[go: up one dir, main page]

EP1033478A2 - Boítier pour une turbomachine thermique - Google Patents

Boítier pour une turbomachine thermique Download PDF

Info

Publication number
EP1033478A2
EP1033478A2 EP00810115A EP00810115A EP1033478A2 EP 1033478 A2 EP1033478 A2 EP 1033478A2 EP 00810115 A EP00810115 A EP 00810115A EP 00810115 A EP00810115 A EP 00810115A EP 1033478 A2 EP1033478 A2 EP 1033478A2
Authority
EP
European Patent Office
Prior art keywords
housing
thermal
welding
parts
turbomachine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00810115A
Other languages
German (de)
English (en)
Other versions
EP1033478A3 (fr
Inventor
Pierre Meylan
Richard Brendon Scarlin
Heinrich Klotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Alstom Power Switzerland Ltd, Alstom Schweiz AG filed Critical ABB Alstom Power Switzerland Ltd
Publication of EP1033478A2 publication Critical patent/EP1033478A2/fr
Publication of EP1033478A3 publication Critical patent/EP1033478A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar

Definitions

  • the invention relates to the field of turbine construction. It affects one Housing for a thermal turbo machine, which consists of different Materials.
  • Cast steel housings for thermal turbomachinery are known, especially steam turbines.
  • the housings preferably consist of low-alloyed CrMo or CrMoV cast steel grades.
  • the use of 9 to 13% Cr alloys for turbine housings are also known.
  • the housing or housing halves what high temperatures exposed, cast as a whole, i.e. they consist of one Material. Intended production welding or occasionally required Repair welds are made with the same or a Housing material related material executed by the respective cast manufacturer.
  • Housings are known from turbine construction, the parts of which are made of different materials. These housing parts are screwed together, d. H. there is a non-positive connection. As for example, combined housings made of cast steel and Ductile iron components are called by means of a flange connection are connected.
  • the invention tries to avoid all these disadvantages. You have the task to develop a turbomachine housing that is inexpensive is to be manufactured, in which the material selection corresponds to the respective Operating conditions is adjusted, the thermal differential expansions between the shaft and housing are minimized and in which an ovalization of the Housing parts can be largely avoided during operation.
  • this is the case with a turbomachine housing which consists of at least two housing parts made of different materials exists, achieved in that the at least two housing parts by means of a cohesive joining process are joined together and the type of used material the respective temperature requirements and mechanical loads during operation of the machine is adjusted.
  • the advantages of the invention include that Screw connections between the individual housing parts are eliminated.
  • the joint are mechanically problem-free and tight under all operating conditions.
  • the housing according to the operating requirements is economical to manufacture with optimal materials and thermal Flexibility compared to the state-of-the-art solutions is increased.
  • the housing in the axial direction different materials.
  • the materials for the housing are included matched to the choice of shaft material. This can be advantageous thermal differential expansions between the shaft and the housing are minimized become.
  • the housing has different circumferences Materials with different coefficients of thermal expansion consists. This advantageously leads to a reduction in the signs of ovalization of the housing.
  • FIG. 1 shows in a longitudinal section with a double-shell high-pressure steam turbine a housing according to the invention in a first embodiment of the Invention while FIGS. 2 and 3 cross sections of the high pressure steam turbine represent along lines II-II and III-III in Fig. 1.
  • the steam turbine essentially consists of one, here four Disks 1, 2, 3, 4 composite shaft that carries the blades 51, an inner housing 11, 12, 13 which carries the guide vanes 50 and one Outer housing 41.
  • the inner housing is in a horizontal plane separated into two housing halves by the turbine axis.
  • the discs 1, 2, 3 and 4 each consist of different materials. she are according to the known prior art by means of welding connected to one another, as in FIG. 1 using the wave weld seams 5, 6, 7 is recognizable.
  • the disc 1, which highest temperatures (approx. 620 ° C) is made of a high-alloy 9 to 13% Cr steel, for example.
  • the disc 2 is comparatively lower, but still high Exposed to temperatures (approx. 560 ° C).
  • the discs 3 and 4 only have to can withstand relatively moderate temperatures (approx. 450 ° C) and are therefore from one unalloyed steel.
  • the inner housing like the shaft, is now made of different materials Parts, in the present exemplary embodiment from three parts 11, 12, 13 materially joined together, the housing part 11 with the housing part 12 is welded together to form a circular seam 15, and that Housing part 12 at its other end in turn with the housing part 13 below Formation of a housing weld seam (circular seam) 16 is welded together.
