EP1042689B1 - Device for digital subtraction angiography - Google Patents
Device for digital subtraction angiography Download PDFInfo
- Publication number
- EP1042689B1 EP1042689B1 EP98966282A EP98966282A EP1042689B1 EP 1042689 B1 EP1042689 B1 EP 1042689B1 EP 98966282 A EP98966282 A EP 98966282A EP 98966282 A EP98966282 A EP 98966282A EP 1042689 B1 EP1042689 B1 EP 1042689B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistance
- arrangement according
- input
- voltage
- operational amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002583 angiography Methods 0.000 title claims abstract 3
- 238000001514 detection method Methods 0.000 claims description 7
- 210000004351 coronary vessel Anatomy 0.000 description 6
- 210000002216 heart Anatomy 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 210000005242 cardiac chamber Anatomy 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000193 iodinated contrast media Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4064—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
- A61B6/4092—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam for producing synchrotron radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
Definitions
- the invention relates to an arrangement according to the preamble of Claim 1.
- the two X-rays are focused on the heart of a patient and behind them hit a detector with two counting chambers arranged in parallel and at a distance from one another, whose signals are converted into digital signals via a charge-sensitive A / D converter and sent to a computer, which then displays one image each Energy E 1 and an image of the energy E 2 is composed and the images are subtracted logarithmically.
- the displayed image is displayed on a monitor.
- DE 39 01 837 A1 discloses a radiation detector, which in is capable of local distribution of high beam intensities with high accuracy, a large dynamic range and high sensitivity in short recording times. Applications are, for example, in medical diagnostics for snapshots of fast moving parts (coronary arteries). Pulsed radiation sources are used for this, the Individual quantum signals belonging to a beam pulse in a proportional chamber can be summed up and thus obtained Individual signals per radiation source pulse either already represent wanted intensity signal or electronically pro Pixel added up over a number of radiation source pulses become.
- DE 39 01 837 A1 also shows the constructive Structure of such a detector. The disadvantage of this Detector, however, is that together with conventional Amplifier and converter circuits the required Image resolution can not be achieved.
- the object of the invention is the arrangement of the aforementioned Kind of improving in that the resolution of the received Image is better, especially coronary arteries can be represented more clearly.
- FIG. 1 shows as the X-ray radiation source, for example, a storage ring such as that which is available to the applicant as DORIS.
- the circulating positron beam e + between the poles of a so-called Wiggler magnet is deflected back and forth in one plane, for example in the manner shown, by pole pairs connected in series but reversed in polarity, which leads to strong synchrotron radiation formation.
- This synchrotron radiation is a polychromatic or "white" beam 7, which is directed to a monochromator 1 through a system of collimators and diaphragms (not shown).
- the monochromator 1 is located approximately 15 to 36 m from the Wiggler magnet 2, which forms the source point of the radiation.
- the "white" beam 7 has an approximately elliptical cross-section near its source point, the small axis of which is approximately 2 mm long, while the length of the horizontal large axis is approximately 4 mm. Due to beam diaphragms and natural divergence, the beam 7 has a horizontal width of approximately 100 mm and a height of approximately 2.5 mm at the location of the monochromator 1. Using a double monochromator 1 results in two monochromatic beams with an energy of E 1 and E 2 . The monochromatic beams E 1 and E 2 arrive at the input of a detector 3, passing through the heart 10 of a patient on their way during operation. At the entrance of the detector 3 they have a distance of 1.5 mm and a horizontal width of currently 120 mm and a height of 1.0 mm each.
- the detector 3 has two ionization chambers 31, 32 with connected detection circuits 51, 52.
- the output signals from the detection circuits 51, 52 of the detector 3 are transmitted via lines 511, 512 to a computer system 6 which controls the image evaluation in a manner known per se, for example in accordance with DE 35 17 101 C1, by in each case an image of the energy Subtracts E 1 from a second image of energy E 2 and displays the image obtained on a monitor 20.
- a patient sits on a chair 9 which can be moved up and down in a controlled manner by means of hydraulics. This is indicated by the double arrow.
- the chair 9 performs an upward movement of approximately 40 cm, the first 10 cm used to accelerate the chair 9 and the patient sitting on it, the subsequent 20 cm of its path to movement at a constant speed of 50 cm / sec and the last 10 cm for braking.
- the patient's organ to be examined for example the heart 10 is moved by the two monochromatic beams E 1 and E 2 in a time of 250 msec.
- One and the same examination location is imaged so quickly in succession with the beam E 1 and the beam E 2 that the two beam images can be easily subtracted in the computer system 6.
- a safety system 8 is provided in the beam path of the two X-rays between the monochromator 1 and the detector 3 before the intersection of the two beams E 1 , E 2 and thus in front of the heart 10 to be examined, which has very fast beam closures which Shut off X-rays E 1 and E 2 in less than 10 msec.
- Such security systems have been used in the operation of our synchrotron for many years.
- the chair 9 is also controlled via the computer system 6, without this being particularly indicated in the drawing. However, it does not present any difficulties to the person skilled in the art Hydraulics shown for lifting and lowering the chair 9 to be controlled by the computer system 6.
- FIG. 2 shows a vertical section through the detector 3 of FIG Figure 1, the two ionization chambers 31, 32, each with one Board 311 and 312 and a common drift cathode 313 formed is.
- the two ionization chambers 31, 32 are enclosed by a housing 33 which is essentially rectangular and has a fastening flange 36 on one side.
- An inlet channel 37 of approximately 10 mm in height, 150 mm in width and approximately 30 mm in length passes through a wall of the housing 33 and carries at its free end a known collimator 34 through which the two beams E 1 and E 2 can enter.
- the inner end of the channel 37 is closed by a carbon fiber window (35).
- an ionizing gas such as krypton or xenon
- an extinguishing gas e.g. Carbon dioxide filled under a pressure of 10 to 20 bar.
- the partial pressure ratio of ionization gas to extinguishing gas is about 90:10.
- each ionization chamber 32 has a glass fiber reinforced one Board 311, 312, which is approximately at a distance of 9mm are arranged to each other.
- the boards 311, 312 are gold-plated copper strips as anode strips arranged, which run in the beam direction and in 400 ⁇ m grid are arranged.
- In the right part of Figure 2 is the part highlighted by a dash-dotted circle of the boards 311, 312 shown enlarged.
