen erreicht werden oder im Falle, daß zwei verschiedene Bereiche der Banknote bestrahlt werden, durch Abdunkeln des Detektors gegenüber jeweils einem bestimmten Bereich oder durch jeweiliges Ausrichten des Detektors auf einen bestimmten Bereich. Verfahrenstechnisch am günstigsten ist das separate Ansteuern der ersten und der zweiten Strahlungsquelle.In the case that a common detector is used with two radiation sources There are also two options for using the two radiation sources either two different areas of the measurement plane or else can irradiate the same area of the measuring plane, in both cases the radiation sources are to be arranged so that the common detector with respect to the first radiation source in the dark field and with respect to the second radiation source is in the bright field. Besides, it is in the execution with a common detector required that the brightfield and the dark field measurement are performed separated from each other in time. This can be achieved by appropriate activation of the radiation sources or in the event that two different areas of the banknote be irradiated, by darkening the detector against each one certain area or by respectively aligning the detector to a certain area. Technically the cheapest is the separate Driving the first and the second radiation source.
Eine besondere Ausführungsform der Erfindung sieht vor, daß mindestens eine Strahlungsquelle als IR-Strahlungsquelle ausgebildet ist. Dies ermöglicht eine gleichzeitige Prüfung der Banknote auf IR-Durchlässigkeit, denn viele Banknoten sind mit speziellen Farben bedruckt, die entweder IR-Strahlung absorbieren oder, was häufiger der Fall ist, IR-strahlungsdurchlässig sind.A particular embodiment of the invention provides that at least a radiation source is designed as an IR radiation source. this makes possible a simultaneous examination of the banknote on IR permeability, because Many banknotes are printed with special colors, which are either IR radiation absorb or, as is more often the case, IR radiation transmissive are.
Die Ausführungsform mit zwei separaten Strahlungsquellen bietet desweiteren die Möglichkeit einer zusätzlichen Remissionsmessung, indem mit einem Remissionsempfänger auf der Seite der Strahlungsquellen das Druckbild einer Banknote anhand des von der Banknote reflektierten Lichts geprüft werden kann. Weitere Vorteile und Eigenschaften der erfindungsgemäßen Lösung werden durch die nachfolgende Beschreibung und die Bezugnahme auf die Figuren deutlich.The embodiment with two separate radiation sources also offers the possibility of an additional remission measurement by using a Remission receiver on the side of the radiation sources the printed image a banknote on the basis of the reflected light from the banknote can be. Further advantages and properties of the invention Solution are given by the following description and reference clearly on the figures.
Figur 1 zeigt eine bevorzugte Ausführungsform einer erfindungsgemäßen Vorrichtung als Prinzipskizze. FIG. 1 shows a preferred embodiment of a device according to the invention Device as a schematic diagram.
Figuren 2a bis 2e zeigen fünf verschiedene Ausführungsformen der Erfindung als Prinzipskizzen.Figures 2a to 2e show five different embodiments of the invention as schematic sketches.
Figur 3 zeigt einen Querschnitt der Vorrichtung nach Figur 1 entlang III-III.Figure 3 shows a cross section of the device of Figure 1 along III-III.
Figur 4 zeigt ein Taktschema zur Detektierung einer Banknote und Auswertung der detektierten Ergebnisse.FIG. 4 shows a timing diagram for the detection of a banknote and evaluation the detected results.
In Figuren 1 und 3 ist schematisch eine bevorzugte Ausführungsform der
vorliegenden Erfindung dargestellt, wobei Figur 3 einen Querschnitt entlang
der Linie III-III der in Figur 1 dargestellten Vorrichtung zeigt. Eine Banknote
1 wird entlang einer Meßebene 2 zwischen einem oberen Fenster 3 und einem
unteren Fenster 4 bewegt. Unterhalb des Fensters 4 sind zwei LED Zeilen
mit LEDs 5 und 6 so angeordnet, daß jede LED die Meßebene in einem
definierten Bereich bestrahlt. Die Strahlungsgänge der LEDs 5 und 6 sind mit
gestrichelten Linien angedeutet. Oberhalb des Fensters 3 ist eine Zeile von
Detektoren 7 so angeordnet, daß jeder Detektor 7 im direkten Strahlungsbereich
der LEDs 5 liegt. Die Detektoren 7 liegen somit in Bezug auf die LEDs 5
im Hellfeld. In Bezug auf die LEDs 6 ist die Anordnung der Detektoren 7 so
gewählt, daß die Detektoren nicht direkt von den LEDs 6 bestrahlt werden.
Die Detektoren 7 liegen somit bezüglich den LEDs 6 im Dunkelfeld. Die Detektoren
7 sind dabei so ausgerichtet, daß sie jeweils die von den gegenüberliegenden
LEDs 5 und 6 bestrahlten definierten Bereiche auf der Banknote
erfassen. D.h., ein Detektor 7 erfaßt einerseits die im Hellfeld durch eine
Banknote 1 transmittierte Strahlung der direkt gegenüberliegenden LEDs 5
und andererseits die im Dunkelfeld durch die Banknote transmittierte
Strahlung der schräg gegenüberliegenden LEDs 6. In Figures 1 and 3 is schematically a preferred embodiment of
3 shows a cross section along
the line III-III of the device shown in Figure 1 shows. A
Bevor die transmittierte Strahlung den Detektor erreicht, kann sie mittels
eines einfachen Strahlungskollimators 10 fokussiert werden. Ein einfaches
Selfoc-Array kann dazu ausreichen. Die Erfindung ist aber auch ohne jegliche
Fokussierung der transmittierten Strahlung ausführbar, wenn die
transmittierte Strahlung des zu prüfenden Bereichs durch Kanalisierung auf
den Detektor gerichtet wird.Before the transmitted radiation reaches the detector, it can by means of
a
Eine Auswerteeinheit 20 ist an den Detektor 7 angeschlossen, um die detektierten
Strahlungswerte auszuwerten und durch Vergleich der Werte aus der
Hellfeld-Messung mit den Werten aus der Dunkelfeld-Messung zu ermitteln,
ob der detektierte Bereich der Banknote gegebenenfalls eine Fehlstelle wie
ein Loch, einen Riß, etc. aufweist.An
Dadurch daß die LED-Zeilen und die Detektorzeile die gesamte Breite einer
zu detektierenden Banknote erfassen und dadurch daß die Banknote zwischen
den LED-Zeilen und der Detektorzeile entlang der Meßebene 2 bewegt
wird, kann nacheinander die gesamte Banknote auf Fehlstellen geprüft werden.
