EP1042817A2 - Bipolar high-volt power component - Google Patents
Bipolar high-volt power componentInfo
- Publication number
- EP1042817A2 EP1042817A2 EP99962032A EP99962032A EP1042817A2 EP 1042817 A2 EP1042817 A2 EP 1042817A2 EP 99962032 A EP99962032 A EP 99962032A EP 99962032 A EP99962032 A EP 99962032A EP 1042817 A2 EP1042817 A2 EP 1042817A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- power component
- voltage power
- bipolar
- bipolar high
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 60
- 239000002800 charge carrier Substances 0.000 claims description 23
- 239000000969 carrier Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
Definitions
- the present invention relates to a bipolar high-voltage power component with a semiconductor body, on which at least two electrodes are provided which are spaced apart, between which a drift path is formed in a semiconductor region of a first conductivity type.
- bipolar semiconductor components such as diodes, bipolar transistors or IGBTs (bipolar transistors with insulated gates)
- their dynamic behavior is very strongly determined by the minority charge carriers present in the drift path, that is to say in the case of a bipolar transistor in the base.
- the base width is determined per se by the required dielectric strength and the structure of the high-voltage power component.
- the drift zone i.e. in a bipolar transistor minority charge carriers stored in the base zone, the maximum operating frequency or dynamic losses occur when the component is switched on and off.
- Dynamic losses in bipolar high-voltage power components can be reduced, for example, by reducing the amount of stored minority charge carriers in an IGBT by reducing the emitter efficiency. Such an approach inevitably leads to an increase in static losses. It is also possible to reduce the lifespan of charge carriers by doping with an appropriate lifespan killer, for example gold or platinum, or by electron or helium irradiation, as a result of which dynamic losses can be reduced.
- an appropriate lifespan killer for example gold or platinum
- a bipolar high-voltage power component of the type mentioned in the introduction in that floating zones of a second conduction type opposite to the first conduction type are provided in the semiconductor region and extend from the vicinity of one electrode to the vicinity of the other electrode and when the power component is switched on or off, deliver or pick up charge carriers of the second conductivity type into the semiconductor region.
- a "compromise" between dynamic and static losses (with unchanged dielectric strength) is avoided.
- floating zones of the second conductivity type that is to say p-conductivity zones
- the semiconductor region of the first conductivity type that is to say for example into an n-type drift path of a bipolar transistor, by diffusion or implantation.
- These floating zones which can also be referred to as "p-pillars" in an n-conducting semiconductor region, have the task of introducing or carrying the minority charge carriers, ie holes in the present example, into the semiconductor region located between the floating regions by "ohmic conduction" to derive from these.
- the floating zones are preferably connected via a respective MOS transistor with a channel of the second conductivity type or a bipolar transistor with a base of the first conductivity type to active areas of the power component connected to the two electrodes.
- MOS transistor with a channel of the second conductivity type or a bipolar transistor with a base of the first conductivity type to active areas of the power component connected to the two electrodes.
- p-type columns are connected to the emitter or the anode of the IGBT by a pnp transistor and to the channel or body by a p-MOS transistor. Territory of the IGBT connected.
- the holes are then transported into the drift path via the pnp transistor and the p-conducting columns, while when the p-MOS transistor is switched off, the holes are switched on, so that the minority charge carriers, that is to say the holes, from the n conductive semiconductor area can flow off via the p-type pillars as majority charge carriers and the p-MOS transistor.
- MOS transistor is connected together with a further MOS transistor containing the corresponding active region.
- the gates of the two MOS transistors can be connected to one another.
- the gate of the p-MOS transistor via which the minority charge carriers flow out of the drift path, is thus connected to the gate of an n-MOS transistor.
- This delay can be achieved by a separate control or by a delay element, for example a high-resistance between the two gates.
- the delay element can also be integrated in the semiconductor chip of the bipolar high-voltage power component.
- the doping of the semiconductor region and of the floating zones are set in such a way that the semiconductor region and the semiconductor zones “compensate” one another in order to be able to achieve high reverse voltages. Doping between 5 ⁇ 10 14 and 5 ⁇ 10 16 charge carriers cm -3 is preferably selected here.
- the resistance of the floating semiconductor zones should be adapted in such a way that the holes drain off sufficiently quickly with a low voltage.
- the charge carrier flood required for good conductivity in the on state is then made available by the p-type emitter and is not adversely affected by the p-type columns, since these p-type columns are not connected to an exhausting p-type area in pass mode, which is only possible when the p-type area is switched off. MOS transistor happens.
- the invention can be used with particular advantage in the case of an IGBT, since a particularly high flooding with charge carriers occurs here, which can then be drained off immediately via the floating zones. It has been shown that an IGBT constructed according to the present invention has switching-off losses which are up to 80% lower than conventional IGBTs with the same forward voltage. Even compared to a so-called "field stop IGBT", the turn-off losses can still be halved by the invention.
- bipolar high-voltage power component for example, diodes.
- the floating regions can also be connected directly to the p-type region of the anode, so that no additional p-MOS transistor is required.
- FIG. 1 shows a section through an IGBT according to a first exemplary embodiment of the invention
- Figure 2 shows a section through a diode according to a second embodiment of the invention
- Figure 3 shows a section through an IGBT according to a third embodiment of the invention.