- the drift cathode 313 has a thickness of 1.0 mm, during the Distance between drift cathode 313 and each circuit board 311, 312 Is 4.0 mm.
- the two fresh grids 315 are then each at a distance of 1.0mm to the boards 311, 312 and thus at a distance of 3.0 mm each to the surface of the drift cathode 313 arranged.
- Fresh grids consist of special wires in the Distance of 0.5 mm that formed in the ionization chambers 31, 32 Shield ions from the anode strips.
- the first and second boards 311, 312 are in the beam direction led out of the housing 33 of the detector 3 and are at their ends each connected to a detection circuit 51, 52. It is clear that the housing 33 of the detector 3 is closed must be to include the ionizing gas and the quenching gas to be able to. For this purpose is between the boards 311, 312 introduced a plug 38 which the two boards 311, 312 gas-tightly connected to one another, for example by that it is glued to the boards 311, 312. The two boards 311, 312 are in turn gas-tight with the wall of the housing 33 connected, for example also by gluing.
- each board 311, 312 arranged as gold-plated anodes Copper strips with a grid of 400 ⁇ m from the housing 33 of the detector 3 led out, namely in the form of 336 parallel Stripes, which are arranged at a distance of about 0.3mm and the each have a width of about 0.4mm.
- the length of each board 311, 312 is approximately 230mm, while the length of the ionization chambers 31, 32 makes up about 60mm.
- the anode strips run inside the ionization chambers 31, 32 over a length of about 56mm in parallel as they diverge outside the ionization chambers 31, 32 and in particular outside the housing 33 of the detector 3 to such a Distance are widened in the detection circuit 51 and 52 electronic circuit 50 on each anode strip. 3 can be connected.
- FIG. 3 shows one of the 2 x 336 electronic circuits 50, their input IN to one of the 2 x 336 anode strips on the circuit boards 311 or 312 is connected.
- the input IN the electronic Circuit 50 leads to the negative input of an operational amplifier OPA, the positive input of which is on ground.
- the operational amplifier OPA is a type OPA 129 UB, which by the Burr-Brown is manufactured. It becomes normal with ⁇ 15 V operated and is a very low-noise operational amplifier.
- a transistor T with its emitter is connected to the output of the operational amplifier OPA, specifically via a first resistor R 1 of 5.1 k ⁇ .
- a DC voltage source S which provides a DC voltage of -4 V.
- the collector of the transistor T is at a point P, which sees voltages from 0 to about 90 V in operation. For this reason, the transistor T is a voltage-resistant transistor, which is used as a basic circuit.
- the collector of transistor T feeds back via point P and a second resistor R 2 of 150 M ⁇ to the negative input of the operational amplifier OPA.
- a high DC voltage of 100 V or more is applied to the point P of the electronic circuit 50, specifically via a third resistor R 3 of 43 k ⁇ , for example.
- the operational amplifier OPA keeps the differential voltage at its input at almost zero volts, so that the current i s from the input signal via the resistor R 2 to the point P and from there via a fourth resistor R 4 of 30 M ⁇ to an analog-to-digital converter ADC flows.
- the analog-digital converter is a module of the DDC 101 U type from Burr-Brown with a resolution of 20 bits. This chip was specially designed for reading photodiodes, in which the positive charges or holes are read out. In its unipolar mode, it can therefore only be used to convert positive charge signals into 20-bit signals.
- the DDC 101 U chip can also be used in bipolar operation, but this reduces the output to 19 bits. In this mode, the noise of the chip is so high that it cannot be used in the present case of image display.
- the DDC 101 U chip only the unipolar operation of the DDC 101 U chip is suitable for the present application, but the difficulty then lies in the fact that the chip can only process positive charges (holes), while only from the ionization chambers 31, 32 via the anode strips negative charges, namely electrons, are supplied. It is therefore essential for the invention that the negative charges that arrive at the input of the operational amplifier OPA are turned into positive charges that can be processed by the special analog-digital converter ADC of the DDC 101 U type. To do this, it is first necessary to make the resistance R 4 > 20 M ⁇ at the input of the analog-digital converter, because with resistances smaller than 20 M ⁇ , the DDC 101 U chip generates a larger noise than the resistance noise, which is also known as Nyquist Noise is called. If the noise already produces 4 bits, then there are only 16 bits left for image display, which is too little to achieve the required image resolution.
- the voltage-proof transistor T is placed in the basic circuit between the operational amplifier OPA and the point P.
- the basic circuit effects a voltage amplification, the transistor T opening up to such an extent that the voltage drop across the second resistor R 2 ensures that the voltage difference at the input of the operational amplifier OPA is zero or almost zero.
- the charges arriving at the operational amplifier OPA also arrive at the input of the analog-digital converter, in five times the amplification, since the resistance R 2 is selected five times as large as the resistance R 4 .
- R 2 150 M ⁇
- R 4 30 M ⁇ .
- the signal currents supplied by the ionization chambers 31, 32 on the anode strips are otherwise in the range of 100 fA or less, ie i max ⁇ 100 x 10 -15 A. These currents are so low that they correspond to individual 33 keV photons.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Toxicology (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Die Erfindung betrifft eine Anordnung gemäß Oberbegriff des Patentanspruchs 1.The invention relates to an arrangement according to the preamble of Claim 1.
