[go: up one dir, main page]

EP1013884B1 - Turbinenschaufel mit aktiv gekühltem Deckbandelememt - Google Patents

Turbinenschaufel mit aktiv gekühltem Deckbandelememt Download PDF

Info

Publication number
EP1013884B1
EP1013884B1 EP99811187A EP99811187A EP1013884B1 EP 1013884 B1 EP1013884 B1 EP 1013884B1 EP 99811187 A EP99811187 A EP 99811187A EP 99811187 A EP99811187 A EP 99811187A EP 1013884 B1 EP1013884 B1 EP 1013884B1
Authority
EP
European Patent Office
Prior art keywords
cooling
turbine blade
shroud
shroud band
blade according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99811187A
Other languages
English (en)
French (fr)
Other versions
EP1013884A3 (de
EP1013884A2 (de
Inventor
Alexander Dr. Beeck
Ibrahim Dr. El-Nashar
Beat Von Arx
Bernhard Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19860244A external-priority patent/DE19860244B4/de
Priority claimed from DE19860245A external-priority patent/DE19860245A1/de
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1013884A2 publication Critical patent/EP1013884A2/de
Publication of EP1013884A3 publication Critical patent/EP1013884A3/de
Application granted granted Critical
Publication of EP1013884B1 publication Critical patent/EP1013884B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the present invention relates to the field of gas turbines. It concerns an air cooled turbine blade which is perpendicular to the blade tip Has to the blade longitudinal axis extending shroud element, wherein the shroud element for the purpose of cooling a plurality of cooling holes is traversed, which input side with at least one through the Turbine blade to the blade tip extending cooling air duct in conjunction stand and on the output side in the outer space surrounding the turbine blade lead.
  • the basic idea of the invention consists in the side edges of the shroud elements To arrange recesses into which the cooling holes open.
  • the recesses of opposite shroud elements form a Gap.
  • the cooling air is divided into two partial flows. One Part flows to the top and feeds a cavity between the spaced ones Sealing ribs.
  • the other part flows to the shroud bottom and mixes there with the hot gases under adjustment of a mixing temperature, which is the thermal Reduced load in this area. Due to the gap geometry, the ratio the up and down flowing subsets influenced.
  • Cooling holes Means for improving the heat transfer between cooling air and shroud element are proposed.
  • the means for improving the heat transfer at the bore walls can Roughnesses, ribs and / or turbulators include.
  • the drilling can be done by means of the so-called “STEM drilling” process to be created.
  • STEM drilling for example, in the US-A-5,306,401 in connection with the manufacture of cooling holes in turbine blades has been described, can be easily and reliably cooling holes produce with improved heat transfer properties.
  • a preferred embodiment of a turbine blade according to the invention is shown in plan view.
  • the turbine blade 10 comprises the actual blade profile 23 and a shroud element 11 arranged transversely thereto on the blade tip, which together with the shroud elements of the other blades (not shown) results in a continuous, mechanically stabilizing shroud.
  • the blade profile 23 is partially hollow in the interior and traversed by one or more cooling air channels 18, which guide cooling air from the blade root to the blade tip.
  • the shroud element 11 has on its upper side 22 two parallel running in the direction of movement of the blade tip sealing ribs 12 and 13, which together with the opposite housing wall 20 of the gas turbine form a connected by gaps with the environment cavity 21.
