EP1059011A1 - Relaying in a telecommunications system based on code and time-division multiplex - Google Patents
Relaying in a telecommunications system based on code and time-division multiplexInfo
- Publication number
- EP1059011A1 EP1059011A1 EP99911726A EP99911726A EP1059011A1 EP 1059011 A1 EP1059011 A1 EP 1059011A1 EP 99911726 A EP99911726 A EP 99911726A EP 99911726 A EP99911726 A EP 99911726A EP 1059011 A1 EP1059011 A1 EP 1059011A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- handover
- time slot
- time
- channel
- telecommunication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 claims abstract description 40
- 230000011664 signaling Effects 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims description 67
- 101150080339 BTS1 gene Proteins 0.000 claims description 16
- 230000000977 initiatory effect Effects 0.000 claims description 11
- 230000002457 bidirectional effect Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101000579423 Homo sapiens Regulator of nonsense transcripts 1 Proteins 0.000 description 2
- 102100028287 Regulator of nonsense transcripts 1 Human genes 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 101100161086 Zingiber zerumbet ZSS1 gene Proteins 0.000 description 1
- 101100537814 Zingiber zerumbet ZSS2 gene Proteins 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/06—Reselecting a communication resource in the serving access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
Definitions
- Telecommunication systems with wireless telecommunication between mobile and / or stationary transceivers are special message systems with a message transmission link between a message source and a message sink, in which for example base stations and mobile parts for message processing and transmission are used as transmitters and receivers and in which 1) the message processing and message transmission can take place in a preferred transmission direction (simplex mode) or in both transmission directions (duplex mode), 2) the message processing is preferably digital, 3) the message transmission over the long-distance transmission path is wireless based on various message transmission methods Multiple use of the message transmission link FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) and / or CDMA (Code Division Multiple Access) - e.g. B. according to radio standards such as
- FDMA Frequency Division Multiple Access
- TDMA Time Division Multiple Access
- CDMA Code Division Multiple Access
- GSM Global System for Mobile Communication
- A.Mann "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka "GSM radio interface - elements and functions ", 2 pages 17 to 24],
- the type of transmission according to (1) ... (3) is usually characterized by continuous (analog) signals, while the type of transmission according to (4) usually produces discontinuous signals (e.g. pulses, digital signals).
- FIGURES 1 to 7 show:
- FIGURE 1 "three-level structure" of a WCDMA / FDD air interface in the "downlink",
- FIGURE 2 "three-level structure" of a WCDMA / FDD air interface in the "uplink",
- FIGURE 3 "three-level structure" of a TDCDMA / TDD air interface
- FIGURE 4 radio scenario with multiple channel utilization after frequency, / time, / code multiplex
- FIG. 5 shows the basic structure of a base station designed as a transmitting / receiving device
- FIG. 6 shows the basic structure of a mobile station which is also designed as a transceiver
- FIGURE 7 shows a DECT transmission time frame.
- the licensed coordinated mobile radio is based on WCDMA technology (ideband code division multiple access) and, as with GSM, is operated in FDD mode (Frequency Division Duplex), while in a second sub-scenario the unlicensed uncoded ordinated mobile radio based on TD-CDMA technology (Time Division-Code Division Multiple Access) and, as with DECT, operated in TDD mode (Frequency Division Duplex).
- the air interface of the telecommunication system in the up and down direction of the telecommunication contains: " UTRA Physical Layer Description FDD Parts "Vers. 0.
- the respective multi-time frame MZR contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has 16 time slots ZS1 ... ZS16.
- the individual time slot ZS, ZS1 ... ZS16 (burst) has with respect to the first physi ⁇ rule channel DPCCH as a burst structure of a pilot sequence PS with püot bits for channel estimation, a TPC sequence TPCS with N T PC bits for power control (Traffic Power Control) and a TFCI sequence TFCIS with N TFC ⁇ bits for specifying the transport format (Traffic Format Channel Indication) and with regard to the 5 second physical channel DPDCH a user data sequence NDS with N data bits.
- WCDMA / FDD Systems from ETSI or ARIB - FIGURE 1 the first physical channel ["Dedicated Physical Control Channel (DPCCH)] and the second physical channel [" Dedicated Physical Data Channel (DPDCH)] are time-multiplexed, while in the "uplink "(Upward direction of telecommunications; radio connection from the mobile station to the base station) - FIGURE 2 - an I / Q multiplex takes place, in which the second physical channel DPDCH is transmitted in the I channel and the first physical channel DPCCH in the Q channel.
- DPCCH Direct Physical Control Channel
- DPDCH Dedicated Physical Data Channel
- the air interface of the document TSG RAN is based of the telecommunication system in upward and downward direction of the telecommunications according WG1 (S1 .21): "3 rd Generation Partnership Project (3GPP) "Vers. 0. 0. 0. 1, 1999-01 again on the "three-level structure", consisting of the multi-time frame MZR, the time frame ZR and the time slots ZS, for all physical channels, which is shown in FIG. 3.
- the respective multi-time frame MZR again contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has the 16 time slots ZS1 ... ZS16.
- ZS16 (burst) either has a first time slot structure (burst structure) ZSS1, in accordance with the ARIB proposal, in the sequence consisting of a first user data sequence NDS1 with N data ⁇ bits, the pilot Sequence PS with Npii ot bits for channel estimation, the TPC sequence TPCS with N TPC bits for power control, the TFCI sequence TFCIS with N TFC ⁇ bits for specifying the transport format, a second useful data sequence NDS2 and a guard time zone SZZ (guard period) with N Gu ard _ bits, or according to the ETSI proposal, a second time slot structure (burst structure) ZSS2, in the order consisting of the first user data sequence NDS1, a first TFCI sequence 6 TFCIS1, a midamble sequence MIS for channel estimation, a second TFCI sequence TFCIS2, the second user data sequence NDS2 and the protection time zone SZZ.
- a first time slot structure (burst structure) ZSS1 in accordance
- FIGURE 4 shows e.g. based on a GSM radio scenario with e.g. two radio cells and base stations arranged therein (base transceiver station), a first base station BTS1 (transmitter / receiver) a first radio cell FZ1 and a second base station BTS2 (transceiver) "illuminating" a second radio cell FZ2 omnidirectionally, and starting from the FIGURES 1 and 2 show a radio scenario with multiple channel utilization according to frequency / time / code multiplex, in which the base stations BTS1, BTS2 have an air interface designed for the radio scenario and have a plurality of mobile stations MSI ... MS5 located in the radio cells FZ1, FZ2 ( Send-
- the base stations BTS1, BTS2 are known
- the base station controller BSC BaseStation Controller
- the base station controller BSC takes over the frequency management and switching functions as part of the control of the base stations.
- the base station controller BSC in turn is connected via a mobile switching center MSC (Mobile Switching Center) to the higher-level telecommunications network, e.g. the PSTN (Public Switched Telecommunications Network).
- the mobile switching center MSC is the administration center for the telecommunications system shown. It takes over the complete call management and, with associated registers (not shown), the authentication of the telecommunication participants and the location monitoring in the network.
- FIG. 5 shows the basic structure of the base station BTS1, BTS2 designed as a transceiver
- FIG. 6 shows the basic structure of the base station, also as a 7 / Receiving device trained mobile station MS1 ... MS5 shows.
- the base station BTS1, BTS2 takes over the sending and receiving of radio messages from and to the mobile station MS1..MS5, while the mobile station MS1 ... MS5 takes over the sending and receiving of radio messages from and to the base station BTS1, BTS2.
- the base station has a transmitting antenna SAN and a receiving antenna EAN
- the mobile station MS1 ... MS5 has an antenna ANT that can be controlled by an antenna switchover AU and is common for transmitting and receiving.
- the base station BTS1, BTS2 receives, for example, at least one radio message FN with a frequency / time / code component from at least one of the mobile stations MS1 ... MS5 via the receive antenna EAN, while the mobile station MS1 ... .MS5 in the downward direction (reception path) receives, for example, at least one radio message FN with a frequency / time / code component from at least one base station BTS1, BTS2 via the common antenna ANT.
- the radio message FN consists of a broadband spread carrier signal with information modulated onto data symbols.
- the received carrier signal is filtered in a radio receiving device FEE (receiver) and mixed down to an intermediate frequency, which in turn is subsequently sampled and quantized.
- FEE radio receiving device
- the signal After an analog / digital conversion, the signal, which has been distorted on the radio path by multipath propagation, is fed to an equalizer EQL, which largely compensates for the distortions (Stw.: Synchronization).
- Ka ⁇ can be estimated nalimpulsantwort which is Funknach- FN sends or assigns special information in the form of a so-called midambel on the transmission side (in the present case from the mobile station MS1 ... MS5 or the base station BTS1, BTS2), which is designed as a training information sequence.
- a subsequent data detector DD common to all received signals, the individual mobile station-specific signal components contained in the common signal are equalized and separated in a known manner. After equalization and separation, the previously existing data symbols are converted into binary data in a symbol-to-data converter SDW. The original bit stream is then obtained from the intermediate frequency in a demodulator DMOD before the individual time slots are assigned to the correct logical channels and thus also to the different mobile stations in a demultiplexer DMUX.
- the bit sequence obtained is decoded channel by channel in a channel codec KC.
- the bit information is assigned to the control and signaling time slot or a voice time slot and - in the case of the base station (FIGURE 5) - the control and signaling data and the voice data for transmission to the base station controller BSC together for signaling and voice coding / decoding (Voice codec) handover the responsible interface SS, while - in the case of the mobile station (FIGURE 6) - the control and signaling data of a control and signaling unit STSE responsible for complete signaling and control of the mobile station and the voice data one for voice input and - output speech codec SPC are passed.
- the speech data are stored in a predetermined data stream (for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction).
- a predetermined data stream for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction.
- the base station BTS1, BTS2 sends, for example, at least one radio message FN with a frequency / time / code component to at least one of the mobile stations MS1 ... MS5 via the transmitting antenna SAN, while the mobile station MS1 ... MS5 in the upward direction (transmission path) via the common antenna ANT, for example, sends at least one radio message FN with a frequency / time / code component to at least one base station BTS1, BTS2.
- the transmission path begins at the base station BTS1, BTS2 in
- FIGURE 5 with the fact that in the channel codec KC control and signaling data as well as voice data received from the base station controller BSC via the interface SS are assigned to a control and signaling time slot or a voice time slot and these are coded channel by channel into a bit sequence.
- the transmission path begins at the mobile station MS1 ... MS5 in FIGURE 6 with the fact that in the channel codec KC speech data received from the speech codec SPC and control and signaling data received from the control and signaling unit STSE a control and signaling time slot or are assigned to a speech time slot and these are coded channel-wise into a bit sequence.
- the bit sequence obtained in the base station BTS1, BTS2 and in the mobile station MS1 ... MS5 is in each case converted into data symbols in a data-to-symbol converter DSW.
- DSW data-to-symbol converter
- the burst generator BG consisting of a burst composer BZS and a multiplexer MUX
- BG consisting of a burst composer BZS and a multiplexer MUX
- FSE transmitter
- TDD Time Division Duplex
- a TDD telecommunications system that has such a transmission time frame is e.g. the well-known DECT system [Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb. No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1... 9, October 1992 and the DECT publication of the DECT forum, February 1997, pages 1 to 16].
- DECT system Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb. No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1... 9, October 1992 and the DECT publication of the DECT forum, February 1997, pages 1 to 16].
- FIGURE 7 shows a DECT transmission time frame with a time duration of 10 ms, consisting of 12 “downlink” time slots and 12 “uplink” time slots.
- a free time slot pair with a "downlink” time slot ZSDO N and an "uplink” is used in accordance with the DECT standard.
- - Time slot ZSUP selected, in which the distance between the "downlink” -
- Time slot ZS DO W N and the "uplink" time slot ZS UP also 11 according to the DECT standard is half the length (5 ms) of the DECT transmission time frame.
- FDD (Frequency Division Duplex) telecommunication systems are telecommunication systems in which the time frame, consisting of several time slots, is transmitted in a first frequency band for the downlink direction and in a second frequency band for the uplink direction.
- GSM Global System for Mobile Communication
- A. Mann "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka "GSM radio interface - elements and functions" , Pages 17 to 24].
- the air interface for the GSM system knows a variety of logical channels called bearer services, such as an AGCH channel (Access Grant CHannel), a BCCH channel (BroadCast CHannel, a FACCH channel (Fast Associated Control CHannel) ), a PCH channel (Paging CHhannel), an RACH channel (Random Access CHannel) and a TCH channel (Traffic CHannel), their respective functions in the air interface, for example in the publication Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A.Mann: "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P.
- bearer services such as an AGCH channel (Access Grant CHannel), a BCCH channel (BroadCast CHannel, a FACCH channel (Fast Associated Control CHannel) ), a PCH channel (Paging CHhannel), an
- the GSM system also has a frame structure in which the 13th time frame in the multi-frame as" Idle "Frame is formed. In this" Idie "Ra If no user data is transmitted, the mobile stations in the GSM system 12 Ability to carry out various measurements, in particular measurements for pre-synchronization for possible “handover” procedures.
- the channel allocation is controlled by a central entity, the network operator. This is possible because all the mobile stations within a radio area of a base station use the same time base, that is, they are operated synchronously.
- the synchronous operation allows a clear definition of time slot boundaries and thus a clear separation from different telecommunication participants.
- Adjacent base stations do not need to be operated synchronously, since the channels which are used in adjacent radio cells are generally separated by frequency planning in the frequency level. This type of Kanalzutei ⁇ development is called "Fixed Channel Allocation (FCA)".
- the channels are first selected dynamically - "Dynamic Channel Selection (DCS)" - and then allocated .
- the frequency / time plane serves both the “Dynamic Channel Selection (DCS)” and for the Kanalzu ⁇ distribution as a platform or “pool".
- DCS Dynamic Channel Selection
- the handset regularly monitors the frequency / time level and finally selects the frequency / time slot combination in which the transmission channel is least likely to occur 13 interference is disturbed.
- the fact that neighboring, uncoordinated operating base stations and mobile parts are always asynchronous and therefore the time bases run into one another or drift into one another often creates a situation where the degree of interference reaches an unacceptable value.
- a forwarding of the telecommunication connection - a handover "- must be initiated or initiated on another channel, that is to say a different frequency / time slot combination. In such a case one speaks of an" intra cell handover ".
- the WCDMA / FDD operation and the TDCDMA / TDD operation should be used together in the UMTS scenario (3rd generation of mobile telephony or IMT-2000), in addition to efficient handling of the logical channels and the Transmission path services (bearer handling), in particular for the above reasons, the implementation of a suitable "handover" procedure for telecommunication systems with wireless, based on code and time division multiplex telecommunication between mobile and / or stationary transceivers is indispensable.