Eine derartige Anordnung ist bereits aus der DE 35 17 101 C1 bekannt. Sie dient zur Untersuchung des Herzens mit dem Ziel der Feststellung, ob ein akuter Verschluß eines Herzkranzgefäßes durch ein Blutgerinsel zu befürchten ist. Zu diesem Zweck wird dem Patienten ein Jodkontrastmittel in eine Armvene injiziert und der Patient wird zeilenweise gleichzeitig mit zwei zeilenförmig kollimierten Röntgenstrahlen bestrahlt, von denen der eine eine Energie E1 knapp unterhalb der Jod-Absorptionskante von 33 keV und der andere eine Energie E2 knapp oberhalb der Jod-Absorptionskante hat. Die beiden Röntgenstrahlen werden auf das Herz eines Patienten fokussiert und treffen dahinter auf einen Detektor mit zwei parallel im Abstand zueinander angeordneten Zählkammern, deren Signale über einen Ladungsempfindlichen A/D-Wandler in digitale Signale umgesetzt und einem Rechner zugeleitet, der dann jeweils ein Bild der Energie E1 und ein Bild der Energie E2 zusammensetzt und die Bilder logarithmisch voneinander subtrahiert. Das erhaltene Bild zeigt er auf einem Monitor an.Such an arrangement is already known from DE 35 17 101 C1. It is used to examine the heart with the aim of determining whether an acute occlusion of a coronary artery by a blood clot is to be feared. For this purpose, the patient is injected with an iodine contrast medium in an arm vein and the patient is irradiated line by line simultaneously with two line-shaped collimated X-rays, one of which has an energy E 1 just below the iodine absorption edge of 33 keV and the other an energy E 2 above the iodine absorption edge. The two X-rays are focused on the heart of a patient and behind them hit a detector with two counting chambers arranged in parallel and at a distance from one another, whose signals are converted into digital signals via a charge-sensitive A / D converter and sent to a computer, which then displays one image each Energy E 1 and an image of the energy E 2 is composed and the images are subtracted logarithmically. The displayed image is displayed on a monitor.
Die DE 39 01 837 A1 offenbart einen Strahlungsdetektor, der in der Lage ist, die örtliche Verteilung hoher Strahlintensitäten mit hoher Genauigkeit, einem großen dynamischen Bereich und hoher Empfindlichkeit in kurzen Aufnahmezeiten zu vermessen. Anwendungen liegen zum Beispiel in der medizinischen Diagnostik für Momentaufnahmen schnellbewegter Teile (Herzkranzgefäße). Hierzu werden gepulste Strahlungsquellen verwendet, wobei die Signale der Einzelquanten, die zu einem Strahlimpuls gehören, in einer Proportionalkammer summiert werden und diese so gewonnenen Einzelsignale pro Strahlungsquellen-Puls entweder bereits das gesuchte Intensitätssignal darstellen oder elektronisch pro Bildpunkt über eine Anzahl von Strahlungsquellen-Pulsen aufsummiert werden. Die DE 39 01 837 A1 zeigt weiterhin den konstruktiven Aufbau eines solchen Detektors. Der Nachteil dieses Detektors besteht jedoch darin, daß sich zusammen mit herkömmlichen Verstärker- und Wandlerschaltungen die erforderliche Bildauflösung nicht erreichen läßt.DE 39 01 837 A1 discloses a radiation detector, which in is capable of local distribution of high beam intensities with high accuracy, a large dynamic range and high sensitivity in short recording times. Applications are, for example, in medical diagnostics for snapshots of fast moving parts (coronary arteries). Pulsed radiation sources are used for this, the Individual quantum signals belonging to a beam pulse in a proportional chamber can be summed up and thus obtained Individual signals per radiation source pulse either already represent wanted intensity signal or electronically pro Pixel added up over a number of radiation source pulses become. DE 39 01 837 A1 also shows the constructive Structure of such a detector. The disadvantage of this Detector, however, is that together with conventional Amplifier and converter circuits the required Image resolution can not be achieved.
Aufgabe der Erfindung ist es, die Anordnung der eingangs genannten Art dahingehend zu verbessern, daß die Auflösung des erhaltenen Bildes besser ist, damit insbesondere Herzkranzgefäße deutlicher dargestellt werden können.The object of the invention is the arrangement of the aforementioned Kind of improving in that the resolution of the received Image is better, especially coronary arteries can be represented more clearly.
Zur Lösung dieser Aufgabe dient eine Anordnung mit den Merkmalen des Patentanspruchs 1.An arrangement with the features serves to solve this problem of claim 1.
Sie enthält einen hochempfindlichen Verstärker und Analog-Digital-Wandler mit sehr hoher Dynamik, mit dem die hohen Absorptionsunterschiede im jodgefüllten Körper linear dargestellt werden können. Auf diese Weise ist es möglich, alle drei Herzkranzgefäße trotz Überlagerung durch jodgefüllte Herzkammern darzustellen.It contains a highly sensitive amplifier and analog-digital converter with very high dynamics with which the high absorption differences represented linearly in the iodine-filled body can be. In this way it is possible to have all three coronary arteries despite overlay by iodine-filled heart chambers display.
In diesem Zusammenhang wird darauf hingewiesen, daß die Abbildung der Herzkranzgefäße deswegen so schwierig ist, weil sich einerseits das Herz andauernd bewegt und andererseits das Kontrastmittel sowohl in die Herzkammern als auch in die Herzkranzgefäße gelangt.In this context, it should be noted that the figure the coronary arteries is so difficult because on the one hand the heart is constantly moving and on the other hand the contrast medium both in the ventricles and in the coronary arteries arrives.
Zur Lösung der gestellten Aufgabe war es also erforderlich, für die verwendeten elektronischen Schaltungen einen geeigneten Baustein in Form eines Strom- bzw. Ladungs-Digital-Wandlers zu finden, der einen dynamischen Bereich von mindestens 18 Bit hat, um eine hinreichend gute Auflösung in Form von Farb- oder Kontrastunterschieden zu erreichen. To solve the task it was therefore necessary for the electronic circuits used are suitable Module in the form of a current or charge digital converter find that has a dynamic range of at least 18 bits, a sufficiently good resolution in the form of color or contrast differences to reach.
Die Erfindung wird im folgenden anhand von Figuren näher erläutert; es zeigt
- Figur 1
- eine schematische Anordnung der Vorrichtung im Strahlengang der Röntgenstrahlung eines Synchrotrons;
Figur 2- eine schematische Schnittansicht des bei der Anordnung gemäß Figur 1 verwendeten Detektors; und
Figur 3- ein Schaltbild einer in dem Detektor aus den Figuren 1 und 2 verwendeten elektronischen Schaltung.
- Figure 1
- a schematic arrangement of the device in the beam path of the x-rays of a synchrotron;
- Figure 2
- is a schematic sectional view of the detector used in the arrangement of Figure 1; and
- Figure 3
- a circuit diagram of an electronic circuit used in the detector of Figures 1 and 2.
Figur 1 zeigt als Röntgenstrahlungsquelle beispielsweise einen
Speicherring, wie er als DORIS bei der Anmelderin vorhanden ist.
