[go: up one dir, main page]

EP1093560B1 - Ring type furnace - Google Patents

Ring type furnace Download PDF

Info

Publication number
EP1093560B1
EP1093560B1 EP99925058A EP99925058A EP1093560B1 EP 1093560 B1 EP1093560 B1 EP 1093560B1 EP 99925058 A EP99925058 A EP 99925058A EP 99925058 A EP99925058 A EP 99925058A EP 1093560 B1 EP1093560 B1 EP 1093560B1
Authority
EP
European Patent Office
Prior art keywords
section
gas flow
cross
flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99925058A
Other languages
German (de)
French (fr)
Other versions
EP1093560A1 (en
Inventor
Jean-Christophe Rotger
Christian Dreyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP1093560A1 publication Critical patent/EP1093560A1/en
Application granted granted Critical
Publication of EP1093560B1 publication Critical patent/EP1093560B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type or of the type in which a segmental kiln moves over a stationary charge
    • F27B13/06Details, accessories or equipment specially adapted for furnaces of this type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type or of the type in which a segmental kiln moves over a stationary charge
    • F27B13/02Furnaces with both stationary charge and progression of heating, e.g. of ring type or of the type in which a segmental kiln moves over a stationary charge of multiple-chamber type with permanent partitions; Combinations of furnaces

Definitions

  • the invention relates to revolving furnace chambers used for cooking blocks carbonaceous, and more particularly open type furnaces.
  • Open type rotating chamber furnaces are well known in themselves and described in particular in patent applications FR 2 600 152 (corresponding to the patent US 4,859,175) and WO 91/19147.
  • a gas flow consisting air and / or combustion gases circulate in the succession of active chambers in the long direction of the oven, in a succession of hollow heating partitions which communicate with each other from one room to another, each room being made up of the juxtaposition in the cross direction of the oven, alternately, of these heating partitions and cells in which the carbon blocks to be cooked are stacked.
  • This gas flow is blown upstream of the active chambers and is sucked downstream of these chambers.
  • a hollow room partition typically takes the form of a rectangular parallelepiped 5 m long (long direction of the oven), 5 m high and 0.5 m wide (across the furnace) or 0.3 m of gas stream and twice 0.1 m wall), subdivided into 4 vertical "wells" thanks to 3 vertical baffles arranged in the cross direction, each well being bounded either by two baffles, or by a baffle and a of the walls of the room, so as to increase the average air path of cooling or combustion gases in said partition and, in addition, to ensure a constant spacing between the longitudinal walls of the partition.
  • spacers are also arranged in the cross direction, in particular between said baffles, to ensure constant spacing between the walls longitudinal of the partition.
  • a constant concern of the manufacturer of baked carbon blocks is - quality constant - to decrease the production costs of these cooked carbon blocks and the costs investment and / or maintenance of the ovens used to manufacture them, particularly in increasing the service life of the refractory elements of the ovens.
  • Another concern is to improve the quality of these cooked carbon blocks, by particular to improve consistency of quality and consistency of performance within from the same carbon block and from one block to another.
  • the applicant has had the idea of modeling the circulation of gaseous fluids in existing oven partitions, knowing the dimensions and locations of the baffles and spacers.
  • the modeling also highlighted the significant pressure drop in the flow gas due to the presence of baffles, which has the double consequence on the one hand increase the energy required to circulate the gas flow in the succession of partitions, and on the other hand to increase the corresponding overpressure or depression in said partitions, which leads to an increase in thermal leaks in a one way or the other (from said partition to the outside or from the outside to said partition), and therefore the energy consumed.
  • the rotary fire oven with open type chambers for cooking carbonaceous blocks comprises, in the long direction X of the furnace, a succession of chambers separated by transverse walls with openings, each of the bedrooms comprising, in the transverse direction Y of the furnace, an alternation of hollow partitions ensuring the circulation of a gaseous flow for heating combustion gases or a gaseous flow cooling air, and cells containing the carbonaceous blocks to be cooked, each said hollow partitions of a chamber being in communication with a partition of a upstream chamber and / or a partition of a downstream chamber, so as to form a duct ensuring the circulation of said gas flow, from upstream to downstream, in the long direction X on all of the simultaneously active chambers for said rotating light, each of said partitions of a chamber comprising, in the X-Z plane, two side walls vertical, and, in the cross direction Y, elements ensuring the deflection of said gas flow traversing said partition and maintaining a constant spacing of said side walls, and is characterized in that each
  • the invention is distinguished by the elimination of vertical baffles, generally three in number per hollow partition.
  • the average path of the gas flow can be broken down into a component in the longitudinal direction X, over a length L, and in a component in the vertical direction Z, over a length 4xC, ie in total L + 4xC.
  • C and M are typically between 0.6xH and 0.8xH.
  • the gas flow is a tubular flow which changes direction 8 times (X / Z-X / Z-X / Z-X / X), each baffle bringing a change of direction in the vertical direction Z and in the longitudinal direction X noted "Z-X", alternating the longitudinal directions (X) and the vertical directions (Z), the entire gas flow being concentrated, at each passage of baffle, on a straight section S corresponding to a height of 0.2xH-0.4xH, i.e. 20 to 40% of the total section S.
  • the average gas flow follows an average trajectory which is, in first approximation and taking into account the absence of vertical baffle, the arithmetic mean of the shortest trajectory, that of length L, and of the longest trajectory, either that of length equal to L + 2xM, i.e. 1 ⁇ 2 (L + L + 2xM) or L + M, to compare to the trajectory of the state of the art L + 4xC, with C close to M.
  • the gas flow of flow rate D is distributed homogeneously over the entire section straight line S of said partition in the plane Y-Z, with a level of homogeneity of said distribution of the flow rate D equal to 0.50.D - 0.125.D /0.25.S, said level of homogeneity being noted "2y.D - 0.5y.D / y.S", “2y.D - 0.5y.D” being the range of the fraction of flow D corresponding to a fraction y, with y at most equal to 0.25, of said cross section S, which is equal to the product of the height "H" by the constant width "1" of the partitions hollow.
  • Modeling of gas flows is carried out from a decomposition of the flow total gaseous in a number N of elementary gaseous threads - for example a fifty nets as illustrated in Figures 3 and 4, and it leads to a visualization of the trajectories of each of these nets in the X-Z plane, and therefore at the distribution of elementary gaseous nets, in the same way of spacing between contour lines on a map From there, it is easy to calculate the level of real homogeneity on any fraction "y" of the height H by counting the number "n" of elementary nets to obtain the n / N fraction corresponding to the height fraction "y” which was set to 0.25.
  • the overall level of homogeneity is therefore expressed in fact by the portion of the surface of hollow wall, in the X-Z plane - or of corresponding volume - where the level homogeneity reaches at least a given threshold set at 0.5.D - 0.125.D / 0.25.S.
  • the means according to the invention make it possible to solve the problem posed. Indeed, from the invention ensures a better distribution of the gas flow, and therefore a greater temperature uniformity, while reducing the pressure drop, which leads in definitive both to a more homogeneous production, to a reduction in operation of the ovens and an increase in the life of the ovens.
  • Figures 1, la, 2, 3 and 3a correspond to the ovens according to the state of the art.
  • the Figures 4. 4a, 5. 6 6a, 7a to 7d and 8 correspond to the ovens according to the invention.
  • Figure 1 is a schematic view, in section along the plane X-Z, X being the direction longitudinal and Z the vertical direction, of the portion of the rotary fire oven (1), active simultaneously on 10 rooms (2), each room being separated from the next by a transverse wall (32) provided with an opening (320) ensuring the circulation of the gas flow flow rate D upstream (on the right in the figure), where air is injected thanks to a ramp blowing (231) provided with as many pipes (230) as there are hollow partitions (3) longitudinal provided with baffles (31) (three baffles per hollow partition and per chamber), downstream (on the left in the figure) where the gas flow is sucked in by means of a ramp (211) with as many suction pipes (210) as there are hollow partitions longitudinal.
  • Burners (220) positioned substantially in the middle of the series of 10 chambers. bring the upstream gas flow to the desired temperature level, typically of the order 1100 ° C.
  • the chambers located upstream of the burners are cooling of the carbon blocks, while the chambers downstream of the burners are carbon block cooking chambers.
  • a gas flow (233) can exit the oven upstream of the burners, and a gaseous flow of air (213) can enter the oven downstream of the burners.
  • the gas flow of flow D flowing in said hollow partitions is not a constant flow flow, taking into account both these gas flow (213, 233), and taking into account the formation of combustible volatile products during the cooking of the carbon blocks in the chambers in the downstream part of the oven.
  • the gas flow is an air flow (34) upstream of the burners (220), and is a gas flow of combustion (35) mixed with an incident air flow (213) in the downstream part of the furnace.
  • FIG. 1a represents the pressure curve of said gas flow of flow rate D, inside said hollow partitions (3).
  • the pressure decreases regularly from upstream to downstream it is higher than atmospheric pressure and maximum at the blowing of air through pipes (230), it is close to atmospheric pressure just upstream of burners (220), where a pressure sensor (234) is installed, it is lower than the atmospheric and minimum pressure at the intake of combustion gases by the suction pipes (210).
  • FIG. 2 shows a perspective view. partially exploded, from the upstream part of the series of active chambers, making it possible to observe, in the transverse direction Y, for the same chamber (2), the alternation of hollow heating partitions (3) and cells (4) containing the stack of carbon blocks (40).
  • Each hollow partition (3) is limited in the X-Z plane by two vertical walls (38), and contains three baffles (31), is provided with openings (30) into which the blowing pipes (230) can be inserted as shown in the figure, or suction (210), the burner injectors (220), or various means of measurement.
  • To the right of the openings (30) are the wells (38). that is to say the interior space of said partition without obstacle so as to be able introduce the aforementioned devices (blow pipes for example).
  • the bedrooms (2) successive, two of which are shown in the figure, are separated by a wall (32). provided, at the level of said hollow partitions (3), with openings (320) allowing the gas flow from upstream to downstream. in the X'-
  • FIG. 3 represents a map of the gas flow, obtained by simulation digital, broken down into fifty elementary threads (6), in a hollow partition according to the state of the art represented in FIG. 3a, provided with 3 baffles (31) and a certain number of spacers (33) maintaining a constant spacing between the walls (38) of said partition.
  • Figure 3a have been shown the length L and the height H of a partition hollow for a given room, the height C of a baffle, and the height M of the wall (32) at each end of the partition.
  • Figure 5 corresponding to a second embodiment of the invention, is a view partial schematic, in section in the X-Z plane, of the gas flow on a meme succession of hollow partitions of simultaneously active chambers for the same fire revolving, in case the rooms are not separated by a transverse wall
  • Le gas flow retains a substantially constant section S over all of its route, a distribution means (232) being used upstream of said rotating light, so as to inject, through transverse slots or openings (2320), a gas flow, in the form of ten flow fractions (7), having said level of homogeneity, a other distribution means (212) being used downstream of said rotating light, so as to sucking said gas flow through transverse slots or openings (2120) without altering said level of homogeneity. Only the gas flows in the hollow partitions at both ends have been shown.
  • the gas flow consists of a set of fractions flow (7), forming a tubular flow (50) substantially oriented along the longitudinal axis X'-X.
  • Figure 6 corresponds to Figure 1, after modification according to Figure 5, in particular removal of the transverse walls (32), and introduction of the distribution means (212, 232). Were not shown in this figure means for ensuring, at the level of burners (220), uniform heating of said gas flow.
  • Figure 6a similar to the FIG. 1a represents the static pressure curve of said gas flow, in an oven according to with the state of the art (curve I), and in an oven according to the invention (curve II & III), curve II corresponding to the case where the rooms are separated by walls transverse (32) having an orifice (320) for the passage of the gas flow, while the curve III corresponds to the case of FIGS. 5 and 6 where the gas flow conserves, from upstream to downstream, substantially the same section S.
  • Figures 7a to 7d illustrate, in section in the X-Z plane, spacers or elements ensuring the deflection of said gas stream, or of gas streams (6) which flow around said spacers (33a, 33b, 33c, 33d), some (33c and 33d) being of oblong shape with a major axis (330), to facilitate the flow of the gas flow and reduce its loss of charge.
  • FIG. 8 illustrates the case where, in order to further reduce the pressure drop, oblong elements (33c, 33d) are used and oriented, so that the orientation of the major axis (330) of said spacers coincides with the direction of flow gaseous, in particular in the case where said chambers are separated by walls (32) provided with orifices or openings (320) ensuring the passage of said gas flow from a room to another.
  • said oven (1) comprises chambers separated by a transverse wall (32) having openings of section So (320) ensuring the passage of said gas flow (34, 35) from a partition to the next partition, and in which each partition comprises, at its upstream part, a means for obtaining, from an initial flow of flow D of section So, a flow of section S> So having said level of homogeneity at least equal to 0.50.D - 0.125.D / 0.25.S.
  • said conduit (5) is not of constant section, its section worth So, at each transverse wall (32), and S >> So in each partition hollow itself.
  • Said means transforms. over a distance less than L / 2, L being the length of said partition, a gas flow with flow D and initial section So at the upstream inlet of said partition, in a flow of section S at least equal to 3.So, and having said level uniformity.
  • said distance is less than L / 3.
  • said medium is on the part marked "A”.
  • Each partition may include, in its upper part, one or more openers (30), which can be closed by a cover (36) and which give access to wells (37).
  • said means for obtaining said gas flow of flow rate D and of section S having said level of homogeneity consists of dividing elements, or spacers, (33) dividing, in a number of steps varying from 2 to 4, said initial flow of section So, as shown in Figures 4 and 4a, in a dozen flow fractions (7).
  • the initial flow So is thus divided into 11 flow fractions (7) over the entire section S.
  • said conduit (5) is of constant section, said walls (32) having openings (320) having substantially said section S, in the plane Y-Z, so as to form conduits (5) of substantially constant section S, from upstream to downstream, on all the partitions hollow (3) simultaneously active for said fire, wherein said level of homogeneity is obtained by a removable distribution means (232) introduced, upstream of said light rotating, at the upstream end of said conduit (5), so as to inject into each conduit (5) said gas flow with said level of homogeneity, in the form of ten flow fractions (7) - 8 fractions illustrated in Figure 5.
  • conduit (5) it may be advantageous, to maintain said level of homogeneity over the most long possible length of conduit (5) to use a removable distribution means (212) also downstream of said rotating light, at the downstream end of said duct (5) formed by the succession of hollow partitions (3) active for said fire, so as to draw said flow gaseous without disturbing upstream said level of homogeneity of said gas flow.
  • said distribution means (212. 232) can be an enclosure or a parallelepipedic distribution panel (232), of horizontal flat section, in the X-Y plane, chosen so that said enclosure can be introduced vertically into said well (37) of said partition (3) or between two chambers, and of vertical plane section in the plane Y-Z slightly lower than said section S of said partition in the plane Y-Z, having a face parallel to the Y-Z plane provided with openings (2320) with calculated geometry, either to inject said gas flow, in the form of flow fractions (7), with said level homogeneity upstream of said conduit (5), or to aspirate said gas flow downstream of said conduit (5).
  • said means for preserving a gas flow of flow D having said level of homogeneity on said section S comprises a plurality elements or spacers (33) fixed to said side walls (38) and distributed, in function of the results of the numerical simulation, in a substantially homogeneous the surface of said side walls (38) in the X-Z plane of said partition or said conduit, in sufficient number to ensure said constant spacing of said walls side (38), so as to divide said gas flow into a number of flow fractions (7) varying from 3 to 20 regularly distributed over the whole of said section S, and to be ensured for said fractions a flow with predetermined orientation, possibly according to said long direction X of the furnace, so as to have a substantially tubular flow (50) on all or part of the conduit (5) according to the method of the invention.
  • each fraction of flow (7) possibly group together several elementary nets (6) shown in solid line in FIG. 4.
  • said elements or braces (33) may be profiled so to reduce the pressure drop of said gas flow, while ensuring the other functions required to maintain a constant spacing between said side walls (38), and to obtain or maintain for said gas flow said predetermined level of homogeneity on said section S.
  • Figures 7a to 7d illustrate, in section in the XZ plane, different profiles of spacers or elements (33a, 33b, 33c, 33d), some (33c and 33d) being oblong in shape with a major axis (330), for facilitate the penetration of the gas flow and reduce its pressure drop.
  • the pressure drop P will a priori be in the following order: P 33a > P 33b > P 33c and P 33d .
  • FIG. 4a constitutes the plan of construction of the hollow partition (3), like a brick wall, the elements hatched extending transversely (direction Y-Y ') over the entire width (0.5 m) of said partition - width which comprises 0.3m of gas stream and 2 x 0.1m thickness of the hollow partition.
  • the oven according to the invention effectively solves the problem posed: whether the consistency of the quality of the carbon blocks, the energy consumption of the oven, or still the life of the furnace, on all these planes, the present invention provides a improvement to existing ovens according to the state of the art.
  • the energy consumption of the oven is significantly reduced at the same time thanks to a better temperature uniformity, which avoids unnecessary local overheating, and cause of a lower pressure drop (see Figure 6a).
  • the overall gain, both in terms of the energy consumption of the oven and the consumption of refractories, is at least 10%, which is considerable in this type industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Baking, Grill, Roasting (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne les chambres de four à feu tournant utilisés pour la cuisson de blocs carbonés, et plus particulièrement les fours à chambre de type ouvert.The invention relates to revolving furnace chambers used for cooking blocks carbonaceous, and more particularly open type furnaces.