Der Vergleich von Hell- und Dunkelfeld-Messungen läßt dabei die Erkennung
der Außenkonturen einer Banknote zu, so daß Länge und Breite
von Banknoten relativ genau bestimmt werden können.The fact that the LED lines and the detector line the entire width of a
to capture the bill to be detected and thereby that the bill between
the LED lines and the detector line along the
Das Auflösungsvermögen hängt selbstverständlich von der Anzahl der Messungen
über die Breite und über die Länge der Banknote ab. Dies wird besonders
deutlich in Figur 3, in der die Strahlungsgänge der LEDs 5 und die
Detektionsbereiche der Detektoren 7 mit gestrichelten Linien dargestellt
sind. Die in der Meßebene 2 befindliche Banknote 1 unterbricht dabei nur
den Lichtweg der dritten (von links) bis vorletzten Leuchtdiode 5. Die Auswertung
der von den ersten und zweiten (von links) und dem letzten Detektor
7 gelieferten Hellfeld- und Dunkelfeld-Meßwerte wird daher über die
gesamte Länge der geprüften Banknote zu dem Ergebnis "Fehlstelle" führen,
woraus geschlossen werden kann, daß die Außenkanten der Banknote im
Bereich des dritten sowie vorletzten Detektors liegt. Abweichend von der
Darstellung in Figur 3 werden vorzugsweise 60 Detektoren als Detektorzeile
über die Breite angeordnet, wobei jeder Detektor zwei sensitive Pixel aufweisen
kann. Die Detektorzeile kann zwischen den Detektoren und Pixeln
Lücken aufweisen, so daß dadurch Detektoren eingespart werden können.
Dies wirkt sich jedoch auf die Auflösungsfähigkeit der Gesamtvorrichtung
aus. Eine Auflösung von 1 mm quer zur Transportrichtung kann jedoch für
einfache Zwecke ausreichend sein.The resolution, of course, depends on the number of measurements
over the width and over the length of the banknote. This will be special
clearly in Figure 3, in which the radiation paths of the
Beispielsweise können die beiden äußeren der 60 Detektoren neben dem eigentlichen Meßbereich für die Banknotenprüfung angeordnet werden. Diese können dann z.B. zur Bildung eines Referenzwertes für die Helligkeit der von den LEDs ausgesendeten Strahlung verwendet werden.For example, the two outer of the 60 detectors in addition to the actual Measuring range can be arranged for the banknote examination. These can then be e.g. to form a reference value for the brightness of be used by the LEDs emitted radiation.
Vorzugsweise strahlen die LEDs mindestens einer LED-Zeile IR-Licht aus,
um Echtheitsmerkmale, nämlich das Vorhandensein von IR-transmittierenden
oder IR-absorbierenden Aufdrucken nachweisen zu können.
Da IR-absorbierende Druckfarben seltener verwendet werden als IR-transmittierende
Farben, werden bevorzugterweise die LEDs 6, d.h. die
Strahlungsquelle für die Dunkelfeld-Beleuchtung, als IR-Strahlungsquelle
gewählt. Dadurch wird die Wahrscheinlichkeit geringer, daß ein stark IR-absorbierendes
Druckbild als Fehlstelle bewertet wird.Preferably, the LEDs emit at least one row of LEDs IR light,
to authenticity features, namely the presence of IR-transmitting
or IR-absorbing imprints.
Because IR-absorbing inks are used less frequently than IR-transmitting inks
Colors, are preferably the
Vorteilhafterweise strahlt die zweite LED-Zeile, hier also die LEDs 5, Licht
im sichtbaren Wellenlängenbereich aus. Über eine Remissionsmessung der
von der Oberfläche einer Banknote reflektierten Strahlung 12 kann mittels
eines Remissionssensors 13 zusätzlich noch das Druckbild und/oder die
Stückelung der Banknote erkannt werden. Vorzugsweise werden dazu Rotlicht-LEDs
eingesetzt.Advantageously, the second LED row, in this case the
In den Figuren 2a bis 2e sind prinzipielle Ausführungsformen der zuvor an
einer besonders bevorzugten Ausführungsform beschriebenen Erfindung
dargestellt. Figur 2b zeigt die in Bezug auf Figur 1 bereits beschriebene besonders
bevorzugte Ausführungsform, bei der zwei Lichtquellen 5 und 6
einen gemeinsamen, definierten Bereich der Meßebene 2 beleuchten, denen
ein einziger auf der gegenüberliegenden Seite der Meßebene 2 angeordneter
Detektor 7 zugeordnet ist, mit dem sowohl die im Hellfeld transmittierte
Strahlung der Rotlicht-Strahlungsquelle 5 als auch die im Dunkelfeld transmittierte
IR-Strahlung der Strahlungsquelle 6 erfaßt wird.In the figures 2a to 2e are principal embodiments of the above
a particularly preferred embodiment described invention
shown. Figure 2b shows the already described with reference to Figure 1 particularly
preferred embodiment, wherein the two
Figur 2a zeigt einen ähnlichen Aufbau wie Fig. 2b mit zwei Strahlungsquellen
5 und 6 und einem gemeinsamen Detektor 7, wobei jedoch die Strahlungsquelle
6 einen ersten Bereich der Meßebene und die Strahlungsquelle 5
einen zweiten Bereich der Meßebene 2 beleuchtet und der Detektor die im
Hellfeld transmittierte Strahlung der Strahlungsquelle 5 und die im Dunkelfeld
transmittierte Strahlung der Strahlungsquelle 6 erfaßt. Der erste und der
zweite bestrahlte Bereich der Meßebene können grundsätzlich auch überlappend
sein.FIG. 2 a shows a structure similar to that of FIG. 2 b with two
Die in den Figuren 2a und 2b dargestellten Ausführungformen setzen wegen
der Verwendung nur eines einzigen Detektors voraus, daß der Detektor 7
die im Hellfeld transmittierte Strahlung und die im Dunkelfeld transmittierte
Strahlung unabhängig voneinander, d.h. zeitlich versetzt, erfaßt, damit
anhand der separat erfaßten Hellfeld- und Dunkelfeld-Meßwerte ein Vergleich
in der Auswerteeinheit 20 zur Feststellung von Fehlstellen der Banknoten
durchgeführt werden kann. Das zeitlich versetzte Detektieren wird
vorzugsweise durch zeitlich versetztes Bestrahlen der ersten und zweiten
Bereiche erreicht. Es ist aber grundsätzlich auch möglich, daß der Detektor
zeitweise gegenüber dem ersten und zeitweise gegenüber dem zweiten Bereich
abgeschirmt wird. Außerdem ist denkbar, daß der Detektor zeitweise
nur auf den ersten und zeitweise nur auf den zweiten Bereich gerichtet wird.The embodiments shown in Figures 2a and 2b set because
the use of only a single detector that the detector. 7
the radiation transmitted in the bright field and that transmitted in the dark field
Radiation independently, i. offset in time, grasped, with it
Based on the separately recorded bright field and dark field measured values a comparison
in the
Ein besonderer Vorteil besteht in der Verwendung zweier verschiedener Strahlungsarten, beispielsweise können sich die Strahlungsquellen im Farbspektrum unterscheiden, z.B. IR-Strahlung und sichtbares Licht aussenden.A particular advantage is the use of two different Radiation types, for example, the radiation sources in the color spectrum differ, e.g. Emit IR radiation and visible light.