- the object on which the invention is based is to provide a method for telecommunication systems with wireless, based on code and time multiplex based telecommunication between mobile and / or stationary transceivers within the scope of a "handover" procedure that indicates the display of a "handover.” "(Handover Indication) for different operating modes of the transceivers.
- FIGS. 8 to 10. show:
- FIG. 8 shows a comparison with the time frames in FIGS. 1 to 3 and the DECT transmission time frame in FIG. 7 with regard to the number of time slots (modified) TDD time-division multiplex frames,
- FIG. 9 on the basis of the time-division multiplex frame according to FIG. 8, a channel allocation table for channels with a frequency, code and time-division multiplex component,
- FIGURE 10 is a message flow diagram of a "handover" procedure.
- FIGURE 8 shows, starting from the time frame in FIGURES 1 to 3 and the DECT transmission time frame in FIGURE 7 a (modified) TDD time-division multiplex frame ZMR with eight time ⁇ slots ZS ⁇ l ... ZS ⁇ 8, wherein the first four time slots ZS ⁇ l ... ZS for the downward transmission direction DL and the second four time slots ZS X 5 ... ZS X 8 for the upward transmission direction UL are provided.
- the number of time 15 slots has been reduced from "16" according to FIGURES 1 and 3 to "8" only for the sake of illustration for the channel assignment table in FIGURE 9 and has no restrictive, limiting influence on the invention.
- the number of time slots - like the other physical resources (eg code, frequency, etc.) - can be varied to a greater or lesser extent depending on the telecommunications system.
- FIGURE 9 shows on the basis of the time-division multiplex frame
- FIGURE 8 is a channel allocation table for channels with a frequency, code and time division multiplexing component.
- the time division multiplex component of this table comprises the time slots ZS ⁇ 1 .-. ZS ⁇ ⁇ with the TDD division according to FIGURE 8.
- the frequency division multiplex component comprises 12 frequencies FR1 ... FR12, while the code division multiplex component 8 codes (pseudo Random signals) C1 ... C8 contains.
- transmission services such as logical channels of the telecommunications system such as the control channel for Signalisie ⁇ are called "bearer services" rung, the AGCH channel, the BCCH channel, the PCH channel, the RACH channel, the TCH Channel and / or the FACCH channel, which are required in the telecommunication system in the downward direction and / or upward direction, in one by the codes
- FIGURE 9 shows a preferred embodiment according to which on the first frequency FR1 in the downward transmission direction in a first time slot ZS'l as a fixed (agreed) first selection time slot and in the upward transmission direction in a fifth time slot ZS ⁇ 5 as a predetermined (agreed) second selection time slot preferably all codes C1 ... C8 for each 16 bundling of the aforementioned transmission path services can be used. It is of course also possible to use less or, if more than these eight codes are available, also more codes.
- the codes C1 ... C8 in the first time slot ZS ⁇ l are divided so that one code for the control channel for signaling and the AGCH channel, another code for the BCCH channel and the PCH channel and the remaining six codes for the
- TCH channel reserved or assigned, while the codes C1 ... C8 in the fifth time slot ZS 5 are divided so that a code for the RACH channel, another code for the FACCH channel for handover indication and remaining six codes are reserved or assigned for the TCH channel.
- connection scenario VSZ1 a first connection scenario VSZ1, a second connection scenario VSZ2, a third connection scenario VSZ3, a fourth connection scenario VSZ4 and a fifth connection scenario VSZ5, in each case a plurality of bidirectional TDD telecommunication connections, for which the physical resource “code, frequency, time” in the downward and upward transmission direction are assigned in part equally and in part unequally.
- connection scenario VSZ1 a connection scenario VSZ1 ..
- .VSZ5 belongs, for example, to a first group of telecommunication connections G1, which is marked with an ascending and descending hatching, and a second group of telecommunication connections G2, which is marked with a descending hatching, each group containing at least one bidirectional Telecommunications connection. 17
- the first group of telecommunications connections G1 on a second frequency FR2 in the downward transmission direction occupies six codes in a second time slot ZS x 2 - a first code C1, a second code C2, a third code C3, a fourth code C4, a fifth code C5 and a sixth code C6 - and in the upward transmission direction in a sixth time slot ZS 6 again the six codes C1 ... C6, while the second group of telecommunications connections G2 on the second frequency FR2 in the downward transmission direction in a fourth time slot ZS the first code C1 and in the upward transmission direction in an eighth time slot ZS'8 again the first code C1.
- the fourth time slot ZSM and the second time slot ZS ⁇ 2 are “downlink” time slots ZS DO N , while the sixth time slot ZS ⁇ 6 and the eighth time slot ZS 8 are “uplink” time slots ZSup.
- a first distance AS1 between the "downlink" time slot ZS DO and the "uplink" time slot ZSup - according to the prior art (cf. FIG. 7) - is as long as half the time division multiplex frame ZMR.
- the distance AS1 is therefore a fraction of the length of the time-division multiplex frame ZMR, the fraction having the value 0.5.
- the first group of telecommunication connections G1 occupies the six codes C1... C6 on a fourth frequency FR4 in the downward transmission direction in the fourth time slot ZS and again the six codes C1 in a seventh time slot ZS ⁇ 6 in the upward transmission direction. ..C6, while the second group of telecommunication connections G2 on the fourth frequency FR4 in downlink direction in a second time slot ZS ⁇ ⁇ 2, the codes C1 ... C4 and in Auf thoughübertragungs- 18 direction in the fifth time slot ZS 5 occupies the first code C1 and the second code C2.
- the fourth time slot ZSM and the second time slot ZS 2 are “downlink” time slots ZS DO WN, while the seventh time slot ZS 7 and the fifth time slot ZS 5 are “uplink” time slots ZS UP .
- a second distance AS2 between the "downlink" time slot ZS D ON and the "uplink" time slot ZS UP SO is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR , the fraction being so dimensioned and greater or smaller than the value 0.5 that the second distance AS2 is fixed.
- the first group of telecommunication connections G1 in the downward transmission direction on a sixth frequency FR6 in the second time slot ZS 2 occupies the four codes C1 ... C4 and in the upward transmission direction on a fifth frequency FR5 in the eighth time slot ZS ⁇ 8 the six codes C1 ... C6 as well as a seventh code C7 and an eighth code C8, while the second group of telecommunication connections G2 in the downward transmission direction on the sixth frequency FR6 in a third time slot ZS ⁇ 3 the codes C1 ... C3 and in the upward transmission direction on the fifth frequency FR5 in the fifth time slot ZS ⁇ 5 occupies the codes C1 ... C4.
- the second time slot ZS "2 and the third time slot ZS ⁇ 3 are" downlink "time slots ZS DOWN, during the eighth time slot ZS ⁇ 8 and the fifth time slot ZS X 5" Uplink "-Time slots are Z SUP.
- a third distance AS3 between the "downlink" time slot ZS D0WN and the "uplink” time slot ZS UP is a fraction. 19 part (fractional distance) of the length of the time-division multiplex frame ZMR, the fraction being dimensioned such that the third distance AS3 is variable.
- the fourth time slot ZSM and the third time slot ZS ⁇ 3 are “downlink” time slots ZS D OW N , while the sixth time slot ZS ⁇ 6 and the fifth time slot ZS ⁇ 5 are “uplink” time slots ZSup.
- a fourth distance AS4 between the "downlink" time slot ZS D0WN and the "uplink” time slot ZS UP is a fractional distance of the length of the time division multiplex frame ZMR, the fraction in each case is dimensioned so that the fourth distance AS4 is fixed.
- the first group of telecommunication connections G1 on an eleventh frequency FR11 in the downward transmission direction in the fourth time slot ZSM occupies the first code Cl and the second code C2 and in the upward transmission direction in the fifth time slot ZS ⁇ 5 the first code Cl and the second code C2, while the second group of telecommunication connections G2 on the eleventh frequency FR11 in the downward transmission direction in the first time slot ZS l the codes 20 C1 ... C5 and in the upward transmission direction in the eighth time slot ZS ⁇ 8 the codes C1 ... C3 are occupied.
- the fourth time slot ZSM and the first time slot ZS ⁇ 1 are “downlink” time slots ZS D0WN , while the fifth time slot ZS ⁇ 5 and the eighth time slot ZS ⁇ 8 are “uplink” time slots ZS UP .
- a fifth distance AS5 between the "downlink" time slot ZS D ON and the "uplink" time slot ZSup is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR, the fraction being dimensioned such that the second distance AS2 is variable.
- the "handover" procedure basically consists of three phases, a first phase, which is referred to as the indication of a "handover” (handover indication), a second phase, which is called the initiation or initiation of a “handover” (handover initiation) is referred to, and a third phase, which is referred to as the execution of a "handover” (handover execution), which take place in the order given.
- a “handover” is indicated by a base station BS, that is to say a first phase of the “handover” procedure is started.
- the deterioration in the quality of the service to be transmitted [Quality of Service
- QoS Quality of Service
- a mobile part a first mobile part MT1, a second mobile part MT2 or an nth mobile part MTn
- the base station BS is the "master” with regard to the "handover” procedure
- the mobile part MT1 ... MTn is the "slave”.
- the 21 handset with regard to the "handover” procedure is the "master” and the base station is the "slave”.
- the base station BS uses a channel selection list to select a “handover” time slot pair in which the quality of the service to be transmitted is better than the existing telecommunications time slot pair.
- the display of the "handover”, the "handover” time slot pair is already established.
- the channel selection list is created using the dynamic channel selection method "Dynamic Channel Selection (DCS)".
- DCS Dynamic Channel Selection
- the base station BS switches off the signaling on the BCCH channel, detects the interference situation in the GSM-specific “idle” frame by determining the interference power, for example by measuring the signal field strength, in the pair of telecommunications timeslots and stores the measured results (
- a threshold value is defined which lies between the currently detected interference value and an interference value which belongs to the "quietest" time slot pair. The base station BS should then not make an entry in the channel selection list and / or not display and initiate a "handover” if the predetermined threshold value is not exceeded by the interference value detected in each case.
- the second phase of the "handover" procedure begins with the base station BS establishing a BCCH channel in the "downlink" time slot of the "handover” time slot pair. On this "downlink” time slot the "handover" time slot pair are in traffic mode
- the base station BS After the successful establishment of the BCCH channel in the "downlink" time slot of the "handover” time slot pair, the base station BS transmits a first message "handover request" MI via the BCCH channel in the downlink "time slot of the telecommunication time slot pair to the mobile parts MTl ... MTn connected to the base station BS via this channel. With this first message Ml, the position of the "handover" time slot pair is communicated to the mobile parts MTl.-.MTn.
- the base station BS After the transmission of the first message Ml, the base station BS continues the simultaneous transmission of the information (data services) in the downlink "time slots of the telecommunication time slot pair and the" handover "time slot pair and also transmits the first message Ml on the BCCH channel "slot-pair until all ver with the base station BS-bound ⁇ handsets MTl ... MTn initiating the -Zeitschlitzen of Wegmunikationszeit-" have confirmed handover "by the first message Ml in the downlink.
- the problems associated with the base station BS handsets MTl.-.MTn change if the handsets concerned MTl ... MTn have to transmit nor lau ⁇ Fende data after receiving the first message Ml directly from the Wegmunikationszeitschlitz- couple to the "handover"
- the data transmission in the telecommunication time slot pair is terminated and continued seamlessly in the “handover” time slot pair.
- the respective handset MTl ... MTn transmits a second message "Handover Confirm" M2 23 on a signaling channel to the base station BS.
- the base station BS thus simultaneously receives data in the telecommunication time slot pair and the "handover" time slot pair and, on the other hand, the second message M2.