  • cooling holes 17 Inside the shroud element 11 extend between and substantially parallel to the ribs 12, 13 a plurality of cooling holes 17, starting from the center to the outside.
  • the cooling holes 17 are on the input side with the cooling air duct 18 in connection and are supplied by this with cooling air.
  • the cooling holes 17 do not extend entirely to the lateral end or edge of the shroud element 11, but each open from the side into an elongated, recessed on the top 22 in the shroud element 11 recess 15th Es It is conceivable that the cooling bores 17 run slightly obliquely and deviate from one another by parallelism, if it is necessary to optimize the cooling over the entire surface of the shroud element 11.
  • the cooling holes 17 in the cooling arrangement shown are preferably manufactured using the so-called "STEM drilling" method described in the US Pat 5,306,401 is described in detail. This is what it is (through change the feed), the surface of the cooling holes 17 with roughness, Equip ribs or turbulators. This leads to a significantly more efficient Cooling, because the shape of the cooling hole can be optimized. Farther it is advantageous, the cooling holes 17, preferably on the input side, i. in the area the cooling air supply to the profile 23, each with a throttle point 19 equip. This makes it possible to selectively limit the cooling air mass flow and to obtain a much more efficient cooling.
  • the embodiment according to FIG. 2 differs from that according to FIG. 1 in that the cooling bores 17 are designed as diffuser 16a or diffuser-like from the throttle point 19, which is arranged respectively on the inlet side of each cooling bore.
  • the cooling holes have an oval configuration. This increases, like the equipment with internal roughness or the diffuser-like extension, the effective surface area available for heat transfer.
  • the cooling holes 17 may additionally or alternatively have other configurations than those described above. As such, for example, regularly or irregularly held depressions or corrugations are conceivable.
  • the side edges 25 of the shroud elements 11 but designed so that adjacent elements 11 are only partially in contact, the area of the exiting cooling holes but is withdrawn in contrast in a depression. Between the adjacent elements, the opposite recesses 15 form gaps 26 into which the cooling air enters.
  • This embodiment reliably prevents closure of the mouths by adjacent shroud elements. It ensures that the cooling air can always pass through the cooling holes 17, even if two adjacent shroud elements 11 are in mechanical contact. The cooling air entering from the two adjacent elements 11 into the gap 26 is divided into two partial flows.
  • a partial flow flows upward and leads to an inflation of the cavity 21 above the shroud and thus contributes to a reduction of the penetrating mass flow of hot gas 24, while the other partial flow reaches the underside of the shroud and there mixes with the hot gases.
  • the resulting mixing temperature reduces the thermal load in this area. Due to the structural design of the gap, the quantitative ratio of the two partial flows can be influenced. Thus, the upper and lower sides can have a different gap width or the boundary walls can be inclined or fluidically designed differently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft eine luftgekühlte Turbinenschaufel, welche an der Schaufelspitze ein sich senkrecht zur Schaufellängsachse erstreckendes Deckbandelement aufweist, wobei das Deckbandelement zum Zwecke der Kühlung von einer Mehrzahl von Kühlbohrungen durchzogen ist, welche eingangsseitig mit wenigstens einem durch die Turbinenschaufel zur Schaufelspitze verlaufenden Kühlluftkanal in Verbindung stehen und ausgangsseitig in den die Turbinenschaufel umgebenden Aussenraum münden.
