EP1080361A4 - Apparatus and method for determining tissue characteristics - Google Patents
Apparatus and method for determining tissue characteristicsInfo
- Publication number
- EP1080361A4 EP1080361A4 EP99924312A EP99924312A EP1080361A4 EP 1080361 A4 EP1080361 A4 EP 1080361A4 EP 99924312 A EP99924312 A EP 99924312A EP 99924312 A EP99924312 A EP 99924312A EP 1080361 A4 EP1080361 A4 EP 1080361A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- interrogation
- instrument
- inner core
- positions
- target tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
- G01N21/474—Details of optical heads therefor, e.g. using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6484—Optical fibres
Definitions
- An instrument as described above could be configured to allow rotation of the optical fibers between a plurality of predetermined rotational positions.
- One embodiment could be configured so that the optical fibers are located at a series of unique positions as the optical fibers are rotated between the predetermined rotational positions. This would allow the device to capture multiple readings at a large number of unique positions on the target tissue. Such a multiple cycle measurement process would allow greater resolution than would be possible with a single measurement cycle.
- Figure 7 shows the steps of a method embodying the invention
- Figure 8 shows the steps of another method embodying the invention
- Figure 9 is a cross-sectional view of a device embodying the invention
- the processor device 44 may include a memory 45 and a display 47. In fact, the processor device may comprise a typical personal computer.
- the processor 44 may also be configured to determine the AC and DC components of the amplitudes of the excitation and returned electromagnetic radiation signals.
- the processor may also be configured to calculate a demodulation factor m. As shown in Figure 1, the demodulation factor m represents a ratio of the AC component B divided by the DC component A of the returned electromagnetic radiation to the AC component b divided by the DC component a of the excitation electromagnetic radiation.
- the demodulation factor can be used in conjunction with the phase difference f to more accurately determine characteristics of the target tissue.
- the returned radiation is then reflected by the dichroic mirror 28 through additional optics 29 and, optionally, another filter 32.
- the returned radiation then enters a polarizing beam splitter 34, which separates the returned ele ⁇ romagnetic radiation into two light beams that are polarized into mutually perpendicular planes.
- one polarization plane will be parallel to the polarization plane of the excitation radiation, and the other polarization plane will be perpendicular to that plane.
- a first one of the separated light beams having a first polarization plane illuminates a first detector 40A.
- a second of the separated light beams having a second polarization plane that is perpendicular to the first polarization plane illuminates a second detector 40B.
- Figure 8 shows another method embodying invention that can be used to determine tissue characteristics.
- the target tissue is illuminated with polarized electromagnetic radiation.
- the intensity of returned ele ⁇ romagnetic radiation is detected in mutually perpendicular polarization planes. In a preferred embodiment, the amplitude would be dete ⁇ ed in planes that are parallel and perpendicular to the polarization plane of the excitation radiation.
- an anisotropy factor is calculated based on the dete ⁇ ed intensity values for the different polarization planes.
- characteristics of a target tissue are determined based on the calculated anisotropy factor.
- mounts 134 each having its own spring loaded finger 136, could be attached to the inner core 114.
- the provision of four such mounts would serve to keep the inner core 114 better centered inside the outer housing 112.
- FIG. 10B An alternate embodiment of the detent mechanism is shown in Figure 10B.
- six stoppers 130 are spaced around the inside of the outer housing 112.
- Three mounts 134 are mounted on the inner core 114.
- the three mounts 134 are spaced around the exterior of the inner core
- the light source 20 and filter assembly 22 allow specific wavelengths of light to be used to illuminate the target tissue 50 via the excitation optical fibers 116a.
- the filter assembly 22 could be a single band pass optical filter, or multiple optical filters that can be selectively placed between the light source 20 and the excitation optical fibers 116a.
- the light source 20 and filter assembly 22 could be replaced with a wavelength tunable light source.