  • Electrode welding by hand MIG
  • MAG by hand or by machine, submerged arc welding, Electron beam welding or laser beam welding for use come.
  • the housing part 11 for maximum temperature application consists, for. B. from a 9th up to 13% Cr steel, the housing part 12 is made for high temperature application e.g. B. from a low-alloy CrMoV steel and the housing part 13 for Low temperature application exists e.g. B. from an unalloyed steel.
  • the inner casing of the high-pressure steam turbine is thus out in the axial direction different materials, the type of material used the respective temperature requirements and mechanical loads in the Operation is adjusted.
  • the housing parts 11, 12, 13 can, depending on the design and requirements be cast or forged, with the parts 12 and 13 especially for Suitable for forging.
  • the housing parts can be in the foundry, in the forge or at one suitable suppliers are welded together.
  • the two housing halves of the inner housing are presented here Embodiment after welding, machining and assembling the Blading held together by shrink rings 21, 22, 23.
  • the Shrink rings 21, 22, 23 are cooled by the exhaust steam flow, so that they do not have to consist of high-alloy expensive materials, but for example from inexpensive forged low-alloy CrMoV steels can exist.
  • the choice of material for the parts 12, 13, 14 of the inner housing is thus on Choice of shaft material, d. H. parts 1 to 4.
  • Fig. 2 the cross section through the vapor, that the wave washer 1 and part 11 of the inner casing of the steam turbine the same Temperature conditions (highest temperature) are subject and therefore off should be made of the same material, e.g. B. a Ni-based alloy.
  • Fig. 3 shows a cross-section in the vicinity of the exhaust steam, from which shows that the wave washer 3 the same temperature conditions (low temperature) is subjected as the inner housing part 13 and therefore the Parts 3 and 13 advantageously made of the same material, e.g. B. a low-alloy CrMoV steel should be made.
  • thermal turbomachines can be built economically at the highest pressures and temperatures.
  • the use of expensive high-alloy materials is to a minimum reduced.
  • the castings are of comparatively modest dimensions, which improves delivery times and has a positive impact on feasibility, Means costs and lead times.
  • many parts can be advantageous be forged.
  • parts that pass through Welding is associated with the highest demands.
  • FIG. 4 and 5 show a second exemplary embodiment of the invention on the basis of a double-shell, double-flow steam turbine, FIG. 4 a longitudinal section the turbine and Fig. 5 shows a detail of the flange connection in the Dividing plane shows.
  • the steam turbine shown can be both high pressure and also be a medium pressure turbine.
  • each of the Turbine essentially from one of several parts 1, 2, 3, 4 composite shaft, which carries the blades 51, an inner housing 11, 12, 13, which carries the guide vanes 50 and an outer housing 41 Shaft parts 1, 2, 3, 4 are each by means of the weld seams 5, 6, 7 put together while the various housing parts of the inner housing 11, 12, 13 by means of the housing weld seams denoted by 15 and 16 are put together.
  • the housing halves not by shrink rings, but by Flange fittings 43 held together.
  • the screw material is in Dependence on the housing material selected. The screw material and that Housing material should have the same coefficient of expansion as possible.
  • the coat must be welded all around. For welding work to save and ensure the necessary flexibility, the Flange parts not welded through, which can be seen well in FIG. 5.
  • FIG. 6 finally shows a third embodiment variant of the invention in a section perpendicular to the turbine axis through a bladed part of a housing.
  • a flange 42 is welded to a housing wall 14 by means of a longitudinal housing seam 17. Depending on requirements, this longitudinal seam 17 can extend over part of the housing length or over the entire length.
  • the thick and thus thermally inert flange parts 42 consist of a material with a higher thermal expansion coefficient than the relatively thin housing wall 14.
  • the separating flange 42 is made of a CrMoV steel with a thermal expansion coefficient of approximately 13x10 -6 K -1 and the housing wall 14 consist of a 9 to 13% Cr steel with a thermal expansion coefficient of about 11x10 -6 K -1 .
  • the invention is not limited to that described Embodiment limited.
  • the different housing parts can For example, instead of using welding, also joined by soldering his. It is also conceivable for such housings also for others Turbomachinery, e.g. B. gas turbines or axial compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP00810115A 1999-03-02 2000-02-10 Boítier pour une turbomachine thermique Withdrawn EP1033478A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19909056 1999-03-02
DE19909056A DE19909056A1 (de) 1999-03-02 1999-03-02 Gehäuse für eine thermische Turbomaschine