Gattungsgemässe Turbinenschaufeln sind aus DE 198 13 173 oder aus US 5,785,496 bekannt.
STAND DER TECHNIK
Moderne Gasturbinen arbeiten bei extrem hohen Temperaturen. Dies erfordert eine intensive Kühlung der Turbinenschaufeln. Eine besondere Schwierigkeit besteht darin, die exponierten Bereiche der Schaufeln zuverlässig zu kühlen. Einer dieser Bereiche sind das Deckband bzw. die Deckbandelemente der Schaufel. Eine Möglichkeit der Kühlung der Deckbandelemente ist in der eingangs genannten Druckschrift DE 198 13 173 beschrieben worden. Dort wird vorgeschlagen (siehe die dortigen Fig. 3 und 4), die Deckbandelemente durch eine Reihe paralleler Kühlbohrungen zu kühlen, die sich von der (zentralen) Laufschaufel durch das Deckbandelement hindurch zur äusseren Kante des Deckbandelementes erstrekken und dort in den Aussenraum münden.
Eine weitere Möglichkeit zur Deckbandkühlung offenbart GB 1605335. Eine Anzahl paralleler Kühlbohrungen erstreckt sich in Rotationsrichtung durch das Deckbandelement und mündet in einer seitlichen Vertiefung. Das jeweils benachbarte Deckbandelement speist mit seinen Kühlbohrungen ebenfalls den durch die Vertiefung gebildeten Hohlraum und schliesst diesen gleichzeitig ab. Über weitere Kühlbohrungen gelangt die Kühlluft aus dem Hohlraum in den Aussenraum am oberen Rand des Deckbandes.
Die veröffentlichte japanische Patentanmeldung JP 58047104 offenbart eine Deckbandkühlung, die sich dadurch auszeichnet, dass die aus einem zentralen Kühlluftkanal der Schaufel den Deckbandelementen zugeführte Kühlluft über unterschiedliche Kühlluftpfade aufgeteilt wird, welche an unterschiedlichen Stellen des Deckbandes in den Aussenraum münden.
Diese bekannten Lösungen haben allerdings die folgenden Nachteile:
  • Stossen zwei Deckbandelemente benachbarter Schaufeln seitlich aneinander (wie dies z.B. aus Fig. 3 der US-A-5,482,435 zu ersehen ist), werden die Mündungen der Kühlbohrungen zumindest teilweise verschlossen und das Deckbandelement wird im Betrieb überhitzt.
  • Die bekannte Deckbandkühlung ändert wegen der seitlich angeordneten Mündungen nicht die Ueberströmbedingungen über das Deckband, das heisst, Druck und Temperatur auf der Oberseite des Deckbandes bleiben gleich. Dies wird auch nicht dadurch geändert, dass - wie in der US-A-5,460,486 vorgeschlagen - gewisse Kühlbohrungen auf der Unterseite des Deckbandelementes münden.
  • Die Kühlwirkung beruht hautpsächlich auf der durch Vermischung der austretenden Kühlluft mit dem Heissgas abgesenkten Mischtemperatur in der Deckbandumgebung. Es werden in den Kühlbohrungen keine Massnahmen getroffen, um den Wärmeübergang zwischen der Kühlluft und dem Deckbandelement zu intensivieren.
DARSTELLUNG DER ERFINDUNG
Es ist daher Aufgabe der Erfindung, eine Turbinenschaufel mit luftgekühltem Deckbandelement zu schaffen, bei welcher die genannten Nachteile auf einfache Weise vermieden werden, indem die Kühlluftbohrungen so in den Aussenraum münden, dass die exponierten Regionen des Deckbandes zuverlässig mit der Kühlluft beaufschlagt und zusätzlich gekühlt werden.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen geben die abhängigen Ansprüche wieder.