- a plurality of light sources, such as lasers, could be used to selectively output specific wavelengths or wavelength bands of excitation light.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8594198P | 1998-05-19 | 1998-05-19 | |
US85941P | 1998-05-19 | ||
PCT/US1999/010947 WO1999060377A1 (en) | 1998-05-19 | 1999-05-19 | Apparatus and method for determining tissue characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1080361A1 EP1080361A1 (en) | 2001-03-07 |
EP1080361A4 true EP1080361A4 (en) | 2005-08-10 |
Family
ID=22194995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99924312A Withdrawn EP1080361A4 (en) | 1998-05-19 | 1999-05-19 | Apparatus and method for determining tissue characteristics |
Country Status (5)
Country | Link |
---|---|
US (3) | US6590651B1 (en) |
EP (1) | EP1080361A4 (en) |
AU (1) | AU763861B2 (en) |
CA (1) | CA2332833A1 (en) |
WO (1) | WO1999060377A1 (en) |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6307957B1 (en) * | 1997-02-28 | 2001-10-23 | Electro-Optical Sciences Inc | Multispectral imaging and characterization of biological tissue |
WO1999060377A1 (en) * | 1998-05-19 | 1999-11-25 | Spectrx, Inc. | Apparatus and method for determining tissue characteristics |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
JP5047432B2 (en) * | 1999-09-14 | 2012-10-10 | ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク | Method and system for imaging the dynamics of scattering media |
US6795195B1 (en) * | 1999-09-14 | 2004-09-21 | Research Foundation Of State University Of New York | System and method for tomographic imaging of dynamic properties of a scattering medium |
US6675027B1 (en) * | 1999-11-22 | 2004-01-06 | Microsoft Corp | Personal mobile computing device having antenna microphone for improved speech recognition |
US7555333B2 (en) | 2000-06-19 | 2009-06-30 | University Of Washington | Integrated optical scanning image acquisition and display |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7616986B2 (en) * | 2001-05-07 | 2009-11-10 | University Of Washington | Optical fiber scanner for performing multimodal optical imaging |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
WO2002100460A2 (en) | 2001-06-12 | 2002-12-19 | Pelikan Technologies, Inc. | Electric lancet actuator |
EP1404233B1 (en) | 2001-06-12 | 2009-12-02 | Pelikan Technologies Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
US7333189B2 (en) * | 2002-01-18 | 2008-02-19 | Pentax Corporation | Spectroscopic diagnostic methods and system |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
DE602004028463D1 (en) | 2003-05-30 | 2010-09-16 | Pelikan Technologies Inc | METHOD AND DEVICE FOR INJECTING LIQUID |
ES2490740T3 (en) | 2003-06-06 | 2014-09-04 | Sanofi-Aventis Deutschland Gmbh | Apparatus for blood fluid sampling and analyte detection |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US7383181B2 (en) * | 2003-07-29 | 2008-06-03 | Microsoft Corporation | Multi-sensory speech detection system |
US20050033571A1 (en) * | 2003-08-07 | 2005-02-10 | Microsoft Corporation | Head mounted multi-sensory audio input system |
WO2005027730A2 (en) * | 2003-09-19 | 2005-03-31 | The General Hospital Corporation | Fluorescence polarization imaging devices and methods |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US7447630B2 (en) * | 2003-11-26 | 2008-11-04 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement |
US7901348B2 (en) | 2003-12-12 | 2011-03-08 | University Of Washington | Catheterscope 3D guidance and interface system |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
EP1706026B1 (en) | 2003-12-31 | 2017-03-01 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving fluidic flow and sample capture |
US7499686B2 (en) * | 2004-02-24 | 2009-03-03 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement on a mobile device |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
EP1765194A4 (en) | 2004-06-03 | 2010-09-29 | Pelikan Technologies Inc | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