Publications (2)

Publication Number Publication Date
EP1033478A2 true EP1033478A2 (fr) 2000-09-06
EP1033478A3 EP1033478A3 (fr) 2002-04-17

Family

ID=7899408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810115A Withdrawn EP1033478A3 (fr) 1999-03-02 2000-02-10 Boítier pour une turbomachine thermique

Country Status (4)

Country Link
EP (1) EP1033478A3 (fr)
JP (1) JP2000257404A (fr)
CN (1) CN1266143A (fr)
DE (1) DE19909056A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101044A1 (fr) * 2008-03-13 2009-09-16 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
EP2119878A1 (fr) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
CH699864A1 (de) * 2008-10-31 2010-05-14 Alstom Technology Ltd Dampfturbine.
EP2196628A1 (fr) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Support d'aube directrice
EP2211022A1 (fr) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Volute d'entrée d'une turbine à vapeur et turbine à vapeur
EP2336506A1 (fr) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Turbine a vapeur dans une construction à trois coque
CN102581538A (zh) * 2012-03-16 2012-07-18 哈尔滨汽轮机厂有限责任公司 燃气轮机可转静叶机匣水平法兰装夹焊及回火装置
EP2479380A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
EP2479378A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
EP2479379A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
EP3561242A1 (fr) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Segment de carter de turbine soudé ainsi que carter de turbine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378629B2 (fr) 2002-07-01 2017-08-30 General Electric Technology GmbH Rotor de moteur thermique rotatif, ainsi que procédé de fabrication d'un tel rotor
JP2005113721A (ja) * 2003-10-06 2005-04-28 Hitachi Ltd 蒸気タービン
DE10348424A1 (de) * 2003-10-14 2005-05-19 Alstom Technology Ltd Geschweisster Rotor für eine thermische Maschine sowie Verfahren zur Herstellung eines solchen Rotors
CH698879B1 (de) * 2006-06-30 2009-11-30 Alstom Technology Ltd Strömungsmaschine.
DE102008000284A1 (de) * 2007-03-02 2008-09-04 Alstom Technology Ltd. Dampfturbine
DE112008002893A5 (de) * 2007-11-02 2010-09-16 Alstom Technology Ltd. Verfahren zur Bestimmung der Restlebensdauer eines Rotors einer thermisch belastenden Strömungsmaschine
DE102010012940A1 (de) * 2010-03-26 2011-09-29 Siemens Aktiengesellschaft Verfahren zum Herstellen einer stoffschlüssigen Verbindung zwischen wenigstens zwei Bauteilen einer Strömungsmaschine
EP2412473A1 (fr) * 2010-07-27 2012-02-01 Siemens Aktiengesellschaft Procédé de soudure de demi-coques
CN101905384B (zh) * 2010-07-29 2012-07-25 长沙赛尔机泵有限公司 压缩机机壳的焊装方法
CN103769541B (zh) * 2014-01-23 2017-02-01 中国人民解放军总参谋部第六十研究所 蜗壳中心分模成型方法及其成型工装
EP3072624A1 (fr) * 2015-03-23 2016-09-28 Siemens Aktiengesellschaft Élément d'arbre, procédé de production d'un élément d'arbre compose de deux matières différentes et turbomachine correspondante
JP6614503B2 (ja) * 2016-10-21 2019-12-04 三菱重工業株式会社 蒸気タービン及び蒸気タービンの制御方法
CN114542212A (zh) * 2022-03-09 2022-05-27 中国船舶重工集团公司第七0三研究所 一种新型船用汽轮机倒车汽缸