- FIG. 1 shows a section through an IGBT with an n-type semiconductor region 1 on a p + -conducting semiconductor ter substrate 2, which forms an emitter connected to an anode A.
- the semiconductor substrate 2, the semiconductor body 1, the semiconductor region 3 and the source zones 4 are preferably made of silicon. If necessary, other semiconductor materials can also be used.
- the source zones 4 and the semiconductor region 3 together with the semiconductor body 1 form an n-MOS transistor 5 with a gate electrode G N , which is arranged above the semiconductor region 3 (body).
- a cathode electrode 6 with a cathode connection K is shown, which contacts the semiconductor region 3 and the source zones 4.
- the floating semiconductor zone 7 on the right in FIG. 1 forms a p-MOS transistor 8 together with a gate electrode G p , the semiconductor region 3 and the part of the semiconductor region 1 located between the semiconductor region 3 and the floating zone 7 1 left floating semiconductor zone 7 with the semiconductor region 1 and the semiconductor substrate 2 a pnp transistor 9.
- the floating zones 7 have the task of introducing the minority charge carriers, holes in the present example, into the regions of the n-type semiconductor body 1 located between the p-type zones 7, or to derive them from there. These floating zones 7 are connected to the p-type emitter or the anode A of the IGBT through the pnp transistor 9 and through the p-MOS transistor 8 the semiconductor region 3 (body) connected.
- a bipolar transistor for the MOS transistor 8) or a MOS transistor (for the bipolar transistor 9) can also be used in each case.
- the channel region of the MOS transistor 5 simultaneously forms the drain or collector region of the MOS or bipolar transistor 8.
- the holes are then transported via pnp transistor 9 and zone 7 into the drift path of semiconductor region 1.
- the p-MOS transistor 8 is switched on, so that the minority charge carriers can flow out of the semiconductor region 1 via the zone 7 as majority charge carriers and the p-MOS transistor 8.
- the inflow and outflow of the holes 10 are illustrated by arrows in FIG. 1.
- switch-on and the switch-off processes are both shown in FIG. 1, only one switch-on process or one switch-off process takes place in the two zones 7 at the same time. This means that the conditions shown on the left are present in both zones 7 when switching on, while the conditions shown on the right are found when switching off.
- the gate electrodes G- and G P of the n-MOS transistor 5 and the p-MOS transistor 8 can be connected to one another, as shown in FIG. 1. If necessary, a delay element 11 may also be present in the connecting line between the gate electrodes G N and G P. It is thus possible to first switch on the p-MOS transistor 8 to reduce the turn-off losses and then to switch off the n-MOS transistor 5 with a delay of, for example, 1 ⁇ s. On- Instead of a delay element 11, the two gate electrodes G P and G N , which are then not connected to one another, can optionally also be actuated at different times.
- the transistors 5, 8 are preferably separated and externally controllable.
- the doping concentrations of the semiconductor region 1 or the semiconductor zones 7 are set in such a way that the holes 10 drain off sufficiently quickly at a low voltage. Suitable doping concentrations are in the range between 5 ⁇ 10 14 and 5 ⁇ 10 16 charge carriers cm "3 .
- FIG. 2 shows a further exemplary embodiment of the invention as a diode, in which p-type regions 7 are embedded in an n-type semiconductor region 1, which here are connected directly to a p-type region 12 below an aluminum layer 13 of an anode A.
- a cathode K is connected to an n + -conducting semiconductor substrate 2. With such a design, no additional p-MOS transistor 8 is required.
- the bipolar high-voltage power component according to the invention can be constructed vertically or laterally, i.e. the drift path of the first conduction type and the zones 7 of the second conduction type can be arranged essentially parallel or perpendicular to the surface of the semiconductor body 1.
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
Beschreibungdescription
Bipolares Hochvolt-LeistungsbauelementBipolar high-voltage power component
Die vorliegende Erfindung betrifft ein bipolares Hochvolt- Leistungsbauelement mit einem Halbleiterkörper, auf dem wenigstens zwei voneinander beabstandete Elektroden vorgesehen sind, zwischen denen ein Driftstrecke in einem Halbleitergebiet eines ersten Leitungstyps ausgebildet ist.The present invention relates to a bipolar high-voltage power component with a semiconductor body, on which at least two electrodes are provided which are spaced apart, between which a drift path is formed in a semiconductor region of a first conductivity type.
Bei bipolaren Halbleiterbauelementen, wie beispielsweise Dioden, Bipolartransistoren oder IGBT 's (Bipolartransistor mit isoliertem Gate) , wird deren dynamisches Verhalten sehr stark durch die in der Driftstrecke, also bei einem Bipolartransi- stör in der Basis, vorhandenen Minoritätsladungsträger bestimmt. Je kleiner nämlich die Basisweite ist, eine um so höhere Grenzfrequenz kann schließlich erreicht werden.In the case of bipolar semiconductor components, such as diodes, bipolar transistors or IGBTs (bipolar transistors with insulated gates), their dynamic behavior is very strongly determined by the minority charge carriers present in the drift path, that is to say in the case of a bipolar transistor in the base. The smaller the base width, the higher the cutoff frequency can be.