Dabei wird der umlaufende Positronenstrahl e+ zwischen den Polen
eines sogenannten Wiggler-Magneten etwa in der dargestellten
Weise durch jeweils hintereinander geschaltete, in der Polarität
aber umgekehrte Polpaare in einer Ebene hin und her abgelenkt,
was zu einer starken Synchrotronstrahlungsbildung führt. Diese
Synchrotronstrahlung ist ein polychromatischer oder "weißer"
Strahl 7, der durch ein nicht dargestelltes System von Kollimatoren
und Blenden auf einen Monochromator 1 geleitet wird. Der
Monochromator 1 befindet sich im Falle von DORIS etwa 15 bis 36m
von dem Wiggler-Magneten 2 entfernt, der den Quellpunkt der
Strahlung bildet. Der "weiße" Strahl 7 hat in der Nähe seines
Quellpunktes einen etwa elliptischen Querschnitt, dessen kleine
Achse etwa 2 mm lang ist, während die Länge der horizontal liegenden
großen Achse etwa 4 mm beträgt. Durch Strahlblenden und
natürliche Divergenz hat der Strahl 7 am Ort des Monochromators
1 eine horizontale Breite von ungefähr 100mm und eine Höhe von
ungefähr 2,5mm. Durch Verwendung eines zweifachen Monochromators
1 entstehen daraus zwei monochromatische Strahlen mit einer
Energie von E1 und E2. Die monochromatischen Strahlen E1 und E2
gelangen an den Eingang eines Detektors 3, wobei sie auf ihrem
Wege im Betrieb das Herz 10 eines Patienten durchlaufen. Am
Eingang des Detektors 3 haben sie einen Abstand von 1,5mm und
eine horizontale Breite von zur Zeit 120mm und jeweils eine Höhe
von 1,0mm.FIG. 1 shows as the X-ray radiation source, for example, a storage ring such as that which is available to the applicant as DORIS. The circulating positron beam e + between the poles of a so-called Wiggler magnet is deflected back and forth in one plane, for example in the manner shown, by pole pairs connected in series but reversed in polarity, which leads to strong synchrotron radiation formation. This synchrotron radiation is a polychromatic or "white"
Der Detektor 3 weist zwei Ionisationskammern 31, 32 mit angeschlossenen
Nachweis-Schaltungen 51, 52 auf. Die Ausgangssignale
aus den Nachweis-Schaltungen 51, 52 des Detektors 3 werden über
Leitungen 511, 512 an ein Rechnersystem 6 übertragen, das die
Bildauswertung in an sich bekannter Weise, beispielsweise gemäß
DE 35 17 101 C1 steuert, indem es jeweils ein Bild der Energie
E1 von einem zweiten Bild der Energie E2 abzieht und das erhaltene
Bild auf einem Monitor 20 anzeigt.The
Im Betrieb der erfindungsgemäßen Anordnung sitzt ein Patient auf
einem Stuhl 9, der sich durch eine Hydraulik in gesteuerter
Weise aufwärts und abwärts bewegen läßt. Dies ist durch den
Doppelpfeil angedeutet. In einer Ausführungsform führt der Stuhl
9 eine Aufwärtsbewegung von etwa 40 cm durch, wobei die ersten
10 cm zur Beschleunigung des Stuhls 9 und des darauf sitzenden
Patienten dienen, die anschließenden 20 cm seines Weges zur
Bewegung mit konstanter Geschwindigkeit von 50 cm/sec und die
letzten 10 cm zur Abbremsung dienen. Dadurch wird das zu untersuchende
Organ des Patienten, beispielsweise das Herz 10, in
einer Zeit von 250 msec durch die beiden monochromatischen
Strahlen E1 und E2 bewegt. Ein und derselbe Untersuchungsort wird
dabei so schnell hintereinander mit dem Strahl E1 und dem Strahl
E2 abgebildet, daß sich die beiden Strahlbilder im Rechnersystem
6 ohne weiteres subtrahieren lassen.In the operation of the arrangement according to the invention, a patient sits on a chair 9 which can be moved up and down in a controlled manner by means of hydraulics. This is indicated by the double arrow. In one embodiment, the chair 9 performs an upward movement of approximately 40 cm, the first 10 cm used to accelerate the chair 9 and the patient sitting on it, the subsequent 20 cm of its path to movement at a constant speed of 50 cm / sec and the last 10 cm for braking. As a result, the patient's organ to be examined, for example the
Gemäß Figur 1 ist im Strahlengang der beiden Röntgenstrahlen
zwischen dem Monochromator 1 und dem Detektor 3 noch vor dem
Schnittpunkt der beiden Strahlen E1, E2 und damit vor dem zu
untersuchenden Herzen 10 ein Sicherheitssystem 8 vorgesehen, das
sehr schnelle Strahlverschlüsse aufweist, die die Röntgenstrahlen
E1 und E2 in weniger als 10 msec absperren können. Derartige
Sicherheissysteme werden beim Betrieb unseres Synchrotrons seit
vielen Jahren eingesetzt. According to FIG. 1, a
Die Steuerung des Stuhls 9 erfolgt ebenfalls über das Rechnersystem
6, ohne daß dies in der Zeichnung besonders angedeutet ist.