- the initiation of the "handover” by the first message M1 is ultimately regarded as confirmed by the base station BS if - in the former Case - the data transmitted by the respective mobile part MTl ... MTn on the "uplink" time slot of the "handover" time slot pair are received by the base station BS without errors or if - in the second case - the base station BS receives the second message M2 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Beschreibungdescription
WEITERREICHEN IN EINEM AUF CODE-UND ZEITMULTIPLEX BASIERENDEN TELEKOMMUNIKATIONSSYSTEMREACHING IN A TELECOMMUNICATION SYSTEM BASED ON CODE AND TIME MULTIPLEX
Telekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten sind spezielle Nachrichtensysteme mit einer Nachrichtenübertragungsstrecke zwischen einer Nachrichtenquelle und einer Nachrichtensenke, bei denen beispielsweise Basisstationen und Mobilteile zur Nachrichtenverarbeitung und -Übertragung als Sende- und Empfangsgeräte verwendet werden und bei denen 1) die Nachrichtenverarbeitung und Nachrichtenübertragung in einer bevorzugten Übertragungsrichtung (Simplex-Betrieb) oder in beiden Übertragungsrichtungen (Duplex-Betrieb) erfolgen kann, 2) die Nachrichtenverarbeitung vorzugsweise digital ist, 3) die Nachrichtenübertragung über die Fernübertragungs- strecke drahtlos auf der Basis von diversen Nachrichtenübertragungsverfahren zur Mehrfachausnutzung der Nachrichtenübertragungsstrecke FDMA (Frequency Division Multiple Access) , TDMA (Time Division Multiple Access) und/oder CDMA (Code Di- vision Multiple Access) - z.B. nach Funkstandards wieTelecommunication systems with wireless telecommunication between mobile and / or stationary transceivers are special message systems with a message transmission link between a message source and a message sink, in which for example base stations and mobile parts for message processing and transmission are used as transmitters and receivers and in which 1) the message processing and message transmission can take place in a preferred transmission direction (simplex mode) or in both transmission directions (duplex mode), 2) the message processing is preferably digital, 3) the message transmission over the long-distance transmission path is wireless based on various message transmission methods Multiple use of the message transmission link FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) and / or CDMA (Code Division Multiple Access) - e.g. B. according to radio standards such as
DECT [Digital Enhanced (früher: European) Cordless Telecommu- nication; vgl. Nachrich tentechnik Elektronik 42 (1992) Jan . /Feb. Nr. 1 , Berlin, DE; U. Pilger "Struktur des DECT- Standards", Sei ten 23 bis 29 in Verbindung mit der ETSI- Publikation ETS 3001 75-1 . . . 9, Oktober 1992 und der DECT-DECT [Digital Enhanced (formerly: European) Cordless Telecommunication; see. Nachrich tentechnik Elektronik 42 (1992) Jan. / Feb No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1. . . October 9, 1992 and the DECT
Publikation des DECT-Forum, Februar 1997, Sei ten 1 bis 1 6] , GSM [Groupe Speciale Mobile oder Global System for Mobile Com unication; vgl. Informatik Spektrum 14 (1991 ) Juni , Nr. 3, Berlin, DE; A.Mann : "Der GSM-Standard - Grundlage für di - gi tale europäische Mobil f unknetze" , Sei ten 137 bis 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka "GSM-Funkschni ttstelle - Elemente und Funktionen", 2 Seiten 17 bis 24] ,Publication of the DECT Forum, February 1997, pages 1 to 1 6], GSM [Groupe Speciale Mobile or Global System for Mobile Communication; see. Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A.Mann: "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka "GSM radio interface - elements and functions ", 2 pages 17 to 24],
UMTS [Universal Mobile Telecommunication System; vgl. (1): Nachrichtentechnik Elektronik, Berlin 45, 1995, Heft 1, Seiten 10 bis 14 und Heft 2, Seiten 24 bis 27; P.Jung, B. Steiner : "Konzept eines CDMA-Mobilfunksystems mit gemeinsamer Detektion für die dritte Mobilfunkgeneration"; (2) : Nachrichtentechnik Elektronik, Berlin 41, 1991, Heft 6, Seiten 223 bis 227 und Seite 234; P.W. Baier, P.Jung, A. Klein: "CDMA - ein günstiges Vielfachzugriffsverfahren für frequenzselek- tive und Zeitvariante Mobil funkkanäle"; (3) : IEICE Transacti- ons on Fundamentals of Electonics , Communications and Computer Sciences, Vol. E79-A, No. 12, December 1996, Seiten 1930 bis 1937; P.W. Baier, P.Jung: "CDMA Myths and Realities Revi- sited"; (4) : IEEE Personal Communications , February 1995, Seiten 38 bis 47; A.Urie, M. Streeton, C.Mourot: "An Advanced TDMA Mobile Access System for UMTS"; (5) : telekom praxis, 5/1995, Seiten 9 bis 14; P.W. Baier: "Spread-Spectrum-Technik und CDMA - eine ursprünglich militärische Technik erobert den zivilen Bereich"; (6) : IEEE Personal Communications , February 1995, Seiten 48 bis 53; P.G.Andermo, L.M. Ewerbring: "An CDMA- Based Radio Access Design for UMTS"; (7) : ITG Fachberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, Seiten 67 bis 75; Dr. T. Zimmermann, Siemens AG: "Anwendung von CDMA in der Mobilkommunikation"; (8): te-lcom report 16, (1993), Heft 1, Seiten 38 bis 41; Dr. T. Ketseoglou, Siemens AG und Dr. T.Zimmermann, Siemens AG: "Effizienter Teilnehmer¬ zugriff für die 3. Generation der Mobilkommunikation - Vielfachzugriff sverfahren CDMA macht Luftschnittstelle flexibler"; (9): Funkschau 6/98: R.Sietmann "Ringen um die UMTS- Schnittstelle", Seiten 76 bis 81] WACS oder PACS, IS-54, IS- 95, PHS, PDC etc. [vgl. IEEE Communications Magazine, January 1995, Seiten 50 bis 57; D.D. Falconer et al:"Time Division Multiple Access Methods for ireless Personal Communications"] erfolgt. 3 "Nachricht" ist ein übergeordneter Begriff, der sowohl für den Sinngehalt (Information) als auch für die physikalische Repräsentation (Signal) steht. Trotz des gleichen Sinngehaltes einer Nachricht - also gleicher Information - können un- terschiedliche Signalformen auftreten. So kann z.B. eine einen Gegenstand betreffende NachrichtUMTS [Universal Mobile Telecommunication System; see. (1): Kommunikationstechnik Electronics, Berlin 45, 1995, Issue 1, Pages 10 to 14 and Issue 2, Pages 24 to 27; P.Jung, B. Steiner: "Concept of a CDMA mobile radio system with joint detection for the third mobile radio generation"; (2): Kommunikationstechnik Electronics, Berlin 41, 1991, Issue 6, pages 223 to 227 and page 234; PW Baier, P. Jung, A. Klein: "CDMA - an inexpensive multiple access method for frequency-selective and time variant mobile radio channels"; (3): IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E79-A, No. 12, December 1996, pages 1930 to 1937; PW Baier, P. Jung: "CDMA Myths and Realities Revised"; (4): IEEE Personal Communications, February 1995, pages 38 to 47; A. Urie, M. Streeton, C. Mourot: "An Advanced TDMA Mobile Access System for UMTS"; (5): telekom praxis, 5/1995, pages 9 to 14; PW Baier: "Spread Spectrum Technology and CDMA - an originally military technology conquered the civilian sector"; (6): IEEE Personal Communications, February 1995, pages 48 to 53; PGAndermo, LM Ewerbring: "An CDMA-Based Radio Access Design for UMTS"; (7): ITG Fachberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, pages 67 to 75; Dr. T. Zimmermann, Siemens AG: "Application of CDMA in Mobile Communication"; (8): te-lcom report 16, (1993), volume 1, pages 38 to 41; Dr. T. Ketseoglou, Siemens AG and Dr. T.Zimmermann, Siemens AG: "Efficient subscriber access for the 3rd generation of mobile communication - multiple access procedure CDMA makes the air interface more flexible"; (9): Funkschau 6/98: R.Sietmann "Wrestling for the UMTS interface", pages 76 to 81] WACS or PACS, IS-54, IS-95, PHS, PDC etc. [cf. IEEE Communications Magazine, January 1995, pages 50 to 57; DD Falconer et al: "Time Division Multiple Access Methods for ireless Personal Communications"]. 3 "Message" is a superordinate term that stands both for the meaning (information) and for the physical representation (signal). Despite the same meaning of a message - that is, the same information - different signal forms can occur. For example, a message related to an item
(1) in Form eines Bildes,(1) in the form of an image,
(2) als gesprochenes Wort,(2) as a spoken word,
(3) als geschriebenes Wort, (4) als verschlüsseltes Wort oder Bild übertragen werden.(3) as a written word, (4) as an encrypted word or image.
Die Übertragungsart gemäß (1) ... (3) ist dabei normalerweise durch kontinuierliche (analoge) Signale charakterisiert, während bei der Übertragungsart gemäß (4) gewöhnlich diskontinu- ierliche Signale (z.B. Impulse, digitale Signale) entstehen.The type of transmission according to (1) ... (3) is usually characterized by continuous (analog) signals, while the type of transmission according to (4) usually produces discontinuous signals (e.g. pulses, digital signals).
Die nachfolgenden FIGUREN 1 bis 7 zeigen:The following FIGURES 1 to 7 show:
FIGUR 1 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Downlink",FIGURE 1 "three-level structure" of a WCDMA / FDD air interface in the "downlink",
FIGUR 2 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Uplink",FIGURE 2 "three-level structure" of a WCDMA / FDD air interface in the "uplink",
FIGUR 3 "Drei-Ebenen-Struktur" einer TDCDMA/TDD-Luftschnitt- stelle,FIGURE 3 "three-level structure" of a TDCDMA / TDD air interface,
FIGUR 4 Funkszenario mit Kanal-Mehrfachausnutzung nach dem Frequenz-, /Zeit-, /Codemultiplex,FIGURE 4 radio scenario with multiple channel utilization after frequency, / time, / code multiplex,
FIGUR 5 den prinzipiellen Aufbau einer als Sende-/Erαpfangs- gerät ausgebildeten Basisstation,5 shows the basic structure of a base station designed as a transmitting / receiving device,
FIGUR 6 den prinzipiellen Aufbau einer ebenfalls als Sende- /Empfangsgerät ausgebildeten Mobilstation,6 shows the basic structure of a mobile station which is also designed as a transceiver,
FIGUR 7 einen DECT-Übertragungszeitrahmen. Im UMTS-Szenario (3. Mobilfunkgeneration bzw. IMT-2000) gibt es z.B. gemäß der Druckschrift Funkschau 6/98 : R. Sietmann "Ringen um di e UMTS-Schni ttstell e" , Sei ten 76 bis 81 zwei Teilszenarien. In einem ersten Teilszenario wird der lizen- sierte koordinierte Mobilfunk auf einer WCDMA-Technologie ( ideband Code Division Multiple Access) basieren und, wie bei GSM, im FDD-Modus (Frequency Division Duplex) betrieben, während in einem zweiten Teilszenario der unlizensierte unko- ordinierte Mobilfunk auf einer TD-CDMA-Technologie (Time Division-Code Division Multiple Access) basieren und, wie bei DECT, im TDD-Modus (Frequency Division Duplex) betrieben wird.FIGURE 7 shows a DECT transmission time frame. In the UMTS scenario (3rd generation of mobile communications or IMT-2000) there are, for example according to the publication Funkschau 6/98: R. Sietmann "Wrestling for the UMTS interface", pages 76 to 81, two partial scenarios. In a first sub-scenario, the licensed coordinated mobile radio is based on WCDMA technology (ideband code division multiple access) and, as with GSM, is operated in FDD mode (Frequency Division Duplex), while in a second sub-scenario the unlicensed uncoded ordinated mobile radio based on TD-CDMA technology (Time Division-Code Division Multiple Access) and, as with DECT, operated in TDD mode (Frequency Division Duplex).
Für den WCDMA/FDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems enthält die Luftschnittstelle des Telekommunikationsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift ETSI STC SMG2 UMTS-Ll , Tdoc SMG2 UMTS- Ll 1 63/98 : " UTRA Physical Layer Description FDD Parts" Vers . 0. 3, 1998-05-29 jeweils mehrere physikalische Kanäle, von denen ein erster physikalischer Kanal, der sogenannte Dedicated Physical Control CHannel DPCCH, und ein zweiter physikalischer Kanal, der sogenannte Dedicated Physical Data CHannel DPDCH, in bezug auf eine "Drei-Ebenen-Struktur" ( three-layer- structure) , bestehend aus 720 ms lange (TMZR=720 ms) Multi- zeitrahmen (super frame) MZR, 10 ms lange (TFZR=10 ms) Zeit¬ rahmen (radio frame) ZR und 0,625 ms lange (Tzs=0, 625 ms) Zeitschlitzen (timeslot) ZS , die in den FIGUREN 1 und 2 dargestellt sind. Der jeweilige Multizeitrahmen MZR enthält z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist bezüglich des ersten physikali¬ schen Kanals DPCCH als Burststruktur eine Pilot-Sequenz PS mit püot Bits zur Kanalschätzung, eine TPC-Sequenz TPCS mit NTpc-Bits zur Leistungsregelung (Traffic Power Control) und eine TFCI-Sequenz TFCIS mit NTFCι-Bits zur Transportformatan- gabe (Traffic Format Channel Indication) sowie bezüglich des 5 zweiten physikalischen Kanals DPDCH eine Nutzdatensequenz NDS mit NData-Bits auf.For the WCDMA / FDD operation of the universal mobile telecommunication system, the air interface of the telecommunication system in the up and down direction of the telecommunication according to the publication ETSI STC SMG2 UMTS-Ll, Tdoc SMG2 UMTS-Ll 1 63/98 contains: " UTRA Physical Layer Description FDD Parts "Vers. 0. 3, 1998-05-29 each have several physical channels, of which a first physical channel, the so-called Dedicated Physical Control CHannel DPCCH, and a second physical channel, the so-called Dedicated Physical Data CHannel DPDCH, with respect to a "three layer structure "(three-layer structure), consisting of 720 ms long (T MZR = 720 ms) multi- time frame (superframe) MZR, 10 ms long (T FZR = 10 ms) time ¬ frame (radio frame) ZR and 0.625 ms long (T zs = 0.625 ms) time slots (timeslot) ZS, which are shown in FIGURES 1 and 2. The respective multi-time frame MZR contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has 16 time slots ZS1 ... ZS16. The individual time slot ZS, ZS1 ... ZS16 (burst) has with respect to the first physi ¬ rule channel DPCCH as a burst structure of a pilot sequence PS with püot bits for channel estimation, a TPC sequence TPCS with N T PC bits for power control (Traffic Power Control) and a TFCI sequence TFCIS with N TFC ι bits for specifying the transport format (Traffic Format Channel Indication) and with regard to the 5 second physical channel DPDCH a user data sequence NDS with N data bits.
Im "Downlink" (Abwärtsrichtung der Telekommunikation; Funk- Verbindung von der Basisstation zur Mobilstation) desIn the "Downlink" (downward direction of telecommunications; radio connection from the base station to the mobile station) of the
WCDMA/FDD Systems von ETSI bzw. ARIB - FIGUR 1 - werden der erste physikalische Kanal ["Dedicated Physical Control Channel (DPCCH) ] und der zweite physikalische Kanal ["Dedicated Physical Data Channel (DPDCH) ] zeitlich gemultiplext, während im "Uplink" (Aufwärtsrichtung der Telekommunikation; Funkverbindung von der Mobilstation zur Basisstation) - FIGUR 2 - ein I/Q-Multiplex stattfindet, bei dem der zweite physikalische Kanal DPDCH im I-Kanal und der erste physikalische Kanal DPCCH im Q-Kanal übertragen werden.WCDMA / FDD Systems from ETSI or ARIB - FIGURE 1 - the first physical channel ["Dedicated Physical Control Channel (DPCCH)] and the second physical channel [" Dedicated Physical Data Channel (DPDCH)] are time-multiplexed, while in the "uplink "(Upward direction of telecommunications; radio connection from the mobile station to the base station) - FIGURE 2 - an I / Q multiplex takes place, in which the second physical channel DPDCH is transmitted in the I channel and the first physical channel DPCCH in the Q channel.