JP4610970B2 (en) * | 2004-09-07 | 2011-01-12 | オリンパス株式会社 | Detachable filter device and endoscope device |
US7574008B2 (en) * | 2004-09-17 | 2009-08-11 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement |
US7283850B2 (en) * | 2004-10-12 | 2007-10-16 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement on a mobile device |
US7417740B2 (en) * | 2004-11-12 | 2008-08-26 | Medeikon Corporation | Single trace multi-channel low coherence interferometric sensor |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7530948B2 (en) | 2005-02-28 | 2009-05-12 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
US7346504B2 (en) * | 2005-06-20 | 2008-03-18 | Microsoft Corporation | Multi-sensory speech enhancement using a clean speech prior |
WO2007002323A2 (en) * | 2005-06-23 | 2007-01-04 | Epoc, Inc. | System and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status |
CA2616376A1 (en) * | 2005-07-25 | 2007-02-01 | Duke University | Methods, systems, and computer program products for optimization of probes for spectroscopic measurement in turbid media |
DE102005049021B4 (en) * | 2005-10-11 | 2008-08-21 | Richard Wolf Gmbh | endoscope |
JP2009516568A (en) | 2005-11-23 | 2009-04-23 | ユニヴァーシティ オブ ワシントン | Scanning a beam with variable sequential framing using interrupted scanning resonances |
WO2007084915A2 (en) * | 2006-01-17 | 2007-07-26 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
WO2007149603A2 (en) * | 2006-02-01 | 2007-12-27 | The General Hospital Corporation | Apparatus for applying a plurality of electro-magnetic radiations to a sample |
US9561078B2 (en) | 2006-03-03 | 2017-02-07 | University Of Washington | Multi-cladding optical fiber scanner |
US7818154B2 (en) * | 2006-03-17 | 2010-10-19 | Duke University | Monte Carlo based model of fluorescence in turbid media and methods and systems for using same to determine intrinsic fluorescence of turbid media |
US20070216908A1 (en) * | 2006-03-17 | 2007-09-20 | University Of Washington | Clutter rejection filters for optical doppler tomography |
EP2005173A4 (en) * | 2006-03-30 | 2011-03-16 | Univ Duke | OPTICAL ANALYSIS SYSTEM FOR INTRA-OPERATIVE EVALUATION OF TUMOR MARGINS |
US8129105B2 (en) | 2006-04-13 | 2012-03-06 | Ralph Zuckerman | Method and apparatus for the non-invasive measurement of tissue function and metabolism by determination of steady-state fluorescence anisotropy |
JP5398524B2 (en) * | 2006-05-09 | 2014-01-29 | コーニンクレッカ フィリップス エヌ ヴェ | Imaging system for three-dimensional imaging inside an object and method of operating the same |
WO2008066911A2 (en) * | 2006-11-30 | 2008-06-05 | Newton Laboratories, Inc. | Spectroscopically enhanced imaging |
DE102007004514A1 (en) * | 2007-01-24 | 2008-07-31 | Schleifring Und Apparatebau Gmbh | Two-channel multimode rotary transmitter |
DE102007004517A1 (en) * | 2007-01-24 | 2008-07-31 | Schleifring Und Apparatebau Gmbh | Two-channel multimode rotary transformer |
US20080270091A1 (en) * | 2007-02-23 | 2008-10-30 | Nirmala Ramanujam | Scaling method for fast monte carlo simulation of diffuse reflectance spectra from multi-layered turbid media and methods and systems for using same to determine optical properties of multi-layered turbid medium from measured diffuse reflectance |
US20080221388A1 (en) * | 2007-03-09 | 2008-09-11 | University Of Washington | Side viewing optical fiber endoscope |
JP2010520778A (en) * | 2007-03-09 | 2010-06-17 | ユニヴァーシティ オブ ワシントン | Side-view scope and imaging method thereof |
US8840566B2 (en) | 2007-04-02 | 2014-09-23 | University Of Washington | Catheter with imaging capability acts as guidewire for cannula tools |
WO2008137710A1 (en) | 2007-05-03 | 2008-11-13 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
US20110059016A1 (en) * | 2007-09-27 | 2011-03-10 | Nirmala Ramanujam | Optical assay system with a multi-probe imaging array |
EP2194848A4 (en) * | 2007-09-28 | 2013-08-14 | Univ Duke | SYSTEMS AND METHODS FOR SPECTRAL ANALYSIS OF A TISSUE MASS USING AN INSTRUMENT, AN OPTICAL PROBE AND A MONTE CARLO OR DIFFUSION ALGORITHM |
