EP1097454B1 - Monolithically integrated selector for electrically programmable memory cells devices - Google Patents
Monolithically integrated selector for electrically programmable memory cells devices Download PDFInfo
- Publication number
- EP1097454B1 EP1097454B1 EP99926682A EP99926682A EP1097454B1 EP 1097454 B1 EP1097454 B1 EP 1097454B1 EP 99926682 A EP99926682 A EP 99926682A EP 99926682 A EP99926682 A EP 99926682A EP 1097454 B1 EP1097454 B1 EP 1097454B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- output terminal
- selector
- transistors
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015654 memory Effects 0.000 title claims abstract description 13
- 238000005516 engineering process Methods 0.000 claims description 4
- 101100286980 Daucus carota INV2 gene Proteins 0.000 claims description 3
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 description 6
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 101150110971 CIN7 gene Proteins 0.000 description 4
- 101150110298 INV1 gene Proteins 0.000 description 4
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 101100508840 Daucus carota INV3 gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/143—Detection of memory cassette insertion or removal; Continuity checks of supply or ground lines; Detection of supply variations, interruptions or levels ; Switching between alternative supplies
Definitions
- This invention relates generally to high-voltage and low-voltage selection circuits for non-volatile memories, and in particular, is directed to a selector integrated monolithically to a CMOS technology high switching-speed circuit for memories.
- Integrated circuits more and more frequently involve the provision of different voltages for distribution to the circuit interior according to an activated operative phase.
- different voltages are required in semiconductor non-volatile memory (FLASH, EPROM, E 2 PROM) devices for the purpose of biasing wordlines during the different functional phases of the device.
- FLASH semiconductor non-volatile memory
- E 2 PROM semiconductor non-volatile memory
- Vdd is the supply voltage from an external source of the device, and Vpp may either be an externally supplied voltage, or a voltage generated internally from Vdd.
- a wordline bias voltage during a reading phase would exceed the value of the supply voltage Vdd (normally of 3 or 5 Volts) .
- Vdd supply voltage
- the range of viable cell currents must be expanded to at least 100-120 ⁇ A; such current values are only possible, however, where gate voltages in the 5 to 6 Volts range are adopted.
- the wordline of a selected cell must be brought to an analog voltage in the 0 to VPP range for reading in the DMA (Direct Memory Access) mode, as the skilled ones in the art will recognize.
- Integrated circuits thus operated are of necessity to incorporate a selector, which will be controlled by appropriate control signals to take up and distribute a desired voltage each time to the involved blocks.
- LV and HV voltage lines
- the selector is mainly utilized to bias the wordlines.
- the selector will switch the power supply to the decoding final stages, as shown in Figure 1 of the drawings, between the low LV and high HV voltages according to whether an addressed cell is to be read or programmed.
- the most commonly utilized programming technique consists of applying, to the control gate of a selected cell, a high-voltage HV pulse (corresponding to the injection of hot electrons into the floating gate, and therefore, to the cell programming phase), followed by a low-voltage LV pulse during which the programmed state of the cell is "verified” by a read (verify) operation. If the programmed state of the cell matches the desired state, the procedure is stopped; otherwise, the program process is continued with the application of a new high-voltage HV pulse.
- a high-voltage HV pulse corresponding to the injection of hot electrons into the floating gate, and therefore, to the cell programming phase
- a low-voltage LV pulse during which the programmed state of the cell is "verified” by a read (verify) operation. If the programmed state of the cell matches the desired state, the procedure is stopped; otherwise, the program process is continued with the application of a new high-voltage HV pulse.
- the selector output node OUT has a high capacitive load (for example, a load of about 800 pF for 4096 wordlines).
- a high capacitive load for example, a load of about 800 pF for 4096 wordlines.
- internal programming that is a programming implemented through circuit blocks integrated to the device inside.
- one of the advantages of internal rather than external programming is its speed, understood as the durations of the program and verify pulses being short, and short being, accordingly, the overall programming procedure.
- a typical duration can range from a hundred ⁇ s per pulse, for external programming, to one ⁇ s per pulse for internal programming. It can be readily appreciated that, when operating in such a range, the switching and settling times become critical parameters.