Für den TDCDMA/TDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems basiert die Luftschnittstelle des Telekommunikationsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift TSG RAN WG1 (S1 .21 ) : "3rd Generation Partnership Project (3GPP) " Vers . 0. 0. 1 , 1999-01 wiederum auf die "Drei-Ebenen-Struktur", bestehend aus den Multizeitrahmen MZR, den Zeitrahmen ZR und den Zeitschlitzen ZS, für sämtliche physikalischen Kanäle, die in FIGUR 3 dargestellt ist. Der jeweilige Multizeitrahmen MZR enthält wiederum z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum die 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist entweder gemäß dem ARIB-Vor- schlag eine erste Zeitschlitzstruktur (Burststruktur) ZSS1, in der Reihenfolge bestehend aus einer ersten Nutzdatense- quenz NDSl mit NDataι-Bits, der Pilot-Sequenz PS mit Npiiot Bits zur Kanalschätzung, der TPC-Sequenz TPCS mit NTPC-Bits zur Leistungsregelung, der TFCI-Sequenz TFCIS mit NTFCι-Bits zur Transportformatangabe, einer zweiten Nutzdatensequenz NDS2 und einer Schutzzeitzone SZZ (guard period) mit NGuard_Bits, oder gemäß dem ETSI-Vorschlag eine zweite Zeitschlitzstruktur (Burststruktur) ZSS2, in der Reihenfolge bestehend aus der ersten Nutzdatensequenz NDSl, einer ersten TFCI-Sequenz 6 TFCIS1, einer Midamble-Sequenz MIS zur Kanalschätzung, einer zweiten TFCI-Sequenz TFCIS2, der zweiten Nutzdatensequenz NDS2 und der Schutzzeitzone SZZ auf.For the TDCDMA / TDD operation of the universal mobile telecommunications system, the air interface of the document TSG RAN is based of the telecommunication system in upward and downward direction of the telecommunications according WG1 (S1 .21): "3 rd Generation Partnership Project (3GPP) "Vers. 0. 0. 1, 1999-01 again on the "three-level structure", consisting of the multi-time frame MZR, the time frame ZR and the time slots ZS, for all physical channels, which is shown in FIG. 3. The respective multi-time frame MZR again contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has the 16 time slots ZS1 ... ZS16. The individual time slot ZS, ZS1 ... ZS16 (burst) either has a first time slot structure (burst structure) ZSS1, in accordance with the ARIB proposal, in the sequence consisting of a first user data sequence NDS1 with N data ι bits, the pilot Sequence PS with Npii ot bits for channel estimation, the TPC sequence TPCS with N TPC bits for power control, the TFCI sequence TFCIS with N TFC ι bits for specifying the transport format, a second useful data sequence NDS2 and a guard time zone SZZ (guard period) with N Gu ard _ bits, or according to the ETSI proposal, a second time slot structure (burst structure) ZSS2, in the order consisting of the first user data sequence NDS1, a first TFCI sequence 6 TFCIS1, a midamble sequence MIS for channel estimation, a second TFCI sequence TFCIS2, the second user data sequence NDS2 and the protection time zone SZZ.
FIGUR 4 zeigt z.B. auf der Basis eines GSM-Funkszenarios mit z.B. zwei Funkzellen und darin angeordneten Basisstationen (Base Transceiver Station) , wobei eine erste Basisstation BTS1 (Sender/Empfänger) eine erste Funkzelle FZ1 und eine zweite Basisstation BTS2 (Sende-/Empfangsgerät) eine zweite Funkzelle FZ2 omnidirektional "ausleuchtet", und ausgehend von den FIGUREN 1 und 2 ein Funkszenario mit Kanal-Mehrfachausnutzung nach dem Frequenz-/Zeit-/Codemultiplex, bei dem die Basisstationen BTS1, BTS2 über eine für das Funkszenario ausgelegte Luftschnittstelle mit mehreren in den Funkzellen FZ1, FZ2 befindlichen Mobilstationen MSI...MS5 (Sende-FIGURE 4 shows e.g. based on a GSM radio scenario with e.g. two radio cells and base stations arranged therein (base transceiver station), a first base station BTS1 (transmitter / receiver) a first radio cell FZ1 and a second base station BTS2 (transceiver) "illuminating" a second radio cell FZ2 omnidirectionally, and starting from the FIGURES 1 and 2 show a radio scenario with multiple channel utilization according to frequency / time / code multiplex, in which the base stations BTS1, BTS2 have an air interface designed for the radio scenario and have a plurality of mobile stations MSI ... MS5 located in the radio cells FZ1, FZ2 ( Send-
/Empfangsgerät) durch drahtlose uni- oder bidirektionale - Aufwärtsrichtung UL (Up Link) und/oder Abwärtsrichtung DL (Down Link) - Telekommunikation auf entsprechende Übertragungkanäle TRC (Transmission Channel) verbunden bzw. verbind- bar sind. Die Basisstationen BTS1, BTS2 sind in bekannter/ Receiving device) by wireless unidirectional or bidirectional - upward direction UL (up link) and / or downward direction DL (down link) - telecommunication are connected or connectable to corresponding transmission channels TRC (transmission channel). The base stations BTS1, BTS2 are known
Weise (vgl. GSM-Telekommunikationssystem) mit einer Basissta- tionssteuerung BSC (BaseStation Controller) verbunden, die im Rahmen der Steuerung der Basisstationen die Frequenzverwaltung und Vermittlungsfunktionen übernimmt. Die Basisstations- Steuerung BSC ist ihrerseits über eine Mobil-Vermittlungs- stelle MSC (Mobile Switching Center) mit dem übergeordneten Telekommunikationsnetz, z.B. dem PSTN (Public Switched Tele- communication Network) , verbunden. Die Mobil-Ver ittlungs- stelle MSC ist die Verwaltungszentrale für das dargestellte Telekommunikationssystem. Sie übernimmt die komplette Anrufverwaltung und mit angegliederten Registern (nicht dargestellt) die Authentisierung der Telekommunikationsteilnehmer sowie die Ortsüberwachung im Netzwerk.Way (cf. GSM telecommunications system) connected to a base station controller BSC (BaseStation Controller), which takes over the frequency management and switching functions as part of the control of the base stations. The base station controller BSC in turn is connected via a mobile switching center MSC (Mobile Switching Center) to the higher-level telecommunications network, e.g. the PSTN (Public Switched Telecommunications Network). The mobile switching center MSC is the administration center for the telecommunications system shown. It takes over the complete call management and, with associated registers (not shown), the authentication of the telecommunication participants and the location monitoring in the network.
FIGUR 5 zeigt den prinzipiellen Aufbau der als Sende-/Emp- fangsgerät ausgebildeten Basisstation BTS1, BTS2, während FIGUR 6 den prinzipiellen Aufbau der ebenfalls als Sende- 7 /Empfangsgerät ausgebildeten Mobilstation MS1...MS5 zeigt. Die Basisstation BTS1, BTS2 übernimmt das Senden und Empfangen von Funknachrichten von und zur Mobilstation MS1..MS5, während die Mobilstation MS1...MS5 das Senden und Empfangen von Funknachrichten von und zur Basisstation BTS1, BTS2 übernimmt. Hierzu weist die Basisstation eine Sendeantenne SAN und eine Empfangsantenne EAN auf, während die Mobilstation MS1...MS5 eine durch eine Antennenumschaltung AU steuerbare für das Senden und Empfangen gemeinsame Antenne ANT aufweist. In der Aufwärtsrichtung (Empfangspfad) empfängt die Basisstation BTS1, BTS2 über die Empfangsantenne EAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Ko ponente von mindestens einer der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Ab- wärtsrichtung (Empfangspfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code-Komponente von mindestens einer Basisstation BTS1, BTS2 empfängt. Die Funknachricht FN besteht dabei aus einem breitbandig gespreizten Trägersignal mit einer aufmodulierten aus Datensymbolen zusammengesetzten Information.FIG. 5 shows the basic structure of the base station BTS1, BTS2 designed as a transceiver, while FIG. 6 shows the basic structure of the base station, also as a 7 / Receiving device trained mobile station MS1 ... MS5 shows. The base station BTS1, BTS2 takes over the sending and receiving of radio messages from and to the mobile station MS1..MS5, while the mobile station MS1 ... MS5 takes over the sending and receiving of radio messages from and to the base station BTS1, BTS2. For this purpose, the base station has a transmitting antenna SAN and a receiving antenna EAN, while the mobile station MS1 ... MS5 has an antenna ANT that can be controlled by an antenna switchover AU and is common for transmitting and receiving. In the upward direction (receive path), the base station BTS1, BTS2 receives, for example, at least one radio message FN with a frequency / time / code component from at least one of the mobile stations MS1 ... MS5 via the receive antenna EAN, while the mobile station MS1 ... .MS5 in the downward direction (reception path) receives, for example, at least one radio message FN with a frequency / time / code component from at least one base station BTS1, BTS2 via the common antenna ANT. The radio message FN consists of a broadband spread carrier signal with information modulated onto data symbols.
In einer Funkempfangseinrichtung FEE (Empfänger) wird das empfangene Trägersignal gefiltert und auf eine Zwischenfre- quenz heruntergemischt, die ihrerseits im weiteren abgetastet und quantisiert wird. Nach einer Analog/Digital-Wandlung wird das Signal, das auf dem Funkweg durch Mehrwegeausbreitung verzerrt worden ist, einem Equalizer EQL zugeführt, der die Verzerrungen zu einem großen Teil ausgleicht (Stw. : Synchro- nisation) .The received carrier signal is filtered in a radio receiving device FEE (receiver) and mixed down to an intermediate frequency, which in turn is subsequently sampled and quantized. After an analog / digital conversion, the signal, which has been distorted on the radio path by multipath propagation, is fed to an equalizer EQL, which largely compensates for the distortions (Stw.: Synchronization).
Anschließend wird in einem Kanalschätzer KS versucht die Übertragungseigenschaften des Übertragungskanals TRC auf dem die Funknachricht FN übertragen worden ist, zu schätzen. Die Übertragungseigenschaften des Kanals sind dabei im Zeitbe¬ reich durch die Kanalimpulsantwort angegeben. Damit die Ka¬ nalimpulsantwort geschätzt werden kann, wird der Funknach- rieht FN sendeseitig (im vorliegenden Fall von der Mobilstation MS1...MS5 bzw. der Basisstation BTS1, BTS2) eine spezielle, als Trainingsinformationssequenz ausgebildete Zusatzinformation in Form einer sogenannten Midambel zugewiesen bzw. zugeordnet .An attempt is then made in a channel estimator KS to estimate the transmission properties of the transmission channel TRC on which the radio message FN has been transmitted. The transmission characteristics of the channel are given rich in Zeitbe ¬ through the channel impulse response. Thus the Ka ¬ can be estimated nalimpulsantwort which is Funknach- FN sends or assigns special information in the form of a so-called midambel on the transmission side (in the present case from the mobile station MS1 ... MS5 or the base station BTS1, BTS2), which is designed as a training information sequence.
In einem daran anschließenden für alle empfangenen Signale gemeinsamen Datendetektor DD werden die in dem gemeinsamen Signal enthaltenen einzelnen mobilstationsspezifischen Signalanteile in bekannter Weise entzerrt und separiert. Nach der Entzerrung und Separierung werden in einem Symbol-zuDaten-Wandler SDW die bisher vorliegenden Datensymbole in binäre Daten umgewandelt. Danach wird in einem Demodulator DMOD aus der Zwischenfrequenz der ursprüngliche Bitstrom gewonnen, bevor in einem Demultiplexer DMUX die einzelnen Zeitschlitze den richtigen logischen Kanälen und damit auch den unterschiedlichen Mobilstationen zugeordnet werden.In a subsequent data detector DD common to all received signals, the individual mobile station-specific signal components contained in the common signal are equalized and separated in a known manner. After equalization and separation, the previously existing data symbols are converted into binary data in a symbol-to-data converter SDW. The original bit stream is then obtained from the intermediate frequency in a demodulator DMOD before the individual time slots are assigned to the correct logical channels and thus also to the different mobile stations in a demultiplexer DMUX.
In einem Kanal-Codec KC wird die erhaltene Bitsequenz kanal- weise decodiert. Je nach Kanal werden die Bitinformationen dem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen und - im Fall der Basisstation (FIGUR 5) - die Kontroll- und Signalisierungsdaten und die Sprachdaten zur Übertragung an die Basisstationssteuerung BSC gemeinsam einer für die Signalisierung und Sprachcodierung/- decodierung (Sprach-Codec) zuständigen Schnittstelle SS übergeben, während - im Fall der Mobilstation (FIGUR 6) - die Kontroll- und Signalisierungsdaten einer für die komplette Signalisierung und Steuerung der Mobilstation zuständigen Steuer- und Signalisiereinheit STSE und die Sprachdaten einem für die Spracheingabe und -ausgäbe ausgelegten Sprach-Codec SPC übergeben werden.The bit sequence obtained is decoded channel by channel in a channel codec KC. Depending on the channel, the bit information is assigned to the control and signaling time slot or a voice time slot and - in the case of the base station (FIGURE 5) - the control and signaling data and the voice data for transmission to the base station controller BSC together for signaling and voice coding / decoding (Voice codec) handover the responsible interface SS, while - in the case of the mobile station (FIGURE 6) - the control and signaling data of a control and signaling unit STSE responsible for complete signaling and control of the mobile station and the voice data one for voice input and - output speech codec SPC are passed.
In dem Sprach-Codec der Schnittstelle SS in der Basisstation BTS1, BTS2 werden die Sprachdaten in einem vorgegebenen Datenstrom (z.B. 64kbit/s-Strom in Netzrichtung bzw. 13kbit/s- Strom aus Netzrichtung) . In einer Steuereinheit STE wird die komplette Steuerung der Basisstation BTS1, BTS2 durchgeführt.In the speech codec of the interface SS in the base station BTS1, BTS2, the speech data are stored in a predetermined data stream (for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction). The complete control of the base station BTS1, BTS2 is carried out in a control unit STE.
In der Abwärtsrichtung (Sendepfad) sendet die Basisstation BTS1, BTS2 über die Sendeantenne SAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code- Komponente an mindestens eine der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Aufwärtsrichtung (Sendepfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Komponente an mindestens einer Basisstation BTS1, BTS2 sendet.In the downward direction (transmission path), the base station BTS1, BTS2 sends, for example, at least one radio message FN with a frequency / time / code component to at least one of the mobile stations MS1 ... MS5 via the transmitting antenna SAN, while the mobile station MS1 ... MS5 in the upward direction (transmission path) via the common antenna ANT, for example, sends at least one radio message FN with a frequency / time / code component to at least one base station BTS1, BTS2.
Der Sendepfad beginnt bei der Basisstation BTS1, BTS2 inThe transmission path begins at the base station BTS1, BTS2 in
FIGUR 5 damit, daß in dem Kanal-Codec KC von der Basisstationssteuerung BSC über die Schnittstelle SS erhaltene Kontroll- und Signalisierungsdaten sowie Sprachdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeit- schlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.FIGURE 5 with the fact that in the channel codec KC control and signaling data as well as voice data received from the base station controller BSC via the interface SS are assigned to a control and signaling time slot or a voice time slot and these are coded channel by channel into a bit sequence.
Der Sendepfad beginnt bei der Mobilstation MS1...MS5 in FIGUR 6 damit, daß in dem Kanal-Codec KC von dem Sprach-Codec SPC erhaltene Sprachdaten und von der Steuer- und Signalsiereinheit STSE erhaltene Kontroll- und Signalisierungsdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.The transmission path begins at the mobile station MS1 ... MS5 in FIGURE 6 with the fact that in the channel codec KC speech data received from the speech codec SPC and control and signaling data received from the control and signaling unit STSE a control and signaling time slot or are assigned to a speech time slot and these are coded channel-wise into a bit sequence.