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219661A1 (de) * 1972-04-21 1973-10-31 Siemens Ag Verfahren zur herstellung von gehaeusen fuer dampfturbinen
US4551065A (en) * 1982-12-13 1985-11-05 Becker John H Composite horizontally or vertically split casing with variable casing ends
CH666937A5 (de) * 1985-01-31 1988-08-31 Bbc Brown Boveri & Cie Hochdruckdampfturbine.
DE4311675C2 (de) * 1993-04-08 1999-05-20 Abb Patent Gmbh Montagepaket für eine Turbine oder einen Turboverdichter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101044A1 (fr) * 2008-03-13 2009-09-16 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
WO2009112299A1 (fr) * 2008-03-13 2009-09-17 Siemens Aktiengesellschaft Turbine à gaz, à carter intérieur divisé
EP2119878A1 (fr) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
CH699864A1 (de) * 2008-10-31 2010-05-14 Alstom Technology Ltd Dampfturbine.
EP2196628A1 (fr) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Support d'aube directrice
EP2211022A1 (fr) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Volute d'entrée d'une turbine à vapeur et turbine à vapeur
CN102803661A (zh) * 2009-12-15 2012-11-28 西门子公司 三壳结构类型的汽轮机
WO2011082984A1 (fr) * 2009-12-15 2011-07-14 Siemens Aktiengesellschaft Turbine à vapeur en conception à triple enveloppe
EP2336506A1 (fr) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Turbine a vapeur dans une construction à trois coque
CN102803661B (zh) * 2009-12-15 2015-06-17 西门子公司 三壳结构类型的汽轮机
US9222370B2 (en) 2009-12-15 2015-12-29 Siemens Aktiengesellschaft Steam turbine in a three-shelled design
EP2479380A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
EP2479378A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
EP2479379A1 (fr) * 2011-01-21 2012-07-25 General Electric Company Rotor soudé, turbine à vapeur dotée d'un rotor soudé et procédé de production d'un rotor soudé
US8944761B2 (en) 2011-01-21 2015-02-03 General Electric Company Welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
CN102581538A (zh) * 2012-03-16 2012-07-18 哈尔滨汽轮机厂有限责任公司 燃气轮机可转静叶机匣水平法兰装夹焊及回火装置
CN102581538B (zh) * 2012-03-16 2014-08-13 哈尔滨汽轮机厂有限责任公司 燃气轮机可转静叶机匣水平法兰装夹焊及回火装置
EP3561242A1 (fr) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Segment de carter de turbine soudé ainsi que carter de turbine

Also Published As

Publication number Publication date
JP2000257404A (ja) 2000-09-19
EP1033478A3 (fr) 2002-04-17
CN1266143A (zh) 2000-09-13
DE19909056A1 (de) 2000-09-07

Similar Documents

Publication Publication Date Title
EP1033478A2 (fr) Boítier pour une turbomachine thermique
DE68910000T2 (de) Schweissen von Teilen, die durch einen Spalt getrennt sind, unter Verwendung eines Laserstrahls.
DE3100335C2 (de) Zusammengesetztes Turbinenrad
DE60036253T2 (de) Dampfturbinenschaufel für ein Dampfkraftwerk
EP1243754B1 (fr) Rotor de turbomachine et sa méthode de production
EP3409897B1 (fr) Agencement d'étanchéité pour une turbomachine, méthode de fabrication de l'agencement d'étanchéité et turbomachine
EP0604754A1 (fr) Rotor de turbine
DE2830358A1 (de) Verdichterlaufrad, insbesondere radialverdichterlaufrad fuer stroemungsmaschinen
DE102014116445B4 (de) Turbinengehäuse für einen Abgasturbolader
WO2009100749A1 (fr) Assemblage d'un arbre et d'un élément rotatif
EP1359292A1 (fr) Soupape allégée
DE1628376A1 (de) Axialverdichter
DE102008014680A1 (de) Leitgitteranordnung eines Abgasturboladers, Abgasturbolader und Verfahren zur Herstellung einer Leitgitteranordnung
DE102014204468A1 (de) Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
DE102012217560B4 (de) Turbinenläufer mit Hülsenzwischenstück, Abgasturbolader und ein Verfahren zur Herstellung des Turbinenläufers
DE19617539A1 (de) Rotor für eine thermische Turbomaschine
DE102005037031A1 (de) Turbolader mit Titankomponente
EP0999349B1 (fr) Turbine axiale
EP3483399A1 (fr) Dispositif d'étanchéité pour une turbomachine, procédé de fabrication d'un dispositif d'étanchéité et turbomachine
DE102006008836A1 (de) Verfahren zur Herstellung und/oder Reparatur eines integral beschaufelten Rotors
EP2346639B1 (fr) Procédé d'assemblage
DE1957614A1 (de) Verfahren zur Herstellung der Verbindung von gekuehlten oder ungekuehlten Laufschaufeln mit dem Schaufelkranz einer zugehoerigen Radscheibe
EP2762684A1 (fr) Support d'étanchéité à base d'aluminure de titane pour une turbomachine
EP2196628A1 (fr) Support d'aube directrice
EP2871418B1 (fr) Chambre de combustion d'une turbine à gaz et son procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 01D 25/24 A, 7F 01D 11/18 B

17P Request for examination filed

Effective date: 20020911

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20030612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030926