In den Figuren 2c und 2d sind Ausführungsformen mit einer Umkehrung
des zuvor beschriebenen Prinzips dargestellt. Statt zweier Strahlungsquellen
und einem gemeinsamen Detektor sehen diese Ausführungsformen eine
gemeinsame Strahlungsquelle und zwei Detektoren vor. In Figur 2c beleuchtet
die Strahlungsquelle 6 einen definierten Bereich der Meßebene 2, auf die
sowohl ein im Dunkelfeld angeordneter Detektor 7 als auch ein im Hellfeld
angeordneter Detektor 8 gerichtet sind. In Figur 2d werden dagegen zwei
unterschiedliche Bereiche der Meßebene 2 von der Strahlungsquelle 6 beleuchtet,
indem z.B. die restliche Strahlung der Strahlungsquelle 6 durch eine
Blende 9 abgeschirmt wird. Der Detektor 7 ist bezüglich dem ersten bestrahlten
Bereich im Dunkelfeld angeordnet, während der Detektor 8 bezüglich
dem zweiten bestrahlten Bereich im Hellfeld angeordnet ist.In Figures 2c and 2d are embodiments with a reversal
of the previously described principle. Instead of two radiation sources
and a common detector, these embodiments see a
common radiation source and two detectors before. Illuminated in Figure 2c
the radiation source 6 a defined area of the measuring
Der Vorteil der Anordnungen nach Figuren 2c und 2d mit zwei Detektoren ist darin zu sehen, daß die Hellfeld-Messung und die Dunkelfeld-Messung zeitgleich durchgeführt werden können. Allerdings ist die Verwendung von Strahlungen unterschiedlicher Wellenlängen wie nach den Anordnungen aus Fig. 2a und 2b nicht möglich. The advantage of the arrangements according to FIGS. 2c and 2d with two detectors is to be seen in that the bright field measurement and the dark field measurement can be carried out at the same time. However, the use of Radiations of different wavelengths as according to the arrangements Fig. 2a and 2b not possible.
Für eine einfache Auswertung ist es vorteilhaft, wenn nur ein Bereich der
Meßebene 2 beleuchtet wird, wie in Figuren 2b und 2c dargestellt, da in diesem
Falle die Auswertung der Meßergebnisse der Hellfeld-Messung und der
Dunkelfeld-Messung korrespondierender Bereiche unmittelbar erfolgen
kann.For a simple evaluation, it is advantageous if only one area of the
In Figur 2e ist eine weitere aber aufwendigere und daher weniger interessante
Ausführungsform der vorliegenden Erfindung dargestellt, bei der ein erster
Detektor 7 im Dunkelfeld einer ersten Strahlungsquelle 6 und ein zweiter
Detektor 8 im Hellfeld einer zweiten Strahlungsquelle 5 angeordnet sind.
Diese Ausführungsform ist zwar aufwendiger als die zuvor beschriebenen,
bietet aber die Vorteile, die die Verwendung von zwei Strahlungsquellen
und zwei Detektoren hat, nämlich zeitgleiches Messen im Hell- und Dunkelfeld
und Verwendung unterschiedlicher Wellenlängen.In Figure 2e is another but more complex and therefore less interesting
Embodiment of the present invention shown in which a
Das erfindungsgemäße Verfahren wird nachfolgend beschrieben. Bezugnehmend
auf Figur 1 wird eine Banknote 1 entlang der Meßebene 2 zwischen
den beiden Fenstern 3 und 4 einem Meßbereich zugeführt, das ist der
Bereich, der mit den Detektoren 7 erfaßt wird. Jeder Detektor 7 definiert seinen
eigenen Meßbereich. Die Führungskante einer Banknote wird sodann
mittels einer der beiden Strahlungsquellen ermittelt und zwar vorzugsweise
durch Dunkelfeld-Messung mittels der Strahlungsquelle 6, da der Randbereich
von Banknoten üblicherweise nicht vollständig opak ist, so daß eine
Ermittlung der Führungskante der Banknote mittels der Dunkelfeld-Messung
zuverlässig möglich ist. Die Strahlungsquelle 5 ist währenddessen
ausgeschaltet oder abgeschirmt, um das Meßergebnis der Dunkelfeld-Messung
nicht zu beeinflussen. The process according to the invention will be described below. Referring
on figure 1, a
Die durch die Banknote 1 in einem ersten Bereich transmittierte Strahlung
der Dunkelfeld-Strahlungsquelle 6 wird von dem Detektor 7 erfaßt. Nach
Ablauf einer vorbestimmten Erfassungszeit wird die detektierte Strahlung
von einer Auswerteeinheit ausgelesen. Während des Auslesens ist der Detektor
7 für den Empfang weiterer Strahlung unzugänglich, indem z.B. die
Strahlungsquelle 6 ausgeschaltet oder abgeschirmt wird.The radiation transmitted by the
Nach dem Auslesen der von der Strahlungsquelle 6 durch die Banknote 1 im
ersten Bereich transmittierten Strahlung wird die Banknote in einem zweiten
Bereich mittels der Strahlungsquelle 5 beleuchtet, während die Strahlungsquelle
6 abgeschirmt oder vorzugsweise ausgeschaltet ist. Erster und zweiter
Bereich der Banknote können im Extremfall identisch sein, können sich aber
auch überlappen - z.B. jeweils zu 50% - oder vollständig nebeneinander liegen.