DE102007058611A1 (en) * | 2007-12-04 | 2009-06-10 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | ATR probe |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
DE102008018637A1 (en) * | 2008-04-11 | 2009-10-15 | Storz Endoskop Produktions Gmbh | Apparatus and method for fluorescence imaging |
US20110105865A1 (en) * | 2008-04-24 | 2011-05-05 | Duke University | Diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering |
EP2291640B1 (en) | 2008-05-20 | 2018-12-26 | University Health Network | Device and method for fluorescence-based imaging and monitoring |
JP5180693B2 (en) * | 2008-06-12 | 2013-04-10 | 富士フイルム株式会社 | Endoscope light guide |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9091637B2 (en) | 2009-12-04 | 2015-07-28 | Duke University | Smart fiber optic sensors systems and methods for quantitative optical spectroscopy |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
WO2012057150A1 (en) * | 2010-10-29 | 2012-05-03 | オリンパス株式会社 | Optical measurement device and probe |
US20130218027A1 (en) * | 2012-02-22 | 2013-08-22 | Boston Scientific Scimed, Inc. | Imaging device and methods of using the same |
EP2674103A1 (en) * | 2012-06-15 | 2013-12-18 | Fresenius Medical Care Deutschland GmbH | Method and device for monitoring an extracorporeal blood treatment of a patient |
US20150164327A1 (en) * | 2012-07-13 | 2015-06-18 | University Of Massachusetts | Multimodal imaging for the detection of tissue structure and composition |
US10231670B2 (en) | 2014-06-19 | 2019-03-19 | Masimo Corporation | Proximity sensor in pulse oximeter |
JP6769949B2 (en) | 2014-07-24 | 2020-10-14 | ユニバーシティー ヘルス ネットワーク | Data collection and analysis for diagnostic purposes |
GB201415611D0 (en) | 2014-09-03 | 2014-10-15 | Univ Strathclyde | Apparatus for topical application of material |
WO2016166067A1 (en) * | 2015-04-17 | 2016-10-20 | Koninklijke Philips N.V. | Detection of anisotropic biological tissue |
WO2017154005A1 (en) | 2016-03-10 | 2017-09-14 | Biop - Medical Ltd | Device for diagnosing a tissue |
US9554738B1 (en) * | 2016-03-30 | 2017-01-31 | Zyomed Corp. | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
EP3662481A4 (en) | 2017-08-06 | 2020-08-05 | Biop - Medical Ltd | Optical probe for cervical examination |
CN113424048A (en) * | 2019-03-25 | 2021-09-21 | 人工智能生物医学公司 | Tissue detection system and method of use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192278A (en) * | 1985-03-22 | 1993-03-09 | Massachusetts Institute Of Technology | Multi-fiber plug for a laser catheter |
WO1996029926A1 (en) * | 1995-03-31 | 1996-10-03 | The Board Of Regents, The University Of Texas System | Probe for the detection of cervical neoplasias using fluorescence spectroscopy |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6043134B2 (en) * | 1977-08-25 | 1985-09-26 | 信紘 佐藤 | Device for measuring reflection characteristics of biological organs and tissues |
US4718417A (en) | 1985-03-22 | 1988-01-12 | Massachusetts Institute Of Technology | Visible fluorescence spectral diagnostic for laser angiosurgery |
US4930516B1 (en) | 1985-11-13 | 1998-08-04 | Laser Diagnostic Instr Inc | Method for detecting cancerous tissue using visible native luminescence |
US5419323A (en) | 1988-12-21 | 1995-05-30 | Massachusetts Institute Of Technology | Method for laser induced fluorescence of tissue |
US5369496A (en) | 1989-11-13 | 1994-11-29 | Research Foundation Of City College Of New York | Noninvasive method and apparatus for characterizing biological materials |
US5916210A (en) * | 1990-01-26 | 1999-06-29 | Intraluminal Therapeutics, Inc. | Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities |
WO1992019957A2 (en) | 1991-05-03 | 1992-11-12 | University Of Maryland At Baltimore | Method for optically measuring chemical analytes |
US5467767A (en) | 1991-11-25 | 1995-11-21 | Alfano; Robert R. | Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy |
US5515864A (en) | 1994-04-21 | 1996-05-14 | Zuckerman; Ralph | Method and apparatus for the in vivo measurement of oxygen concentration levels by the indirect determination of fluoescence lifetime |
US5628310A (en) | 1995-05-19 | 1997-05-13 | Joseph R. Lakowicz | Method and apparatus to perform trans-cutaneous analyte monitoring |
US5797836A (en) | 1995-06-07 | 1998-08-25 | Smith & Nephew, Inc. | Endoscope with relative rotation and axial motion between an optical element and an imaging device |
WO1999060377A1 (en) * | 1998-05-19 | 1999-11-25 | Spectrx, Inc. | Apparatus and method for determining tissue characteristics |
-
1999
- 1999-05-19 WO PCT/US1999/010947 patent/WO1999060377A1/en active IP Right Grant
- 1999-05-19 EP EP99924312A patent/EP1080361A4/en not_active Withdrawn
- 1999-05-19 US US09/700,538 patent/US6590651B1/en not_active Expired - Lifetime
- 1999-05-19 AU AU40838/99A patent/AU763861B2/en not_active Expired
- 1999-05-19 CA CA002332833A patent/CA2332833A1/en not_active Abandoned
-
2003
- 2003-07-03 US US10/611,917 patent/US7006220B2/en not_active Expired - Lifetime
-
2006
- 2006-02-09 US US11/351,054 patent/US7301629B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192278A (en) * | 1985-03-22 | 1993-03-09 | Massachusetts Institute Of Technology | Multi-fiber plug for a laser catheter |
WO1996029926A1 (en) * | 1995-03-31 | 1996-10-03 | The Board Of Regents, The University Of Texas System | Probe for the detection of cervical neoplasias using fluorescence spectroscopy |
Non-Patent Citations (1)
Title |
---|
See also references of WO9960377A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU763861B2 (en) | 2003-07-31 |
US20060126064A1 (en) | 2006-06-15 |
AU4083899A (en) | 1999-12-06 |
US7301629B2 (en) | 2007-11-27 |
US20040021848A1 (en) | 2004-02-05 |
US6590651B1 (en) | 2003-07-08 |
EP1080361A1 (en) | 2001-03-07 |
US7006220B2 (en) | 2006-02-28 |
WO1999060377A1 (en) | 1999-11-25 |
CA2332833A1 (en) | 1999-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6590651B1 (en) | Apparatus and method for determining tissue characteristics | |
US6055451A (en) | Apparatus and method for determining tissue characteristics | |
CA2343401C (en) | Multi-modal optical tissue diagnostic system | |
US6870620B2 (en) | Apparatus and method for determining tissue characteristics | |
Mourant et al. | Elastic scattering spectroscopy as a diagnostic tool for differentiating pathologies in the gastrointestinal tract: preliminary testing | |
AU759282B2 (en) | Systems and methods for optical examination of samples | |
JP4217403B2 (en) | System for characterization and mapping of tissue lesions | |
US20030135122A1 (en) | Multi-modal optical tissue diagnostic system | |
JP3725156B2 (en) | Optical coupler for in vivo examination of biological tissue | |
JP3923080B2 (en) | Optical fine probe and spectral analysis method of material | |
ES2289344T3 (en) | USE OF RAMAN SPECTROSCOPY OF ELEVATED WAVE NUMBER FOR TISSUE MEASUREMENT. | |
US5713364A (en) | Spectral volume microprobe analysis of materials | |
JP2012030088A (en) | System and method for imaging reflectance of substrate | |
WO2006059899A1 (en) | Pulsed lighting imaging systems and methods | |
JP2006524091A (en) | Catheter head | |
CA2389177C (en) | Multi-modal optical tissue diagnostic system | |
WO2000057157A1 (en) | Apparatus and method for determining tissue characteristics | |
MXPA01002554A (en) | Multi-modal optical tissue diagnostic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001020 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20001020;LT PAYMENT 20001020;LV PAYMENT 20001020;MK PAYMENT 20001020;RO PAYMENT 20001020;SI PAYMENT 20001020 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20050624 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 01N 21/47 B Ipc: 7A 61B 5/00 B Ipc: 7A 61N 5/06 B Ipc: 7G 01N 15/02 A |
|
17Q | First examination report despatched |
Effective date: 20071016 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080429 |