Die in der Basisstation BTS1, BTS2 und in der Mobilstation MS1...MS5 gewonnene Bitsequenz wird jeweils in einem Daten- zu-Symbol-Wandler DSW in Datensymbole umgewandelt. Im An¬ schluß daran werden jeweils die Datensymbole in einer Sprei- zeinrichtung SPE mit einem jeweils teilnehmerindividuellenThe bit sequence obtained in the base station BTS1, BTS2 and in the mobile station MS1 ... MS5 is in each case converted into data symbols in a data-to-symbol converter DSW. At the ¬ circuit because the data symbols are each zeinrichtung in a Sprei- SPE with a subscriber-each
Code gespreizt. In dem Burstgenerator BG, bestehend aus einem Burstzusammensetzer BZS und einem Multiplexer MUX, wird da- 10 nach in dem Burstzusammensetzer BZS jeweils den gespreizten Datensymbolen eine Trainingsinformationssequenz in Form einer Mitambel zur Kanalschätzung hinzugefügt und im Multiplexer MUX die auf diese Weise erhaltene Burstinformation auf den jeweils richtigen Zeitschlitz gesetzt. Abschließend wird der erhaltene Burst jeweils in einem Modulator MOD hochfrequent moduliert sowie digital/analog umgewandelt, bevor das auf diese Weise erhaltene Signal als Funknachricht FN über eine Funksendeeinrichtung FSE (Sender) an der Sendeantenne SAN bzw. der gemeinsamen Antenne ANT abgestrahlt wird.Spread code. In the burst generator BG, consisting of a burst composer BZS and a multiplexer MUX, 10, after each of the spread data symbols in the burst composer BZS is added a training information sequence in the form of a supplement to the channel estimation and the burst information obtained in this way is set to the correct time slot in the multiplexer MUX. Finally, the burst obtained is each modulated at high frequency in a modulator MOD and converted to digital / analog before the signal obtained in this way is emitted as a radio message FN via a radio transmission device FSE (transmitter) on the transmission antenna SAN or the common antenna ANT.
TDD-Telekommunikationsysteme (Time Division Duplex) sind Telekommunikationssysteme, bei denen der Übertragungszeitrahmen, bestehend aus mehreren Zeitschlitzen, für die Abwärts- Übertragungsrichtung (Downlink) und die Aufwärtsübertragungs- richtung (Uplink) - vorzugsweise in der Mitte - geteilt ist.TDD (Time Division Duplex) telecommunication systems are telecommunication systems in which the transmission time frame, consisting of several time slots, is divided for the downward transmission direction (downlink) and the upward transmission direction (uplink), preferably in the middle.
Ein TDD-Telekom unikationssystem, das einen derartigen Übertragungszeitrahmen aufweist, ist z.B. das bekannte DECT- System [Digital Enhanced (früher: European) Cordless Telecom- munication; vgl. Nachrichtentechnik Elektronik 42 (1992) Jan. /Feb. Nr. 1 , Berlin, DE; U. Pilger „Struktur des DECT- Standards " , Sei ten 23 bis 29 in Verbindung mit der ETSI- Publikation ETS 3001 75-1 . . . 9, Oktober 1992 und der DECT- Publikation des DECT-Forum, Februar 1997, Sei ten 1 bis 16] .A TDD telecommunications system that has such a transmission time frame is e.g. the well-known DECT system [Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb. No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 75-1... 9, October 1992 and the DECT publication of the DECT forum, February 1997, pages 1 to 16].
FIGUR 7 zeigt einen DECT-Übertragungszeitrahmen mit einer Zeitdauer von 10 ms, bestehend aus 12 „Downlink"-Zeitschlit- zen und 12 „Uplink"-Zeitschlitzen. Für eine beliebige bidi- rektionale Telekommunikationsverbindung auf einer vorgegebenen Frequenz in Abwärtsübertragungsrichtung DL (Down Link) und Aufwärtsübertragungsrichtung UL (Up Link) wird gemäß dem DECT-Standard ein freies Zeitschlitzpaar mit einem „Down- link"-Zeitschlitz ZSDON und einem „Uplink"-Zeitschlitz ZSUP ausgewählt, bei dem der Abstand zwischen dem „Downlink"-FIGURE 7 shows a DECT transmission time frame with a time duration of 10 ms, consisting of 12 “downlink” time slots and 12 “uplink” time slots. For any bidirectional telecommunications connection on a predetermined frequency in the downlink direction DL (down link) and uplink direction UL (up link), a free time slot pair with a "downlink" time slot ZSDO N and an "uplink" is used in accordance with the DECT standard. - Time slot ZSUP selected, in which the distance between the "downlink" -
Zeitschlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSUP ebenfalls 11 gemäß dem DECT-Standard die halbe Länge (5 ms) des DECT- Übertragungszeitrahmens beträgt.Time slot ZS DO W N and the "uplink" time slot ZS UP also 11 according to the DECT standard is half the length (5 ms) of the DECT transmission time frame.
FDD-Telekommunikationsysteme (Frequency Division Duplex) sind Telekommunikationssysteme, bei denen der Zeitrahmen, bestehend aus mehreren Zeitschlitzen, für die Abwärtsübertragungs- richtung (Downlink) in einem ersten Frequenzband und für die Aufwärtsübertragungsrichtung (Uplink) in einem zweiten Frequenzband übertragen wird.FDD (Frequency Division Duplex) telecommunication systems are telecommunication systems in which the time frame, consisting of several time slots, is transmitted in a first frequency band for the downlink direction and in a second frequency band for the uplink direction.
Ein FDD-Telekommunikationssystem, das den Zeitrahmen auf diese Weise überträgt, ist z.B. das bekannte GSM-System [Groupe Speciale Mobile oder Global System for Mobile Communication; vgl. Informatik Spektrum 14 (1991 ) Juni , Nr. 3, Berlin, DE; A. Mann : "Der GSM-Standard - Grundlage für digi tale europäi sche Mobil f unknetze" , Sei ten 137 bis 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka "GSM-Funkschni ttstelle - Elemente und Funktionen", Sei ten 17 bis 24] .An FDD telecommunication system that transmits the time frame in this way is e.g. the well-known GSM system [Groupe Speciale Mobile or Global System for Mobile Communication; see. Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A. Mann: "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka "GSM radio interface - elements and functions" , Pages 17 to 24].
Die Luftschnittstelle für das GSM-System kennt eine Vielzahl von als Übertragungswegdienste (bearer Services) bezeichneten logischen Kanälen, so z.B. einen AGCH-Kanal (Access Grant CHannel) , einen BCCH-Kanal (BroadCast CHannel, einen FACCH- Kanal (Fast Associated Control CHannel) , einen PCH-Kanal (Pa- ging CHhannel) , einen RACH-Kanal (Random Access CHannel) und einen TCH-Kanal (Traffic CHannel), deren jeweilige Funktion in der Luftschnittselle z.B. in der Druckschrift Informatik Spektrum 14 (1991 ) Juni , Nr. 3, Berlin, DE; A.Mann : "Der GSM- Standard - Grundlage für digi tale europäische Mobil funknet- ze", Sei ten 137 bis 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka "GSM-Funkschni ttstelle - Elemente und Funktionen", Sei ten 17 bis 24 beschrieben ist. Das GSM-System weist zudem eine Rahmenstruktur auf, bei der in jedem Multirahmen mit einer Länge von 60 ms der 13. Zeitrah- men in dem Multirahmen als „Idle"-Rahmen ausgebildet ist. In diesem „Idie"-Rahmen, in dem keine Nutzdaten übertragen werden, bekommen die Mobilstationen in dem GSM-System die Mög- 12 lichkeit, diverse Messungen, insbesondere Messungen zur Vor- ab-Synchronisation (pre-synchronisation) für mögliche „Hando- ver"-Prozeduren, durchzuführen.The air interface for the GSM system knows a variety of logical channels called bearer services, such as an AGCH channel (Access Grant CHannel), a BCCH channel (BroadCast CHannel, a FACCH channel (Fast Associated Control CHannel) ), a PCH channel (Paging CHhannel), an RACH channel (Random Access CHannel) and a TCH channel (Traffic CHannel), their respective functions in the air interface, for example in the publication Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A.Mann: "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka "GSM Radio interface - elements and functions ", pages 17 to 24. The GSM system also has a frame structure in which the 13th time frame in the multi-frame as" Idle "Frame is formed. In this" Idie "Ra If no user data is transmitted, the mobile stations in the GSM system 12 Ability to carry out various measurements, in particular measurements for pre-synchronization for possible “handover” procedures.
Der größte Unterschied zwischen dem eine Frequenz- und Zeit- Ebene aufweisenden GSM-System, das in einem koordinierten, lizensierten Modus betrieben wird, und dem ebenfalls eine Frequenz- und Zeit-Ebene aufweisenden DECT-System, das in einem unkoordinierten, unlizensierten Modus betrieben wird, liegt in der Art und Weise, wie die physikalische Ressource "Kanal" dem jeweiligen Syternteilnehmer bzw. Telekommunikationsteilnehmer zugeteilt wird.The biggest difference between the frequency and time level GSM system, which operates in a coordinated, licensed mode, and the frequency and time level DECT system, which operates in an uncoordinated, unlicensed mode , lies in the way in which the physical resource "channel" is allocated to the respective system subscriber or telecommunications subscriber.
In dem koordinierten, lizensierten Telekommunikationssystem wird die Kanalzuteilung von einer zentralen Instanz, dem Netzbetreiber, gesteuert. Dies ist möglich, weil alle sich innerhalb eines Funkbereichs einer Basisstation aufhaltenden Mobilstationen die gleiche Zeitbasis benutzen, also synchron betrieben werden. Der synchrone Betrieb erlaubt eine klare Definition von Zeitschlitzgrenzen und somit eine klare Trennung von verschiedenen Telekommunikationsteilnehmern. Benachbarte Basisstationen brauchen nicht synchron betrieben werden, da die Trennung von Kanälen, die in benachbarten Funkzellen benutzt werden, im allgemeinen durch eine Frequenzpla- nung in der Frequenz-Ebene erfolgt. Diese Art der Kanalzutei¬ lung wird als "Fixed Channel Allocation (FCA)" bezeichnet.In the coordinated, licensed telecommunications system, the channel allocation is controlled by a central entity, the network operator. This is possible because all the mobile stations within a radio area of a base station use the same time base, that is, they are operated synchronously. The synchronous operation allows a clear definition of time slot boundaries and thus a clear separation from different telecommunication participants. Adjacent base stations do not need to be operated synchronously, since the channels which are used in adjacent radio cells are generally separated by frequency planning in the frequency level. This type of Kanalzutei ¬ development is called "Fixed Channel Allocation (FCA)".
In dem unkoordinierten unlizensierten Telekommunikationssystem, wo eine solche zentrale Instanz für die Kanalzuteilung nicht vorhanden ist, werden die Kanäle zunächst dynamisch ausgewählt - "Dynamic Channel Selection (DCS)" - und dann zu¬ geteilt. Die Frequenz-/Zeit-Ebene dient dabei sowohl für die "Dynamic Channel Selection (DCS) " als auch für die Kanalzu¬ teilung als Plattform bzw. "pool". In einem solchen System überwacht das Mobilteil regelmäßig die Frequenz-/Zeit-Ebene und wählt schließlich die Frequenz-/Zeitschlitzkombination aus, bei der Übertragungskanal am wenigsten durch auftretende 13 Interferenzen gestört ist. Dadurch, daß benachbarte unkoordi- niert operierende Basisstationen und Mobilteile immer asynchron sind und deshalb die Zeitbasen gegenseitig ineinanderlaufen bzw. ineinanderdriften, entsteht häufig eine Situati- on, wo der Grad der Interferenz einen inakzeptablen Wert erreicht. In diesem Fall, muß ein Weiterreichen der Telekommun- kationsverbindung - ein Handover" - auf einen anderen Kanal, sprich einer anderen Frequenz-/Zeitschlitzkombination eingeleitet bzw. initiiert werden. Man spricht in einem solchen Fall von einem "Intra Cell Handover".In the uncoordinated, unlicensed telecommunication system, where such a central instance for channel allocation is not available, the channels are first selected dynamically - "Dynamic Channel Selection (DCS)" - and then allocated . The frequency / time plane serves both the "Dynamic Channel Selection (DCS)" and for the Kanalzu ¬ distribution as a platform or "pool". In such a system, the handset regularly monitors the frequency / time level and finally selects the frequency / time slot combination in which the transmission channel is least likely to occur 13 interference is disturbed. The fact that neighboring, uncoordinated operating base stations and mobile parts are always asynchronous and therefore the time bases run into one another or drift into one another often creates a situation where the degree of interference reaches an unacceptable value. In this case, a forwarding of the telecommunication connection - a handover "- must be initiated or initiated on another channel, that is to say a different frequency / time slot combination. In such a case one speaks of an" intra cell handover ".
Da im Rahmen des UMTS-Szenario (3. Mobilfunkgeneration bzw. IMT-2000) der WCDMA/FDD-Betrieb und der TDCDMA/TDD-Betrieb gemeinsam zum Einsatz kommen sollen, ist neben einem effizi- enten Umgang mit den logischen Kanälen bzw. den Übertragungswegdiensten (bearer handling) insbesondere aus den vorstehenden Gründen die Realisierung einer geeigneten "Handover"- Prozedur für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwi- sehen mobilen und/oder stationären Sende-/Empfangsgeräten unverzichtbar .Since the WCDMA / FDD operation and the TDCDMA / TDD operation should be used together in the UMTS scenario (3rd generation of mobile telephony or IMT-2000), in addition to efficient handling of the logical channels and the Transmission path services (bearer handling), in particular for the above reasons, the implementation of a suitable "handover" procedure for telecommunication systems with wireless, based on code and time division multiplex telecommunication between mobile and / or stationary transceivers is indispensable.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, für Telekommunikationssysteme mit drahtloser, auf Code- und Zeit- multiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten im Rahmen einer "Handover"-Prozedur ein Verfahren anzugeben, das das Anzeigen eines „Handover" (Handover Indication) für unterschiedliche Betriebsmodi der Sende-/Empfangsgeräte zuverlässig ermög- licht.The object on which the invention is based is to provide a method for telecommunication systems with wireless, based on code and time multiplex based telecommunication between mobile and / or stationary transceivers within the scope of a "handover" procedure that indicates the display of a "handover." "(Handover Indication) for different operating modes of the transceivers.