Etat de la techniqueState of the art

Les fours à feu tournant à chambre de type ouvert sont bien connus en eux-mêmes et décrits notamment dans les demandes de brevets FR 2 600 152 (correspondant au brevet américain US 4 859 175) et WO 91/19147. Dans ces fours, un flux gazeux constitué d'air et/ou des gaz de combustion circule, dans la succession de chambres actives, dans le sens long du four, dans une succession de cloisons chauffantes creuses qui communiquent entre elles d'une chambre à l'autre, chaque chambre étant constituée par la juxtaposition dans le sens travers du four, en alternance, de ces cloisons chauffantes et d'alvéoles dans lesquelles sont empilés les blocs carbonés à cuire. Ce flux gazeux est soufflé en amont des chambres actives et est aspiré en aval de ces chambres.Open type rotating chamber furnaces are well known in themselves and described in particular in patent applications FR 2 600 152 (corresponding to the patent US 4,859,175) and WO 91/19147. In these ovens, a gas flow consisting air and / or combustion gases circulate in the succession of active chambers in the long direction of the oven, in a succession of hollow heating partitions which communicate with each other from one room to another, each room being made up of the juxtaposition in the cross direction of the oven, alternately, of these heating partitions and cells in which the carbon blocks to be cooked are stacked. This gas flow is blown upstream of the active chambers and is sucked downstream of these chambers.

Une cloison creuse d'une chambre se présente typiquement sous la forme d'un parallélépipède rectangle de 5 m de longueur (sens long du four), 5 m de hauteur et de 0,5 m de largeur (sens travers du four) soit 0,3 m de veine gazeuse et 2 fois 0,1 m de paroi), subdivisé en 4 " puits " verticaux grâce à 3 chicanes verticales disposées dans le sens travers, chaque puits étant délimité soit par deux chicanes, soit par une chicane et un des murs de la chambre, de manière à augmenter le parcours moyen de l'air de refroidissement ou des gaz de combustion dans ladite cloison et, en outre, à assurer un écartement constant entre les parois longitudinales de la cloison.A hollow room partition typically takes the form of a rectangular parallelepiped 5 m long (long direction of the oven), 5 m high and 0.5 m wide (across the furnace) or 0.3 m of gas stream and twice 0.1 m wall), subdivided into 4 vertical "wells" thanks to 3 vertical baffles arranged in the cross direction, each well being bounded either by two baffles, or by a baffle and a of the walls of the room, so as to increase the average air path of cooling or combustion gases in said partition and, in addition, to ensure a constant spacing between the longitudinal walls of the partition.

Outre les chicanes, des entretoises sont disposées également dans le sens travers, notamment entre lesdites chicanes, pour assurer un écartement constant entre les parois longitudinales de la cloison. In addition to the baffles, spacers are also arranged in the cross direction, in particular between said baffles, to ensure constant spacing between the walls longitudinal of the partition.