Die dabei durch die Banknote im zweiten Bereich transmittierte Strahlung
wird von dem Detektor 7 erfaßt. Dann wird die von dem Detektor 7 im
zweiten Bereich erfaßte transmittierte Strahlung ausgelesen. Dieser Vorgang
wiederholt sich, bis die gesamte Banknote Bereich für Bereich detektiert
worden ist.After reading the from the
Der von der Strahlungsquelle 5 bestrahlte zweite Bereich der Banknote liegt
bei der in Figur 1 dargestellten Ausführungsform in demselben Bereich der
Meßebene 2, der auch von der Strahlungsquelle 6 beleuchtet wurde. Das bedeutet
jedoch nicht, daß auch die bestrahlten Bereiche der Banknote identisch
sind. Nur im Falle einer entsprechend getakteten Vorschubbewegung
der Banknote 1 innerhalb der Meßebene 2 fallen die von der Strahlungsquelle
5 bestrahlten Banknotenbereiche mit den zuvor von der Strahlungsquelle 6
bestrahlten Banknotenbereichen identisch zusammen. So kann z.B. die Bewegung
der Banknote jeweils zweistufig erfolgen, wobei die Banknote nur
zwischen den Hellfeld- und Dunkelfeld-Messungen bewegt wird und die
gemessene Strahlung jeweils während des Banknotenvorschubs ausgelesen
wird.The second area of the banknote irradiated by the
Bei einer kontinuierlichen Vorschubbewegung der Banknote 1 dagegen ist
der von der Strahlungsquelle 5 bestrahlte zweite Bereich der Banknote 1
leicht versetzt zu dem von der Strahlungsquelle 6 beleuchteten ersten Banknotenbereich.
Dies hängt mit der zeitlichen Abfolge der Bestrahlung und der
Bewegung der Banknote zusammen. Je nach Transportgeschwindigkeit einer
kontinuierlich bewegten Banknote und zeitlicher Steuerung der Bestrahlung
mittels den Strahlungsquellen 5 und 6 können die von der Strahlungsquelle
6 beleuchteten ersten Bereiche und die von der Strahlungsquelle 5 beleuchteten
zweiten Bereiche der Banknote 1 somit mehr oder weniger überlappen
oder sogar nebeneinander liegen. Je weiter die ersten und zweiten bestrahlten
Banknotenbereiche auseinanderliegen, desto geringer wird die Auflösung
der Prüfvorrichtung und desto größer sind die Fehlstellen der Banknote,
die gerade noch mit der Prüfvorrichtung erkennbar sind.In a continuous feed movement of the
In Figur 4 ist beispielsweise ein zeitlicher Ablauf der Bestrahlung der Banknote
1 mit den Strahlungsquellen 5 und 6 sowie die dazwischenliegende Zeit
zum Auslesen der detektierten Strahlung über einer zeitlichen Achse dargestellt.
Gemäß der obersten Kurve a wird die Banknote zunächst während 170
µs mit der Dunkelfeld-Lichtquelle 6 bestrahlt. Nach der Bestrahlung erfolgt
ein Auslesen der vom Detektor 7 im ersten Bereich detektierten transmittierten
Strahlung für eine Zeitdauer von ebenfalls 170 µs, wie in Graph b dargestellt.
Nach Abschluß des Auslesevorgangs ist vor der Bestrahlung eines
zweiten Bereichs der Banknote 1 eine zeitliche Lücke von etwa 30 µs vorgesehen,
um sicherzustellen, daß das Auslesen des Detektors vor dem erneuten
Bestrahlen abgeschlossen ist. Das Bestrahlen des zweiten Bereichs der Banknote
1 mittels der Strahlungsquelle 5 erfolgt ebenfalls für eine Zeitdauer von
170 µs, wie in Graph c dargestellt. Daran schließt sich ein Auslesen der von
dem Detektor 7 im Hellfeld detektierten transmittierten Strahlung für weitere
170 µs an, gefolgt von einem weiteren Sicherheitsfenster von 30 µs. Danach
wird ein nächster erster Bereich der Banknote wieder im Dunkelfeld
gemessen, wie in Kurve a angedeutet. Ein vollständiger Meßzyklus dauert
somit z.B. 740 µs.In FIG. 4, for example, a chronological sequence of the irradiation of the banknote is shown
1 with the
Der vorbeschriebene zeitliche Ablauf ist besonders vorteilhaft, weil er die
Verwendung preiswerter Detektoren 7 ermöglicht, die während der Auslesezeit
ausreichend Zeit haben, sich zu entladen, so daß sie für die Detektierung
der transmittierten Strahlung des nächstfolgenden Banknotenbereichs
wieder zur Verfügung stehen. Mit aufwendigeren Systemen wäre selbstverständlich
ein gleichzeitiges Detektieren, Auslesen und Aufsummieren der
detektierten transmittierten Strahlung möglich, so daß die notwendige Zeitspanne
zur Auswertung der detektierten Strahlung eingespart würde. Damit
läßt sich die Prüfzeit zwar vermindern, der apparative Aufwand wird jedoch
wesentlich höher.The above-described timing is particularly advantageous because he the
Using
Für die Zwecke der Zustandsprüfung im Umlauf befindlicher Banknoten hat
sich herausgestellt, daß mit einer kontinuierlich in der Meßebene 2 bewegten
Banknote 1 und zeitlich aufeinanderfolgender Hellfeld- und Dunkelfeld-Messung
eine ausreichende Auflösung erzielt wird, wenn die Banknote bei
dem in Figur 4 dargestellten z.B. 740 µs andauernden Gesamtzyklus über
einen Transportweg von 2 mm bewegt wird. Es versteht sich, daß dabei nur
eine Auflösung von z.B. maximal 2 mm erreicht wird, da im Falle von Fehlstellen
mit darunterliegendem Ausmaß entweder die Hellfeld-Messung oder
die Dunkelfeld-Messung keinen eindeutigen Wert liefert, der auf das Vorhandensein
von Banknotenmaterial schließen läßt. For the purposes of the condition check in circulation banknotes has
It turned out that with a continuously moving in the measuring