Diese Aufgabe wird jeweils durch die Merkmale des Patentanspruches 1 gelöst.This object is achieved in each case by the features of patent claim 1.
Die der Erfindung zugrundeliegende Idee besteht darin, daß - gemäß dem Anspruch 1 - bei für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekom- 14 munikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten, sowohl in dem TDD-Modus als auch in dem FDD- Modus ein stationäres Sende-/Empfangsgerät (BS) in einem „Id- le"-Zeitmultiplexrahmen eines Multizeitrahmens eine Broad- cast-Signalisierung abschaltet, in einem aktuellen Telekommu- nikationszeitschlitzpaar eine Interferenzsituation durch Bestimmung der Störleistung erfaßt, einen gemessenen Interferenzwert mit einem vorgegebenen Schwellwert vergleicht und wenn, der Interferenzwert größer als der oder gleich dem Schwellwert ist, den Interferenzwert in eine Kanalauswahlliste für eine ,,Handover"-Prozedur einträgt und/oder ein „Handover" für die „Handover"-Prozedur anzeigt.The idea on which the invention is based is that - according to claim 1 - for telecommunications systems with wireless telecommunications based on code and time division multiplexing 14 communication between mobile and / or stationary transceivers, both in the TDD mode and in the FDD mode a stationary transceiver (BS) in an "idle" time division multiplex frame of a multi-time frame a broad cast signaling is switched off, an interference situation is detected in a current telecommunications slot pair by determining the interference power, compares a measured interference value with a predetermined threshold value and, if the interference value is greater than or equal to the threshold value, the interference value in a channel selection list for a "Handover" procedure and / or indicates a "handover" for the "handover" procedure.
Vorteilhafte Weiterbildungen der Erfindung sind in den Un- teransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
Ein Ausführungsbeispiel der Erfindung wird anhand der FIGUREN 8 bis 10 erläutert. Diese zeigen:An embodiment of the invention is explained with reference to FIGS. 8 to 10. These show:
FIGUR 8 ein gegenüber den Zeitrahmen in den FIGUREN 1 bis 3 und dem DECT-Übertragungszeitrahmen in FIGUR 7 in bezug auf die Zeitschlitzanzahl (modifizierten) TDD-Zeitmultiplexrah- men,FIG. 8 shows a comparison with the time frames in FIGS. 1 to 3 and the DECT transmission time frame in FIG. 7 with regard to the number of time slots (modified) TDD time-division multiplex frames,
FIGUR 9 auf der Basis des Zeitmultiplexrahmens nach FIGUR 8 eine Kanalzuweisungstabelle für Kanäle mit einer Frequenz-, Code- und Zeitmultiplexkomponente,FIG. 9, on the basis of the time-division multiplex frame according to FIG. 8, a channel allocation table for channels with a frequency, code and time-division multiplex component,
FIGUR 10 ein Meldungsflußdiagramm einer „Handover"-Prozedur .FIGURE 10 is a message flow diagram of a "handover" procedure.
FIGUR 8 zeigt ausgehend von den Zeitrahmen in den FIGUREN 1 bis 3 und dem DECT-Übertragungszeitrahmen in FIGUR 7 einen (modifizierten) TDD-Zeitmultiplexrahmen ZMR mit acht Zeit¬ schlitzen ZSλl...ZSΛ8, wobei die ersten vier Zeitschlitze ZSλl...ZS für die Abwärtsübertragungsrichtung DL und die zweiten vier Zeitschlitzen ZSX5...ZSX8 für die Aufwärtsüber- tragungsrichtung UL vorgesehen sind. Die Anzahl der Zeit- 15 schlitze ist von „16" gemäß den FIGUREN 1 und 3 auf „8" lediglich aus Darstellungsgründen für die Kanalzuweisungstabelle in FIGUR 9 verringert worden und hat keinen beschränkenden, limitierenden Einfluß auf die Erfindung. Im Gegenteil - die Anzahl der Zeitschlitze kann - wie die anderen physikalischen Ressourcen (z.B. Code, Frequenz, etc.) - vielmehr je nach Telekommunikationssystem mehr oder weniger beliebig variiert werden.FIGURE 8 shows, starting from the time frame in FIGURES 1 to 3 and the DECT transmission time frame in FIGURE 7 a (modified) TDD time-division multiplex frame ZMR with eight time ¬ slots ZS λ l ... ZS Λ 8, wherein the first four time slots ZS λ l ... ZS for the downward transmission direction DL and the second four time slots ZS X 5 ... ZS X 8 for the upward transmission direction UL are provided. The number of time 15 slots has been reduced from "16" according to FIGURES 1 and 3 to "8" only for the sake of illustration for the channel assignment table in FIGURE 9 and has no restrictive, limiting influence on the invention. On the contrary - the number of time slots - like the other physical resources (eg code, frequency, etc.) - can be varied to a greater or lesser extent depending on the telecommunications system.
FIGUR 9 zeigt auf der Basis des Zeitmultiplexrahmens nachFIGURE 9 shows on the basis of the time-division multiplex frame
FIGUR 8 eine Kanalzuweisungstabelle für Kanäle mit einer Frequenz-, Code- und Zeitmultiplexkomponente. Die Zeitmultiplex- komponente dieser Tabelle umfaßt die Zeitschlitze ZS^l.-.ZS^δ mit der TDD-Einteilung gemäß FIGUR 8. Die Frequenzmultiplex- komponente umfaßt 12 Frequenzen FR1...FR12, während die Code- multiplexkomponente 8 Codes (Pseudo-Zufallssignale) C1...C8 enthält .FIGURE 8 is a channel allocation table for channels with a frequency, code and time division multiplexing component. The time division multiplex component of this table comprises the time slots ZS ^ 1 .-. ZS ^ δ with the TDD division according to FIGURE 8. The frequency division multiplex component comprises 12 frequencies FR1 ... FR12, while the code division multiplex component 8 codes (pseudo Random signals) C1 ... C8 contains.
Auf einer ersten Frequenz FR1 werden als „bearer Services" ausgebildete Übertragungswegdienste, z.B. logische Kanäle des Telekommunikationssystems wie der Steuerkanal zur Signalisie¬ rung, der AGCH-Kanal, der BCCH-Kanal, der PCH-Kanal, der RACH-Kanal, der TCH-Kanal und/oder der FACCH-Kanal, die in dem Telekommunikationssystem in Abwärtsrichtung und/oder Auf- wärtsrichtung benötigt werden, in einer durch die CodesAt a first frequency FR1 formed transmission services, such as logical channels of the telecommunications system such as the control channel for Signalisie ¬ are called "bearer services" rung, the AGCH channel, the BCCH channel, the PCH channel, the RACH channel, the TCH Channel and / or the FACCH channel, which are required in the telecommunication system in the downward direction and / or upward direction, in one by the codes
C1...C8 aufgespannten Code-Ebene gebündelt. Diese Bündelung erweist sich für die vorstehend genannten Telekommunikationssysteme als zweckmäßig, weil dadurch eine unnötige Belegung von Zeitschlitzen, also der Ressource „Zeit" vermieden wird.C1 ... C8 spanned code level bundled. This bundling has proven to be expedient for the above-mentioned telecommunication systems because it avoids unnecessary occupancy of time slots, that is to say the resource “time”.
Die FIGUR 9 zeigt eine bevorzugte Ausführungsform, gemäß der auf der ersten Frequenz FR1 in der Abwärtsübertragungsrich- tung in einem ersten Zeitschlitz ZS'l als ein fest vorgegebener (vereinbarter) erster Auswahlzeitschlitz und in der Auf- wärtsübertragungsrichtung in einem fünften Zeitschlitz ZSΛ5 als ein fest vorgegebener (vereinbarter) zweiter Auswahlzeit- schlitz vorzugsweise jeweils sämtliche Codes C1...C8 für die 16 Bündelung der genannten Übertragungswegdienste herangezogen werden. Es ist natürlich auch möglich weniger oder, wenn mehr als diese acht Codes zur Verfügung stehen, auch mehr Codes zu benutzen.FIGURE 9 shows a preferred embodiment according to which on the first frequency FR1 in the downward transmission direction in a first time slot ZS'l as a fixed (agreed) first selection time slot and in the upward transmission direction in a fifth time slot ZS Λ 5 as a predetermined (agreed) second selection time slot preferably all codes C1 ... C8 for each 16 bundling of the aforementioned transmission path services can be used. It is of course also possible to use less or, if more than these eight codes are available, also more codes.
Bei dieser in der FIGUR 9 dargestellten Bündelung sind z.B. die Codes C1...C8 in dem ersten Zeitschlitz ZSλl so aufgeteilt, daß ein Code für den Steuerkanal zur Signalisierung und den AGCH-Kanal, ein weiterer Code für den BCCH-Kanal und den PCH-Kanal sowie die verbleibenden sechs Codes für denIn this bundling shown in FIGURE 9, for example, the codes C1 ... C8 in the first time slot ZS λ l are divided so that one code for the control channel for signaling and the AGCH channel, another code for the BCCH channel and the PCH channel and the remaining six codes for the
TCH-Kanal reserviert bzw. vergeben werden, während die Codes C1...C8 in dem fünften Zeitschlitz ZS 5 so aufgeteilt sind, daß ein Code für den RACH-Kanal, ein weiterer Code für den FACCH-Kanal zur Handover-Indikation und die verbleibenden sechs Codes wiederum für den TCH-Kanal reserviert bzw. vergeben werden.TCH channel reserved or assigned, while the codes C1 ... C8 in the fifth time slot ZS 5 are divided so that a code for the RACH channel, another code for the FACCH channel for handover indication and remaining six codes are reserved or assigned for the TCH channel.
Die spektrale Effizienz und/oder die Performance des Telekommunikationssystems kann darüber hinaus noch weiter verbessert werden, wenn - wie in der FIGUR 9 dargestellt ist - für verschiedene Verbindungsszenarien, einem ersten Verbindungsszenario VSZ1, einem zweiten Verbindungsszenario VSZ2, einem dritten Verbindungsszenario VSZ3, einem vierten Verbindungsszenario VSZ4 und einem fünften Verbindungsszenario VSZ5, je- weils mehrere bidirektionale TDD-Telekommunikationsverbindun- gen, für die jeweils die physikalische Ressource „Code, Frequenz, Zeit" in Ab- und Aufwärtsübertragungsrichtung teilweise gleich und teilweise ungleich belegt sind. Zu jedem Verbindungsszenario VSZ1...VSZ5 gehört z.B. eine erste Gruppe von Telekommunikationsverbindungen Gl, die mit einer aufsteigenden und abfallenden Schraffur markiert ist, und eine zweite Gruppe von Telekommunikationsverbindungen G2, die mit einer abfallenden Schraffur markiert ist. Jede Gruppe enthält dabei mindestens eine bidirektionale Telekommunikationsver- bindung. 17 In dem ersten Verbindungsszenario VSZ1 belegt die erste Gruppe von Telekommunikationsverbindungen Gl auf einer zweiten Frequenz FR2 in Abwärtsübertragungsrichtung in einem zweiten Zeitschlitz ZS x2 sechs Codes - einen ersten Code Cl, einen zweiten Code C2, einen dritten Code C3, einen vierten Code C4, einen fünften Code C5 und einen sechsten Code C6 - und in Aufwärtsübertragungsrichtung in einem sechsten Zeitschlitz ZS 6 wieder die sechs Codes C1...C6, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der zweiten Fre- quenz FR2 in Abwärtsübertragungsrichtung in einem vierten Zeitschlitz ZS den ersten Code Cl und in Aufwärtsübertragungsrichtung in einem achten Zeitschlitz ZS'8 wieder den ersten Code Cl belegt.The spectral efficiency and / or the performance of the telecommunication system can also be further improved if - as shown in FIGURE 9 - for different connection scenarios, a first connection scenario VSZ1, a second connection scenario VSZ2, a third connection scenario VSZ3, a fourth connection scenario VSZ4 and a fifth connection scenario VSZ5, in each case a plurality of bidirectional TDD telecommunication connections, for which the physical resource “code, frequency, time” in the downward and upward transmission direction are assigned in part equally and in part unequally. For each connection scenario VSZ1 .. .VSZ5 belongs, for example, to a first group of telecommunication connections G1, which is marked with an ascending and descending hatching, and a second group of telecommunication connections G2, which is marked with a descending hatching, each group containing at least one bidirectional Telecommunications connection. 17 In the first connection scenario VSZ1, the first group of telecommunications connections G1 on a second frequency FR2 in the downward transmission direction occupies six codes in a second time slot ZS x 2 - a first code C1, a second code C2, a third code C3, a fourth code C4, a fifth code C5 and a sixth code C6 - and in the upward transmission direction in a sixth time slot ZS 6 again the six codes C1 ... C6, while the second group of telecommunications connections G2 on the second frequency FR2 in the downward transmission direction in a fourth time slot ZS the first code C1 and in the upward transmission direction in an eighth time slot ZS'8 again the first code C1.
Der vierte Zeitschlitz ZSM und der zweite Zeitschlitz ZSλ2 sind „Downlink"-Zeitschlitze ZSDO N, während der sechste Zeitschlitz ZSΛ6 und der achte Zeitschlitz ZS 8 „Uplink"-Zeit- schlitze ZSup sind.The fourth time slot ZSM and the second time slot ZS λ 2 are “downlink” time slots ZS DO N , while the sixth time slot ZS Λ 6 and the eighth time slot ZS 8 are “uplink” time slots ZSup.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 ist ein erster Abstand AS1 zwischen dem „Downlink"-Zeit- schlitz ZSDO und dem „Uplink"-Zeitschlitz ZSup - gemäß dem Stand der Technik (vgl. FIGUR 7) - so lang, wie der halbe Zeitmultiplexrahmen ZMR. Der Abstand AS1 ist somit ein Bruch- teil der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil den Wert 0,5 hat.For each telecommunication connection in the groups G1, G2, a first distance AS1 between the "downlink" time slot ZS DO and the "uplink" time slot ZSup - according to the prior art (cf. FIG. 7) - is as long as half the time division multiplex frame ZMR. The distance AS1 is therefore a fraction of the length of the time-division multiplex frame ZMR, the fraction having the value 0.5.