Es bereitet dem Fachmann jedoch keine Schwierigkeiten, die nicht
dargestellte Hydraulik für das Anheben und Absenken des Stuhls
9 von dem Rechnersystem 6 zu steuern.The chair 9 is also controlled via the
Figur 2 zeigt einen Vertikalschnitt durch den Detektor 3 von
Figur 1, der aus zwei Ionisationskammern 31, 32 mit je einer
Platine 311 und 312 und einer gemeinsamen Driftkathode 313 gebildet
ist.FIG. 2 shows a vertical section through the
Die beiden Ionisationskammern 31, 32 sind von einem Gehäuse 33
umschlossen, das im wesentlichen rechteckförmig ist und an einer
Seite einen Befestigungsflansch 36 aufweist. Ein Einlaßkanal 37
von etwa 10mm Höhe, 150mm Breite und etwa 30mm Länge durchsetzt
eine Wand des Gehäuses 33 und trägt an seinem freien Ende einen
an sich bekannten Kollimator 34, durch den die beiden Strahlen
E1 und E2 eintreten können. Das innere Ende des Kanals 37 ist
durch ein Kohlefaserfenster (35) verschlossen.The two
Im Inneren des Gehäuses 33 befindet sich ein Hohlraum, der mit
einem Ionisationsgas wie Krypton oder Xenon und einem Löschgas,
z.B. Kohlendioxid unter einem Druck von 10 bis 20 bar gefüllt
ist. Das Partialdruckverhältnis von Ionisationsgas zu Löschgas
beträgt etwa 90:10.Inside the
Wie bereits erwähnt weist jede Ionisationskammer 32 eine glasfaserverstärkte
Platine 311, 312 auf, die etwa im Abstand von 9mm
zueinander angeordnet sind. An den einander zugewandten Seiten
der Platinen 311, 312 sind vergoldete Kupferstreifen als Anodenstreifen
angeordnet, die in Strahlrichtung verlaufen und im
Raster von 400 µm angeordnet sind. Im rechten Teil von Figur 2
ist der durch einen strichpunktierten Kreis hervorgehobene Teil
der Platinen 311, 312 vergrößert dargestellt. Man erkennt daraus,
daß zwischen den die Anodenstreifen tragenden Platinen 311,
312 eine gemeinsame Driftkathode 313 angeordnet ist und daß in
dem Raum von der Driftkathode 313 zu der ersten bzw. zweiten
Platine 311, 312 ein sogenanntes "Frisch-Gitter" angeordnet ist,
das näher zu den Platinen 311, 312 liegt. In einer Ausführungsform
hat die Driftkathode 313 eine Dicke von 1,0mm, während der
Abstand zwischen der Driftkathode 313 und jeder Platine 311, 312
4,0 mm beträgt. Die beiden Frisch-Gitter 315 sind dann jeweils
im Abstand von 1,0mm zu den Platinen 311, 312 und damit im Abstand
von jeweils 3,0mm zur Oberfläche der Driftkathode 313
angeordnet. Frisch-Gitter bestehen aus speziellen Drähten im
Abstand von 0,5mm die die in den Ionisationskammern 31, 32 gebildeten
Ionen gegenüber den Anodenstreifen abschirmen.As already mentioned, each
Die ersten und zweiten Platinen 311, 312 werden in Strahlrichtung
aus dem Gehäuse 33 des Detektors 3 herausgeführt und sind
an ihren Enden jeweils mit einer Nachweis-Schaltung 51, 52 verbunden.
Es ist klar, daß das Gehäuse 33 des Detektors 3 verschlossen
sein muß, um das Ionisationsgas und das Löschgas einschließen
zu können. Zu diesem Zweck ist zwischen die Platinen
311, 312 ein Stopfen 38 eingebracht, der die beiden Platinen
311, 312 gasdicht miteinander verbindet, beispielsweise dadurch,
daß er mit den Platinen 311, 312 verklebt ist. Die beiden Platinen
311, 312 sind ihrerseits mit der Wand des Gehäuses 33 gasdicht
verbunden, beispielsweise ebenfalls durch Verkleben.The first and
Wie bereits erwähnt, werden die auf den einander zugewandten
Seiten der Platinen 311, 312 angeordneten Anoden als vergoldete
Kupferstreifen im Raster von 400 µm aus dem Gehäuse 33 des Detektors
3 herausgeführt, und zwar in Form von 336 parallelen
Streifen, die im Abstand von etwa 0,3mm angeordnet sind und die
jeweils eine Breite von etwa 0,4mm haben. Die Länge jeder Platine
311, 312 beträgt etwa 230mm, während die Länge der Ionisationskammern
31, 32 etwa 60mm ausmacht.As already mentioned, those facing each other
Sides of the
Im Inneren der Ionisationskammern 31, 32 verlaufen die Anodenstreifen
über eine Länge von etwa 56mm parallel, während sie
außerhalb der Ionisationskammern 31, 32 divergieren und insbesondere
außerhalb des Gehäuses 33 des Detektors 3 zu einem derartigen
Abstand aufgeweitet sind, daß in der Nachweis-Schaltung
51 bzw. 52 an jeden Anodenstreifen elektronische Schaltung 50.
gemäß Figur 3 angeschlossen werden kann. Die beiden Nachweis-Schaltungen
51 und 52 enthalten also in einer Ausführung 2 x
336 = 672 elektronische Schaltungen 50, die den in Figur 3 gezeigten
Aufbau haben.The anode strips run inside the
Figur 3 zeigt eine der 2 x 336 elektronische Schaltungen 50,
deren Eingang IN an einen der 2 x 336 Anodenstreifen der Platinen
311 oder 312 angeschlossen ist. Der Eingang IN der elektronische
Schaltung 50 führt an den negativen Eingang eines Operationsverstärkers
OPA, dessen positiver Eingang auf Masse liegt.
Der Operationsverstärker OPA ist ein Typ OPA 129 UB, der von der
Firma Burr-Brown hergestellt wird. Er wird normal mit ± 15 V
betrieben und ist ein sehr rauscharmer Operationsverstärker.FIG. 3 shows one of the 2 x 336
An den Ausgang des Operationsverstärkers OPA ist ein Transistor T mit seinem Emmitter angeschlossen, und zwar über einen ersten Widerstand R1 von 5,1 kΩ. An der Basis des Transistors T liegt eine Gleichspannungsquelle S, die eine Gleichspannung von -4 V zur Verfügung stellt. Der Kollektor des Transistors T liegt an einem Punkt P, der im Betrieb Spannungen von 0 bis etwa 90 V sieht. Aus diesem Grunde ist der Transistor T ein spannungsfester Transistor, der als Basisschaltung eingesetzt wird. Der Kollektor des Transistors T koppelt über den Punkt P und einen zweiten Widerstand R2 von 150 MΩ auf den negativen Eingang des Operationsverstärkers OPA zurück.A transistor T with its emitter is connected to the output of the operational amplifier OPA, specifically via a first resistor R 1 of 5.1 kΩ. At the base of transistor T is a DC voltage source S, which provides a DC voltage of -4 V. The collector of the transistor T is at a point P, which sees voltages from 0 to about 90 V in operation. For this reason, the transistor T is a voltage-resistant transistor, which is used as a basic circuit. The collector of transistor T feeds back via point P and a second resistor R 2 of 150 MΩ to the negative input of the operational amplifier OPA.