- the underlying technical problem of this invention is to provide a monolithically integrated selector for electrically programmable memory cell devices, whereby the operations can be carried out at a faster rate.
- a selector integrated monolithically to a CMOS technology circuit and intended for electrically programmable memory cell devices, according to the invention has first and second terminals for coupling to first HV and second LV voltage generators the voltages generated thereby being higher and lower ones, respectively; an output terminal OUT; a first control terminal program and second control terminal verify for the output OUT connection respectively to the first and second voltage generators.
- circuit means NI, N2 adapted to provide a low-impedance discharge path between the output terminal of the selector and the circuit ground GND, and circuit means P1, N3, N4 of detecting the voltage at the selector output terminal.
- circuit means NI, N2 adapted to provide a low-impedance discharge path between the output terminal of the selector and the circuit ground GND, and circuit means P1, N3, N4 of detecting the voltage at the selector output terminal.
- LV second voltage generator
- PPG phase generator
- the first circuit means of the discharge path comprise first N1 and second N2 n-channel transistors connected together in series, between the ground GND and the selector output terminal OUT.
- the voltage detecting circuit means comprise third N3 and fourth N4 n-channel transistors, and a fifth, p-channel transistor P1, connected together in series, between the ground GND and the selector output terminal OUT.
- the gate terminals of the second and fourth transistors are connected to voltage references, V CASC1 and V CASC2 (that can be, in some case, the same) and the gate terminals of the first, third and fifth transistors are applied signals B, Bdelay derived from the phase generator through first, second and third inverting elements INV1, INV2, INV3, respectively.
- the gate terminal of the first transistor N1 is connected to the first inverting element INV1 and the circuit node ND interconnecting the third N3 and fourth N4 transistors through a first logic gate AND1 of the AND type.
- the third inverting element INV3 is connected to the second voltage LV generator powering it, and this element is the characterizing one of this invention.
- the phase generator PHG comprises, as shown in Figure 4, a second logic gate AND2 of the AND type, whereby it is connected to the circuit node ND and an input terminal for clock signals CK.
- the signals B derived from the phase generator and applied to the first transistor Nl are obtained by the clock signals, and the signals Bdelay applied to the third N3 and fifth Pi transistors have a predetermined delay to the clock signals.
- the second logic gate AND2 has an output terminal coupled to the second connection control terminal verify .
- a logic gate of the NAND type (NAND) has its input terminals coupled to the input terminal of clock signals (CK) and the output terminal of the second logic gate AND2, and has an output terminal coupled to the first connection control terminal program .
- the fast discharge leg N1/N2 and the discharge-stopping control leg N3/N4/P1 are both provided, for improved reliability reasons, with protection structures formed conventionally of cascode stages (the transistors N2 and N4 have their gate electrodes biased to suitable fixed voltages V CASC1 and V CASC2 ). in fact, without such structures, the drain terminals of the transistors N1 and N3 would be biased to the voltage HV throughout the operational phases where it is distributed by the selector. In view of the values taken by the voltage HV (which values may be as high as 12 Volts or more in the application considered), the electrical stress induced on these transistors can damage them.
- the use of suitably dimensioned and biased cascode stages allows the voltage HV to be properly split up between the n-channel transistors, thereby bringing the values of their Vds back within an acceptable range for reliability.
- FIG. 1 is a timing diagram for the signals used in operation of the proposed circuit.
- the external clock CK is held fixedly at 1. Consequently, the control phases B and B ( Figure 2) will be at 0 and HV, respectively. These values cause the transistor P1 to be turned off, the transistor N3 turned on, and hence a low logic value placed on the node ND. This value, once carried over in negated form to the gate AND2, will cause, in combination with the signal B , the ELEVATOR2 input to go high, and result, therefore, in the verify signal being null.
- the control signal program is forced to 1, by means of the NAND gate and the two inverters in cascade.
- the external clock CK exits the logic high state and goes to zero. Responsive to this change, the phases 3 and B go to HV and 0, respectively, and due to the null value of B , the signal verify will change from 0 to HV, thereby terminating the verify period or period of selection of the voltage LV.