In dem zweiten Verbindungsszenario VSZ2 belegt die erste Gruppe von Telekommunikationsverbindungen Gl auf einer vier- ten Frequenz FR4 in Abwärtsübertragungsrichtung in dem vierten Zeitschlitz ZS die sechs Codes C1...C6 und in Aufwärtsübertragungsrichtung in einem siebten Zeitschlitz ZSλ6 wieder die sechs Codes C1...C6, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der vierten Frequenz FR4 in Abwärtsübertragungsrichtung in einem zweiten Zeit¬ schlitz ZS λ2 die Codes C1...C4 und in Aufwärtsübertragungs- 18 richtung in dem fünften Zeitschlitz ZS 5 den ersten Code Cl und den zweiten Code C2 belegt.In the second connection scenario VSZ2, the first group of telecommunication connections G1 occupies the six codes C1... C6 on a fourth frequency FR4 in the downward transmission direction in the fourth time slot ZS and again the six codes C1 in a seventh time slot ZS λ 6 in the upward transmission direction. ..C6, while the second group of telecommunication connections G2 on the fourth frequency FR4 in downlink direction in a second time slot ZS ¬ λ 2, the codes C1 ... C4 and in Aufwärtsübertragungs- 18 direction in the fifth time slot ZS 5 occupies the first code C1 and the second code C2.
Der vierte Zeitschlitz ZSM und der zweite Zeitschlitz ZS 2 sind - wie beim ersten Verbindungsszenario VSZ1 - „Downlink"- Zeitschlitze ZSDOWN, während der siebte Zeitschlitz ZS 7 und der fünfte Zeitschlitz ZS 5 „Uplink"-Zeitschlitze ZSUP sind.As in the first connection scenario VSZ1, the fourth time slot ZSM and the second time slot ZS 2 are “downlink” time slots ZS DO WN, while the seventh time slot ZS 7 and the fifth time slot ZS 5 are “uplink” time slots ZS UP .
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 ist ein zweiter Abstand AS2 zwischen dem „Downlink"-Zeit- schlitz ZSDON und dem „Uplink"-Zeitschlitz ZSUP SO lang, wie ein Bruchteil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil so bemessen und größer oder kleiner als der Wert 0,5 ist, daß der zweite Abstand AS2 fest ist.For each telecommunication connection in the groups G1, G2, a second distance AS2 between the "downlink" time slot ZS D ON and the "uplink" time slot ZS UP SO is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR , the fraction being so dimensioned and greater or smaller than the value 0.5 that the second distance AS2 is fixed.
In dem dritten Verbindungsszenario VSZ3 belegt die erste Gruppe von Telekommunikationsverbindungen Gl in Abwärtsübertragungsrichtung auf einer sechsten Frequenz FR6 in dem zwei- ten Zeitschlitz ZS 2 die vier Codes C1...C4 und in Aufwärts- übertragungsrichtung auf einer fünften Frequenz FR5 in dem achten Zeitschlitz ZSΛ8 die sechs Codes C1...C6 sowie einen siebten Code C7 und einen achten Code C8, während die zweite Gruppe von Telekommunikationsverbindungen G2 in Abwärtsüber- tragungsrichtung auf der sechsten Frequenz FR6 in einem dritten Zeitschlitz ZSλ3 die Codes C1...C3 und in Aufwärtsüber- tragungsrichtung auf der fünften Frequenz FR5 in dem fünften Zeitschlitz ZSλ5 die Codes C1...C4 belegt.In the third connection scenario VSZ3, the first group of telecommunication connections G1 in the downward transmission direction on a sixth frequency FR6 in the second time slot ZS 2 occupies the four codes C1 ... C4 and in the upward transmission direction on a fifth frequency FR5 in the eighth time slot ZS Λ 8 the six codes C1 ... C6 as well as a seventh code C7 and an eighth code C8, while the second group of telecommunication connections G2 in the downward transmission direction on the sixth frequency FR6 in a third time slot ZS λ 3 the codes C1 ... C3 and in the upward transmission direction on the fifth frequency FR5 in the fifth time slot ZS λ 5 occupies the codes C1 ... C4.
Der zweite Zeitschlitz ZS"2 und der dritte Zeitschlitz ZSλ3 sind „Downlink"-Zeitschlitze ZSDOWN, während der achte Zeit¬ schlitz ZS 8 und der fünfte Zeitschlitz ZSX5 „Uplink"-Zeit- schlitze ZSup sind.The second time slot ZS "2 and the third time slot ZS λ 3 are" downlink "time slots ZS DOWN, during the eighth time slot ZS ¬ 8 and the fifth time slot ZS X 5" Uplink "-Time slots are Z SUP.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 beträgt ein dritter Abstand AS3 zwischen dem „Downlink"- Zeitschlitz ZSD0WN und dem „Uplink"-Zeitschlitz ZSUP ein Bruch- 19 teil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil jeweils so bemessen ist, daß der dritte Abstand AS3 variabel ist.For each telecommunication connection in groups G1, G2, a third distance AS3 between the "downlink" time slot ZS D0WN and the "uplink" time slot ZS UP is a fraction. 19 part (fractional distance) of the length of the time-division multiplex frame ZMR, the fraction being dimensioned such that the third distance AS3 is variable.
In dem vierten Verbindungsszenario VSZ4 belegt die ersteIn the fourth connection scenario VSZ4 occupies the first
Gruppe von Telekommunikationsverbindungen Gl in Abwärtsübertragungsrichtung auf einer achten Frequenz FR8 in dem viert- ten Zeitschlitz ZSM den ersten Code Cl und in Aufwärtsüber- tragungsrichtung auf einer neunten Frequenz FR9 in dem sech- sten Zeitschlitz ZSΛ6 die sieben Codes C1...C7, während die zweite Gruppe von Telekommunikationsverbindungen G2 in Abwärtsübertragungsrichtung auf der achten Frequenz FR8 in dem dritten Zeitschlitz ZSλ3 den ersten Code Cl und in Aufwärtsübertragungsrichtung auf der neunten Frequenz FR9 in dem fünften Zeitschlitz ZSX5 den ersten Code Cl belegt.Group of telecommunication connections Gl in the downward transmission direction on an eighth frequency FR8 in the fourth time slot ZSM the first code C1 and in the upward transmission direction on a ninth frequency FR9 in the sixth time slot ZS Λ 6 the seven codes C1 ... C7, while the second group of telecommunications connections G2 occupies the first code Cl in the downward transmission direction on the eighth frequency FR8 in the third time slot ZS λ 3 and in the upward transmission direction on the ninth frequency FR9 in the fifth time slot ZS X 5.
Der vierte Zeitschlitz ZSM und der dritte Zeitschlitz ZSλ3 sind „Downlink"-Zeitschlitze ZSDOWN, während der sechste Zeitschlitz ZSλ6 und der fünfte Zeitschlitz ZSλ5 „Uplink"-Zeit- schlitze ZSup sind.The fourth time slot ZSM and the third time slot ZS λ 3 are “downlink” time slots ZS D OW N , while the sixth time slot ZS λ 6 and the fifth time slot ZS λ 5 are “uplink” time slots ZSup.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 beträgt ein vierter Abstand AS4 zwischen dem „Downlink"- Zeitschlitz ZSD0WN und dem „Uplink"-Zeitschlitz ZSUP ein Bruch- teil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil jeweils so bemessen ist, daß der vierte Abstand AS4 fest ist.For each telecommunication connection in the groups G1, G2, a fourth distance AS4 between the "downlink" time slot ZS D0WN and the "uplink" time slot ZS UP is a fractional distance of the length of the time division multiplex frame ZMR, the fraction in each case is dimensioned so that the fourth distance AS4 is fixed.
In dem fünften Verbindungsszenario VSZ5 belegt die erste Gruppe von Telekommunikationsverbindungen Gl auf einer elften Frequenz FR11 in Abwärtsübertragungsrichtung in dem vierten Zeitschlitz ZSM den ersten Code Cl und den zweiten Code C2 und in Aufwärtsübertragungsrichtung in dem fünften Zeitschlitz ZSλ5 wieder den ersten Code Cl und den zweiten Code C2, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der elften Frequenz FR11 in Abwärtsübertragungsrichtung in dem ersten Zeitschlitz ZS l die Codes 20 C1...C5 und in Aufwärtsübertragungsrichtung in dem achten Zeitschlitz ZSλ8 die Codes C1...C3 belegt.In the fifth connection scenario VSZ5, the first group of telecommunication connections G1 on an eleventh frequency FR11 in the downward transmission direction in the fourth time slot ZSM occupies the first code Cl and the second code C2 and in the upward transmission direction in the fifth time slot ZS λ 5 the first code Cl and the second code C2, while the second group of telecommunication connections G2 on the eleventh frequency FR11 in the downward transmission direction in the first time slot ZS l the codes 20 C1 ... C5 and in the upward transmission direction in the eighth time slot ZS λ 8 the codes C1 ... C3 are occupied.
Der vierte Zeitschlitz ZSM und der erste Zeitschlitz ZSΛ1 sind „Downlink"-Zeitschlitze ZSD0WN, während der fünfte Zeitschlitz ZSΛ5 und der achte Zeitschlitz ZSλ8 „Uplink"-Zeit- schlitze ZSUP sind.The fourth time slot ZSM and the first time slot ZS Λ 1 are “downlink” time slots ZS D0WN , while the fifth time slot ZS Λ 5 and the eighth time slot ZS λ 8 are “uplink” time slots ZS UP .
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 ist ein fünfter Abstand AS5 zwischen dem „Downlink"-Zeit- schlitz ZSDON und dem „Uplink"-Zeitschlitz ZSup so lang, wie ein Bruchteil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil so bemessen, daß der zweite Abstand AS2 variabel ist.For each telecommunication connection in groups G1, G2, a fifth distance AS5 between the "downlink" time slot ZS D ON and the "uplink" time slot ZSup is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR, the fraction being dimensioned such that the second distance AS2 is variable.
FIGUR 10 zeigt ein Meldungsflußdiagramm einer „Handover"- Prozedur. Die "Handover"-Prozedur besteht im Prinzip aus drei Phasen, einer ersten Phase, die als das Anzeigen eines "Handover" (Handover Indication) bezeichnet wird, einer zweiten Phase, die als das Einleiten bzw. Initiieren eines "Handover" (Handover Initiation) bzeichnet wird, und einer dritten Phase, die als das Ausführen eines "Handover" (Handover Executi- on) bezeichnet wird, die in der angegebenen Reihenfolge ablaufen.10 shows a message flow diagram of a "handover" procedure. The "handover" procedure basically consists of three phases, a first phase, which is referred to as the indication of a "handover" (handover indication), a second phase, which is called the initiation or initiation of a "handover" (handover initiation) is referred to, and a third phase, which is referred to as the execution of a "handover" (handover execution), which take place in the order given.
Im Fall einer Verschlechterung der Qualität des zu übertragenden Dienstes [Quality of Service (QoS) ] wird von einer Basisstation BS ein „Handover" angezeigt, also eine erste Phase der „Handover"-Prozedur gestartet. Die Verschlechterung der Qualität des zu übertragenden Dienstes [Quality of ServiceIn the event of a deterioration in the quality of the service to be transmitted [Quality of Service (QoS)], a “handover” is indicated by a base station BS, that is to say a first phase of the “handover” procedure is started. The deterioration in the quality of the service to be transmitted [Quality of Service
(QoS) ] kann alternativ auch von einem Mobilteil, einem ersten Mobilteil MT1, einem zweiten Mobilteil MT2 oder einem n-ten Mobilteil MTn, festgestellt werden, das daraufhin diese Verschlechterung der Basisstation BS, z.B. über den FACCH-Kanal, mitteilt. In diesem Fall ist die Basisstation BS bezüglich der „Handover"-Prozedur der „Master", während das Mobilteil MTl...MTn der „Slave" ist. Es ist aber auch möglich, daß das 21 Mobilteil bezüglich der „Handover"-Prozedur der „Master" und die Basisstation der „Slave" ist.(QoS)] can alternatively also be determined by a mobile part, a first mobile part MT1, a second mobile part MT2 or an nth mobile part MTn, which then reports this deterioration to the base station BS, for example via the FACCH channel. In this case, the base station BS is the "master" with regard to the "handover" procedure, while the mobile part MT1 ... MTn is the "slave". However, it is also possible that the 21 handset with regard to the "handover" procedure is the "master" and the base station is the "slave".
Mit dem Anzeigen eines „Handover" durch die Basisstation BS wählt diese anhand einer Kanalauswahlliste ein „Handover"- Zeitschlitzpaar aus, bei dem die Qualität des zu übertragenden Dienstes besser ist als das bestehende Telekommunikati- onszeitschlitzpaar . In der ersten Phase der „Handover"- Prozedur, dem Anzeigen des „Handover", steht das „Handover"- Zeitschlitzpaar bereits fest.When a “handover” is displayed by the base station BS, the base station uses a channel selection list to select a “handover” time slot pair in which the quality of the service to be transmitted is better than the existing telecommunications time slot pair. In the first phase of the "handover" procedure, the display of the "handover", the "handover" time slot pair is already established.
Die Kanalauswahlliste wird im Rahmen der dynamischen Kanalauswahlmethode "Dynamic Channel Selection (DCS)" erstellt. Die Basisstation BS schaltet dazu die Signalisierung auf dem BCCH-Kanal ab, erfaßt in dem GSM-spezifischen „Idle"-Rahmen, die Interferenzsituation durch Bestimmung der Störleistung, z.B. durch Messung der Signalfeldstärke, in dem Telekommuni- kationszeitschlitzpaar und speichert die gemessenen Ergebnisse (Interferenzwerte) in der Kanalauswahliste ab. Damit nun nicht ständig aufgrund von Eintragungen in der Kanalauswahlliste irgendwelche „Handover"-Prozeduren durchgeführt werden (Stw. : Hystereseeffekt) , wird ein Schwellwert definiert, der zwischen dem jeweils aktuell erfaßten Interferenzwert und einem Interferenzwert liegt, der zu dem „ruhigsten" Zeit- schlitzpaar gehört. Die Basisstation BS soll dann keinen Eintrag in die Kanalauswahlliste vornehmen und/oder kein „Handover" anzeigen und initiieren, wenn der vorgegebene Schwellwert durch den jeweils erfaßten Interferenzwert nicht überschritten wird.The channel selection list is created using the dynamic channel selection method "Dynamic Channel Selection (DCS)". For this purpose, the base station BS switches off the signaling on the BCCH channel, detects the interference situation in the GSM-specific “idle” frame by determining the interference power, for example by measuring the signal field strength, in the pair of telecommunications timeslots and stores the measured results ( In order to prevent any "handover" procedures from being carried out due to entries in the channel selection list (ex: hysteresis effect), a threshold value is defined which lies between the currently detected interference value and an interference value which belongs to the "quietest" time slot pair. The base station BS should then not make an entry in the channel selection list and / or not display and initiate a "handover" if the predetermined threshold value is not exceeded by the interference value detected in each case.