Der Grundgedanke der Erfindung besteht darin, in den Seitenkanten der Deckbandelemente Ausnehmungen anzuordnen, in die die Kühlbohrungen münden. Die Ausnehmungen gegenüberliegender Deckbandelemente bilden dabei einen Spalt. Beim Austritt in den Spalt teilt sich die Kühlluft in zwei Teilströme auf. Ein Teil strömt zur Oberseite hin und speist eine Kavität zwischen den beabstandeten Dichtrippen. Der andere Teil strömt zur Deckbandunterseite und mischt sich dort mit den Heissgasen unter Einstellung einer Mischtemperatur, die die thermische Belastung in diesem Bereich verringert. Durch die Spaltgeometrie wird das Verhältnis der nach oben und unten abströmenden Teilmengen beeinflusst.
In einer zweckmässigen Ergänzung der Erfindung wird vorgeschlagen, in den Kühlbohrungen Mittel zur Verbesserung des Wärmeübergangs zwischen Kühlluft und Deckbandelement vorzusehen.
Die Mittel zur Verbesserung des Wärmeübergangs an den Bohrungswänden können Rauhigkeiten, Rippen und/oder Turbulatoren umfassen. In an sich bekannter Weise können die Bohrungen mittels des sogenannten "STEM drilling"-Prozesses erstellt werden. Insbesondere durch das "STEM drilling", das beispielsweise in der US-A-5,306,401 im Zusammenhang mit der Herstellung von Kühllöchern in Turbinenschaufeln beschrieben worden ist, lassen sich einfach und zuverlässig Kühlbohrungen mit verbesserten Wärmeübergangseigenschaften erzeugen.
Eine bessere Ausnutzung der Kühlluft kann weiterhin erreicht werden, wenn gemäss einer anderen bevorzugten Ausführungsform der Erfindung in den Kühlbohrungen jeweils eine Drosselstelle zur Begrenzung des Kühlluftmassenstromes vorgesehen ist, und die Drosselstellen jeweils an der Eingangsseite der Kühlbohrungen angeordnet sind.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
Fig. 1
Draufsicht zweier Deckbandelemente mit zur Seitenkante hin austretenden Kühlbohrungen
Fig. 2
Teilschnittdarstellung eines Deckbandelementes gemäss Fig. 6 in einer Ausführungsform mit sich diffusorartig erweiternden Kühlbohrungen
Fig. 3
Seitenansicht eines Deckbandelementes gemäss Fig. 1 mit Kühlbohrungen von kreisförmigem Querschnitt
Fig. 4
Seitenansicht eines Deckbandelementes gemäss Fig. 1 mit Kühlbohrungen von ovalem Querschnitt
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
In Fig. 1 ist in der Draufsicht eine bevorzugte Ausführungsform einer Turbinenschaufel nach der Erfindung dargestellt. Die Turbinenschaufel 10 umfasst das eigentliche Schaufelprofil 23 und ein quer dazu an der Schaufelspitze angeordnetes Deckbandelement 11, welches zusammen mit den Deckbandelementen der anderen (nicht gezeigten) Schaufeln ein durchgehendes, mechanisch stabilisierendes Deckband ergibt. Das Schaufelprofil 23 ist im Inneren teilweise hohl und von einem oder mehreren Kühlluftkanälen 18 durchzogen, die Kühlluft vom Schaufelfuss bis in die Schaufelspitze leiten. Das Deckbandelement 11 hat auf seiner Oberseite 22 zwei parallel in Bewegungsrichtung der Schaufelspitze verlaufende Dichtrippen 12 und 13, die zusammen mit der gegenüberliegenden Gehäusewand 20 der Gasturbine eine durch Spalte mit der Umgebung verbundene Kavität 21 bilden.
Im Inneren des Deckbandelementes 11 verlaufen zwischen und im wesentlichen parallel zu den Rippen 12, 13 mehrere Kühlbohrungen 17 von der Mitte ausgehend nach aussen. Die Kühlbohrungen 17 stehen eingangsseitig mit dem Kühlluftkanal 18 in Verbindung und werden von diesem mit Kühlluft versorgt. Wie aus Fig. 1 entnehmen kann, erstrecken sich die Kühlbohrungen 17 nicht ganz bis zum seitlichen Ende bzw. Rand des Deckbandelementes 11, sondern münden jeweils von der Seite her in eine längliche, auf der Oberseite 22 in das Deckbandelement 11 eingelassen Vertiefung 15. Es ist denkbar, die Kühlbohrungen 17 leicht schräg und von einer Parallelität untereinander abweichend verlaufen zu lassen, wenn es zur Optimierung der Kühlung über die gesamte Fläche des Deckbandelementes 11 nötig ist.