Problème poséProblem

Une préoccupation constante du fabricant de blocs carbonés cuits est - à qualité constante - de diminuer les coûts de production de ces blocs carbonés cuits et les coûts d'investissement et/ou d'entretien des fours servant à leur fabrication, notamment en augmentant la durée de vie des éléments réfractaires des fours.A constant concern of the manufacturer of baked carbon blocks is - quality constant - to decrease the production costs of these cooked carbon blocks and the costs investment and / or maintenance of the ovens used to manufacture them, particularly in increasing the service life of the refractory elements of the ovens.

Une autre préoccupation est d'améliorer la qualité de ces blocs carbonés cuits, en particulier d'améliorer la constance de qualité et l'homogénéité des performances au sein d'un même bloc carboné et d'un bloc à l'autre.Another concern is to improve the quality of these cooked carbon blocks, by particular to improve consistency of quality and consistency of performance within from the same carbon block and from one block to another.

Dans ce but, la demanderesse a eu l'idée de modéliser la circulation des fluides gazeux dans les cloisons de fours existants, connaissant les dimensions et emplacements des chicanes et entretoises.To this end, the applicant has had the idea of modeling the circulation of gaseous fluids in existing oven partitions, knowing the dimensions and locations of the baffles and spacers.

D'une part, elle a eu la surprise de constater que, dans les cloisons creuses selon l'état de l'art, la répartition du flux gazeux était loin d'être homogène et uniforme, de sorte que, en régime permanent, la majeure partie du flux ou du débit gazeux s'écoulait selon des chemins préférentiels, laissant une part non négligeable des parois de la cloison sans contact avec ledit flux gazeux. Or, ces parois séparent les blocs carbonés des alvéoles dudit flux gazeux de chauffage ou refroidissement et assurent l'échange thermique entre flux gazeux et blocs carbonés. On comprend mieux dès lors que cette hétérogénéité thermique des parois puisse, soit entraíner une qualité variable des blocs carbonés, soit nécessiter - ce qui est en pratique le cas - une augmentation de la puissance de chauffage ou de refroidissement de manière à ce que, même les blocs placés en position défavorable sur le plan de l'échange thermique, puissent satisfaire aux exigences de qualité requises.On the one hand, she was surprised to find that, in hollow partitions according to the state of art, the distribution of the gas flow was far from homogeneous and uniform, so that, in steady state, most of the gas flow or flow flowed according to preferential paths, leaving a non-negligible part of the walls of the partition without contact with said gas flow. However, these walls separate the carbon blocks from the cells of said heating or cooling gas flow and ensure the heat exchange between gas flow and carbon blocks. It is therefore easier to understand that this heterogeneity thermal walls can either result in a variable quality of carbon blocks, or require - which is in practice the case - an increase in heating power or cooling so that even the blocks placed in an unfavorable position in terms of heat exchange, can meet the required quality requirements.

D'autre part, la modélisation a aussi mis en lumière la perte de charge importante du flux gazeux à cause de la présence de chicanes, ce qui a pour double conséquence d'une part d'augmenter l'énergie nécessaire pour faire circuler le flux gazeux dans la succession de cloisons, et d'autre part d'augmenter la surpression ou la dépression correspondante dans lesdites cloisons, ce qui entraíne une augmentation des fuites thermiques dans un sens ou dans l'autre (de ladite cloison vers l'extérieur ou de l'extérieur vers ladite cloison), et donc l'énergie consommée.On the other hand, the modeling also highlighted the significant pressure drop in the flow gas due to the presence of baffles, which has the double consequence on the one hand increase the energy required to circulate the gas flow in the succession of partitions, and on the other hand to increase the corresponding overpressure or depression in said partitions, which leads to an increase in thermal leaks in a one way or the other (from said partition to the outside or from the outside to said partition), and therefore the energy consumed.

En outre, comme les cloisons sont soumises fréquemment à de grand écarts de température et qu'elles se détériorent en conséquence bien qu'elles soient faites en briques réfractaires, elles doivent être remplacées périodiquement. La demanderesse a donc aussi recherché les moyens pour avoir un four plus économique, non seulement en coût de fonctionnement, mais aussi en coût d'entretien ou d'investissement.In addition, as the partitions are frequently subject to large deviations from temperature and deteriorate as a result although they are made in refractory bricks, they must be replaced periodically. The plaintiff has therefore also sought ways to have a more economical oven, not only in operating cost, but also in maintenance or investment cost.

Enfin, elle a essayé de concevoir des moyens pour résoudre ces problèmes (répartition de flux gazeux hétérogène au sein des cloisons, ...), non seulement de manière à concevoir de nouveaux fours ne présentant pas les inconvénients des fours connus, mais encore et surtout de manière à pouvoir adapter et modifier les fours anciens existants, et obtenir des fours plus économiques à la fois en coûts de fonctionnement et en coûts d'entretien. Compte tenu de la validité de la modélisation reconnue par la demanderesse, et de la difficulté et du coût très élevé de toute expérimentation avec des fours réels, la demanderesse a recherché la solution au problème posé à l'aide de ces mêmes instruments de modélisation qui ont permis de découvrir l'origine des problèmes à résoudre.Finally, she tried to devise means to solve these problems (distribution of heterogeneous gas flow within the partitions, ...), not only so as to design new ovens not having the disadvantages of known ovens, but still and especially so as to be able to adapt and modify existing old ovens, and obtain more economical ovens in both operating and maintenance costs. Given the validity of the modeling recognized by the plaintiff, and the difficulty and very high cost of any experiment with real ovens, the Applicant sought the solution to the problem posed using these same modeling instruments which have made it possible to discover the origin of the problems solve.

Description de l'inventionDescription of the invention

Selon l'invention, le four à feu tournant à chambres de type ouvert pour la cuisson de blocs carbonés comprend, dans le sens long X du four, une succession de chambres séparées par des murs transversaux munis d'ouvertures, chacune des chambres comprenant, dans le sens travers Y du four, une alternance de cloisons creuses assurant la circulation d'un flux gazeux de réchauffage de gaz de combustion ou un flux gazeux d'air de refroidissement, et d'alvéoles contenant les blocs carbonés à cuire, chacune desdites cloisons creuses d'une chambre étant en communication avec une cloison d'une chambre en amont et/ou une cloison d'une chambre en aval, de manière à former un conduit assurant la circulation dudit flux gazeux, d'amont en aval, dans le sens long X sur l'ensemble des chambres simultanément en activité pour ledit feu tournant, chacune desdites cloisons d'une chambre comprenant, dans le plan X-Z, deux parois latérales verticales, et, dans le sens travers Y, des éléments assurant la déflexion dudit flux gazeux parcourant ladite cloison et maintenant un écartement constant desdites parois latérales, et est caractérisé en ce que chaque cloison comprend un moyen pour conserver, sur une longueur L' égale au moins un tiers de la longueur L de ladite cloison et, typiquement, par un choix approprié desdits éléments assurant ladite déflexion, un flux gazeux de débit D réparti de manière homogène sur la totalité de la section droite S de ladite cloison dans le plan Y-Z, avec un niveau d'homogénéité de ladite répartition du débit D défini par l'expression " 2y.D - 0,5y.D / y.S ", où " 2y.D - 0,5y.D " désigne l'étendue de la plage du débit D correspondant à une fraction y de ladite section droite S, et où y est au plus égal à 0,25.According to the invention, the rotary fire oven with open type chambers for cooking carbonaceous blocks comprises, in the long direction X of the furnace, a succession of chambers separated by transverse walls with openings, each of the bedrooms comprising, in the transverse direction Y of the furnace, an alternation of hollow partitions ensuring the circulation of a gaseous flow for heating combustion gases or a gaseous flow cooling air, and cells containing the carbonaceous blocks to be cooked, each said hollow partitions of a chamber being in communication with a partition of a upstream chamber and / or a partition of a downstream chamber, so as to form a duct ensuring the circulation of said gas flow, from upstream to downstream, in the long direction X on all of the simultaneously active chambers for said rotating light, each of said partitions of a chamber comprising, in the X-Z plane, two side walls vertical, and, in the cross direction Y, elements ensuring the deflection of said gas flow traversing said partition and maintaining a constant spacing of said side walls, and is characterized in that each partition comprises means for storing, on a length L equal to at least one third of the length L of said partition and, typically, by an appropriate choice of said elements ensuring said deflection, a gaseous flow of flow D evenly distributed over the entire cross section S of said partition in the Y-Z plane, with a level of homogeneity of said distribution of flow D defined by the expression "2y.D - 0.5y.D / y.S", where "2y.D - 0.5y.D" designates the extent of the range of the flow D corresponding to a fraction y of said cross section S, and where y is at most equal to 0.25.

Par rapport à l'état de la technique, l'invention se distingue par la suppression des chicanes verticales, généralement au nombre de trois par cloison creuse.Compared with the state of the art, the invention is distinguished by the elimination of vertical baffles, generally three in number per hollow partition.

Selon l'état de la technique, si on désigne par L la longueur de la cloison creuse dans le sens X, par H sa hauteur dans le sens Z, et si, en première approximation, on assimile la hauteur C des chicanes dans le sens Z à la hauteur M des murs transversaux aux extrémités de ladite cloison, le parcours moyen du flux gazeux peut se décomposer en une composante selon la direction longitudinale X, sur une longueur L, et en une composante selon la direction verticale Z, sur une longueur 4xC, soit au total L + 4xC.According to the state of the art, if we denote by L the length of the hollow partition in the direction X, by H its height in the direction Z, and if, as a first approximation, we assimilate the height C of baffles in direction Z at height M of walls transverse to ends of said partition, the average path of the gas flow can be broken down into a component in the longitudinal direction X, over a length L, and in a component in the vertical direction Z, over a length 4xC, ie in total L + 4xC.

Les valeurs de C et M sont typiquement comprises entre 0,6xH et 0,8xH. Ainsi, avec 3 chicanes, le flux gazeux est un flux tubulaire qui change 8 fois de direction (X/Z-X/Z-X/Z-X/X), chaque chicane apportant un changement de direction dans le sens vertical Z et dans le sens longitudinal X noté " Z-X ", en alternant les directions longitudinales (X) et les directions verticales (Z), la totalité du flux gazeux étant concentrée, à chaque passage de chicane, sur une section droite S correspondant à une hauteur de 0,2xH-0,4xH, c'est à dire 20 à 40 % de la section totale S.The values of C and M are typically between 0.6xH and 0.8xH. So with 3 baffles, the gas flow is a tubular flow which changes direction 8 times (X / Z-X / Z-X / Z-X / X), each baffle bringing a change of direction in the vertical direction Z and in the longitudinal direction X noted "Z-X", alternating the longitudinal directions (X) and the vertical directions (Z), the entire gas flow being concentrated, at each passage of baffle, on a straight section S corresponding to a height of 0.2xH-0.4xH, i.e. 20 to 40% of the total section S.