Die zweite Phase der „Handover"-Prozedur, das Initiieren eines „Handover", beginnt damit, daß die Basisstation BS einen BCCH-Kanal in dem „Downlink"-Zeitschlitz des „Handover"- Zeitschlitzpaares aufbaut. Auf diesem „Downlink"-Zeitschlitz des „Handover"-Zeitschlitzpaares werden im VerkehrsmodusThe second phase of the "handover" procedure, the initiation of a "handover", begins with the base station BS establishing a BCCH channel in the "downlink" time slot of the "handover" time slot pair. On this "downlink" time slot the "handover" time slot pair are in traffic mode
(traffic mode) die auf dem „Downlink"-Zeitschlitz des Tele- kommunikationszeitschlitzpaares gesendeten Informationen (Da- 22 ten-Dienste) simultan übertragen.(traffic mode) the information sent on the "downlink" time slot of the telecommunication time slot pair (data 22 ten services) transmitted simultaneously.
Im „Broadcast"-Modus, wo die zweite Phase der „Handover"- Prozedur in gleicher Weise gestartet wird, findet lediglich - im Unterschied zum „Traffic"-Modus - keine simultane Übertragung der Informationen (Daten-Dienste) statt.In the "broadcast" mode, where the second phase of the "handover" procedure is started in the same way, only - in contrast to the "traffic" mode - no simultaneous transmission of the information (data services) takes place.
Nach dem erfolgreichen Aufbau des BCCH-Kanals in dem „Down- link"-Zeitschlitz des „Handover"-Zeitschlitzpaares überträgt die Basisstation BS eine erste Meldung "Handover Request" Ml über den BCCH-Kanal in dem Downlink"-Zeitschlitz des Telekom- munikationszeitschlitzpaares an die mit der Basisstation BS über diesen Kanal verbundenen Mobilteile MTl...MTn. Mit dieser ersten Meldung Ml wird den Mobilteilen MTl.-.MTn die Po- sition des „Handover"-Zeitschlitzpaares mitgeteilt. Nach der Übertragung der ersten Meldung Ml setzt die Basisstation BS die simultane Übertragung der Informationen (Daten-Dienste) in dem Downlink"-Zeitschlitzen des Telekommunikationszeit- schlitzpaares und des „Handover"-Zeitschlitzpaares fort und überträgt zudem die erste Meldung Ml auf dem BCCH-Kanal in dem Downlink"-Zeitschlitzen des Telekommunikationszeit- schlitzpaares solange, bis alle mit der Basisstation BS ver¬ bundenen Mobilteile MTl...MTn das Initiieren des „Handover" durch die erste Meldung Ml bestätigt haben.After the successful establishment of the BCCH channel in the "downlink" time slot of the "handover" time slot pair, the base station BS transmits a first message "handover request" MI via the BCCH channel in the downlink "time slot of the telecommunication time slot pair to the mobile parts MTl ... MTn connected to the base station BS via this channel. With this first message Ml, the position of the "handover" time slot pair is communicated to the mobile parts MTl.-.MTn. After the transmission of the first message Ml, the base station BS continues the simultaneous transmission of the information (data services) in the downlink "time slots of the telecommunication time slot pair and the" handover "time slot pair and also transmits the first message Ml on the BCCH channel "slot-pair until all ver with the base station BS-bound ¬ handsets MTl ... MTn initiating the -Zeitschlitzen of Telekommunikationszeit-" have confirmed handover "by the first message Ml in the downlink.
Die mit der Basisstation BS verbundenen Mobilteile MTl.-.MTn wechseln, wenn die betroffenen Mobilteile MTl...MTn noch lau¬ fende Daten zu übertragen haben, nach dem Empfang der ersten Meldung Ml unmittelbar von dem Telekommunikationszeitschlitz- paar auf das „Handover"-Zeitschlitzpaar . Dabei wird die Datenübertragung in dem Telekommunikationszeitschlitzpaar beendet und in dem „Handover"-Zeitschlitzpaar nahtlos (seamless) fortgesetzt.The problems associated with the base station BS handsets MTl.-.MTn change if the handsets concerned MTl ... MTn have to transmit nor lau ¬ Fende data after receiving the first message Ml directly from the Telekommunikationszeitschlitz- couple to the "handover" The data transmission in the telecommunication time slot pair is terminated and continued seamlessly in the “handover” time slot pair.
Wenn die betroffenen Mobilteile MTl...MTn jedoch noch laufende Daten zu übertragen haben, dann überträgt das jeweilige Mobilteil MTl...MTn eine zweite Meldung "Handover Confirm" M2 23 auf einem Signalisierugskanal an die Basisstation BS .If the affected handsets MTl ... MTn still have current data to be transmitted, then the respective handset MTl ... MTn transmits a second message "Handover Confirm" M2 23 on a signaling channel to the base station BS.
Die Basisstation BS empfängt somit einerseits simultan Daten in dem Telekommunikationszeitschlitzpaar und dem „Handover"- Zeitschlitzpaar und andererseits die zweite Meldung M2. Das Initiieren des „Handover" durch die erste Meldung Ml wird von der Basisstation BS letztendlich als bestätigt angesehen, wenn - im erstgenannten Fall - die von dem jeweiligen Mobilteil MTl...MTn auf dem „uplink"-Zeitschlitz des „Handover"- Zeitschlitzpaares übertragenen Daten von der Basisstation BS ohne Fehler empfangen werden oder wenn - im zweitgenannten Fall - die Basisstation BS die zweite Meldung M2 empfängt.The base station BS thus simultaneously receives data in the telecommunication time slot pair and the "handover" time slot pair and, on the other hand, the second message M2. The initiation of the "handover" by the first message M1 is ultimately regarded as confirmed by the base station BS if - in the former Case - the data transmitted by the respective mobile part MTl ... MTn on the "uplink" time slot of the "handover" time slot pair are received by the base station BS without errors or if - in the second case - the base station BS receives the second message M2 .
Die zweite Phase der „Handover"-Prozedur, das Initiieren ei- nes „Handover", ist abgeschlossen, wenn alle MobilteileThe second phase of the "handover" procedure, the initiation of a "handover", is complete when all handsets
MTl...MTn das Initiieren des „Handover" durch die erste Meldung Ml bestätigt haben.MTl ... MTn have confirmed the initiation of the "handover" by the first message Ml.
In der dritten Phase der „Handover"-Prozedur, das Ausführen eines „Handover", wird dann, nachdem alle MobilteileIn the third phase of the "handover" procedure, performing a "handover", then after all the handsets
MTl...MTn das Initiieren des „Handover" durch die erste Meldung Ml bestätigt haben; das „Handover"-Zeitschlitzpaar also als neues Telekommunikationszeitschlitzpaar dient, abschließend die Übertragung in dem bisherigen Telekommunikations- zeitschlitzpaar beendet. MTl ... MTn have confirmed the initiation of the "handover" by the first message Ml; the "handover" time slot pair thus serves as a new telecommunication time slot pair, finally the transmission in the previous telecommunications time slot pair is ended.
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99911726A EP1059011A1 (en) | 1998-02-27 | 1999-03-01 | Relaying in a telecommunications system based on code and time-division multiplex |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98103507 | 1998-02-27 | ||
EP98103507 | 1998-02-27 | ||
PCT/EP1999/001317 WO1999044384A1 (en) | 1998-02-27 | 1999-03-01 | Relaying in a telecommunications system based on code and time-division multiplex |
EP99911726A EP1059011A1 (en) | 1998-02-27 | 1999-03-01 | Relaying in a telecommunications system based on code and time-division multiplex |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1059011A1 true EP1059011A1 (en) | 2000-12-13 |
Family
ID=8231498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99911726A Withdrawn EP1059011A1 (en) | 1998-02-27 | 1999-03-01 | Relaying in a telecommunications system based on code and time-division multiplex |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1059011A1 (en) |
JP (1) | JP2002505564A (en) |
KR (1) | KR100377660B1 (en) |
CN (1) | CN1196367C (en) |
AU (1) | AU3031299A (en) |
RU (1) | RU2216127C2 (en) |
WO (1) | WO1999044384A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE518204C2 (en) | 1999-12-30 | 2002-09-10 | Ericsson Telefon Ab L M | Measures to counter Rayleigh fading in a cellular radio communications system |
CN1157096C (en) * | 2000-01-18 | 2004-07-07 | 西门子公司 | Method for decentralised management of measurment results in radio communications system |
GB2376607B (en) * | 2001-06-15 | 2003-06-18 | Motorola Inc | A method for reducing interference to communications in time division duplexing (TDD) mode between a TDD mobile and a TDD base station |
US7068618B2 (en) | 2001-08-10 | 2006-06-27 | Interdigital Technology Corp. | Dynamic link adaption for time division duplex (TDD) |
US6591109B2 (en) * | 2001-08-17 | 2003-07-08 | Interdigital Technology Corporation | Cross cell user equipment interference reduction in a time division duplex communication system using code division multiple access |
KR100418393B1 (en) * | 2001-09-20 | 2004-02-11 | 주식회사 제토스 | Multiple access method for sharing pseudo-noise code by time division transmission in wireless telemetry system |
US7853260B2 (en) | 2002-04-29 | 2010-12-14 | Nokia Corporation | Method and apparatus for cell identification for uplink interference avoidance using inter-frequency measurements |
CN100364240C (en) * | 2003-08-20 | 2008-01-23 | 智邦科技股份有限公司 | Gain control method and system applied to wireless communication system |
GB0322270D0 (en) * | 2003-09-23 | 2003-10-22 | British Telecomm | Channel selection |
KR100589000B1 (en) * | 2004-03-18 | 2006-06-14 | 현대자동차주식회사 | Fixed structure of bus fire extinguisher |
CN1801997A (en) * | 2004-12-31 | 2006-07-12 | 西门子(中国)有限公司 | Method for confirming beam forming initial point in TD-SCDMA mobile communication system |
CN1909533B (en) * | 2005-08-05 | 2010-10-06 | 中兴通讯股份有限公司 | Frame creating method based on crossing frequency division multiplexing in time-division duplex mode |
AU2006325632B2 (en) | 2005-12-13 | 2009-10-08 | Lg Electronics Inc. | Communication method using relay station in mobile communication system |
KR101108055B1 (en) * | 2005-12-13 | 2012-01-25 | 엘지전자 주식회사 | Data transfer relay method |
CN101374011B (en) * | 2007-08-20 | 2012-11-28 | 中兴通讯股份有限公司 | Method for implementing critical frequency coexist between two different communication systems and physical layer frame structure |
CN101374012B (en) * | 2007-08-20 | 2013-02-27 | 中兴通讯股份有限公司 | Wireless transmission method for TDD OFDM system and physical layer frame structure |
FR2921222A1 (en) * | 2007-09-14 | 2009-03-20 | France Telecom | DATA COMMUNICATION METHOD IN COOPERATIVE CELLULAR NETWORK, DEVICE, AND CORRESPONDING COMPUTER PROGRAM PRODUCT |
JP5138427B2 (en) * | 2008-03-06 | 2013-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication system |
CN102187592B (en) * | 2008-10-17 | 2014-04-02 | 华为技术有限公司 | Method and apparatus of telecommunications |
WO2010043087A1 (en) * | 2008-10-17 | 2010-04-22 | Huawei Technologies Co., Ltd. | Method and apparatus of telecommunications |
RU2463736C2 (en) * | 2009-05-27 | 2012-10-10 | Алексей Александрович Галицын | Method for group processing of channels in intraareal correspondents of basic station of radio telephone network with code division of channels and device for its realisation |
KR101305585B1 (en) * | 2011-12-30 | 2013-09-09 | 서울대학교산학협력단 | Method for improving satisfaction of various user's requiring QoS in a multi-users downlink relay network |
CN106685513B (en) * | 2017-01-05 | 2020-05-15 | 清华大学 | Method and device for configuring time slot in spatial information network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2288949B (en) * | 1994-04-22 | 1998-04-08 | Motorola Ltd | Communications system |
FI97660C (en) * | 1994-07-20 | 1997-01-27 | Nokia Telecommunications Oy | A method for measuring noise levels in the vicinity of a base station in a radio system, as well as a cellular radio system |
-
1999
- 1999-03-01 JP JP2000534019A patent/JP2002505564A/en active Pending
- 1999-03-01 WO PCT/EP1999/001317 patent/WO1999044384A1/en not_active Application Discontinuation
- 1999-03-01 AU AU30312/99A patent/AU3031299A/en not_active Abandoned
- 1999-03-01 RU RU2000124526/09A patent/RU2216127C2/en not_active IP Right Cessation
- 1999-03-01 KR KR10-2000-7009521A patent/KR100377660B1/en not_active IP Right Cessation
- 1999-03-01 EP EP99911726A patent/EP1059011A1/en not_active Withdrawn
- 1999-03-01 CN CNB998055700A patent/CN1196367C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9944384A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1196367C (en) | 2005-04-06 |
AU3031299A (en) | 1999-09-15 |
KR100377660B1 (en) | 2003-03-26 |
RU2216127C2 (en) | 2003-11-10 |
CN1298617A (en) | 2001-06-06 |
JP2002505564A (en) | 2002-02-19 |
WO1999044384A1 (en) | 1999-09-02 |
KR20010041392A (en) | 2001-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1058977B1 (en) | Telecommunications system with wireless code and time-division multiplex based telecommunication | |
WO1999044383A1 (en) | Telecommunications system with wireless code and time-division multiplex based telecommuncation between mobile and/or stationary transmitting/receiving devices | |
WO1999044384A1 (en) | Relaying in a telecommunications system based on code and time-division multiplex | |
EP1092296B1 (en) | Air interface for telecommunications systems with cordless telecommunications between mobile and/or stationary transmitting/receiving devices | |
DE69602078T2 (en) | COMMUNICATION SYSTEM AND METHOD THEREFOR | |
DE19820736C1 (en) | Channel allocation method in radio communications system | |
DE19747369A1 (en) | Transmission channel estimation in telecommunication systems with wireless telecommunication | |
EP1058975B1 (en) | Tdd telecommunications systems with wireless telecommunication based on code and time-division multiplex | |
DE19747370C1 (en) | Multiple access wireless mobile telecommunication system | |
WO1999044323A2 (en) | Telecommunications system with wireless code and time-division multiplex based telecommuncation | |
WO1999044314A1 (en) | Common air interface for home telecommunications systems with wireless telecommunication based on code and time-multiplex | |
DE19807960B4 (en) | Telecommunications system for wireless mobile telecommunication in TDD mode, in particular a universal mobile telecommunication system (UMTS) operating in the unpaired frequency band | |
DE19849533A1 (en) | Data packet transmission control method especially for UMTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20011019 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040729 |