Die Kühlbohrungen 17 in der gezeigten Kühlungsanordnung werden vorzugsweise mit dem sogenannten "STEM drilling"-Verfahren hergestellt, das in der US 5,306,401 in allen Einzelheiten beschrieben ist. Dadurch ist es (durch Veränderung des Vorschubs) möglich, die Oberfläche der Kühlbohrungen 17 mit Rauhigkeiten, Rippen oder Turbulatoren auszurüsten. Dies führt zu einer deutlich effizienteren Kühlung, weil die Form der Kühlbohrung optimiert werden kann. Weiterhin ist es vorteilhaft, die Kühlbohrungen 17, vorzugsweise eingangsseitig, d.h. im Bereich der Kühlluftversorgung am Profil 23, jeweils mit einer Drosselstelle 19 auszustatten. Dadurch wird es möglich, den Kühlluftmassenstrom gezielt zu begrenzen und eine deutlich effizientere Kühlung zu erhalten.
Die Ausführungsform gemäss Fig. 2 unterscheidet sich von jener gemäss Fig. 1 darin, dass die Kühlbohrungen 17 ab der Drosselstelle 19, welche jeweils an der Eingangsseite jeder Kühlbohrung angeordnet ist, als Diffusor 16a oder diffusorähnlich ausgebildet sind.
Nach einer weiteren Ausführungsform - dargestellt in Fig.4 - weisen die Kühlbohrungen eine ovale Konfiguration auf. Dies erhöht, wie die Ausrüstung mit inneren Rauhigkeiten oder die diffusorartige Erweiterung, die zur Wärmeübertragung zur Verfügung stehende wirksame Oberfläche.
Die Kühlbohrungen 17 können darüber hinaus oder alternativ andere Konfigurationen aufweisen als die oben beschriebenen. Als solche sind beispielsweise regelmässig oder unregelmässig gehaltene Vertiefungen oder Wellungen denkbar.
Zur Vermeidung der Nachteile des Standes der Technik sind die Seitenkanten 25 der Deckbandelemente 11 aber so ausgeführt, dass benachbarte Elemente 11 nur bereichsweise in Kontakt stehen, der Bereich der austretenden Kühlbohrungen aber demgegenüber in einer Vertiefung zurückgenommen ist. Zwischen den benachbarten Elementen bilden die gegenüberliegenden Vertiefungen 15 Spalte 26, in die die Kühlluft eintritt.
Diese Ausführung verhindert zuverlässig ein Verschliessen der Mündungen durch benachbarte Deckbandelemente. Sie gewährleistet, dass die Kühlluft immer durch die Kühlbohrungen 17 hindurchtreten kann, auch wenn zwei benachbarte Deckbandelemente 11 in mechanischem Kontakt stehen.
Die aus beiden benachbarten Elementen 11 in den Spalt 26 eintretende Kühlluft teilt sich in zwei Teilströme auf. Ein Teilstrom strömt nach oben und führt zu einem Aufblasen der Kavität 21 oberhalb des Deckbandes und trägt damit zu einer Verkleinerung des eindringenden Massenstromes an Heissgas 24 bei, während der andere Teilstrom auf die Unterseite des Deckbandes gelangt und sich dort mit den Heissgasen mischt. Die sich einstellende Mischtemperatur verringert die thermische Belastung in diesem Bereich.
Durch die konstruktive Gestaltung des Spaltes kann das Mengenverhältnis der beiden Teilströme beeinflusst werden. So können Ober- und Unterseite eine unterschiedliche Spaltweite aufweisen oder die Begrenzungswände geneigt oder strömungstechnisch unterschiedlich ausgebildet sein.
BEZUGSZEICHENLISTE
10
Turbinenschaufel
11
Deckbandelement
12,13
Dichtrippen
15
Vertiefung
17
Kühlbohrung
18
Kühlluftkanal
19
Drosselstelle
20
Gehäusewand
21
Kavität
22
Oberseite (Deckbandelement)
23
Schaufelprofil
24
Heissgas
25
Seitenkante des Deckbandelements
26
Spalt zwischen den Deckbandelementen