- control signal program will retain its state equal to HV until both B and verify go to the high logic level, and only then will it switch from HV over to zero, this occurrence causing the HV voltage to be selected at the selector.
- the node OUT is then quickly charged to the value of HV from its respective generator.
- the high logic value of the control phase Bdelay drives the gates of N3 and P1 to zero through the inverters INV1 and INV2.
- N3 is turned of f and P1 turned on, causing the node ND to be charged to the value of Vout (i.e., of HV).
- control phase Bdelay instead of the standard phase B is justified by the need to avoid spurious configurations of the 1-1 type at one input of the gate AND1 which is driving the transistor N1 (and, accordingly, controlling the fast discharge process).
- the other input of the gate AND1 is driven to zero by the phase 3 through the inverter INV1.
- the configuration of the signals B and Vstop also ensures that it would be turned off. In fact, if during the verify period a low logic value at the output of the gate AND1 has been determined by the voltage Vstop at the node ND, that value will be determined by the control signal B during the program period.
- the external clock CK At the end of the program pulse duration (e.g., 1 ⁇ s) , the external clock CK will terminate the program period by going back to 1. Responsive to this, the signal B will go back to zero, and thus the signal program will go to 1. Then, the control signal verify will no longer change directly on command from the external clock, because the high logic value placed on the node ND is inhibiting the other input of the logic gate AND2 and, hence, any changes at the output thereof.
- the program pulse duration e.g. 1 ⁇ s
- the low logic value taken by the control signal B activates the transistors N1, N3 and generates, on the gate of P1, a voltage equal to LV (notice in this respect that the inverter INV3 is supplied the voltage LV).
- the node OUT begins to discharge quickly through the leg N1-N2 down to a value of LV +
- ( discharge stop threshold).
- Pi is turned off and the node ND relatively quickly discharged to zero through N3.
- the gate AND1 will brine its output to zero, and the transistor N1 be deactivated in consequence (thereby terminating the node OUT quick discharging process).
- the value at which the discharging process is stopped will be smaller than LV +
- An appropriate dimensioning of the transistors N1 and N3 will enable this value to be adjusted to lie as close as possible to that of the voltage LV. It follows that, when the selector causes the next verify phase to start, the generator of LV can be expected to apply a very small amount of adjustment, involving shorter settling times (-100 ns in the case under consideration), even where the output impedance of the LV generator itself is high.
- the circuit implementation of this invention improves performance aver the state of the art, according to the requirements of a multi-level application far which the circuit has been designed.
- the system solves the problem of a long settling time by taking aver in the task of the "coarse" initial discharge of the node Vout (which may be on the order' of several volts), to then effect a "fine” final adjustment (which may be on the order of a few hundreds millivolts) by means of the voltage LV generators
- This operation allows the settling time of Vout to be reduced by one order of magnitude (-100 ns as against approximately 1 ⁇ s which should be provided without the high-speed controlled discharge system).
- the verify period could be reduced, while retaining a safe margin in the respect of all process and operation variations, to less than 500 ns, which is also good for the overall duration of the programming process.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Read Only Memory (AREA)
Abstract
Description
Claims (5)
- A selector integrated monolithically to a CMOS technology circuit for electrically programmable memory cell devices having first and second input terminals for coupling to first (HV) and second (LV) voltage generators, respectively, the voltages from said generators being respectively a higher and a lower one, an output terminal (OUT), and first (
program ) and second (verify ) control terminals for connection said output terminal (OUT) to the first and the second voltage generators respectively, characterized in that it comprises first circuit means (N1,N2) adapted to form a low-impedance discharge path between the output terminal (OUT) of the selector and a circuit ground, and circuit means of detecting the voltage at the output terminal of the selector (P1,N3,N4) which are coupled to the second voltage generator (LV) and adapted to deactivate said first circuit means upon the voltage at the output terminal falling to a predetermined value close to that of the voltage from the second voltage generators and adapted to send a control signal to the second control terminal through a phase generator (PHG) coupled to the first and second control terminals. - A selector according to claim 1, characterized in that the first circuit means comprise first (N1) and second (N2) n-channel transistors connected together in series between ground (GND) and the selector output terminal (OUT), and the voltage-detecting circuit means comprise third (N3) and fourth (N4) n-channel transistors as well as a fifth p-channel transistor (P1), connected together in series between ground (GND) and the selector output terminal (OUT), the control terminals of the second and fourth transistors being connected to voltage references (Vcasc) and the control terminals of the first, third and fifth transistors being applied signals which are derived from the phase generator (B,Bdelay) through respective first, second and third inverting elements (INV1,INV2,INV3), and that the control terminal of the first transistor (N1) is connected to the first inverting element (INV1) and a circuit node (ND) interconnecting the third (N3) and fourth (N4) transistors through a first logic gate of the AND type (AND1), the third inverting element (INV3) being connected to the second voltage generator (LV) providing its power supply.
