[go: up one dir, main page]

EP1007363A1 - Systeme de commande de projection de liquide electriquement conducteur - Google Patents

Systeme de commande de projection de liquide electriquement conducteur

Info

Publication number
EP1007363A1
EP1007363A1 EP98928414A EP98928414A EP1007363A1 EP 1007363 A1 EP1007363 A1 EP 1007363A1 EP 98928414 A EP98928414 A EP 98928414A EP 98928414 A EP98928414 A EP 98928414A EP 1007363 A1 EP1007363 A1 EP 1007363A1
Authority
EP
European Patent Office
Prior art keywords
jet
control system
drops
potentials
projection control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98928414A
Other languages
German (de)
English (en)
Other versions
EP1007363B1 (fr
Inventor
Paul Bajeux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1007363A1 publication Critical patent/EP1007363A1/fr
Application granted granted Critical
Publication of EP1007363B1 publication Critical patent/EP1007363B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type

Definitions

  • the present invention relates to an electrically conductive liquid projection control system.
  • Such a system is in particular usable in an ink jet printing head using the continuous jet method.
  • each jet of electrically conductive liquid is split into drops.
  • the drops are electrically charged and their path is then deflected by an electric field which, according to information to be reproduced, deflects each drop either towards an ink recovery gutter, or towards the support where the ink must be filed.
  • the ink is pressurized upstream of an ejection nozzle.
  • the outlet of the nozzle there is emission of a continuous jet.
  • This continuous jet is processed by the liquid spraying control system using several organs performing various functions.
  • the jet is first divided into drops by an organ controlled by a fractionation signal.
  • the drops separating from the continuous jet are electrically charged under the effect of the electric field established between the charging electrode and the liquid. They then pass into an electric deflection field generated between two electrodes or deflection plates to be deflected there as a function of the value of this electric field.
  • the ink drops are either recovered to return to the ink supply circuit, or deposited on the support.
  • the liquid spraying control systems put into service on printers have a certain number of drawbacks. They require many parts produced and precisely positioned. These parts are complex and must be separated by so-called safety distances and / or by shields and by empty or insulating spaces ensuring the separation of functions, which unnecessarily lengthens the path of the drops.
  • the parts performing each function create discontinuous surfaces which cause local elevations of the electric field in the interior space, conducive to electric shocks. These surfaces are also difficult to clean when removing material residue inside the print head.
  • the parts performing each function being supported by insulators, their surfaces can be electrically charged in a variable manner and the liquid then undergoes parasitic electric fields. This results in random deflections of the drops. With such control systems, the electrical voltages used can reach 10 kV.
  • Document WO 94/16896 recommends the use of electrically conductive plastic material for producing an electrically conductive liquid spray control system. This reduces the cost, the number of ancillary parts such as shields and simplifies the wiring.
  • the electrically conductive plastic also picks up electrical charges.
  • This plastic material can be polyacetylene which is an intrinsically conductive polymer. Preferably, it is a plastic resin such as Nylon®, polyester, acetal containing conductive fibers (carbon, stainless steel) coated with nickel.
  • the heterogeneity of a fibrous resin grows on the surface, particularly with molded manufacturing. The insulating part of the fibrous plastic being rather on the surface, static charges can accumulate there.
  • a harmful phenomenon in these inkjet printheads stems from the possible interaction between drops in flight.
  • a good control system for projection must provide a weak drop path to combat this phenomenon.
  • Some manufacturers have chosen not to coat the conductive deflection plates with a dielectric material. In order to avoid accidental electrostatic discharges, they place resistors in the electrical supply circuit of the deflection plates in order to limit the discharge current in the circuit. Several types of electric shock can occur in the operation of a printer.
  • the first type of discharge is given in the case of a voltage applied between two well-polished plates.
  • the electric field is identical everywhere and the shock ionization conditions are achieved uniformly on average.
  • the thermal agitation causes, in a place, at a given moment, a sudden rise in the current which then passes from an almost zero value to a gigantic value if there are no resistances in the circuit.
  • the stored energy is used almost completely in a brief instant linked to the shape of the storage capacitor, and this shape defining the electromagnetic regime of the discharge transient.
  • the power density dissipated is gigantic and is concentrated very locally. When using metal plates connected by about three meters of cable to the high-voltage power supply, the stored energy can exceed 1 mJ.
  • electrical leaks are particular sources in space (conductive tips, insulation faults, foreign bodies) where the sufficiently strong field locally generates a source of ions or electrons.
  • the flow of this source is more or less regulated using the space charge created. We first obtain a stable current following probably Langmuir's law, and then fluctuations in the current appear, the latter remaining finite. This second discharge case causes variations in the deflector field, and also variations in the charge of the drop. This reduces the accuracy of inkjet printers.
  • a first object of the present invention is to reduce the number of mechanical and electrical components of a liquid spray control system.