Es ist nun in letzter Zeit gelungen, bei Bipolartransistoren die Basisweite bis auf ca. 30 nm zu vermindern, was zu der bereits erwähnten Reduktion an gespeicherten Minoritätsladungsträgern in der Basis führt, so daß eine Erhöhung der Grenzfrequenz möglich wäre. So hat sich gezeigt, daß bei einer Verringerung der Basisweite von Bipolartransistoren bis herunter auf etwa 30 nm die Menge der gespeicherten Minoritätsladungsträger in der Basis bzw. die Diffusionskapazität zu verringern sind, was schließlich zu einer entsprechenden Erhöhung der Grenzfrequenz bis ca. 50 GHz führt, wobei aber gleichzeitig die Spannungsfestigkeit auf wenige Volt redu- ziert wird.Recently, it has been possible to reduce the base width of bipolar transistors to approximately 30 nm, which leads to the aforementioned reduction in stored minority charge carriers in the base, so that an increase in the cutoff frequency would be possible. It has been shown that if the base width of bipolar transistors is reduced to approximately 30 nm, the amount of stored minority charge carriers in the base or the diffusion capacity must be reduced, which ultimately leads to a corresponding increase in the cutoff frequency up to approximately 50 GHz. but at the same time the dielectric strength is reduced to a few volts.
Bei Hochvolt-Leistungsbauelementen, wie beispielsweise IGBT's, an denen eine Spannung bis zu mehreren kV liegen kann, oder bei Dioden wird die Basisweite durch die geforder- te Spannungsfestigkeit und den Aufbau des Hochvolt-Leistungsbauelementes an sich bestimmt. Jedoch begrenzen ganz generell die in der Driftzone, also bei einem Bipolartransistor die in der Basiszone gespeicherten Minoritätsladungsträger die maximale Betriebsfrequenz oder lassen dynamische Verluste beim Ein- und Ausschalten des Bauelementes entstehen.In the case of high-voltage power components, such as IGBTs, on which a voltage of up to several kV can be present, or in the case of diodes, the base width is determined per se by the required dielectric strength and the structure of the high-voltage power component. However, they generally limit those in the drift zone, i.e. in a bipolar transistor minority charge carriers stored in the base zone, the maximum operating frequency or dynamic losses occur when the component is switched on and off.
Zwar können dynamische Verluste in bipolaren Hochvolt-Leistungsbauelementen vermindert werden, indem beispielsweise bei einem IGBT durch Reduzierung des Emitterwirkungsgrades die Menge der gespeicherten Minoritätsladungsträger vermindert wird. Ein derartiges Vorgehen führt aber zwangsläufig zu einer Erhöhung der statischen Verluste. Auch ist es möglich, die Lebensdauer von Ladungsträgern durch Dotierung mit einem entsprechenden Lebensdauerkiller, also beispielsweise Gold oder Platin, oder durch Elektronen- oder Heliumbestrahlung zu reduzieren, wodurch dynamische Verluste vermindert werden können.Dynamic losses in bipolar high-voltage power components can be reduced, for example, by reducing the amount of stored minority charge carriers in an IGBT by reducing the emitter efficiency. Such an approach inevitably leads to an increase in static losses. It is also possible to reduce the lifespan of charge carriers by doping with an appropriate lifespan killer, for example gold or platinum, or by electron or helium irradiation, as a result of which dynamic losses can be reduced.
Ein derartiges Vorgehen führt aber auch zu einer gleichzeitigen Erhöhung der statischen Verluste.Such a procedure also leads to a simultaneous increase in static losses.
Es ist daher Aufgabe der vorliegenden Erfindung, ein bipolares Hochvolt-Leistungsbauelement zu schaffen, bei dem trotz einer relativ großen Driftstrecke Schaltverluste erheblich vermindert und damit mögliche Betriebsfrequenzen beträchtlich gesteigert sind, ohne die Durchlaßeigenschaften des bipolaren Hochvolt-Leistungsbauelements zu beeinträchtigen.It is therefore an object of the present invention to provide a bipolar high-voltage power component in which, despite a relatively large drift path, switching losses are significantly reduced and thus possible operating frequencies are increased considerably without impairing the transmission properties of the bipolar high-voltage power component.
Diese Aufgabe wird bei einem bipolaren Hochvolt-Leistungsbauelement der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß in dem Halbleitergebiet floatende Zonen eines zweiten, zum ersten Leitungstyp entgegengesetzten Leitungstyps vorgesehen sind, die sich von der Nähe der einen Elektrode bis zu der Nähe der anderen Elektrode erstrecken und beim Einschalten bzw. Ausschalten des Leistungsbauelements Ladungsträger des zweiten Leitungstyps in das Halbleiterge- biet abgeben bzw. von diesem aufnehmen. Bei dem erfindungsgemäßen bipolaren Hochvolt-Leistungsbauelement wird so ein "Kompromiß" zwischen dynamischen und statischen Verlusten (bei unveränderter Spannungsfestigkeit) umgangen. Hierzu werden in das Halbleitergebiet des ersten Lei- tungstyps, also beispielsweise in eine n-leitende Driftstrek- ke eines Bipolartransistors floatende Zonen des zweiten Leitungstyps, also p-leitende Zonen, durch Diffusion oder Implantation eingefügt. Diese floatenden Zonen, die bei einem n-leitenden Halbleitergebiet auch als "p-Säulen" bezeichnet werden können, haben die Aufgabe, die Minoritätsladungsträger, im vorliegenden Beispiel also Löcher, durch "ohmsche Leitung" in die zwischen den floatenden Zonen befindlichen Halbleitergebiet einzubringen bzw. aus diesen abzuleiten.This object is achieved according to the invention in a bipolar high-voltage power component of the type mentioned in the introduction in that floating zones of a second conduction type opposite to the first conduction type are provided in the semiconductor region and extend from the vicinity of one electrode to the vicinity of the other electrode and when the power component is switched on or off, deliver or pick up charge carriers of the second conductivity type into the semiconductor region. In the bipolar high-voltage power component according to the invention, a "compromise" between dynamic and static losses (with unchanged dielectric strength) is avoided. For this purpose, floating zones of the second conductivity type, that is to say p-conductivity zones, are inserted into the semiconductor region of the first conductivity type, that is to say for example into an n-type drift path of a bipolar transistor, by diffusion or implantation. These floating zones, which can also be referred to as "p-pillars" in an n-conducting semiconductor region, have the task of introducing or carrying the minority charge carriers, ie holes in the present example, into the semiconductor region located between the floating regions by "ohmic conduction" to derive from these.