Claims (9)

  1. Luftgekühlte Turbinenschaufel (10), welche an der Schaufelspitze ein sich senkrecht zur Schaufellängsachse erstreckendes Deckbandelement (11) aufweist, wobei das Deckbandelement (11) zwecks Kühlung von einer Mehrzahl von Kühlbohrungen (17) durchzogen ist, welche eingangsseitig mit wenigstens einem durch die Turbinenschaufel (10) zur Schaufelspitze verlaufenden Kühlkanal (18) in Verbindung stehen, und ausgangsseitig in den die Turbinenschaufel (10) umgebenden Aussenraum münden, wobei die Kühlbohrungen (17) in dem Deckbandelement (11) zumindest annähernd parallel zur Bewegungsrichtung der Schaufel (10) von innen nach aussen verlaufen und jeweils vor dem äusseren Rand (25) des Deckbandelements (11) in eine zum Aussenraum hin offene Oberflächenvertiefung (15) münden, die zum Aussenraum hin offene Vertiefung (15) an der Seitenkante (25) des Deckbandelements (11) angeordnet ist, auf der Oberseite (22) des Deckbandelements (11) mindestens zwei parallel zur Bewegungsrichtung der Schaufel verlaufende, voneinander beabstandete Dichtrippen (12,13) vorgesehen sind, welche im Zusammenwirken mit der gegenüberliegenden Gehäusewand (20) der Gasturbine eine Kavität (21) bilden, die Kühlbohrungen (17) in einen von gegenüberliegenden Vertiefungen (15) gebildeten Spalt (26) münden, und zumindest ein Teilstrom der dort austretenden Kühlluft in die Kavität (21) einströmt, dadurch gekennzeichnet, dass das Mengenverhältnis der aus dem Spalt (26) in Richtung Deckbandoberseite und Deckbandunterseite austretenden Teilströme durch die Spaltgeometrie gesteuert wird.
  2. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass Ober- und Unterseite eine unterschiedliche Spaltweite aufweisen.
  3. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass in den Kühlbohrungen (17) Mittel zur Verbesserung des Wärmeübergangs zwischen Kühlluft und Deckbandelement (11) vorgesehen sind.
  4. Turbinenschaufel nach Anspruch 3, dadurch gekennzeichnet, dass die Mittel zur Verbesserung des Wärmeübergangs an den Bohrungswänden (17) Rauhigkeiten, Rippen und/oder Turbulatoren umfassen.
  5. Turbinenschaufel nach Anspruch 4, dadurch gekennzeichnet, dass die Kühlbohrungen (17) mittels des sogenannten "STEM drilling"-Prozesses hergestellt sind.
  6. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass in den Kühlbohrungen (17) jeweils eine Drosselstelle (19) zur Begrenzung des Kühlluftmassenstromes vorgesehen ist.
  7. Turbinenschaufel nach Anspruch 6, dadurch gekennzeichnet, dass die Drosselstellen (19) jeweils an der Eingangsseite der Kühlbohrungen (17) angeordnet sind.
  8. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlbohrungen (17) einen ovalen Querschnitt besitzen.
  9. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlbohrungen (17) in Strömungsrichtung einen Diffusor bilden oder diffusorähnlich ausgebildet sind.
EP99811187A 1998-12-24 1999-12-21 Turbinenschaufel mit aktiv gekühltem Deckbandelememt Expired - Lifetime EP1013884B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19860244A DE19860244B4 (de) 1998-12-24 1998-12-24 Turbinenschaufel mit aktiv gekühltem Deckbandelement
DE19860245A DE19860245A1 (de) 1998-12-24 1998-12-24 Turbinenschaufel mit aktiv gekühltem Deckbandelement
DE19860244 1998-12-24
DE19860245 1998-12-24