Mit dem erfindungsgemäßen Verfahren lassen sich Löcher, Risse, Fehlteile, Eselsohren und dergleichen, die im Auflösungsbereich der Vorrichtung liegen, zuverlässig erkennen, indem die jeweils im Dunkelfeld des ersten Banknotenbereichs und im Hellfeld des zweiten Banknotenbereichs gemessenen Transmissionsstrahlungswerte miteinander verglichen werden. Liegt der im Hellfeld gemessene Wert über einem vorgegebenen Grenzwert, der entweder auf dünnes unbedrucktes Papier oder auf eine Fehlstelle im Papier hinweist, so wird durch Vergleich mit dem im Dunkelfeld gemessenen Wert des zweiten Bereichs festgestellt, daß es sich tatsächlich um eine Fehlstelle handelt, wenn die Dunkelfeld-Messung einen nahe bei Null liegenden Meßwert ergeben hat. Wenn die Dunkelfeld-Messung dagegen einen Wert ergeben hat, der relativ hoch liegt, dann ist dies ein Zeichen dafür, daß tatsächlich dünnes unbedrucktes Papier in der Meßebene vorhanden war.With the method according to the invention, holes, cracks, missing parts, Dog-ears and the like, which are within the resolution range of the device, reliably recognize each by the dark field of the first Banknote area and measured in the bright field of the second banknote area Transmission radiation values are compared. Lies the value measured in the bright field exceeds a predetermined limit, the either on thin unprinted paper or on a defect in the paper indicates by comparison with the value measured in the dark field the second area found that it is actually a defect if the dark field measurement is close to zero has resulted. If the dark field measurement, however, give a value which is relatively high, then this is a sign that actually thin unprinted paper was present in the measuring plane.
Die Auswertung der im Hellfeld und Dunkelfeld gemessenen Werte kann unmittelbar nach dem Auslesen der Meßwerte erfolgen, so daß anhand eines Vergleichs dieser Werte sofort eine Aussage über Fehlstellen möglich ist. Die ausgelesenen Meßwerte können aber auch zunächst zwischengespeichert werden und nach Abschluß der Prüfung der Banknote ausgewertet werden. Neben der Feststellung von Fehlstellen kann dann gleichzeitig ein Echtheitsvergleich mit in einem EEPROM gespeicherten Referenzdaten von Normbanknoten stattfinden.The evaluation of the values measured in bright field and dark field can immediately after reading the measured values, so that by means of a Comparison of these values immediately a statement about defects is possible. The read measured values can also be cached initially and be evaluated after the banknote has been checked. In addition to the detection of defects can then simultaneously a comparison of authenticity with reference data of standard banknotes stored in an EEPROM occur.
Für eine solche zusätzliche Echtheitserkennung sieht das erfindungsgemäße Verfahren als weitere Ausgestaltung vor, daß eine der Lichtquellen, vorzugweise die Lichtquelle der Dunkelfeld-Messung, Strahlung im IR-Wellenlängenbereich aussendet. Damit lassen sich Druckbilder erkennen, die mit IR-Druckfarbe bedruckt sind. Solche Farben können bei gleichzeitiger Undurchlässigkeit bei Beleuchtung mit Rotlicht sowohl durchlässig als auch absorbierend für IR-Licht sein, so daß die Auswertung der detektierten transmittierten IR-Strahlung einen Rückschluß auf die Echtheit der Banknote zuläßt. Die andere der beiden Strahlungsquellen kann statt IR-Strahlung eine Strahlung im sichtbaren Wellenlängenbereich, z.B. reines Rotlicht, ausstrahlen. Durch Auswertung der detektierten transmittierten Rot-Strahlung ist ein Rückschluß auf das Druckbild und auf die Stückelung möglich. Anhand der Stückelung kann wiederum auf die Längen- und Breitenabmessungen der Banknote zurückgeschlossen werden, so daß neben der IR-Druckbildprüfung über die mit dem erfindungsgemäßen Verfahren ermittelten Abmessungen der Banknote ein weiterer Echtheitstest durchführbar ist, nämlich die Prüfung, ob die Abmessungen der geprüften Banknote zu der detektierten Stückelung passen.For such an additional authenticity recognition sees the inventive Method as a further embodiment, that one of the light sources, preferably the light source of the dark field measurement, radiation in the IR wavelength range sending out. This can be used to recognize print images that printed with IR ink. Such colors can be at the same time Impermeability in lighting with red light both permeable and be absorbing for IR light, so that the evaluation of the detected transmitted IR radiation, a conclusion on the authenticity of the bill allows. The other of the two radiation sources can instead of IR radiation a Radiation in the visible wavelength range, e.g. pure red light, radiate. By evaluating the detected transmitted red radiation is a Conclusion on the printed image and on the denomination possible. Based on Denomination can turn on the length and width dimensions of Banknote be closed, so that in addition to the IR print image check determined by the method according to the invention Dimensions of the banknote another authenticity test is feasible namely, the examination of whether the dimensions of the banknote examined correspond to the detected denominations fit.