- A selector according to Claim 2, characterized in that the phase generator (PHG) includes a second logic gate of the AND type (AND2) whereby it is coupled to said circuit node (ND) and a clock signal input terminal (CK).
- A selector according to Claim 3, characterized in that the signals (B) derived from the phase generator and applied to the first transistor (N1) are coincident with the clock signals, and those applied (Bdelay) to the third (N3) and fifth (P1) transistors have a predetermined delay to the clock signals.
- A selector according to Claim 4, characterized in that the second logic gate (AND2) has an output terminal coupled to the second connection control terminal (
verify ), and that it includes a logic gate of the NAND -type (NAND) having its input terminals coupled to the clock signal input terminal (CK) and the output terminal of the second logic gate (AND2) and having an output terminal coupled to the first connection control terminal (program ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99926682A EP1097454B1 (en) | 1998-06-30 | 1999-06-30 | Monolithically integrated selector for electrically programmable memory cells devices |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98830391 | 1998-06-30 | ||
EP98830391 | 1998-06-30 | ||
EP99926682A EP1097454B1 (en) | 1998-06-30 | 1999-06-30 | Monolithically integrated selector for electrically programmable memory cells devices |
PCT/IB1999/001225 WO2000000984A1 (en) | 1998-06-30 | 1999-06-30 | Monolithically integrated selector for electrically programmable memory cells devices |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1097454A1 EP1097454A1 (en) | 2001-05-09 |
EP1097454B1 true EP1097454B1 (en) | 2002-04-10 |
Family
ID=8236699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99926682A Expired - Lifetime EP1097454B1 (en) | 1998-06-30 | 1999-06-30 | Monolithically integrated selector for electrically programmable memory cells devices |
Country Status (6)
Country | Link |
---|---|
US (1) | US6288594B1 (en) |
EP (1) | EP1097454B1 (en) |
JP (1) | JP2002519809A (en) |
CN (1) | CN1252722C (en) |
DE (1) | DE69901259T2 (en) |
WO (1) | WO2000000984A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1447809A1 (en) * | 2003-02-14 | 2004-08-18 | SCHLUMBERGER Systèmes | Card with multiple IC's |
CN101295975B (en) * | 2007-04-24 | 2010-05-19 | 中芯国际集成电路制造(上海)有限公司 | CMOS driving circuit |
DE102008053536B4 (en) | 2008-10-28 | 2011-12-01 | Atmel Automotive Gmbh | Circuit, use and method of operating a circuit |
KR101762443B1 (en) * | 2011-03-24 | 2017-07-27 | 엘지이노텍 주식회사 | A circuit of discharging in input stage of a drive ic |
US9595332B2 (en) * | 2015-06-15 | 2017-03-14 | Cypress Semiconductor Corporation | High speed, high voltage tolerant circuits in flash path |
US9515075B1 (en) | 2015-08-31 | 2016-12-06 | Cypress Semiconductor Corporation | Method for fabricating ferroelectric random-access memory on pre-patterned bottom electrode and oxidation barrier |
CN111522428B (en) * | 2020-07-02 | 2020-10-27 | 南京优存科技有限公司 | Method for adjusting embedded flash memory power supply in microcontroller |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021680A (en) * | 1989-07-31 | 1991-06-04 | Advanced Micro Devices, Inc. | Voltage supply circuit for programming circuits of programmable logic arrays |
US5157280A (en) * | 1991-02-13 | 1992-10-20 | Texas Instruments Incorporated | Switch for selectively coupling a power supply to a power bus |
US5187396A (en) * | 1991-05-22 | 1993-02-16 | Benchmarq Microelectronics, Inc. | Differential comparator powered from signal input terminals for use in power switching applications |
JP2973063B2 (en) * | 1992-10-27 | 1999-11-08 | セイコーインスツルメンツ株式会社 | Switch circuit |