Es hat sich gezeigt, daß dieser Vorgang, nämlich das Einbringen von Minoritätsladungsträgern in die Halbleitergebiete aus den floatenden Zonen beim Einschalten und das Abführen der Minoritätsladungsträger aus den Halbleitergebieten in die floatenden Zonen beim Abschalten, sehr viel rascher als der Aufbau bzw. der Abbau der Minoritätsladungsträgerdichte durch Diffusion erfolgen kann.It has been shown that this process, namely the introduction of minority charge carriers into the semiconductor regions from the floating zones when switching on and the removal of the minority charge carriers from the semiconductor regions into the floating zones when switching off, is much faster than the build-up or reduction of the minority charge carrier density can be done by diffusion.
Vorzugsweise sind die floatenden Zonen über jeweils einen MOS-Transistor mit einem Kanal des zweiten Leitungstyps bzw. einem Bipolartransistor mit einer Basis des ersten Leitungstyps an mit den beiden Elektroden verbundene aktive Bereiche des Leistungsbauelements angeschlossen. So sind beispielsweise bei einem IGBT mit einem n-leitenden Halbleitergebiet als Driftstrecke p-leitende Säulen durch einen pnp-Transistor an den Emitter bzw. die Anode des IGBT 's und durch einen p-MOS- Transistor an das Kanal- bzw. Body-Gebiet des IGBT 's angeschlossen. Beim Einschalten des IGBT 's werden dann die Löcher über den pnp-Transistor und die p-leitenden Säulen in die Driftstrecke transportiert, während beim Abschalten der p- MOS-Transistor eingeschaltet wird, so daß die Minoritätsladungsträger, also die Löcher, aus dem n-leitenden Halbleiter- gebiet über die p-leitenden Säulen als Majoritätsladungsträger und den p-MOS-Transistor abfließen können.The floating zones are preferably connected via a respective MOS transistor with a channel of the second conductivity type or a bipolar transistor with a base of the first conductivity type to active areas of the power component connected to the two electrodes. For example, in an IGBT with an n-type semiconductor region as a drift path, p-type columns are connected to the emitter or the anode of the IGBT by a pnp transistor and to the channel or body by a p-MOS transistor. Territory of the IGBT connected. When the IGBT is switched on, the holes are then transported into the drift path via the pnp transistor and the p-conducting columns, while when the p-MOS transistor is switched off, the holes are switched on, so that the minority charge carriers, that is to say the holes, from the n conductive semiconductor area can flow off via the p-type pillars as majority charge carriers and the p-MOS transistor.
In einer anderen Weiterbildung der Erfindung ist vorgesehen, daß der MOS-Transistor mit einem weiteren, den entsprechenden aktiven Bereich enthaltenden MOS-Transistor zusammengeschaltet ist. Dabei können insbesondere die Gates der beiden MOS- Transistoren miteinander verbunden sein.Another development of the invention provides that the MOS transistor is connected together with a further MOS transistor containing the corresponding active region. In particular, the gates of the two MOS transistors can be connected to one another.
Im obigen Beispiel ist somit das Gate des p-MOS-Transistors, über den die Minoritätsladungsträger aus der Driftstrecke abfließen, mit dem Gate eines n-MOS-Transistors verbunden. Abhängig von der Betriebsfrequenz kann es dann zweckmäßig sein, zur Reduzierung der Abschaltverluste zuerst den p-MOS- Transistor einzuschalten und sodann mit einer Verzögerung von beispielsweise 1 μs den n-MOS-Transistor auszuschalten. Diese Verzögerung kann durch eine getrennte Ansteuerung oder auch durch ein Verzögerungsglied, beispielsweise einen hochohmigen Widerstand zwischen den beiden Gates, erreicht werden. Das Verzögerungsglied kann dabei auch in dem Halbleiterchip des bipolaren Hochvolt-Leistungsbauelements integriert sein.In the example above, the gate of the p-MOS transistor, via which the minority charge carriers flow out of the drift path, is thus connected to the gate of an n-MOS transistor. Depending on the operating frequency, it may then be expedient to first switch on the p-MOS transistor to reduce the turn-off losses and then to switch off the n-MOS transistor with a delay of, for example, 1 μs. This delay can be achieved by a separate control or by a delay element, for example a high-resistance between the two gates. The delay element can also be integrated in the semiconductor chip of the bipolar high-voltage power component.