An den Punkt P der elektronische Schaltung 50 wird eine hohe
Gleichspannung von 100 V oder mehr gelegt, und zwar über einen
dritten Widerstand R3 von beispielsweise 43 kΩ.A high DC voltage of 100 V or more is applied to the point P of the
Der Operationsverstärker OPA hält die Differenzspannung an seinem Eingang auf nahezu Null Volt, so daß der Strom is vom Eingangssignal über den Widerstand R2 zum Punkt P und von dort über einen vierten Widerstand R4 von 30 MΩ an einem Analog-Digital-Wandler ADC fließt. Der Analog-Digital-Wandler ist ein Baustein des Typs DDC 101 U der Firma Burr-Brown mit einer Auflösung von 20 Bit. Dieser Chip wurde speziell zum Auslesen von Photodioden konzipiert, bei denen die positiven Ladungen oder Löcher ausgelesen werden. In seinem unipolaren Betrieb ist er daher nur für die Umwandlung positiver Ladungssignale in 20 Bit-Signale einsetzbar. Der Chip DDC 101 U kann zwar auch im bipolaren Betrieb eingesetzt werden, dies reduziert die Ausgabe jedoch auf 19 Bit. In diesem Betrieb ist das Rauschen des Chips so hoch, daß man ihn für den vorliegenden Fall der Bilddarstellung nicht verwenden kann.The operational amplifier OPA keeps the differential voltage at its input at almost zero volts, so that the current i s from the input signal via the resistor R 2 to the point P and from there via a fourth resistor R 4 of 30 MΩ to an analog-to-digital converter ADC flows. The analog-digital converter is a module of the DDC 101 U type from Burr-Brown with a resolution of 20 bits. This chip was specially designed for reading photodiodes, in which the positive charges or holes are read out. In its unipolar mode, it can therefore only be used to convert positive charge signals into 20-bit signals. The DDC 101 U chip can also be used in bipolar operation, but this reduces the output to 19 bits. In this mode, the noise of the chip is so high that it cannot be used in the present case of image display.
Aus diesem Grunde kommt für die vorliegende Anwendung nur der
unipolare Betrieb des Chips DDC 101 U in Frage, allerdings besteht
dann die Schwierigkeit darin, daß der Chip nur positive
Ladungen (Löcher) verarbeiten kann, während von den Ionisationskammern
31, 32 über die Anodenstreifen nur negative Ladungen,
nämlich Elektronen, geliefert werden. Für die Erfindung ist
daher wesentlich, daß aus den negativen Ladungen, die am Eingang
des Operationsverstärkers OPA ankommen, positive Ladungen gemacht
werden, die von dem speziellen Analog-Digital-Wandler ADC
des Typs DDC 101 U verarbeitet werden können. Dazu ist es zunächst
erforderlich, den am Eingang des Analog-Digital-Wandlers
liegenden Widerstand R4 > 20 MΩ zu machen, denn bei kleineren
Widerständen als 20 MΩ erzeugt der Chip DDC 101 U ein größeres
Rauschen als das Widerstandsrauschen, das auch als Nyquist-Rauschen
bezeichnet wird. Wenn das Rauschen aber bereits 4 Bit
produziert, dann bleiben nur noch 16 Bit zur Bilddarstellung
übrig, was zu wenig ist, um die erforderliche Bildauflösung zu
erzielen.For this reason, only the unipolar operation of the DDC 101 U chip is suitable for the present application, but the difficulty then lies in the fact that the chip can only process positive charges (holes), while only from the
Wählt man für den Widerstand R4 aber mehr als 20 MΩ, dann wird eine entsprechend höhere Ansteuerungsspannung am Punkt P benötigt, um den DDC 101 U in etwa 0,2 msec auf 20 Bit aufzuladen. Wählt man für den Widerstand R4 beispielsweise 30 MΩ, dann müßte die Aussteuerungsspannung am Punkt P auf bis zu 90 Volt oder mehr ansteigen können. Eine so hohe Ansteuerungsspannung kann zur Zerstörung des Operationsverstärkers OPA führen, da er nur maximal 20 bis 36 Volt vertragen kann.However, if one chooses more than 20 MΩ for the resistor R 4 , then a correspondingly higher control voltage at point P is required in order to charge the DDC 101 U to 20 bits in about 0.2 msec. If, for example, one chooses 30 MΩ for the resistor R 4 , then the modulation voltage at point P should be able to rise to up to 90 volts or more. Such a high control voltage can lead to the destruction of the operational amplifier OPA, since it can only tolerate a maximum of 20 to 36 volts.
Aus diesem Grunde wird der spannungsfeste Transistor T in Basisschaltung zwischen den Operationsverstärker OPA und den Punkt P gelegt. Die Basisschaltung bewirkt bekanntlich eine Spannungsverstärkung, wobei der Transistor T genau so stark aufsteuert, daß der Spannungsabfall über den zweiten Widerstand R2 dafür sorgt, daß die Spannungsdifferenz am Eingang des Operationsverstärkers OPA Null bzw. nahezu Null ist. Dies hat zur Folge, daß die am Operationsverstärker OPA eintreffenden Ladungen auch am Eingang des Analog-Digital-Wandlers eintreffen, und zwar in fünffacher Verstärkung, da der Widerstand R2 fünfmal so groß wie der Widerstand R4 gewählt ist. In einer bevorzugten Ausführungsform ist nämlich R2 = 150 MΩ, R4 = 30 MΩ.For this reason, the voltage-proof transistor T is placed in the basic circuit between the operational amplifier OPA and the point P. As is known, the basic circuit effects a voltage amplification, the transistor T opening up to such an extent that the voltage drop across the second resistor R 2 ensures that the voltage difference at the input of the operational amplifier OPA is zero or almost zero. The result of this is that the charges arriving at the operational amplifier OPA also arrive at the input of the analog-digital converter, in five times the amplification, since the resistance R 2 is selected five times as large as the resistance R 4 . In a preferred embodiment, R 2 = 150 MΩ, R 4 = 30 MΩ.