Selon l'invention, par contre, et dans le cas où un même type de cloison creuse est conservé, le flux gazeux moyen suit une trajectoire moyenne qui est, en première approximation et compte tenu de l'absence de chicane verticale, la moyenne arithmétique de la trajectoire la plus courte, soit celle de longueur L, et de la trajectoire la plus longue, soit celle de longueur égale à L + 2xM, c'est à dire ½ (L+L+2xM) ou L+M, à comparer à la trajectoire de l'état de la technique L+4xC, avec C voisin de M.According to the invention, on the other hand, and in the case where the same type of hollow partition is conserved, the average gas flow follows an average trajectory which is, in first approximation and taking into account the absence of vertical baffle, the arithmetic mean of the shortest trajectory, that of length L, and of the longest trajectory, either that of length equal to L + 2xM, i.e. ½ (L + L + 2xM) or L + M, to compare to the trajectory of the state of the art L + 4xC, with C close to M.

En outre, typiquement, par un choix approprié desdits éléments assurant ladite déflexion, le flux gazeux de débit D est réparti de manière homogène sur la totalité de la section droite S de ladite cloison dans le plan Y-Z, avec un niveau d'homogénéité de ladite répartition du débit D égal à 0,50.D - 0.125.D /0.25.S, ledit niveau d'homogénéité étant noté "2y.D - 0,5y.D / y.S", "2y.D - 0,5y.D" étant l'étendue de la fraction du débit D correspondant à une fraction y, avec y au plus égal à 0,25, de ladite section droite S, qui est égale au produit de la hauteur ''H" par la largeur "1" constante des cloisons creuses.Furthermore, typically, by an appropriate choice of said elements ensuring said deflection, the gas flow of flow rate D is distributed homogeneously over the entire section straight line S of said partition in the plane Y-Z, with a level of homogeneity of said distribution of the flow rate D equal to 0.50.D - 0.125.D /0.25.S, said level of homogeneity being noted "2y.D - 0.5y.D / y.S", "2y.D - 0.5y.D" being the range of the fraction of flow D corresponding to a fraction y, with y at most equal to 0.25, of said cross section S, which is equal to the product of the height "H" by the constant width "1" of the partitions hollow.

Compte tenu du fait que les éléments de déflexion sont orientés dans le sens transversal Y et de la symétrie qui en résulte, la formule donnant le niveau d'homogénéité vaut aussi dans le plan X-Z, la section S étant alors remplacée par la hauteur " H", et y étant alors une fraction de cette hauteur H.Taking into account that the deflection elements are oriented in the transverse direction Y and the resulting symmetry, the formula giving the level of homogeneity also applies in the X-Z plane, the section S then being replaced by the height "H", and then being there a fraction of this height H.

Ladite section droite S étant toujours prise dans le plan Y-Z, et les éléments assurant la déflexion étant dans le sens transversal Y, il est donc possible de représenter, par simulation numérique, la répartition du débit D dans le plan X-Z d'une cloison creuse, comme illustré dans les figures 3 et 4 représentant des coupes ou sections des fours ou cloisons creuses dans le plan X-Z. Said cross section S being always taken in the plane Y-Z, and the elements ensuring the deflection being in the transverse direction Y, it is therefore possible to represent, by numerical simulation, the distribution of the flow D in the X-Z plane of a hollow partition, as illustrated in Figures 3 and 4 showing sections or sections of ovens or hollow partitions in the X-Z plane.

La modélisation des flux gazeux est effectuée à partir d'une décomposition du flux gazeux total en un nombre N de filets gazeux élémentaires - par exemple une cinquantaine de filets comme illustré sur les figures 3 et 4, et elle conduit à une visualisation des trajectoires de chacun de ces filets dans le plan X-Z, et donc à la répartition des filets gazeux élémentaires, à la même manière de l'espacement entre des courbes de niveau sur une carte A partir de là, il est aisé de calculer le niveau d'homogénéité réel sur toute fraction " y " de la hauteur H en comptant le nombre " n " de filets élémentaires pour obtenir la fraction n/N correspondant à la fraction de hauteur " y " qui a été fixée à 0.25.Modeling of gas flows is carried out from a decomposition of the flow total gaseous in a number N of elementary gaseous threads - for example a fifty nets as illustrated in Figures 3 and 4, and it leads to a visualization of the trajectories of each of these nets in the X-Z plane, and therefore at the distribution of elementary gaseous nets, in the same way of spacing between contour lines on a map From there, it is easy to calculate the level of real homogeneity on any fraction "y" of the height H by counting the number "n" of elementary nets to obtain the n / N fraction corresponding to the height fraction "y" which was set to 0.25.

Ce choix de 0,25 et l'expression correspondante du niveau d'homogénéité traduit le niveau d'homogénéité trouvé nécessaire selon l'invention pour obtenir les avantages de l'invention. Il est évident, compte tenu de la loi de la moyenne, que, si la valeur de " y " augmente, le niveau d'homogénéité, plus facile à obtenir, est moindre. Ainsi, le niveau exprimé par " 0,8.D - 0,2.D / 0,4.S " correspond à un niveau d'homogénéité moins élevé que celui exprimé par "0,5.D - 0.125.D / 0.25.S " dans la mesure où, plus la fraction "y" est élevée, plus grande est la probabilité qu'un flux voisin de y.D s'y trouve, l'ensemble du flux D étant par définition présent pour y=1. Inversement, le niveau d'homogénéité augmenterait fortement pour un niveau d'homogénéité tel que " 0,20.D - 0,05.D / 0,10.S" où "y" a une valeur faible, ce niveau d'homogénéité n'étant pas forcément accessible sur une grande portion de longueur L', ni forcément nécessaire pour obtenir une augmentation significative des avantages selon l'invention.This choice of 0.25 and the corresponding expression of the level of homogeneity reflects the level of homogeneity found necessary according to the invention to obtain the advantages of the invention. It is obvious, given the law of the mean, that if the value of "y" increases, the level of homogeneity, easier to obtain, is lower. So the level expressed by "0.8D - 0.2D / 0.4.S" corresponds to a lower level of homogeneity than that expressed by "0.5.D - 0.125.D / 0.25.S" to the extent that, plus the fraction "y" is high, the greater the probability that a flux close to y.D is there, the whole of the flow D being by definition present for y = 1. Conversely, the level of homogeneity would increase strongly for a level of homogeneity such as "0.20.D - 0,05.D / 0,10.S "where" y "has a low value, this level of homogeneity not being necessarily accessible over a large portion of length L ', nor necessarily necessary to obtain a significant increase in the advantages according to the invention.

Le niveau d'homogénéité global s'exprime donc en fait par la portion de la surface de paroi creuse, dans le plan X-Z - ou de volume correspondant - où le niveau d'homogénéité atteint au moins un seuil donné fixé à 0,5.D - 0,125.D / 0,25.S.The overall level of homogeneity is therefore expressed in fact by the portion of the surface of hollow wall, in the X-Z plane - or of corresponding volume - where the level homogeneity reaches at least a given threshold set at 0.5.D - 0.125.D / 0.25.S.

Selon l'invention, sur au moins un tiers de cette surface, ou, ce qui revient au même, sur un tiers de la longueur L de ladite paroi creuse, au moins ledit niveau d'homogénéité est atteint. According to the invention, on at least one third of this surface, or, which amounts to the same thing, on one third of the length L of said hollow wall, at least said level of homogeneity is achieved.

Les moyens selon l'invention permettent de résoudre le problème posé. En effet, d'une part, l'invention assure une meilleure répartition du flux gazeux, et donc une plus grande homogénéité de la température, tout en réduisant la perte de charge, ce qui conduit en définitive à la fois à une production plus homogène, à une réduction des coûts de fonctionnement des fours et à une augmentation de la durée de vie des fours.The means according to the invention make it possible to solve the problem posed. Indeed, from the invention ensures a better distribution of the gas flow, and therefore a greater temperature uniformity, while reducing the pressure drop, which leads in definitive both to a more homogeneous production, to a reduction in operation of the ovens and an increase in the life of the ovens.

Description des figuresDescription of the figures

Les figures 1, la, 2, 3 et 3a correspondent aux fours selon l'état de la technique. Les figures 4. 4a, 5. 6 6a, 7a à 7d et 8 correspondent aux fours selon l'invention.Figures 1, la, 2, 3 and 3a correspond to the ovens according to the state of the art. The Figures 4. 4a, 5. 6 6a, 7a to 7d and 8 correspond to the ovens according to the invention.

La figure 1 est une vue schématique, en coupe selon le plan X-Z, X étant la direction longitudinale et Z la direction verticale, de la portion de four à feu tournant (1), active simultanément sur 10 chambres (2), chaque chambre étant séparée de la suivant par un mur transversal (32) muni d'une ouverture (320) assurant la circulation du flux gazeux de débit D de l'amont (à droite sur la figure), où de l'air est injecté grâce à une rampe de soufflage (231) munies d'autant de pipes (230) qu'il y a de cloisons creuses (3) longitudinales munies de chicanes (31) (trois chicanes par cloison creuse et par chambre), vers l'aval (à gauche sur la figure) où le flux gazeux est aspiré au moyen d'une rampe d'aspiration (211) dotée d'autant de pipes d'aspiration (210) qu'il y a de cloisons creuses longitudinales.Figure 1 is a schematic view, in section along the plane X-Z, X being the direction longitudinal and Z the vertical direction, of the portion of the rotary fire oven (1), active simultaneously on 10 rooms (2), each room being separated from the next by a transverse wall (32) provided with an opening (320) ensuring the circulation of the gas flow flow rate D upstream (on the right in the figure), where air is injected thanks to a ramp blowing (231) provided with as many pipes (230) as there are hollow partitions (3) longitudinal provided with baffles (31) (three baffles per hollow partition and per chamber), downstream (on the left in the figure) where the gas flow is sucked in by means of a ramp (211) with as many suction pipes (210) as there are hollow partitions longitudinal.