US5534801A (en) * | 1994-01-24 | 1996-07-09 | Advanced Micro Devices, Inc. | Apparatus and method for automatic sense and establishment of 5V and 3.3V operation |
JP3566745B2 (en) * | 1994-01-25 | 2004-09-15 | 新日本製鐵株式会社 | Voltage converter |
US5517153A (en) * | 1995-06-07 | 1996-05-14 | Sgs-Thomson Microelectronics, Inc. | Power supply isolation and switching circuit |
-
1999
- 1999-06-30 US US09/674,395 patent/US6288594B1/en not_active Expired - Lifetime
- 1999-06-30 JP JP2000557477A patent/JP2002519809A/en not_active Withdrawn
- 1999-06-30 CN CNB998054674A patent/CN1252722C/en not_active Expired - Fee Related
- 1999-06-30 DE DE69901259T patent/DE69901259T2/en not_active Expired - Lifetime
- 1999-06-30 WO PCT/IB1999/001225 patent/WO2000000984A1/en active IP Right Grant
- 1999-06-30 EP EP99926682A patent/EP1097454B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002519809A (en) | 2002-07-02 |
DE69901259T2 (en) | 2002-12-05 |
DE69901259D1 (en) | 2002-05-16 |
US6288594B1 (en) | 2001-09-11 |
EP1097454A1 (en) | 2001-05-09 |
CN1252722C (en) | 2006-04-19 |
WO2000000984A1 (en) | 2000-01-06 |
CN1298538A (en) | 2001-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5796293A (en) | Voltage boosting circuits having backup voltage boosting capability | |
US5841827A (en) | Timer circuit with programmable decode circuitry | |
US6023187A (en) | Voltage pump for integrated circuit and operating method thereof | |
KR100299254B1 (en) | Voltage supplies for flash memory | |
US5151614A (en) | Circuit having charge compensation and an operation method of the same | |
US6201731B1 (en) | Electronic memory with disturb prevention function | |
KR20010073605A (en) | High voltage discharge circuit of a semiconductor memory device | |
KR980006526A (en) | Intermediate voltage generator circuit and nonvolatile semiconductor memory having the same | |
US6438032B1 (en) | Non-volatile memory with peak current noise reduction | |
JPH0856149A (en) | Programmable logic array structure for nonvolatile memory ofsemiconductor,especially flash eprom | |
US5903498A (en) | Low-supply-voltage nonvolatile memory device with voltage boosting | |
KR20190103008A (en) | Level shifter and semiconductor device | |
US20010043104A1 (en) | Delay circuit applied to semiconductor memory device having auto power-down function | |
KR19990037644A (en) | On-Chip Programmable Voltage Generator for Antifuse Repair | |
US5274778A (en) | EPROM register providing a full time static output signal | |
EP1097454B1 (en) | Monolithically integrated selector for electrically programmable memory cells devices | |
US6392943B2 (en) | Reading device and method for integrated circuit memory | |
US5696461A (en) | Power-on reset circuit | |
US6069837A (en) | Row decoder circuit for an electronic memory device, particularly for low voltage applications | |
KR0146168B1 (en) | Potential pumping circuit | |
EP0915476B1 (en) | Method and circuit for regulating the length of an ATD pulse signal | |
US20030123299A1 (en) | Protection circuit | |
JPH06309889A (en) | Electrically rewritable nonvolatile memory | |
US6115297A (en) | Semiconductor memory circuit with a control circuit rising cell drain potential slowly | |
KR100317101B1 (en) | Semiconductor circuit with circuitry that supplies voltage higher than the supply voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010528 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69901259 Country of ref document: DE Date of ref document: 20020516 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080614 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080630 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080527 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120627 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69901259 Country of ref document: DE Effective date: 20140101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140101 |