Das Wesen der erfindungsgemäßen elektronischen Schaltung 50 besteht
also in folgenden Maßnahmen:
Dadurch wird ein Signal: Rausch - Verhältnis von 300.000 : 1 erreicht,
was für die Klarheit der Abbildung für den diagnostizierenden
Arzt ausreicht. Die von den Ionisationskammern 31, 32 auf
den Anodenstreifen gelieferten Signalströme liegen im übrigen im
Bereich von 100 fA oder weniger, also imax < 100 x 10-15A. Diese
Ströme sind so gering, daß sie einzelnen 33keV Photonen entsprechen.This achieves a signal: noise ratio of 300,000: 1, which is sufficient for the clarity of the image for the diagnosing doctor. The signal currents supplied by the
Claims (9)
- Arrangement for digital subtraction angiography in the energy subtraction mode comprising a monochromator (1) for generating two monochromatic X-ray beams (E1, E2); comprising a safety system (8) with very rapid beam shutters; comprising a line scan device driven by a hydraulics system, on which a chair (9), which can be moved up and down for positioning a patient, is mounted; comprising a two-line detector (3); comprising a computer system (6) for system control, data acquisition and image processing; characterised in that the detector (3) is formed by two locally resolving ionisation chambers (31, 32), which are filled with an ionisation gas and which have a certain number of anode strips (311, 312); in that a common drift cathode (313) is used for both ionisation chambers (31, 32); in that a separate detection circuit (51, 52), each with an electronic circuit (50) for each anode strip (311, 312), is connected to each ionisation chamber (31, 32), which detection circuits operate linearly as a signal converter between 0 and 175 volts; in that each electronic circuit (50) has an operational amplifier (OPA) at its input, to the negative input of which the input signal from the anode strips (311, 312) is applied, while the positive input is earthed; in that the output of the operational amplifier (OPA) is connected via a first resistance (R1) to the emitter of a transistor (T), at the base of which there is a DC voltage source (S), and the collector of which is connected via a point (P) and a fourth resistance (R4) to the input of an analogue-digital converter (ADC); in that the fourth resistance (R4) is greater than 20 MΩ; in that a DC voltage of 100 v or more is applied to the point (P) via a third resistance (R3); in that between the input of the operational amplifier (OPA) and the point (P), there is a second resistance (R2), which passes the input signal current (is) finally to the analogue-digital converter (ADC); and in that the outputs of all the electronic circuits (50) are transmitted as bit words via a bus system (511, 512) to the computer system (6).
- Arrangement according to claim 1, characterised in that the analogue-digital converter (ADC) is a 20-bit charge digital converter.
- Arrangement according to either of claims 1 and 2, characterised in that the fourth resistance (R4) has 30 MOhm and the second resistance (R2) has 150 MOhm.
- Arrangement according to claim 1, characterised in that the first resistance (R1) has 5.1 kOhm and the third resistance (R3) has 43 kOhm.
- Arrangement according to claim 4, characterised in that there is approximately + 145 v DC voltage at the side of the third resistance (R3) remote from point (P).
- Arrangement according to any one of claims 1 to 5, characterised in that the transistor (T) operated as a base circuit is a transistor that is voltage-stable up to about 200 v.
- Arrangement according to claim 6, characterised in that the DC voltage source (S) applies a DC voltage of less than -1 v to the base of the transistor (T).
- Arrangement according to any one of claims 1 to 7, characterised in that the operational amplifier (OPA) is formed from a Difet circuit.
- Arrangement according to claim 1, characterised in that the detector (3) has a number of 336 signal leads for each energy (E1, E2).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19758363A DE19758363C2 (en) | 1997-12-22 | 1997-12-22 | Arrangement for digital subtraction angiography |
DE19758363 | 1997-12-22 | ||
PCT/EP1998/008037 WO1999032901A1 (en) | 1997-12-22 | 1998-12-14 | Device for digital subtraction angiography |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1042689A1 EP1042689A1 (en) | 2000-10-11 |
EP1042689B1 true EP1042689B1 (en) | 2004-03-03 |
Family
ID=7853665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98966282A Expired - Lifetime EP1042689B1 (en) | 1997-12-22 | 1998-12-14 | Device for digital subtraction angiography |
Country Status (8)
Country | Link |
---|---|
US (1) | US6356617B1 (en) |
EP (1) | EP1042689B1 (en) |
JP (1) | JP3679326B2 (en) |
CN (1) | CN1172194C (en) |
AT (1) | ATE261132T1 (en) |
DE (2) | DE19758363C2 (en) |
DK (1) | DK1042689T3 (en) |
WO (1) | WO1999032901A1 (en) |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6990368B2 (en) | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography |
US6922462B2 (en) * | 2002-07-31 | 2005-07-26 | Ge Medical Systems Global Technology Company, Llc | Method, system and computer product for plaque characterization |
US6891918B2 (en) * | 2002-11-27 | 2005-05-10 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for acquiring perfusion data |
EP1729638A4 (en) * | 2004-03-29 | 2007-07-18 | Cmt Medical Technologies Ltd | Apparatus and method of improved angiographic imaging |
US7286640B2 (en) * | 2004-04-09 | 2007-10-23 | Xradia, Inc. | Dual-band detector system for x-ray imaging of biological samples |
US7412024B1 (en) | 2004-04-09 | 2008-08-12 | Xradia, Inc. | X-ray mammography |
CN101484073B (en) * | 2006-07-28 | 2011-04-13 | 株式会社岛津制作所 | Radiographic apparatus |
JP2009022450A (en) * | 2007-07-18 | 2009-02-05 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus and image preparation method |
JP5274812B2 (en) * | 2007-11-12 | 2013-08-28 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | X-ray CT apparatus and image processing apparatus |
US7686511B2 (en) * | 2008-03-06 | 2010-03-30 | Moshe Ein-Gal | Angular irradiation in an upright treatment system |
US8188688B2 (en) * | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US8288742B2 (en) * | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US8144832B2 (en) * | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8309941B2 (en) * | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8378321B2 (en) * | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8519365B2 (en) * | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8093564B2 (en) * | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
EP2283710B1 (en) * | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy apparatus |
US8436327B2 (en) * | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US8373145B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
WO2009142547A2 (en) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US8373146B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8569717B2 (en) * | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US7939809B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9044600B2 (en) * | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US20090314960A1 (en) * | 2008-05-22 | 2009-12-24 | Vladimir Balakin | Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