Die Dotierungen des Halbleitergebietes und der floatenden Zonen werden so eingestellt, daß das Halbleitergebiet und die Halbleiterzonen einander "kompensieren", um so hohe Sperrspannungen erreichen zu können. Vorzugsweise werden hier Dotierungen zwischen 5 x 1014 und 5 x 1016 Ladungsträger cm-3 gewählt.The doping of the semiconductor region and of the floating zones are set in such a way that the semiconductor region and the semiconductor zones “compensate” one another in order to be able to achieve high reverse voltages. Doping between 5 × 10 14 and 5 × 10 16 charge carriers cm -3 is preferably selected here.
Es ist aber nicht wesentlich, dabei eine möglichst hohe n- Dotierung in beispielsweise einem n-leitenden Halbleitergebiet wie bei einem Unipolartransistor zu erreichen; vielmehr sollte der Widerstand der floatenden Halbleiterzonen, also im obigen Beispiel der p-leitenden Säulen so angepaßt werden, daß ein ausreichend schnelles Abfließen der Löcher bei noch geringer Spannung erfolgt. Die für eine gute Leitfähigkeit im Durchlaßzustand erforderliche Ladungsträgerüberschwemmung wird nämlich dann durch den p-leitenden Emitter zur Verfügung gestellt und durch die p-leitenden Säulen nicht negativ beeinflußt, da diese p-leitenden Säulen im Durchlaßbetrieb nicht mit einem absaugenden p-leitenden Bereich verbunden sind, was erst beim Abschalten durch den p-MOS-Transistor geschieht.However, it is not essential to achieve the highest possible n-doping in, for example, an n-type semiconductor region, such as with a unipolar transistor; rather, the resistance of the floating semiconductor zones, that is to say in the above example of the p-type pillars, should be adapted in such a way that the holes drain off sufficiently quickly with a low voltage. The charge carrier flood required for good conductivity in the on state is then made available by the p-type emitter and is not adversely affected by the p-type columns, since these p-type columns are not connected to an exhausting p-type area in pass mode, which is only possible when the p-type area is switched off. MOS transistor happens.
Die Erfindung ist besonders vorteilhaft bei einem IGBT anwendbar, da hier eine besonders hohe Überschwemmung mit La- dungsträgern auftritt, die dann sofort über die floatenden Zonen abgeführt werden können. Es hat sich gezeigt, daß ein nach der vorliegenden Erfindung aufgebauter IGBT gegenüber herkömmlichen IGBT 's bei gleicher Durchlaßspannung um bis zu 80 % niedrigere Ausschaltverluste aufweist. Selbst gegenüber einem sogenannten "Feldstopp-IGBT" können durch die Erfindung die Ausschaltverluste noch halbiert werden.The invention can be used with particular advantage in the case of an IGBT, since a particularly high flooding with charge carriers occurs here, which can then be drained off immediately via the floating zones. It has been shown that an IGBT constructed according to the present invention has switching-off losses which are up to 80% lower than conventional IGBTs with the same forward voltage. Even compared to a so-called "field stop IGBT", the turn-off losses can still be halved by the invention.
Weitere Anwendungsmöglichkeiten für das erfindungsgemäße bipolare Hochvolt-Leistungsbauelement sind beispielsweise Di- öden. Bei diesen können die floatenden Gebiete auch direkt mit dem p-leitenden Bereich der Anode verbunden sein, so daß kein zusätzlicher p-MOS-Transistor benötigt wird.Further possible uses for the bipolar high-voltage power component according to the invention are, for example, diodes. In these, the floating regions can also be connected directly to the p-type region of the anode, so that no additional p-MOS transistor is required.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the drawings. Show it:
Figur 1 einen Schnitt durch einen IGBT nach einem ersten Ausführungsbeispiel der Erfindung,FIG. 1 shows a section through an IGBT according to a first exemplary embodiment of the invention,
Figur 2 einen Schnitt durch eine Diode nach einem zweiten Ausführungsbeispiel der Erfindung undFigure 2 shows a section through a diode according to a second embodiment of the invention and
Figur 3 einen Schnitt durch einen IGBT nach einem dritten Ausführungsbeispiel der Erfindung.Figure 3 shows a section through an IGBT according to a third embodiment of the invention.
Fig. 1 zeigt einen Schnitt durch einen IGBT mit einem n- leitenden Halbleitergebiet 1 auf einem p+-leitenden Halblei- tersubstrat 2, das einen mit einer Anode A verbundenen Emitter bildet. In der dem Halbleitersubstrat gegenüberliegenden Oberfläche des Halbleitergebietes 1 sind p-leitende Halbleiterbereiche 3 eingebracht, in denen sich n+-leitende Source- zonen 4 befinden.1 shows a section through an IGBT with an n-type semiconductor region 1 on a p + -conducting semiconductor ter substrate 2, which forms an emitter connected to an anode A. P-type semiconductor regions 3, in which there are n + -conducting source zones 4, are introduced in the surface of the semiconductor region 1 opposite the semiconductor substrate.