Mittels eines zusätzlich vorgesehenen Remissionssensor 13 läßt sich anhand
des von dem bestrahlten Banknotenbereich reflektierten Lichts 12 die Farbechtheit,
das Druckbild und die IR-Reflektionseigenschaften der Banknote 1
überprüfen. In einer Auswerteeinheit werden die gemessenen Reflexionswerte
mit Referenzwerten von Normbanknoten verglichen.By means of an additionally provided
Die vorbeschriebene Verfahrensweise ist sowohl in der prinzipiellen Ausgestaltung
nach Figur 1 bzw. 2b als auch nach der Ausgestaltung gemäß Figur
2a durchführbar. Das vorbeschriebene Verfahren ist in entsprechender Weise
auch mit den in den Figuren 2c und 2d dargestellten Ausführungsformen
der erfindungsgemäßen Vorrichtung durchführbar, wobei diese den Vorteil
bieten, daß aufgrund der Verwendung zweier Detektoren 7 und 8 eine
gleichzeitige Auswertung der Dunkelfeld-Messung und der Hellfeld-Messung
möglich ist. Damit läßt sich die Prüfgeschwindigkeit verdoppeln,
da zum Detektieren der im Hell- und Dunkelfeld transmittierten Strahlung
und zum Auslesen der detektierten transmittierten Strahlung jeweils nur ein
Zeitabschnitt erforderlich ist, so daß der Gesamtzyklus 370 µs beträgt, inklusive
eines Sicherheitsfensters von 30 µs. Allerdings weist diese Ausführungsform
den Nachteil auf, daß nur eine Strahlung verwendet werden
kann.The above-described procedure is both in the basic embodiment
according to Figure 1 or 2b and according to the embodiment of FIG
2a feasible. The method described above is similar
also with the embodiments shown in Figures 2c and 2d
the device according to the invention feasible, this having the advantage
offer that due to the use of two
Die Ausführungsform nach Figur 2e bietet verfahrensmäßig die Vorteile der in den Figuren 2c und 2d dargestellten prinzipiellen Ausführungsformen und gestattet es außerdem, eine der beiden Strahlungsquellen als sichtbares Licht aussendende Strahlungsquelle auszubilden.The embodiment of Figure 2e provides procedurally the advantages of in the figures 2c and 2d illustrated basic embodiments and also allows one of the two radiation sources to be visible Forming light emitting radiation source.
Claims (24)
- A method for testing a paper of value (1), in particular a bank note, comprising the steps ofa) irradiating a paper of value (1) located in a measuring plane (2) in first and second areas, the second area being identical, in overlap or adjacent with the first area,b) detecting the radiation transmitted through the paper of value in the bright field in the second area by means of a detector located in the direct radiation range of the radiation source,c) detecting the radiation transmitted through the paper of value in the dark field in the first area by means of a detector located outside the direct radiation path of the radiation source,d) repeating steps a) to c) with respect to other first and second areas of the paper of value,e) evaluating the transmitted radiation detected in the first and second areas,
characterized by the following step:f) comparing the evaluation results of the particular detected first and second areas with each other for ascertaining whether paper-of-value material is present in said areas. - A method according to claim 1, characterized in that detection and evaluation of the radiation transmitted in the dark field are effected separately in time and detection and evaluation of the radiation transmitted in the bright field are likewise effected separately in time.
- A method according to claim 1 or 2, characterized in that the paper of value is moved translationally over a predetermined distance in the measuring plane for the total duration of detection and evaluation of the radiation transmitted in the dark field and that transmitted in the bright field.
- A method according to claim 3, characterized in that the distance is about 2 mm.
- A method according to claim 3 or 4, characterized in that the translational motion of the paper of value is continuous.
- A method according to claim 3 or 4, characterized in that the translational motion of the paper of value is effected after irradiation of the areas.
- A method according to claim 6, characterized in that evaluation of the detected radiation is effected during the translational motion of the paper of value.
- A method according to any of claims 1 to 7, characterized in that irradiation of the first area of the paper of value is effected with a first radiation source (6) and irradiation of the second area of the paper of value with a second radiation source (5).
- A method according to claim 8, characterized in that detection of the radiation of the first irradiated area transmitted in the dark field and the radiation of the second irradiated area transmitted in the bright field is effected with a time shift by means of a common detector (7).
- A method according to claim 9, characterized in that the second radiation source (5) is directed onto the detector (7) directly and the first radiation source (6) is aligned obliquely thereto so as to irradiate the paper of value (1) at the intersection point of the measuring plane (2) with the connecting line between the detector (7) and the second radiation source (5).
- A method according to any of claims 8 to 10, characterized in that at least one of the two radiation sources (5, 6) is an IR light source.
- A method according to any of claims 8 to 11, characterized in that at least one of the two radiation sources (5, 6) emits visible light, the light reflected by the paper of value (1) being detected and compared with a reference value.
- A method according to any of claims 1 to 7, characterized in that detection of the radiation transmitted in the first area is effected with a first detector (7) and detection of the radiation transmitted in the second irradiated area with a second detector (8).
- A method according to claim 13, characterized in that irradiation of the first and second areas of the paper of value is effected by means of a common radiation source (6), the detection of the radiation transmitted through the paper of value in the first area and the radiation transmitted through the paper of value in the second area being effected substantially synchronously.
- A method according to claim 14, characterized in that the second detector (8) is directed onto the radiation source (6) directly and the first detector (7) is aligned obliquely thereto so as to detect the paper of value at the intersection point of the measuring plane (2) with the connecting line between the second detector (8) and the radiation source (6).
- An apparatus for carrying out the method according to any of claims 1 to 15, comprisinga measuring plane (2),a device for translationally moving a paper of value (1) in the measuring plane,a first radiation source (6) for irradiating the paper of value located in the measuring plane in a first area,a second radiation source (5) for irradiating the paper of value located in the measuring plane in a second area, the second area being identical, in overlap or adjacent with the first area, anda detector (7) disposed in the direct radiation range for detecting the radiation transmitted from the second radiation source (5) through the paper of value in the second irradiated area of the measuring plane (2) in the bright field,the arrangement of the detector (7) outside the direct radiation output of the first radiation source (6) for detecting the radiation transmitted through the paper of value in the first irradiated area of the measuring plane (2) in the dark field,an evaluation unit (20) for evaluating the transmitted radiation detected in the first and second areas and for comparing the evaluation results with each other.
- An apparatus according to claim 16, characterized by a control device for time-shifted detection of the first and second irradiated areas of the measuring plane (2).
- An apparatus according to claim 17, characterized in that the second radiation source (5) is directed onto the common detector (7) directly and the first radiation source (6) is aligned obliquely thereto so as to irradiate the measuring plane (2) at the intersection point of the measuring plane (2) with the connecting line between the common detector (7) and the second radiation source (5).
- An apparatus according to any of claims 16 to 18, characterized in that one of the two radiation sources (5, 6) is an IR light source.