EP2283713B1 (en) * | 2008-05-22 | 2018-03-28 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy apparatus |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US8624528B2 (en) * | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US7940894B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8710462B2 (en) * | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
WO2009142548A2 (en) * | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
AU2009249867B2 (en) | 2008-05-22 | 2013-05-02 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373143B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US8896239B2 (en) * | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
MX2010012714A (en) | 2008-05-22 | 2011-06-01 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus. |
US8129694B2 (en) * | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8198607B2 (en) * | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
WO2009142545A2 (en) * | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) * | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
BRPI0924903B8 (en) | 2009-03-04 | 2021-06-22 | Zakrytoe Aktsionernoe Obshchestvo Protom | apparatus for generating a negative ion beam for use in charged particle radiation therapy and method for generating a negative ion beam for use with charged particle radiation therapy |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
WO2013058130A1 (en) | 2011-10-19 | 2013-04-25 | ダイキン工業株式会社 | Laminate |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8006216A (en) * | 1980-11-13 | 1982-06-01 | Philips Nv | WAVELENGTH SENSITIVE RADIATION EXAMINATION DEVICE. |
DE3517101C1 (en) * | 1985-05-11 | 1986-10-09 | Deutsches Elektronen-Synchrotron Desy, 2000 Hamburg | Device for digital subtraction angiography in energy subtraction mode |
US4780897A (en) * | 1986-05-06 | 1988-10-25 | General Electric Company | Dual energy imaging with kinestatic charge detector |
US4888562A (en) * | 1987-09-09 | 1989-12-19 | National Semiconductor Corporation | Low noise, high speed current or voltage amplifier |
DE3901837A1 (en) * | 1989-01-23 | 1990-07-26 | H J Dr Besch | Image-generating radiation detector with pulse integration |
US4973846A (en) * | 1989-03-10 | 1990-11-27 | Expert Image Systems, Inc. | Linear radiation detector |
US5508526A (en) * | 1995-02-01 | 1996-04-16 | Keithley Instruments, Inc. | Dual entrance window ion chamber for measuring X-ray exposure |
-
1997
- 1997-12-22 DE DE19758363A patent/DE19758363C2/en not_active Expired - Fee Related
-
1998
- 1998-12-14 DK DK98966282T patent/DK1042689T3/en active
- 1998-12-14 WO PCT/EP1998/008037 patent/WO1999032901A1/en active IP Right Grant
- 1998-12-14 JP JP2000525767A patent/JP3679326B2/en not_active Expired - Fee Related
- 1998-12-14 AT AT98966282T patent/ATE261132T1/en not_active IP Right Cessation
- 1998-12-14 DE DE59810932T patent/DE59810932D1/en not_active Expired - Fee Related
- 1998-12-14 EP EP98966282A patent/EP1042689B1/en not_active Expired - Lifetime
- 1998-12-14 US US09/582,063 patent/US6356617B1/en not_active Expired - Fee Related
- 1998-12-14 CN CNB988134489A patent/CN1172194C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1284171A (en) | 2001-02-14 |
CN1172194C (en) | 2004-10-20 |
JP3679326B2 (en) | 2005-08-03 |
DE59810932D1 (en) | 2004-04-08 |
DK1042689T3 (en) | 2004-05-10 |
JP2001526921A (en) | 2001-12-25 |
DE19758363C2 (en) | 2002-04-18 |
DE19758363A1 (en) | 1999-07-01 |
US6356617B1 (en) | 2002-03-12 |
ATE261132T1 (en) | 2004-03-15 |
EP1042689A1 (en) | 2000-10-11 |
WO1999032901A1 (en) | 1999-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1042689B1 (en) | Device for digital subtraction angiography | |
DE1589950A1 (en) | Radiation scanning device | |
DE2627448C2 (en) | ||
DE102010015422A1 (en) | X-ray detector with a directly converting semiconductor layer and calibration method for such an X-ray detector | |
DE3517101C1 (en) | Device for digital subtraction angiography in energy subtraction mode | |
DE2724594C2 (en) | Ionization chamber detector assembly | |
DE2741732C2 (en) | Layering device for the production of transverse layer images | |
CH616581A5 (en) | ||
DE2744226A1 (en) | LAYER FOR THE PRODUCTION OF TRANSVERSAL LAYER IMAGES | |
DE1598121A1 (en) | Method and device for standardizing counting in scintillation spectrometry | |
DE2413041C2 (en) | Circuit arrangement for correcting image errors in a scintillation camera | |
EP0217464B1 (en) | Method for determining photoattenuation in a domain of a test object, and arrangement for carrying out the method | |
DE2912210C2 (en) | Scintillator arrangement with a scintillator body of trapezoidal cross-section | |
DE10156629A1 (en) | Arrangement of controls | |
DE3300406A1 (en) | REFERENCE DETECTOR DEVICE FOR MULTIDETECTOR TOMODE SITOMETER AND TOMODE SITOMETER EQUIPPED WITH THIS DEVICE | |
DE2521098A1 (en) | IMPROVED LINE SCANNER FOR THE ENTIRE BODY | |
DE2411841C3 (en) | Auger electron spectrometer | |
DE2828240A1 (en) | METHOD AND DEVICE FOR DETERMINING THE ELECTRON DENSITY IN A PARTIAL VOLUME | |
EP3795082A1 (en) | Method and apparatus for generating a spectral computer tomography image data set | |
DE3433109C2 (en) | ||
DE2611706C2 (en) | Computer tomograph | |
DE3438466A1 (en) | RADIATION DETECTOR ARRANGEMENT | |
DE3031136C2 (en) | Device for the pictorial representation of an X-ray radiation | |
EP0033466B1 (en) | Radiation diagnosis device | |
DE7928023U1 (en) | Layering device for the production of transverse layer images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000721 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20020517 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040303 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040303 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040303 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040303 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59810932 Country of ref document: DE Date of ref document: 20040408 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040614 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061109 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20061115 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061116 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20061120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20061130 Year of fee payment: 9 Ref country code: AT Payment date: 20061130 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20061204 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20061228 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070212 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY Free format text: DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY#NOTKESTRASSE 85#22603 HAMBURG (DE) -TRANSFER TO- DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY#NOTKESTRASSE 85#22603 HAMBURG (DE) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040803 |
|
BERE | Be: lapsed |
Owner name: DEUTSCHES ELEKTRONEN-SYNCHROTRON *DESY Effective date: 20071231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071214 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071215 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071214 |