Das Halbleitersubstrat 2, der Halbleiterkörper 1, der Halbleiterbereich 3 und die Sourcezonen 4 bestehen vorzugsweise aus Silizium. Gegebenenfalls können aber auch andere Halblei- termaterialien verwendet werden.The semiconductor substrate 2, the semiconductor body 1, the semiconductor region 3 and the source zones 4 are preferably made of silicon. If necessary, other semiconductor materials can also be used.
Die Sourcezonen 4 und der Halbleiterbereich 3 bilden zusammen mit dem Halbleiterkörper 1 einen n-MOS-Transistor 5 mit einer Gateelektrode GN, die oberhalb des Halbleiterbereiches 3 (body) angeordnet ist. Außerdem ist noch eine Kathodenelektrode 6 mit einem Kathodenanschluß K gezeigt, welche den Halbleiterbereich 3 und die Sourcezonen 4 kontaktiert.The source zones 4 and the semiconductor region 3 together with the semiconductor body 1 form an n-MOS transistor 5 with a gate electrode G N , which is arranged above the semiconductor region 3 (body). In addition, a cathode electrode 6 with a cathode connection K is shown, which contacts the semiconductor region 3 and the source zones 4.
Erfindungsgemäß befinden sich in dem Halbleitergebiet 1 p- leitende Zonen 7, die vorzugsweise floatend sind, also nicht in Verbindung mit dem Halbleiterbereich 3 stehen.According to the invention, there are p-conducting zones 7 in the semiconductor region 1, which are preferably floating, that is to say are not connected to the semiconductor region 3.
Die in der Fig. 1 rechte floatende Halbleiterzone 7 bildet zusammen mit einer Gateelektrode Gp, dem Halbleiterbereich 3 und dem zwischen dem Halbleiterbereich 3 und der floatenden Zone 7 gelegenen Teil des Halbleitergebietes 1 einen p-MOS- Transistor 8. Außerdem bildet die in der Fig. 1 linke floatende Halbleiterzone 7 mit dem Halbleitergebiet 1 und dem Halbleitersubstrat 2 einen pnp-Transistor 9.The floating semiconductor zone 7 on the right in FIG. 1 forms a p-MOS transistor 8 together with a gate electrode G p , the semiconductor region 3 and the part of the semiconductor region 1 located between the semiconductor region 3 and the floating zone 7 1 left floating semiconductor zone 7 with the semiconductor region 1 and the semiconductor substrate 2 a pnp transistor 9.
Die floatenden Zonen 7 haben die Aufgabe, die Minoritätsladungsträger, im vorliegenden Beispiel Löcher, durch ohmsche Leitung in die zwischen den p-leitenden Zonen 7 befindlichen Bereiche des n-leitenden Halbleiterkörpers 1 einzubringen bzw. von dort abzuleiten. Diese floatenden Zonen 7 sind dabei durch den pnp-Transistor 9 an den p-leitenden Emitter bzw. die Anode A des IGBT 's und durch den p-MOS-Transistor 8 an den Halbleiterbereich 3 (body) angeschlossen. Anstelle des MOS-Transistors 8 und des pnp-Transistors 9 kann auch jeweils ein Bipolartransistor (für den MOS-Transistor 8) bzw. ein MOS-Transistor (für den Bipolartransistor 9) verwendet wer- den.The floating zones 7 have the task of introducing the minority charge carriers, holes in the present example, into the regions of the n-type semiconductor body 1 located between the p-type zones 7, or to derive them from there. These floating zones 7 are connected to the p-type emitter or the anode A of the IGBT through the pnp transistor 9 and through the p-MOS transistor 8 the semiconductor region 3 (body) connected. Instead of the MOS transistor 8 and the pnp transistor 9, a bipolar transistor (for the MOS transistor 8) or a MOS transistor (for the bipolar transistor 9) can also be used in each case.
Das Kanalgebiet des MOS-Transistors 5 bildet gleichzeitig das Drain- bzw. Kollektorgebiet des MOS- bzw. Bipolartransistors 8.The channel region of the MOS transistor 5 simultaneously forms the drain or collector region of the MOS or bipolar transistor 8.
Beim Einschalten des IGBT (vgl. linke Hälfte von Fig. 1) werden dann die Löcher (vgl. Bezugszeichen 10) über den pnp- Transistor 9 und die Zone 7 in die Driftstrecke des Halbleitergebietes 1 transportiert. Beim Abschalten (vgl. rechte Hälfte von Fig. 1) wird der p-MOS-Transistor 8 eingeschaltet, so daß die Minoritätsladungsträger aus dem Halbleitergebiet 1 über die Zone 7 als Majoritätsladungsträger und den p-MOS- Transistor 8 abfließen können. Das Einfließen und Abfließen der Löcher 10 ist in der Fig. 1 jeweils durch Pfeile veran- schaulicht.When the IGBT is switched on (see left half of FIG. 1), the holes (see reference number 10) are then transported via pnp transistor 9 and zone 7 into the drift path of semiconductor region 1. When the device is switched off (cf. right half of FIG. 1), the p-MOS transistor 8 is switched on, so that the minority charge carriers can flow out of the semiconductor region 1 via the zone 7 as majority charge carriers and the p-MOS transistor 8. The inflow and outflow of the holes 10 are illustrated by arrows in FIG. 1.