- An apparatus according to claim 19, characterized in that the other of the two radiation sources (5, 6) emits visible light, and the apparatus furthermore has a reflectance sensor (13) for detecting light reflected by a paper of value (1) located in the measuring plane (2), and an evaluation unit (20) is provided for evaluating the detected reflected light and comparing the evaluation result with a reference value.
- An apparatus for carrying out the method according to any of claims 1 to 15, comprisinga measuring plane (2),a device for translationally moving a paper of value (1) in the measuring plane,a radiation source (6) for irradiating the paper of value located in the measuring plane in a first area and in a second area, the second area being identical, in overlap or adjacent with the first area,a second detector (8) disposed in the direct radiation range for detecting the radiation transmitted from the radiation source (6) through the paper of value in the second irradiated area of the measuring plane (2) in the bright field,a first detector (7) disposed outside the direct radiation output for detecting the radiation transmitted through the paper of value in the first irradiated area of the measuring plane (2) in the dark field,an evaluation unit (20) for evaluating the transmitted radiation detected in the first and second areas and for comparing the evaluation results with each other.
- An apparatus according to claim 21, characterized in that a control device is provided for contemporaneous detection or irradiation of the radiation transmitted in the first irradiated area and the radiation transmitted in the second irradiated area.
- An apparatus according to claim 22, characterized in that the second detector (8) is directed onto the radiation source (6) directly and the first detector (7) is aligned obliquely thereto so as to detect the measuring plane (2) at the intersection point of the measuring plane (2) with the connecting line between the second detector (8) and the radiation source (6).
- An apparatus for carrying out the method according to any of claims 1 to 15, comprisinga measuring plane (2),a device for translationally moving a paper of value (1) in the measuring plane,a first radiation source (6) for irradiating the paper of value located in the measuring plane in a first area,a second radiation source (5) for irradiating the paper of value located in the measuring plane in a second area, the second area being identical, in overlap or adjacent with the first area,a second detector (8) disposed in the direct radiation range for detecting the radiation transmitted from the second radiation source (5) through the paper of value in the second irradiated area of the measuring plane (2) in the bright field,a first detector (7) disposed outside the direct radiation output for detecting the radiation transmitted through the paper of value in the first irradiated area of the measuring plane (2) in the dark field,an evaluation unit (20) for evaluating the transmitted radiation detected in the first and second areas and for comparing the evaluation results with each other.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19840482 | 1998-09-04 | ||
DE19840482A DE19840482A1 (en) | 1998-09-04 | 1998-09-04 | Method and device for checking securities |
PCT/EP1999/006027 WO2000014689A1 (en) | 1998-09-04 | 1999-08-17 | Method and device for controlling paper documents of value |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1112555A1 EP1112555A1 (en) | 2001-07-04 |
EP1112555B1 true EP1112555B1 (en) | 2005-06-08 |
Family
ID=7879878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99944422A Expired - Lifetime EP1112555B1 (en) | 1998-09-04 | 1999-08-17 | Method and device for controlling the state of securities using a dark-field and a bright-field measurement. |
Country Status (6)
Country | Link |
---|---|
US (1) | US6744050B1 (en) |
EP (1) | EP1112555B1 (en) |
AT (1) | ATE297576T1 (en) |
AU (1) | AU5736399A (en) |
DE (2) | DE19840482A1 (en) |
WO (1) | WO2000014689A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2602030B1 (en) | 2011-12-06 | 2015-03-04 | Pellenc Selective Technologies (Societe Anonyme) | Method and facility for inspecting and/or sorting, combining surface analysis and volume analysis |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0001561D0 (en) | 2000-01-24 | 2000-03-15 | Rue De Int Ltd | Document momitoring system and method |
DE10019428C1 (en) * | 2000-04-19 | 2002-01-24 | Giesecke & Devrient Gmbh | Illumination unit for banknote testing device, has light intensity of laser light source reduced by using optical fibre light guide for increasing light output surface area |
US6766045B2 (en) * | 2002-03-11 | 2004-07-20 | Digital Verification Ltd. | Currency verification |
DE10309104A1 (en) * | 2002-04-26 | 2003-12-04 | Giesecke & Devrient Gmbh | Bank note condition checking device for identifying tears in the edge areas of bank notes with plastic substrates uses an integrated conveyor system with drive belts and sensors |
DE10243051A1 (en) | 2002-09-17 | 2004-03-25 | Giesecke & Devrient Gmbh | Banknotes testing and verification procedure, involves separately detecting the intensities of transmitted and reflected light |
EP1429297A1 (en) * | 2002-12-13 | 2004-06-16 | Mars, Inc. | Apparatus for classifying banknotes |
EP1429296A1 (en) * | 2002-12-13 | 2004-06-16 | Mars, Inc. | Apparatus for classifying banknotes |
JP4188111B2 (en) * | 2003-03-13 | 2008-11-26 | 日立オムロンターミナルソリューションズ株式会社 | Paper sheet authenticity discrimination device |
DE10323409A1 (en) | 2003-05-23 | 2004-12-09 | Giesecke & Devrient Gmbh | Device for checking banknotes |
US7411603B2 (en) * | 2005-03-29 | 2008-08-12 | Hewlett-Packard Development Company, L.P. | Light guide |
US7584890B2 (en) * | 2006-06-23 | 2009-09-08 | Global Payment Technologies, Inc. | Validator linear array |
AT503961B1 (en) * | 2006-07-04 | 2008-02-15 | Arc Seibersdorf Res Gmbh | Testing objects, especially banknotes or secure documents, avoiding interference from visible printing, relies on marking reflecting non-visible wavelength |
EP2057609B2 (en) † | 2006-08-18 | 2013-11-27 | De La Rue International Limited | Method and apparatus for raised material detection |
DE102016011417A1 (en) * | 2016-09-22 | 2018-03-22 | Giesecke+Devrient Currency Technology Gmbh | Method and device for detecting color deterioration on a value document, in particular a banknote, and value-document processing system |
US10113973B2 (en) * | 2017-01-20 | 2018-10-30 | Microsoft Technology Licensing, Llc | Infrared ink print testing for manufacturing |