Des brûleurs (220), positionnés sensiblement au milieu de la série des 10 chambres. portent le flux gazeux amont au niveau de température souhaité, typiquement de l'ordre de 1100°C. Les chambres situées en amont des brûleurs sont des chambres de refroidissement des blocs carbonés, tandis que les chambres en aval des brûleurs sont des chambres de cuisson des blocs carbonés.Burners (220), positioned substantially in the middle of the series of 10 chambers. bring the upstream gas flow to the desired temperature level, typically of the order 1100 ° C. The chambers located upstream of the burners are cooling of the carbon blocks, while the chambers downstream of the burners are carbon block cooking chambers.

Compte tenu de la pression dans le four, comme représenté à la figure la, un flux gazeux (233) peut sortir du four en amont des brûleurs, et un flux gazeux d'air (213) peut pénétrer dans le four an aval des brûleurs. Ainsi, le flux gazeux de débit D circulant dans lesdites cloisons creuses n'est pas un flux de débit constant, compte tenu à la fois de ces flux gazeux (213, 233), et compte tenu de la formation de produits volatils combustibles durant la cuisson des blocs carbonés dans les chambres dans la partie aval du four. Le flux gazeux est un flux d'air (34) en amont des brûleurs (220), et est un flux de gaz de combustion (35) mélangé à un flux d'air incident (213) dans la partie aval du four. ces flux ayant un débit, désigné, de manière générique par " D ".Given the pressure in the oven, as shown in Figure la, a gas flow (233) can exit the oven upstream of the burners, and a gaseous flow of air (213) can enter the oven downstream of the burners. Thus, the gas flow of flow D flowing in said hollow partitions is not a constant flow flow, taking into account both these gas flow (213, 233), and taking into account the formation of combustible volatile products during the cooking of the carbon blocks in the chambers in the downstream part of the oven. The gas flow is an air flow (34) upstream of the burners (220), and is a gas flow of combustion (35) mixed with an incident air flow (213) in the downstream part of the furnace. these flow having a flow, generically designated by "D".

La figure la représente la courbe de pression dudit flux gazeux de débit D, à l'intérieur desdites cloisons creuses (3). La pression décroít régulièrement de l'amont vers l'aval elle est supérieure à la pression atmosphérique et maximale au niveau du soufflage de l'air par les pipes (230), elle est voisine à la pression atmosphérique juste en amont des brûleurs (220), où est implanté un capteur de pression (234), elle est inférieure à la pression atmosphérique et minimale au niveau de l'aspiration des gaz de combustion par les pipes d'aspiration (210).FIG. 1a represents the pressure curve of said gas flow of flow rate D, inside said hollow partitions (3). The pressure decreases regularly from upstream to downstream it is higher than atmospheric pressure and maximum at the blowing of air through pipes (230), it is close to atmospheric pressure just upstream of burners (220), where a pressure sensor (234) is installed, it is lower than the atmospheric and minimum pressure at the intake of combustion gases by the suction pipes (210).

La figure 2 représente une vue en perspective. partiellement éclatée, de la partie amont de la série de chambres actives, permettant d'observer, dans le sens transversal Y, pour une même chambre (2), l'alternance de cloisons chauffantes creuses (3) et d'alvéoles (4) contenant l'empilement des blocs carbonés (40). Chaque cloison creuse (3) est limitée dans le plan X-Z par deux parois verticales (38), et contient trois chicanes (31), est munie d'ouvreaux (30) dans lesquels peuvent être introduites les pipes de soufflage (230) comme représenté sur la figure, ou d'aspiration (210), les injecteurs des brûleurs (220), ou divers moyens de mesure. Au droit des ouvreaux (30) se trouvent les puits (38). c'est-à-dire l'espace intérieur de ladite cloison dépourvue d'obstacle de façon à pouvoir y introduire les dispositifs précités (pipes de soufflage par exemple). Les chambres (2) successives, dont deux sont représentées sur la figure, sont séparées par un mur (32). doté, au niveau desdites cloisons creuses (3), d'ouvertures (320) permettant la circulation du flux gazeux d'amont vers l'aval. dans le sens X'-X.Figure 2 shows a perspective view. partially exploded, from the upstream part of the series of active chambers, making it possible to observe, in the transverse direction Y, for the same chamber (2), the alternation of hollow heating partitions (3) and cells (4) containing the stack of carbon blocks (40). Each hollow partition (3) is limited in the X-Z plane by two vertical walls (38), and contains three baffles (31), is provided with openings (30) into which the blowing pipes (230) can be inserted as shown in the figure, or suction (210), the burner injectors (220), or various means of measurement. To the right of the openings (30) are the wells (38). that is to say the interior space of said partition without obstacle so as to be able introduce the aforementioned devices (blow pipes for example). The bedrooms (2) successive, two of which are shown in the figure, are separated by a wall (32). provided, at the level of said hollow partitions (3), with openings (320) allowing the gas flow from upstream to downstream. in the X'-X direction.

La figure 3 représente une cartographie du flux gazeux, obtenu par simulation numérique, décomposé en cinquante filets élémentaires (6), dans une cloison creuse selon l'état de la technique représentée à la figure 3a, munie de 3 chicanes (31) et d'un certain nombre d'entretoises (33) maintenant un écartement constant entre les parois (38) de ladite cloison. La figure 3a ont été portés la longueur L et la hauteur H d'une cloison creuse pour une chambre donnée, la hauteur C d'une chicane, et la hauteur M du mur (32) à chaque extrémité de la cloison.FIG. 3 represents a map of the gas flow, obtained by simulation digital, broken down into fifty elementary threads (6), in a hollow partition according to the state of the art represented in FIG. 3a, provided with 3 baffles (31) and a certain number of spacers (33) maintaining a constant spacing between the walls (38) of said partition. Figure 3a have been shown the length L and the height H of a partition hollow for a given room, the height C of a baffle, and the height M of the wall (32) at each end of the partition.

Les figures 4 et 4a sont analogues aux figures 3 et 3a mais sont relatives à l'invention. Il est aisé de vérifier, sur la figure 4, que le niveau d'homogénéité défini par 0,50.D - 0,125.D / 0,25.S est atteint sur la longueur L', entre les abscisses X1 et X2. On distingue, sur la figure 4 où le flux gazeux se déplace de gauche à droite :

  • une première portion, notée A, de longueur inférieure à L/2, et de préférence inférieure à L/3 comprenant des moyens (entretoises notamment) pour transformer un flux initial de section So en un flux de section S s'étendant sur toute la section creuse et ayant ledit niveau d'homogénéité, grâce à la formation d'une dizaine de fractions de flux (7);
  • une seconde portion, notée B, de longueur au moins égale à L/3 et de préférence au moins égale à L/2, où ledit niveau d'homogénéité est partout atteint :
  • une troisième portion, notée C, de longueur aussi réduite que possible, où le flux gazeux se reconcentre, ledit niveau d'homogénéité n'est pas atteint car il peut y avoir localement des concentrations de flux qui peuvent se situer hors de la plage 0,50 D et 0.125.D pour une fraction de la section de 0,25.S.
Figures 4 and 4a are similar to Figures 3 and 3a but relate to the invention. It is easy to verify, in FIG. 4, that the level of homogeneity defined by 0.50.D - 0.125.D / 0.25.S is reached over the length L ', between the abscissae X 1 and X 2 . We can see, in Figure 4 where the gas flow moves from left to right:
  • a first portion, denoted A, of length less than L / 2, and preferably less than L / 3 comprising means (spacers in particular) for transforming an initial flow of section So into a flow of section S extending over the entire hollow section and having said level of homogeneity, thanks to the formation of ten flow fractions (7);
  • a second portion, denoted B, of length at least equal to L / 3 and preferably at least equal to L / 2, where said level of homogeneity is everywhere reached:
  • a third portion, denoted C, of as short a length as possible, where the gas flow is reconcentrated, said level of homogeneity is not reached because there may be locally concentrations of flow which may be outside the range 0 , 50 D and 0.125.D for a fraction of the section of 0.25.S.

La figure 5, correspondant à une seconde modalité de l'invention, est une vue schématique partielle, en coupe dans le plan X-Z, du flux gazeux sur une mème succession de cloisons creuses de chambres simultanément actives pour un même feu tournant, dans le cas où les chambres ne sont pas séparées par un mur transversal Le flux gazeux conserve une section S sensiblement constante sur l'ensemble de son parcours, un moyen de répartition (232) étant utilisé en amont dudit feu tournant, de manière à injecter, grâce à des fentes ou ouvertures transversales (2320), un flux gazeux, sous forme d'une dizaine de fractions de flux (7), ayant ledit niveau d'homogénéité, un autre moyen de répartition (212) étant utilisé en aval dudit feu tournant, de manière a aspirer ledit flux gazeux par des fentes ou ouvertures transversales (2120) sans alterer ledit niveau d'homogénéité. Seuls les flux gazeux dans les cloisons creuses aux deux extrémités ont été représentés. Le flux gazeux est constitué d'un ensemble de fractions de flux (7), formant un flux tubulaire (50) sensiblement orienté selon l'axe longitudinal X'-X.Figure 5, corresponding to a second embodiment of the invention, is a view partial schematic, in section in the X-Z plane, of the gas flow on a meme succession of hollow partitions of simultaneously active chambers for the same fire revolving, in case the rooms are not separated by a transverse wall Le gas flow retains a substantially constant section S over all of its route, a distribution means (232) being used upstream of said rotating light, so as to inject, through transverse slots or openings (2320), a gas flow, in the form of ten flow fractions (7), having said level of homogeneity, a other distribution means (212) being used downstream of said rotating light, so as to sucking said gas flow through transverse slots or openings (2120) without altering said level of homogeneity. Only the gas flows in the hollow partitions at both ends have been shown. The gas flow consists of a set of fractions flow (7), forming a tubular flow (50) substantially oriented along the longitudinal axis X'-X.