Obwohl in Fig. 1 der Einschalt- und der Ausschaltvorgang beide dargestellt sind, findet in den beiden Zonen 7 selbstverständlich gleichzeitig immer nur ein Einschaltvorgang oder ein Ausschaltvorgang statt. Das heißt, beim Einschalten liegen in beiden Zonen 7 die links gezeigten Verhältnisse vor, während beim Ausschalten die rechts dargestellten Bedingungen anzutreffen sind.Although the switch-on and the switch-off processes are both shown in FIG. 1, only one switch-on process or one switch-off process takes place in the two zones 7 at the same time. This means that the conditions shown on the left are present in both zones 7 when switching on, while the conditions shown on the right are found when switching off.
Die Gateelektroden G- und GP des n-MOS-Transistors 5 und des p-MOS-Transistors 8 können miteinander verbunden sein, wie dies in Fig. 1 gezeigt ist. Gegebenenfalls kann noch ein Verzögerungsglied 11 in der Verbindungsleitung zwischen den Gateelektroden GN und GP vorhanden sein. Damit ist es möglich, zur Reduzierung der Abschaltverluste zuerst den p-MOS-Transistor 8 einzuschalten und sodann mit einer Verzögerung von beispielsweise 1 μs den n-MOS-Transistor 5 auszuschalten. An- stelle eines Verzögerungsgliedes 11 kann gegebenenfalls auch eine zeitlich versetzte bzw. getrennte Ansteuerung der beiden Gateelektroden GP bzw. GN, die dann nicht miteinander verbunden sind, vorgenommen werden.The gate electrodes G- and G P of the n-MOS transistor 5 and the p-MOS transistor 8 can be connected to one another, as shown in FIG. 1. If necessary, a delay element 11 may also be present in the connecting line between the gate electrodes G N and G P. It is thus possible to first switch on the p-MOS transistor 8 to reduce the turn-off losses and then to switch off the n-MOS transistor 5 with a delay of, for example, 1 μs. On- Instead of a delay element 11, the two gate electrodes G P and G N , which are then not connected to one another, can optionally also be actuated at different times.
Die Transistoren 5, 8 sind in bevorzugter Weise getrennt und extern ansteuerbar.The transistors 5, 8 are preferably separated and externally controllable.
Die Dotierungskonzentrationen des Halbleitergebietes 1 bzw. der Halbleiterzonen 7 sind so eingestellt, daß ein ausreichend schnelles Abfließen der Löcher 10 bei noch geringer Spannung erfolgt. Geeignete Dotierungskonzentrationen liegen im Bereich zwischen 5 x 1014 und 5 x 1016 Ladungsträger cm"3.The doping concentrations of the semiconductor region 1 or the semiconductor zones 7 are set in such a way that the holes 10 drain off sufficiently quickly at a low voltage. Suitable doping concentrations are in the range between 5 × 10 14 and 5 × 10 16 charge carriers cm "3 .
Fig. 2 zeigt ein weiteres Ausführungsbeispiel der Erfindung als Diode, bei der in ein n-leitendes Halbleitergebiet 1 p- leitende Zonen 7 eingebettet sind, die hier direkt mit einem p-leitenden Gebiet 12 unterhalb einer Aluminiumschicht 13 einer Anode A verbunden sind. Eine Kathode K ist an ein n+-lei- tendes Halbleitersubstrat 2 angeschlossen. Bei einer solchen Gestaltung ist kein zusätzlicher p-MOS-Transistor 8 erforderlich.2 shows a further exemplary embodiment of the invention as a diode, in which p-type regions 7 are embedded in an n-type semiconductor region 1, which here are connected directly to a p-type region 12 below an aluminum layer 13 of an anode A. A cathode K is connected to an n + -conducting semiconductor substrate 2. With such a design, no additional p-MOS transistor 8 is required.
Schließlich zeigt Fig. 3 noch ein weiteres Ausführungsbei- spiel der Erfindung, bei dem zwischen benachbarten IGBT-Zel- len die Gates zusammenhängen, so daß GP = GN gilt.Finally, FIG. 3 shows yet another exemplary embodiment of the invention in which the gates are connected between adjacent IGBT cells, so that G P = G N.