US10296800B2 (en) * | 2017-04-26 | 2019-05-21 | Ncr Corporation | Media validation processing |
CN110658201B (en) * | 2019-09-30 | 2021-06-22 | 苏州精濑光电有限公司 | Optical detection mechanism of diaphragm |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2037755C3 (en) * | 1970-07-30 | 1979-08-30 | National Rejectors Inc. Gmbh, 2150 Buxtehude | Device for checking notes of value |
DE2824849C2 (en) * | 1978-06-06 | 1982-12-16 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | Method and device for determining the condition and / or the authenticity of sheet material |
AU556102B2 (en) * | 1981-10-22 | 1986-10-23 | Cubic Western Data | Currency note validator |
NL8202920A (en) * | 1982-07-20 | 1984-02-16 | Tno | APPARATUS FOR RECOGNIZING AND EXAMINING LEAF ARTICLES SUCH AS BANKNOTES OR THE LIKE. |
NO893323D0 (en) | 1989-08-18 | 1989-08-18 | Inter Marketing Oy | OPTICAL AUTHENTICITY TESTING OF BANKNOTES AND LIKE. |
ES2103330T3 (en) * | 1991-10-14 | 1997-09-16 | Mars Inc | DEVICE FOR OPTICAL RECOGNITION OF DOCUMENTS. |
IT1250847B (en) | 1991-10-15 | 1995-04-21 | Urmet Spa | BANKNOTE VALIDATION APPARATUS |
AT401829B (en) | 1992-02-25 | 1996-12-27 | Oesterr Nationalbank | METHOD FOR CONDITION, QUALITY OR FIT CONTROL OF OPTICAL SECURITY FEATURES ON SECURITIES, ESPECIALLY BANKNOTES, AND DEVICE FOR IMPLEMENTING THE PROCESS |
US6246471B1 (en) * | 1998-06-08 | 2001-06-12 | Lj Laboratories, Llc | Apparatus and method for measuring optical characteristics of an object |
-
1998
- 1998-09-04 DE DE19840482A patent/DE19840482A1/en not_active Withdrawn
-
1999
- 1999-08-17 AT AT99944422T patent/ATE297576T1/en not_active IP Right Cessation
- 1999-08-17 EP EP99944422A patent/EP1112555B1/en not_active Expired - Lifetime
- 1999-08-17 WO PCT/EP1999/006027 patent/WO2000014689A1/en active IP Right Grant
- 1999-08-17 DE DE59912160T patent/DE59912160D1/en not_active Expired - Lifetime
- 1999-08-17 US US09/786,195 patent/US6744050B1/en not_active Expired - Lifetime
- 1999-08-17 AU AU57363/99A patent/AU5736399A/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2602030B1 (en) | 2011-12-06 | 2015-03-04 | Pellenc Selective Technologies (Societe Anonyme) | Method and facility for inspecting and/or sorting, combining surface analysis and volume analysis |
Also Published As
Publication number | Publication date |
---|---|
WO2000014689A1 (en) | 2000-03-16 |
ATE297576T1 (en) | 2005-06-15 |
DE19840482A1 (en) | 2000-03-09 |
EP1112555A1 (en) | 2001-07-04 |
DE59912160D1 (en) | 2005-07-14 |
AU5736399A (en) | 2000-03-27 |
US6744050B1 (en) | 2004-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1112555B1 (en) | Method and device for controlling the state of securities using a dark-field and a bright-field measurement. | |
DE2824849C2 (en) | Method and device for determining the condition and / or the authenticity of sheet material | |
DE60112890T3 (en) | METHOD OF MONITORING DOCUMENTS | |
DE69726132T2 (en) | SECURITY DOCUMENT EXAMINATION | |
DE3008023A1 (en) | METHOD AND DEVICE FOR DETECTING BOWS WITHOUT A REAL WATERMARK | |
DE19604856A1 (en) | Checking of optical security characteristics esp. of banknotes | |
EP2483872B1 (en) | Method and device for checking the degree of soiling of bank notes | |
DE10234431A1 (en) | Device and method for processing documents of value | |
EP4014210B1 (en) | Method and device for examining value documents | |
DE2320731A1 (en) | FALSE-PROOF SECURITIES AND DEVICE FOR VERIFICATION OF SUCH SECURITIES | |
WO2001061654A2 (en) | Methods and devices for verifying the authenticity of printed objects | |
EP1456819B1 (en) | Methods and devices for verifying the authenticity of sheet-type products | |
DE102018004884A1 (en) | Method and sensor for checking documents | |
EP3400583B1 (en) | Checking the authenticity of value documents | |
EP2559010B1 (en) | Sensor for verifying value documents | |
WO2017118467A1 (en) | Completeness check of a value document | |
EP1927086B1 (en) | Method and device for testing valuable documents | |
DE10139717A1 (en) | Method and device for examining defects in or on sheet material | |
EP4186042B1 (en) | Method and sensor for testing valuable documents | |
WO2006018191A1 (en) | Method and device for measuring sheet-type material | |
DE102022002352A1 (en) | Device and method for testing flat samples | |
DE10233052A1 (en) | Multiple document pull-off detection system for a document, especially banknote or check, processing system, whereby the documents are illuminated in their most sensitive areas and the transmitted radiation measured | |
AT376505B (en) | METHOD FOR CHECKING THE DEGREE OF POLLUTION OF BANKNOTES | |
DE102007030715B4 (en) | Method and device for receiving objects having translucent subareas | |
DE10160580A1 (en) | Method for testing banknote validity using ultraviolet light, whereby banknotes are illuminated with both UV and visible light and the ratio of reflected light determined to negate the effects of dirt on the note surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010404 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20030328 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD AND DEVICE FOR CONTROLLING THE STATE OF SECURITIES USING A DARK-FIELD AND A BRIGHT-FIELD MEASUREMENT. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050608 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050608 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050608 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050608 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050608 |
|
REF | Corresponds to: |
Ref document number: 59912160 Country of ref document: DE Date of ref document: 20050714 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050817 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050908 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050908 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051114 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060309 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060804 |
|
BERE | Be: lapsed |
Owner name: GIESECKE & DEVRIENT G.M.B.H. Effective date: 20050831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080821 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59912160 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150831 Year of fee payment: 17 Ref country code: GB Payment date: 20150824 Year of fee payment: 17 Ref country code: CH Payment date: 20150824 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59912160 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160817 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 |