La figure 6 correspond à la figure 1, après modification selon la figure 5, notamment suppression des murs transversaux (32), et introduction des moyens de répartition (212, 232). N'ont pas été représentés sur cette figure des moyens pour assurer, au niveau des brûleurs (220), un chauffage homogène dudit flux gazeux. La figure 6a, analogue à la figure 1a, représente la courbe de pression statique dudit flux gazeux, dans un four selon avec l'état de la technique (courbe I), et dans un four selon l'invention (courbe II & III), la courbe II correspondant au cas où les chambres sont séparées par des murs transversaux (32) présentant un orifice (320) de passage du flux gazeux, alors que la courbe III correspond au cas des figures 5 et 6 où le flux gazeux conserve, d'amont en aval, sensiblement la mème section S.Figure 6 corresponds to Figure 1, after modification according to Figure 5, in particular removal of the transverse walls (32), and introduction of the distribution means (212, 232). Were not shown in this figure means for ensuring, at the level of burners (220), uniform heating of said gas flow. Figure 6a, similar to the FIG. 1a represents the static pressure curve of said gas flow, in an oven according to with the state of the art (curve I), and in an oven according to the invention (curve II & III), curve II corresponding to the case where the rooms are separated by walls transverse (32) having an orifice (320) for the passage of the gas flow, while the curve III corresponds to the case of FIGS. 5 and 6 where the gas flow conserves, from upstream to downstream, substantially the same section S.

Les figures 7a à 7d illustrent, en coupe dans le plan X-Z, des entretoises ou éléments assurant la déflexion dudit flux gazeux, ou des filets gazeux (6) qui s'écoulent autour desdites entretoises (33a, 33b, 33c, 33d), certaines (33c et 33d) étant de forme oblongue avec un grand axe (330), pour faciliter l'écoulement du flux gazeux et réduire sa perte de charge.Figures 7a to 7d illustrate, in section in the X-Z plane, spacers or elements ensuring the deflection of said gas stream, or of gas streams (6) which flow around said spacers (33a, 33b, 33c, 33d), some (33c and 33d) being of oblong shape with a major axis (330), to facilitate the flow of the gas flow and reduce its loss of charge.

La figure 8 illustre la cas où, de manière à diminuer encore la perte de charge, des éléments de forme oblongue (33c, 33d) sont utilisés et orientés, de façon à ce que l'orientation du grand axe (330) desdites entretoises coïncide avec la direction du flux gazeux, en particulier dans le cas où lesdites chambres sont séparées par des murs (32) munis d'orifices ou ouvertures (320) assurant le passage dudit flux gazeux d'une chambre à une autre.FIG. 8 illustrates the case where, in order to further reduce the pressure drop, oblong elements (33c, 33d) are used and oriented, so that the orientation of the major axis (330) of said spacers coincides with the direction of flow gaseous, in particular in the case where said chambers are separated by walls (32) provided with orifices or openings (320) ensuring the passage of said gas flow from a room to another.

Description détaillée de l'inventionDetailed description of the invention

Selon une première modalité de l'invention, illustrée notamment aux figures 4 et 4a, ledit four (1) comprend des chambres séparées par un mur transversal (32) présentant des ouvertures de section So (320) assurant le passage dudit flux gazeux (34, 35) d'une cloison à la cloison suivante, et dans lequel chaque cloison comprend, à sa partie amont, un moyen pour obtenir, à partir d'un flux initial de débit D de section So, un flux de section S > So ayant ledit niveau d'homogénéité au moins égal à 0,50.D - 0,125.D / 0.25.S. Selon cette modalité, ledit conduit (5) n'est pas de section constante, sa section valant So, au niveau de chaque mur transversal (32), et S >> So dans chaque cloison creuse proprement dite.According to a first embodiment of the invention, illustrated in particular in Figures 4 and 4a, said oven (1) comprises chambers separated by a transverse wall (32) having openings of section So (320) ensuring the passage of said gas flow (34, 35) from a partition to the next partition, and in which each partition comprises, at its upstream part, a means for obtaining, from an initial flow of flow D of section So, a flow of section S> So having said level of homogeneity at least equal to 0.50.D - 0.125.D / 0.25.S. According to this modality, said conduit (5) is not of constant section, its section worth So, at each transverse wall (32), and S >> So in each partition hollow itself.

Ledit moyen transforme. sur une distance inférieure à L/2, L étant la longueur de ladite cloison, un flux gazeux de débit D et de section initiale So à l'entrée amont de ladite cloison, en un flux de section S au moins égale à 3.So, et présentant ledit niveau d'homogénéité. De préférence, ladite distance est inférieure à L/3. Sur la figure 4, ledit moyen se trouve sur la partie notée " A ".Said means transforms. over a distance less than L / 2, L being the length of said partition, a gas flow with flow D and initial section So at the upstream inlet of said partition, in a flow of section S at least equal to 3.So, and having said level uniformity. Preferably, said distance is less than L / 3. In Figure 4, said medium is on the part marked "A".

Chaque cloison peut comprendre, dans sa partie supérieure, un ou plusieurs ouvreaux (30), qui peuvent être obturés par un couvercle (36) et qui donnent accès à des puits (37).Each partition may include, in its upper part, one or more openers (30), which can be closed by a cover (36) and which give access to wells (37).

Selon l'invention, ledit moyen pour obtenir ledit flux gazeux de débit D et de section S présentant ledit niveau d'homogénéité est constitué d'éléments diviseurs, ou entretoises, (33) divisant, en un nombre d'étapes variant de 2 à 4, ledit flux initial de section So, comme représenté aux figures 4 et 4a, en une dizaine de fractions de flux (7). Sur la figure 4a, on peut, à titre indicatif, considérer 3 étapes pour diviser le flux initial So : la première comprenant 2 entretoises ou éléments (330), la seconde comprenant 6 entretoises ou éléments (331), la troisième comprenant 10 entretoises ou éléments (332), ces 10 entretoises ou éléments constituant un front en aval duquel - à droite duquel sur la figure 4a - ledit niveau d'homogénéité est obtenu. Le flux initial So est ainsi divisé en 11 fractions de flux (7) sur l'ensemble de la section S. According to the invention, said means for obtaining said gas flow of flow rate D and of section S having said level of homogeneity consists of dividing elements, or spacers, (33) dividing, in a number of steps varying from 2 to 4, said initial flow of section So, as shown in Figures 4 and 4a, in a dozen flow fractions (7). On the Figure 4a, we can, as an indication, consider 3 steps to divide the initial flow So: the first comprising 2 spacers or elements (330), the second comprising 6 spacers or elements (331), the third comprising 10 spacers or elements (332), these 10 spacers or elements constituting a front downstream of which - to the right of which on the Figure 4a - said level of homogeneity is obtained. The initial flow So is thus divided into 11 flow fractions (7) over the entire section S.

Selon une autre modalité de l'invention, comme représenté aux figures 5 et 6, ledit conduit (5) est de section constante, lesdits murs (32) présentant des ouvertures (320) ayant sensiblement ladite section S, dans le plan Y-Z, de manière à former des conduits (5) de section S sensiblement constante, d'amont en aval, sur l'ensemble des cloisons creuses (3) simultanément actives pour ledit feu, dans lequel ledit niveau d'homogénéité est obtenu par un moyen de répartition amovible (232) introduit, en amont dudit feu tournant, à l'extrémité amont dudit conduit (5), de manière à injecter dans chaque conduit (5) ledit flux gazeux avec ledit niveau d'homogénéité, sous forme d'une dizaine de fractions de flux (7) - 8 fractions illustrées sur la figure 5.According to another embodiment of the invention, as shown in Figures 5 and 6, said conduit (5) is of constant section, said walls (32) having openings (320) having substantially said section S, in the plane Y-Z, so as to form conduits (5) of substantially constant section S, from upstream to downstream, on all the partitions hollow (3) simultaneously active for said fire, wherein said level of homogeneity is obtained by a removable distribution means (232) introduced, upstream of said light rotating, at the upstream end of said conduit (5), so as to inject into each conduit (5) said gas flow with said level of homogeneity, in the form of ten flow fractions (7) - 8 fractions illustrated in Figure 5.

En outre, il peut être avantageux, pour conserver ledit niveau d'homogénéité sur la plus grande longueur possible de conduit (5) d'utiliser un moyen de répartition amovible (212) également en aval dudit feu tournant, à l'extrémité aval dudit conduit (5) formé par la succession de cloisons creuses (3) actives pour ledit feu, de manière à aspirer ledit flux gazeux sans perturber en amont ledit niveau d'homogénéité dudit flux gazeux.In addition, it may be advantageous, to maintain said level of homogeneity over the most long possible length of conduit (5) to use a removable distribution means (212) also downstream of said rotating light, at the downstream end of said duct (5) formed by the succession of hollow partitions (3) active for said fire, so as to draw said flow gaseous without disturbing upstream said level of homogeneity of said gas flow.

Selon l'invention, ledit moyen de répartition (212. 232) peut être une enceinte ou un panneau de répartition parallélépipédique (232), de section plane horizontale, dans le plan X-Y, choisie pour que ladite enceinte puisse être introduite verticalement dans ledit puits (37) de ladite cloison (3) ou entre deux chambres, et de section plane verticale dans le plan Y-Z légèrement inférieur à ladite section S de ladite cloison dans le plan Y-Z, ayant une face parallèle au plan Y-Z munie d'ouvertures (2320) à géométrie calculée, soit pour injecter ledit flux gazeux, sous forme de fractions de flux (7), avec ledit niveau d'homogénéité en amont dudit conduit (5), ou pour aspirer ledit flux gazeux en aval dudit conduit (5).According to the invention, said distribution means (212. 232) can be an enclosure or a parallelepipedic distribution panel (232), of horizontal flat section, in the X-Y plane, chosen so that said enclosure can be introduced vertically into said well (37) of said partition (3) or between two chambers, and of vertical plane section in the plane Y-Z slightly lower than said section S of said partition in the plane Y-Z, having a face parallel to the Y-Z plane provided with openings (2320) with calculated geometry, either to inject said gas flow, in the form of flow fractions (7), with said level homogeneity upstream of said conduit (5), or to aspirate said gas flow downstream of said conduit (5).

Quelle que soit la modalité de l'invention, ledit moyen pour conserver un flux gazeux de débit D ayant ledit niveau d'homogénéité sur ladite section S comprend une pluralité d'éléments ou entretoises (33) fixés aux dites parois latérales (38) et réparties, en fonction des résultats de la simulation numérique, de manière sensiblement homogene a la surface des dites parois latérales (38) dans le plan X-Z de ladite cloison ou dudit conduit, en nombre suffisant pour assurer ledit écartement constant desdites parois latérales (38), de façon à diviser ledit flux gazeux en un nombre de fractions de flux (7) variant de 3 à 20 régulièrement réparties sur toute ladite section S, et à assurer pour lesdites fractions un écoulement à orientation prédéterminée, éventuellement selon ledit sens long X du four, de manière à avoir un écoulement sensiblement tubulaire (50) sur tout ou partie du conduit (5) selon la modalité de l'invention.Whatever the method of the invention, said means for preserving a gas flow of flow D having said level of homogeneity on said section S comprises a plurality elements or spacers (33) fixed to said side walls (38) and distributed, in function of the results of the numerical simulation, in a substantially homogeneous the surface of said side walls (38) in the X-Z plane of said partition or said conduit, in sufficient number to ensure said constant spacing of said walls side (38), so as to divide said gas flow into a number of flow fractions (7) varying from 3 to 20 regularly distributed over the whole of said section S, and to be ensured for said fractions a flow with predetermined orientation, possibly according to said long direction X of the furnace, so as to have a substantially tubular flow (50) on all or part of the conduit (5) according to the method of the invention.