Das erfindungsgemäße bipolare Hochvolt-Leistungsbauelement kann vertikal oder lateral aufgebaut sein, d.h., die Driftstrecke des ersten Leitungstyps und die Zonen 7 des zweiten Leitungstyps können im wesentlichen parallel oder senkrecht zur Oberfläche des Halbleiterkörpers 1 angeordnet sein. The bipolar high-voltage power component according to the invention can be constructed vertically or laterally, i.e. the drift path of the first conduction type and the zones 7 of the second conduction type can be arranged essentially parallel or perpendicular to the surface of the semiconductor body 1.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19849332 | 1998-10-26 | ||
DE19849332 | 1998-10-26 | ||
PCT/DE1999/003404 WO2000025364A2 (en) | 1998-10-26 | 1999-10-25 | Bipolar high-volt power component |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1042817A2 true EP1042817A2 (en) | 2000-10-11 |
EP1042817B1 EP1042817B1 (en) | 2008-05-14 |
Family
ID=7885691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99962032A Expired - Lifetime EP1042817B1 (en) | 1998-10-26 | 1999-10-25 | Bipolar high-volt power component |
Country Status (5)
Country | Link |
---|---|
US (1) | US6803609B1 (en) |
EP (1) | EP1042817B1 (en) |
JP (1) | JP4044735B2 (en) |
DE (1) | DE59914759D1 (en) |
WO (1) | WO2000025364A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1276156A1 (en) * | 2001-07-13 | 2003-01-15 | Abb Research Ltd. | High power bipolar transistor |
DE102007018367B4 (en) | 2007-04-18 | 2013-09-05 | Infineon Technologies Austria Ag | Semiconductor component and method for its production |
US20090159927A1 (en) * | 2007-12-21 | 2009-06-25 | Infineon Technologies Austria Ag | Integrated circuit device and method for its production |
CN103855205A (en) * | 2012-12-05 | 2014-06-11 | 三垦电气株式会社 | Semiconductor devices and driving method |
CN103219370A (en) * | 2013-03-11 | 2013-07-24 | 电子科技大学 | Reverse-conducting insulated-gate bipolar transistor (RC-IGBT) with P floating layer current bolt |
JP6319453B2 (en) | 2014-10-03 | 2018-05-09 | 富士電機株式会社 | Semiconductor device and manufacturing method of semiconductor device |
JP6507112B2 (en) | 2016-03-16 | 2019-04-24 | 株式会社東芝 | Semiconductor device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0340445B1 (en) * | 1988-04-22 | 1993-08-25 | Asea Brown Boveri Ag | Turn-off power semiconductor device |
JP2509127B2 (en) * | 1992-03-04 | 1996-06-19 | 財団法人半導体研究振興会 | Electrostatic induction device |
JPH0855978A (en) * | 1994-06-09 | 1996-02-27 | Ngk Insulators Ltd | Semiconductor device and manufacturing method thereof |
US5801420A (en) * | 1994-09-08 | 1998-09-01 | Fuji Electric Co. Ltd. | Lateral semiconductor arrangement for power ICS |
EP0718893A3 (en) * | 1994-11-25 | 1999-07-14 | Fuji Electric Co., Ltd. | MOS controlled thyristor having two gates |
DE19604043C2 (en) * | 1996-02-05 | 2001-11-29 | Siemens Ag | Semiconductor component controllable by field effect |
JP3302288B2 (en) * | 1997-02-24 | 2002-07-15 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
DE19707513A1 (en) * | 1997-02-25 | 1998-09-24 | Siemens Ag | Semiconductor component controllable by field effect |
-
1999
- 1999-10-25 WO PCT/DE1999/003404 patent/WO2000025364A2/en active IP Right Grant
- 1999-10-25 EP EP99962032A patent/EP1042817B1/en not_active Expired - Lifetime
- 1999-10-25 JP JP2000578851A patent/JP4044735B2/en not_active Expired - Fee Related
- 1999-10-25 DE DE59914759T patent/DE59914759D1/en not_active Expired - Lifetime
-
2000
- 2000-06-26 US US09/603,748 patent/US6803609B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO0025364A2 * |
Also Published As
Publication number | Publication date |
---|---|
EP1042817B1 (en) | 2008-05-14 |
JP2002528915A (en) | 2002-09-03 |
WO2000025364A3 (en) | 2000-07-06 |
DE59914759D1 (en) | 2008-06-26 |
JP4044735B2 (en) | 2008-02-06 |
WO2000025364A2 (en) | 2000-05-04 |
US6803609B1 (en) | 2004-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0566639B1 (en) | Integrated power switch structure | |
DE69319549T2 (en) | Voltage controlled semiconductor device | |
DE69414311T2 (en) | Semiconductor device with an insulated gate bipolar field effect device | |
EP0043009B1 (en) | Semiconductor controlled switch | |
DE2824133A1 (en) | FIELD CONTROLLED THYRISTOR | |
EP0340445A1 (en) | Turn-off power semiconductor device | |
DE19528998C2 (en) | Bi-directional semiconductor switch and method for its control | |
EP0520355B1 (en) | Gate turn-off semi-conductor power component and method of making the same | |
EP0331892B1 (en) | Mos-controlled thyristor (mct) | |
DE68904343T2 (en) | BIPOLAR TRANSISTOR WITH INSULATED CONTROL ELECTRODE. | |
DE4039012C2 (en) | Mos semiconductor device | |
DE3905434C2 (en) | Bipolar semiconductor switching device and method for its production | |
DE19712566A1 (en) | Insulated gate thyristor for heavy current power switch | |
DE4310606C2 (en) | GTO thyristors | |
DE19511382C2 (en) | Insulated gate thyristor | |
EP1042817B1 (en) | Bipolar high-volt power component | |
EP0487869B1 (en) | Turn-off power semiconductor device | |
WO1998012749A2 (en) | Emitter-switched thyristor | |
DE69223738T2 (en) | MOS gate controlled thyristor | |
EP0700095A2 (en) | Gate-turn-off-thyristor with high blocking voltage and small device thickness | |
DE4014207A1 (en) | BIPOLAR POWER SEMICONDUCTOR COMPONENT THROUGH A GATE | |
CH679962A5 (en) | ||
DE68929359T2 (en) | Lateral bipolar transistor arrangements with isolated control electrode with split anode | |
DE19750827A1 (en) | Power semiconductor component with anode and cathode | |
DE102004042758B4 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000531 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20060921 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59914759 Country of ref document: DE Date of ref document: 20080626 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090217 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081025 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161220 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59914759 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 |