Publications (3)

Publication Number Publication Date
EP1013884A2 EP1013884A2 (de) 2000-06-28
EP1013884A3 EP1013884A3 (de) 2003-11-05
EP1013884B1 true EP1013884B1 (de) 2005-07-27

Family

ID=26051058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99811187A Expired - Lifetime EP1013884B1 (de) 1998-12-24 1999-12-21 Turbinenschaufel mit aktiv gekühltem Deckbandelememt

Country Status (4)

Country Link
US (1) US6340284B1 (de)
EP (1) EP1013884B1 (de)
CN (1) CN1260442A (de)
DE (1) DE59912323D1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041247B1 (de) 1999-04-01 2012-08-01 General Electric Company Gasturbinenschaufel mit einem offenen Kühlkreislauf
US6761534B1 (en) 1999-04-05 2004-07-13 General Electric Company Cooling circuit for a gas turbine bucket and tip shroud
US6254345B1 (en) * 1999-09-07 2001-07-03 General Electric Company Internally cooled blade tip shroud
DE19963377A1 (de) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbinenschaufel mit aktiv gekühltem Deckbandelement
US6471480B1 (en) * 2001-04-16 2002-10-29 United Technologies Corporation Thin walled cooled hollow tip shroud
JP2002371802A (ja) * 2001-06-14 2002-12-26 Mitsubishi Heavy Ind Ltd ガスタービンにおけるシュラウド一体型動翼と分割環
US20040101410A1 (en) * 2001-10-02 2004-05-27 Oleg Naljotov Axial flow fluid machine
US6632069B1 (en) * 2001-10-02 2003-10-14 Oleg Naljotov Step of pressure of the steam and gas turbine with universal belt
US6491498B1 (en) * 2001-10-04 2002-12-10 Power Systems Mfg, Llc. Turbine blade pocket shroud
US7074006B1 (en) 2002-10-08 2006-07-11 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Endwall treatment and method for gas turbine
CA2562712C (en) * 2003-04-18 2011-05-31 Vladlen Zitin Steam/gas turbine pressure stage with universal shroud
US7066714B2 (en) * 2004-03-26 2006-06-27 United Technologies Corporation High speed rotor assembly shroud
EP1591626A1 (de) 2004-04-30 2005-11-02 Alstom Technology Ltd Schaufel für Gasturbine
KR100758725B1 (ko) 2005-10-17 2007-09-14 올레지 날조토브 유니버설 쉬라우드를 구비한 증기/가스 터빈 압력 단
US7568882B2 (en) * 2007-01-12 2009-08-04 General Electric Company Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method
US7938951B2 (en) * 2007-03-22 2011-05-10 General Electric Company Methods and systems for forming tapered cooling holes
US7964087B2 (en) * 2007-03-22 2011-06-21 General Electric Company Methods and systems for forming cooling holes having circular inlets and non-circular outlets
US20080230396A1 (en) * 2007-03-22 2008-09-25 General Electric Company Methods and systems for forming turbulated cooling holes
US7946816B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8057177B2 (en) * 2008-01-10 2011-11-15 General Electric Company Turbine blade tip shroud
US20090180894A1 (en) * 2008-01-10 2009-07-16 General Electric Company Turbine blade tip shroud
US7946817B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8317461B2 (en) * 2008-08-27 2012-11-27 United Technologies Corporation Gas turbine engine component having dual flow passage cooling chamber formed by single core
GB0901129D0 (en) * 2009-01-26 2009-03-11 Rolls Royce Plc Rotor blade
CH700686A1 (de) * 2009-03-30 2010-09-30 Alstom Technology Ltd Schaufel für eine gasturbine.
GB0910177D0 (en) * 2009-06-15 2009-07-29 Rolls Royce Plc A cooled component for a gas turbine engine
US8353669B2 (en) * 2009-08-18 2013-01-15 United Technologies Corporation Turbine vane platform leading edge cooling holes
DE102009049649A1 (de) * 2009-10-15 2011-04-21 Abb Turbo Systems Ag Turbinenrad
JP5517910B2 (ja) * 2010-12-22 2014-06-11 三菱重工業株式会社 タービン、及びシール構造
US20140064984A1 (en) * 2012-08-31 2014-03-06 General Electric Company Cooling arrangement for platform region of turbine rotor blade
JP5612136B2 (ja) * 2013-01-09 2014-10-22 ファナック株式会社 複数の直線により形状が定義されるインペラの形成方法およびインペラ
US9759070B2 (en) * 2013-08-28 2017-09-12 General Electric Company Turbine bucket tip shroud
WO2015047576A1 (en) 2013-09-26 2015-04-02 United Technologies Corporation Diffused platform cooling holes
WO2015061150A1 (en) * 2013-10-21 2015-04-30 United Technologies Corporation Incident tolerant turbine vane gap flow discouragement
US10539026B2 (en) 2017-09-21 2020-01-21 United Technologies Corporation Gas turbine engine component with cooling holes having variable roughness
US10641108B2 (en) * 2018-04-06 2020-05-05 United Technologies Corporation Turbine blade shroud for gas turbine engine with power turbine and method of manufacturing same
JP7477284B2 (ja) * 2019-11-14 2024-05-01 三菱重工業株式会社 タービン翼及びガスタービン
US11255198B1 (en) * 2021-06-10 2022-02-22 General Electric Company Tip shroud with exit surface for cooling passages
CN115324657A (zh) * 2022-10-12 2022-11-11 中国航发四川燃气涡轮研究院 涡轮工作叶片叶冠冷却结构