Selon la première modalité de l'invention, illustrée à la figure 4, on observe, sur toute section S, une dizaine de fractions de flux (7) dans la partie notée " B " de longueur L' sur laquelle ledit niveau d'homogénéité est atteint, chaque fraction de flux (7) pouvant regrouper plusieurs filets élémentaires (6) représentés en trait continu à la figure 4.According to the first embodiment of the invention, illustrated in FIG. 4, we observe, on all section S, about ten flow fractions (7) in the part marked "B" of length L ' on which said level of homogeneity is reached, each fraction of flow (7) possibly group together several elementary nets (6) shown in solid line in FIG. 4.

En ce qui concerne la seconde modalité, elle a été illustrée schématiquement à la figure 5 avec également une dizaine de fractions de flux (7), bien que les entretoises n'aient pas été indiquées sur la figure.As regards the second modality, it has been illustrated diagrammatically in FIG. 5 also with about ten flow fractions (7), although the spacers did not have been indicated in the figure.

Il peut être avantageux que lesdits éléments ou entretoisès (33) soient profilés de manière à diminuer la perte de charge dudit flux gazeux, tout en assurant les autres fonctions requises visant à maintenir un écartement constant entre lesdites parois latérales (38), et à obtenir ou conserver pour ledit flux gazeux ledit niveau d'homogénéité prédéterminé sur ladite section S.It may be advantageous for said elements or braces (33) to be profiled so to reduce the pressure drop of said gas flow, while ensuring the other functions required to maintain a constant spacing between said side walls (38), and to obtain or maintain for said gas flow said predetermined level of homogeneity on said section S.

Les figures 7a à 7d illustrent, en coupe dans le plan X-Z, différents profils d'entretoises ou éléments (33a, 33b, 33c, 33d), certaines (33c et 33d) étant de forme oblongue avec un grand axe (330), pour faciliter la pénétration du flux gazeux et réduire sa perte de charge. La perte de charge P sera a priori dans l'ordre suivant : P33a > P33b >P33c et P33d.Figures 7a to 7d illustrate, in section in the XZ plane, different profiles of spacers or elements (33a, 33b, 33c, 33d), some (33c and 33d) being oblong in shape with a major axis (330), for facilitate the penetration of the gas flow and reduce its pressure drop. The pressure drop P will a priori be in the following order: P 33a > P 33b > P 33c and P 33d .

Il peut être également avantageux, de manière à diminuer encore la perte de charge, d'utiliser des éléments de forme oblongue (33c, 33d) et de les orienter, comme illustré à la figure 8, de façon à ce que l'orientation du grand axe (330) desdites entretoises coïncide avec la direction du flux gazeux, en particulier dans le cas où lesdites chambres sont séparées par des murs (32) munis d'orifices ou ouvertures (320) assurant le passage dudit flux gazeux d'une chambre à une autre.It can also be advantageous, so as to further reduce the pressure drop, to use oblong elements (33c, 33d) and to orient them, as illustrated in Figure 8, so that the orientation of the major axis (330) of said spacers coincides with the direction of the gas flow, in particular in the case where said chambers are separated by walls (32) provided with orifices or openings (320) ensuring the passage said gas flow from one room to another.

Exemple de réalisationExample of realization

On a modélisé puis construit un four (1), du type de celui représenté à la figure 1, et comprenant des cloisons creuses selon les figures 4 et 4a de l'invention, construites avec des briques et entretoises en matériau réfractaire. La figure 4a constitue le plan de construction de la cloison creuse (3), à la manière d'un mur de briques, les éléments hachurés s'étendant transversalement (direction Y-Y') sur toute la largeur (0,5 m) de ladite cloison - largeur qui comprend 0,3m de veine gazeuse et 2 x 0,1m d'épaisseur de la cloison creuse. L'échelle des figures 4 et 4a est donnée par L = 4,178 m, et par l'épaisseur de chaque brique en matériau réfractaire = 91,5 mm.We modeled and then built a furnace (1), of the type represented in FIG. 1, and comprising hollow partitions according to FIGS. 4 and 4a of the invention, constructed with bricks and spacers made of refractory material. FIG. 4a constitutes the plan of construction of the hollow partition (3), like a brick wall, the elements hatched extending transversely (direction Y-Y ') over the entire width (0.5 m) of said partition - width which comprises 0.3m of gas stream and 2 x 0.1m thickness of the hollow partition. The scale of Figures 4 and 4a is given by L = 4.178 m, and by the thickness of each brick of refractory material = 91.5 mm.

Préalablement à la construction du four, la modélisation des écoulements du flux gazeux dans les cloisons creuses a été réalisée en divisant le flux total en une cinquantaine de flux élémentaires ou filets gazeux (6), la représentation d'une configuration selon l'invention obtenue par ladite modélisation a conduit à la figure 4 où la trajectoire de chaque filet gazeux (6) est représentée. Ladite modélisation a été effectuée à l'aide de moyens informatiques connus en eux-mêmes.Prior to the construction of the furnace, the modeling of gas flow flows in the hollow partitions was carried out by dividing the total flow into fifty elementary streams or gaseous nets (6), the representation of a configuration according to the invention obtained by said modeling led to FIG. 4 where the trajectory of each gas stream (6) is shown. Said modeling was carried out using computer means known in themselves.

Sur la figure 4, on distingue 3 zones, notées A, B et C, le flux gazeux s'écoulant de gauche à droite :

  • la zone A correspond à la formation d'un flux gazeux de section S présentant ledit niveau d'homogénéité, à partir d'un flux gazeux de section So << S,
  • la zone B correspond à un écoulement sensiblement tubulaire dudit flux gazeux, qui présente ledit niveau d'homogénéité (avec y = 0,25) sur une longueur L' de la cloison,
  • la zone C correspond à la partie où le flux gazeux se reconcentre, passant d'une section S à une section So, au passage du mur entre deux chambres successives.
In FIG. 4, there are 3 zones, marked A, B and C, the gas flow flowing from left to right:
  • zone A corresponds to the formation of a gas flow of section S having said level of homogeneity, from a gas flow of section So << S,
  • zone B corresponds to a substantially tubular flow of said gas flow, which has said level of homogeneity (with y = 0.25) over a length L ′ of the partition,
  • zone C corresponds to the part where the gas flow reconcentrates, passing from a section S to a section So, on passing the wall between two successive chambers.

Avantages de l'inventionAdvantages of the invention

Le four selon l'invention permet effectivement de résoudre le problème posé : que ce soit la constance de qualité des blocs carbonés, la consommation énergétique du four, ou encore la durée de vie du four, sur tous ces plans, la présente invention apporte une amélioration aux fours existants selon l'état de la technique.The oven according to the invention effectively solves the problem posed: whether the consistency of the quality of the carbon blocks, the energy consumption of the oven, or still the life of the furnace, on all these planes, the present invention provides a improvement to existing ovens according to the state of the art.

La consommation énergétique du four est significativement réduite à la fois grâce à une meilleure homogénéité de la température, ce qui évite les surchauffes locales inutiles, et à cause d'une moindre perte de charge (voir figure 6a).The energy consumption of the oven is significantly reduced at the same time thanks to a better temperature uniformity, which avoids unnecessary local overheating, and cause of a lower pressure drop (see Figure 6a).

Le gain global, tant en ce qui concerne la consommation énergétique du four et la consommation de réfractaires, est d'au moins 10 %, ce qui est considérable dans ce type d'industrie.The overall gain, both in terms of the energy consumption of the oven and the consumption of refractories, is at least 10%, which is considerable in this type industry.

Claims (8)

  1. Ring furnace (1) with open type sections (2) for baking carbonaceous blocks (40) comprising, along the longitudinal X direction of the furnace, a series of sections (2) separated by headwalls (32) provided with openings (320), each section comprising an alternation of hollow walls (3) along the transverse Y direction of the furnace, through which a heating gas flow (35) consisting of combustion gas or a cooling air flow (34) circulates, alternating with pits (4) containing carbonaceous blocks (40) to be baked, each of the said hollow walls (3) in a section (2) being in communication with a wall in an upstream section and/or a wall in a downstream section, so as to form a conduit (5) through which the said gas flow (34, 35) circulates from the upstream side to the downstream side, in the X longitudinal direction on all sections simultaneously active in the revolving fire of said ring furnace, each of the said walls of a section comprising two vertical lateral partitions (38) in the X-Z plane, and elements in the transverse Y direction for deflecting the said gas flow passing through the said wall and maintaining a constant separation between the said lateral partitions (38), characterized in that each hollow wall (3) comprises a means of maintaining, over at least a third of the length L of said wall, a gas flow D uniformly distributed over the entire straight cross-section S of the said hollow wall (3) in the Y-Z plane, with a degree of uniformity such that the flow in the fraction y with cross-section y.S is between 2y.D and 0.5y.D, regardless of the fraction y of the cross-section considered, and in which y is not more than 0.25, the said means comprising a plurality of elements or tie beams (33) fixed to the said lateral partitions (38) and uniformly distributed in the X-Z plane of the said wall or the said conduit at the surface of the said lateral partitions (38), in a sufficient number to enable the said constant separation of the said lateral partitions (38) so as to divide the said gas flow into a number of flow fractions varying from 3 to 20 uniformly distributed over the entire said cross-section S, and to control a flow with a predetermined orientation for each of the said fractions, possibly along the said X longitudinal direction of the furnace.
  2. Furnace according to claim 1, comprising sections separated by a headwall (32) with openings with cross-section So (320) through which the said gas flow (34, 35) passes from one wall to the next wall, and in which the said wall comprises a means in its upstream part for obtaining a flow with cross-section S > So, starting from an initial flow D with cross-section So, with a uniformity such that regardless of the fraction y of the wall considered, the flow in this fraction with cross-section y.S is between 2y.D and 0.5y.D, the value of y being equal to not more than 0.25.
  3. Furnace according to claim 2, in which the said means transforms, over a distance equal to half the length L of the said wall, a gas flow D with an initial cross-section So at the upstream entry to the said wall, into a flow with a cross-section S equal to at least 3.So and with the said degree of homogeneity.
  4. Furnace according to claim 2, in which the said means of obtaining the said gas flow D with cross-section S and the said degree of homogeneity is composed of dividing elements or tie beams, dividing the said initial flow with cross-section So through a number of steps varying from 2 to 4.
  5. Furnace according to claim 1 in which the said conduit has a constant cross-section, the said walls (32) having openings (320) with approximately the said cross-section S in the Y-Z plane, in order to form conduits (5) with an substantially constant cross-section S by a series of hollow walls (3) simultaneously active in the said fire, in which the said degree of homogeneity is achieved by a removable distribution means inserted upstream of the said revolving fire at the upstream end of the said conduit (5) in order to inject the said gas flow with the said degree of homogeneity into each conduit (5).
  6. Furnace according to claim 5, in which the said degree of homogeneity is further achieved using the said removable distribution means inserted downstream of the said revolving fire, at the downstream end of the said conduit (5) formed by the series of hollow walls (3) active for the said fire, in order to suck up the said gas flow without disturbing the said degree of homogeneity of the said gas flow on the upstream side.
  7. Furnace according to any one of claims 5 and 6, in which the said distribution means is a containment or a parallelepiped shaped distribution panel (232) with a plane horizontal cross-section in the X-Y plane, chosen such that the said containment can be inserted vertically in the said shaft (37) of the said wall (3) or between two sections, and with a plane vertical cross-section in the Y-Z plane slightly smaller than the said cross-section S of the said wall in the Y-Z plane, having a surface parallel to the Y-Z plane provided with openings (2320) with a geometry calculated either to inject the said gas flow with the said degree of homogeneity on the upstream side of the said conduit (5), or to suck up the said gas flow on the downstream side of the said conduit (5).
  8. Furnace according to either of claims 1 and 4, in which the said elements or tie beams (33) are profiled so as to reduce the pressure loss in the said gas flow, while providing other required functions in order to maintain a constant separation between the said lateral partitions (38) and to achieve or maintain the said predetermined degree of homogeneity for the gas flow over the said cross-section S.
EP99925058A 1998-06-11 1999-06-08 Ring type furnace Expired - Lifetime EP1093560B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9807536A FR2779811B1 (en) 1998-06-11 1998-06-11 ROTATING FIRE OVEN WITH TUBULAR CENTRAL FLOW
FR9807536 1998-06-11
PCT/FR1999/001339 WO1999064804A1 (en) 1998-06-11 1999-06-08 Rotary furnace with tubular central flow

Publications (2)

Publication Number Publication Date
EP1093560A1 EP1093560A1 (en) 2001-04-25
EP1093560B1 true EP1093560B1 (en) 2003-03-26

Family

ID=9527418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925058A Expired - Lifetime EP1093560B1 (en) 1998-06-11 1999-06-08 Ring type furnace

Country Status (17)

Country Link
US (1) US6027339A (en)
EP (1) EP1093560B1 (en)
CN (1) CN100445680C (en)
AR (1) AR018655A1 (en)
AU (1) AU745152C (en)
BR (1) BR9911134A (en)
CA (1) CA2334994C (en)
DE (1) DE69906296T2 (en)
EG (1) EG21714A (en)
ES (1) ES2191433T3 (en)
FR (1) FR2779811B1 (en)
GC (1) GC0000056A (en)
NO (1) NO322639B1 (en)
NZ (1) NZ508349A (en)
TW (1) TW432194B (en)
WO (1) WO1999064804A1 (en)
ZA (1) ZA200007066B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825455B1 (en) * 2001-05-30 2003-07-11 Pechiney Aluminium METHOD AND DEVICE FOR COOLING THE WELLS OF A CHAMBER OVEN
US7104789B1 (en) * 2005-03-17 2006-09-12 Harbison-Walker Refractories Company Wall structure for carbon baking furnace
CA2699825C (en) * 2007-09-18 2014-06-17 Wolfgang Leisenberg Method and device for recovering heat
FR2928206B1 (en) * 2008-02-29 2011-04-22 Solios Carbone METHOD FOR DETECTING AT LEAST PARTIALLY MOLDED ROOM DETECTION FOR ROOM OVEN
FR2946737B1 (en) 2009-06-15 2013-11-15 Alcan Int Ltd METHOD FOR CONTROLLING A COOKING FURNACE OF CARBON BLOCKS AND OVEN ADAPTED THEREFOR.
CA2772693C (en) * 2009-09-07 2017-01-03 Solios Carbone Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)
FR2963413A1 (en) * 2010-07-27 2012-02-03 Alcan Int Ltd METHOD AND SYSTEM FOR CONTROLLING THE COOKING OF CARBON BLOCKS IN AN INSTALLATION
CN103930741B (en) * 2011-09-08 2016-02-10 索里斯卡彭公司 Optimize the method and apparatus burnt in roasting carbon block circular furnace isolation wall circuit
US20130108974A1 (en) * 2011-10-26 2013-05-02 Fluor Technologies Corporation Carbon baking heat recovery firing system
FR3135089A1 (en) * 2022-04-27 2023-11-03 Fives Ecl Petroleum coke filling unit and filling process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1351305A (en) * 1919-03-19 1920-08-31 Albert G Smith Furnace construction
DE468252C (en) * 1925-06-18 1928-11-09 Antonius Ludovicus Geldens Brick ring furnace with double walls between the combustion chambers and grate bars arranged at different heights
US3975149A (en) * 1975-04-23 1976-08-17 Aluminum Company Of America Ring furnace
US4253823A (en) * 1979-05-17 1981-03-03 Alcan Research & Development Limited Procedure and apparatus for baking carbon bodies
NO152029C (en) * 1982-11-05 1985-07-17 Ardal Og Sunndal Verk RING ROOM OVEN AND PROCEDURE FOR OPERATING THIS
FR2535834B1 (en) * 1982-11-09 1987-11-06 Pechiney Aluminium OPEN CHAMBER OVEN FOR COOKING CARBON BLOCKS, COMPRISING A BLOWING PIPE
DE3760518D1 (en) * 1986-06-17 1989-10-05 Pechiney Aluminium Process and device to optimize the firing in an open chamber furnace for burning carbonaceous blocks
FR2600152B1 (en) * 1986-06-17 1988-08-26 Pechiney Aluminium DEVICE AND METHOD FOR OPTIMIZING COMBUSTION IN CHAMBER OVENS FOR COOKING CARBON BLOCKS
FR2629906B1 (en) * 1988-04-08 1991-02-08 Pechiney Aluminium METHOD OF CONSTRUCTING OVEN WITH OPEN CHAMBERS TO AVOID THEIR DEFORMATION

Also Published As

Publication number Publication date
FR2779811B1 (en) 2000-07-28
EP1093560A1 (en) 2001-04-25
ZA200007066B (en) 2002-02-28
CA2334994A1 (en) 1999-12-16
AU4147899A (en) 1999-12-30
AU745152B2 (en) 2002-03-14
TW432194B (en) 2001-05-01
NO20006234L (en) 2000-12-07
AR018655A1 (en) 2001-11-28
CA2334994C (en) 2009-02-03
BR9911134A (en) 2001-10-23
US6027339A (en) 2000-02-22
FR2779811A1 (en) 1999-12-17
NZ508349A (en) 2003-10-31
NO20006234D0 (en) 2000-12-07
CN100445680C (en) 2008-12-24
NO322639B1 (en) 2006-11-13
WO1999064804A1 (en) 1999-12-16
ES2191433T3 (en) 2003-09-01
GC0000056A (en) 2004-06-30
DE69906296T2 (en) 2003-12-04
EG21714A (en) 2002-02-27
CN1305579A (en) 2001-07-25
DE69906296D1 (en) 2003-04-30
AU745152C (en) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1093560B1 (en) Ring type furnace
EP0090790B1 (en) Apparatus for the heat treatment of articles by convection
EP0769316A1 (en) Distributor for independently injecting and/or collecting fluids
FR2529303A1 (en) VERTICAL INCINERATION APPARATUS WITH THERMAL RECOVERY
FR2702831A1 (en) Process and device for cooling the enclosure of a heat exchanger
CA2324935C (en) Method and device for regulating burning ring furnaces
JP2018507951A (en) Coke oven corbel structure
EP0284464A1 (en) Furnace for the dehydration of powders, sand and agglomerates
EP0787950A1 (en) Room with controlled amounts of dust
JP5041463B2 (en) Pottery kiln
RU2420067C2 (en) Baking stove heating element
EP1133666A1 (en) Device for high temperature heat treatment of ligneous material
WO2021123608A1 (en) Machine for additive manufacturing by powder bed deposition with a central gas suction or gas blowing manifold
EP2724110A1 (en) Heat regenerator
EP1055084B1 (en) Method for heating products in an enclosure and burner for carrying out the method
EP1077267B1 (en) Apparatus for the continuous heat treatment of metal workpieces separately or in batches
WO2023007087A1 (en) Storage heating device
EP0940372B1 (en) Apparatus for thermal treatment of glass sheets
FR2770625A1 (en) HIGH EFFICIENCY HEAT EXCHANGER ELEMENT FOR CONSTITUTING THE HEATING BODY OF A SECTIONABLE BOILER
FR2475187A1 (en) SMOKE DUCT BOILER AND PIPE FOR SUCH A BOILER
FR2906354A1 (en) &#34;PORTIC OVEN&#34;
EP1420612B1 (en) Burner able to treat high temperature material
FR2862130A1 (en) Firing of elongated and honeycombed construction elements in a tunnel furnace with controlled burner operation to ensure uniform firing
FR2692756A1 (en) Hot air production unit, in particular for bakery, pastry, or similar ovens, with fixed or mobile carriages with air recycling.
CH354047A (en) Baking oven

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR NL

17Q First examination report despatched

Effective date: 20010521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: RING TYPE FURNACE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR NL

REF Corresponds to:

Ref document number: 69906296

Country of ref document: DE

Date of ref document: 20030430

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191433

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100628

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130702

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130626

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69906296

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69906296

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630