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527544A (en) * 1968-12-12 1970-09-08 Gen Motors Corp Cooled blade shroud
GB1423833A (en) 1972-04-20 1976-02-04 Rolls Royce Rotor blades for fluid flow machines
US3816022A (en) * 1972-09-01 1974-06-11 Gen Electric Power augmenter bucket tip construction for open-circuit liquid cooled turbines
GB1605335A (en) * 1975-08-23 1991-12-18 Rolls Royce A rotor blade for a gas turbine engine
US4177011A (en) 1976-04-21 1979-12-04 General Electric Company Bar for sealing the gap between adjacent shroud plates in liquid-cooled gas turbine
JPS5847104A (ja) * 1981-09-11 1983-03-18 Agency Of Ind Science & Technol ガスタ−ビンのタ−ビン動翼
US5003766A (en) * 1984-10-10 1991-04-02 Paul Marius A Gas turbine engine
US4902198A (en) * 1988-08-31 1990-02-20 Westinghouse Electric Corp. Apparatus for film cooling of turbine van shrouds
GB2223276B (en) * 1988-09-30 1992-09-02 Rolls Royce Plc Turbine aerofoil blade
GB2228540B (en) * 1988-12-07 1993-03-31 Rolls Royce Plc Cooling of turbine blades
JPH03182602A (ja) * 1989-12-08 1991-08-08 Hitachi Ltd 冷却流路を有するガスタービン翼及びその冷却流路の加工方法
US5122033A (en) * 1990-11-16 1992-06-16 Paul Marius A Turbine blade unit
JP3260437B2 (ja) * 1992-09-03 2002-02-25 株式会社日立製作所 ガスタービン及びガスタービンの段落装置
GB9224241D0 (en) 1992-11-19 1993-01-06 Bmw Rolls Royce Gmbh A turbine blade arrangement
US5306401A (en) 1993-03-15 1994-04-26 Fierkens Richard H J Method for drilling cooling holes in turbine blades
GB2290833B (en) 1994-07-02 1998-08-05 Rolls Royce Plc Turbine blade
US5482435A (en) 1994-10-26 1996-01-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
GB2298246B (en) * 1995-02-23 1998-10-28 Bmw Rolls Royce Gmbh A turbine-blade arrangement comprising a shroud band
US5785496A (en) 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
JPH10266803A (ja) 1997-03-25 1998-10-06 Mitsubishi Heavy Ind Ltd ガスタービン冷却動翼
JPH1113402A (ja) * 1997-06-23 1999-01-19 Mitsubishi Heavy Ind Ltd ガスタービン冷却翼チップシュラウド
EP1391581B1 (de) * 1998-02-04 2013-04-17 Mitsubishi Heavy Industries, Ltd. Rotorblatt für Gasturbinen

Also Published As

Publication number Publication date
US6340284B1 (en) 2002-01-22
CN1260442A (zh) 2000-07-19
EP1013884A3 (de) 2003-11-05
DE59912323D1 (de) 2005-09-01
EP1013884A2 (de) 2000-06-28

Similar Documents

Publication Publication Date Title
EP1013884B1 (de) Turbinenschaufel mit aktiv gekühltem Deckbandelememt
DE19944923B4 (de) Turbinenschaufel für den Rotor einer Gasturbine
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
EP1126136B1 (de) Turbinenschaufel mit luftgekühltem Deckbandelement
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE3711024C2 (de) Turbinenleitschaufel für ein Gasturbinentriebwerk
DE2930949C2 (de)
DE69302614T2 (de) Gekühlte Schaufel für eine Turbomaschine
DE69210862T2 (de) Turbinenschaufel mit Luftfilmkühlungsbohrungen mit mehreren Auslässen
DE3211139C1 (de) Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
DE102012100266B4 (de) Gekrümmte Kühlkanäle für eine Turbinenkomponente
DE602005000350T2 (de) Turbinenstatorschaufel mit verbesserter Kühlung
DE102004003354B4 (de) Turbinen-Laufschaufel und Gasturbine
DE102006004437A1 (de) Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine
DE69811624T2 (de) Gasturbinenrotorschaufel
EP1207268B1 (de) Filmkühlung von Gasturbinenschaufeln mittels Schlitzen für Kühlluft
WO2010086419A1 (de) Gekühlte schaufel für eine gasturbine
DE102008055590A1 (de) Turbinenschaufel-Deckband
CH706107A1 (de) Bauteil für eine thermische Maschine, insbesondere eine Gasturbine.
DE19904229A1 (de) Gekühlte Turbinenschaufel
EP1006263B1 (de) Schaufelkühlung
EP1431662B1 (de) Geschlossen gekühlte Brennkammer für eine Turbine
EP3207217B1 (de) Filmgekühltes gasturbinenbauteil
DE102004002327A1 (de) Gekühlte Schaufel für eine Gasturbine
DE2643049A1 (de) Schaufel mit gekuehlter plattform fuer eine stroemungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040430

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20040709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59912323

Country of ref document: DE

Date of ref document: 20050901

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050917

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59912323

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912323

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912323

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 18

Ref country code: GB

Payment date: 20161222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161222

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59912323

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912323

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59912323

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221