  • a second object of the present invention is to eliminate the discontinuities of the internal surfaces of the liquid spraying control system.
  • a third object of the present invention is to reduce the path of the drops subjected to the interactions between them in the liquid projection control system.
  • a fourth object of the present invention is to integrate the electrical circuits necessary for the liquid spraying control system in the same component.
  • a system for controlling the spraying of an electrically conductive liquid emitted in the form of a jet under pressure by at least one nozzle comprising means for fractionating the jet of liquid into drops, means for electrically charging said drops and means for applying an electric deflection field to said charged drops, comprising:
  • the continuous surface of the first element is conductive and has means of electrical connection to one of said potentials
  • the continuous surface of the second element is constituted by one face of an insulating support, this face being equipped with conductive tracks having means for electrical connection to potentials chosen from said potentials, a resistive coating, having a square resistance value of between 5 M ⁇ and 100 M ⁇ , extending continuously on said face.
  • the continuous surface of the first element can also be covered with a continuous resistive coating.
  • the first and second elements may also have means making it possible to split the jet of liquid into drops and to tilt the jet. These means make it possible to apply a field electric on the jet and can include resistive means and capacitive means.
  • the resistive means advantageously consist of a part of the resistive coating which preferably has discontinuities in certain portions in order to increase the efficiency of the jet fractionation.
  • the capacitive means may comprise said coating supported by an insulating layer, this insulating layer serving as a dielectric and being supported by conductive means supported by said insulating support.
  • FIG. 1 represents, in longitudinal view, the mechanical part of an ink spraying control system according to the present invention
  • FIG. 2 is a view along the plane II-II of FIG. 1
  • FIG. 3 is an enlarged detail view of the mechanical part shown in FIG. 1,
  • FIG. 4 is a diagram showing the evolution of an electrical potential along a surface of an ink spraying device according to the prior art
  • FIG. 5 is a diagram showing the evolution of an electrical potential along a surface of an ink spraying device according to the invention
  • FIG. 6 Figures 6 and 7 are explanatory diagrams of two modes of control of the dynamic stimulation of the ink jet.
  • the ink can be emitted according to one or more jets which are divided into drops.
  • the electrically charged ink drops are then deflected by an electric field to either lead to an ink recovery and recycling circuit, or to a support on which the ink is to be deposited.
  • ink 3 contained in a cavity 1 is emitted under pressure by a nozzle 2.
  • the ink jet 4 emitted by the nozzle 2 is projected into the space 5 defined by the continuous surfaces presented by two elements 6 and 8, these surfaces being opposite.
  • Several ink jets, such as jet 4 can be emitted by several nozzles between these continuous surfaces, as shown in FIG. 2.
  • Element 6 includes a flat insulating support 60, for example made of alumina, the face of which towards the space 5 supports conductive tracks 62 to 66 and a resistive coating 67.
  • the conductive tracks 62 to 66 electrically connect the resistive coating 67 to voltage generators, respectively 32 to 36, intended to supply control potentials, respectively U2 to Ug.
  • the other face of the support 60 can also support conductive tracks, for example 71, 72, 73, resistive coatings, for example the resistive coating 74, the dielectric coating 76 and electrical or electronic components, for example the component 75 ( see figure 2).
  • the electrical or electronic components deposited on the support 60 may be analog or logic integrated circuits, transistors of the diodes, capacitors, a transformer. They make it possible to carry out voltage increases, current and voltage measurements, the generations of signals necessary for the fractionation of the ink jet (if applicable) and at the charge of the drops, the generations of supply voltages.
  • the electrical connections between the two main faces of the support 60 can be made by metallized holes, such as the metallized hole 77.
  • metallized holes such as the metallized hole 77.
  • the element 8, in the example described, comprises a continuous support 81, for example of alumina, or of another insulating material, covered with a continuous resistive coating 82.
  • a voltage generator 31 makes it possible to supply a potential Ui to the continuous resistive coating 82.
  • the element 8 can also consist simply of metal or of another conductive material providing a continuous surface. The voltage generator 31 is then directly connected to the material of this element.
  • the ink jet 4 which enters the projection control system according to the invention, has an electric potential U jet which will be taken as the reference potential to simplify the explanations.
  • This ink jet can be provided beforehand with a kinematic disturbance depending on the time and leading to the separation of the jet into drops after a period of time, for example by means of a resonator included in the cavity 1. It can on the contrary be devoid of kinematic disturbance when exiting the nozzle, in which case the splitting into drops is carried out by the projection control system according to the invention.
  • the insulating support 60 supports, in its part located near the ink ejection nozzle, three electrodes 11, 12 and 13 arranged successively in the direction of the ink jet and covered with an insulating layer 15.
  • the tracks conductive 62 (see also Figure 1) are deposited on the insulating layer 15, so as to frame the electrodes 11 and 12.
  • the resistive coating 67 covers both the conductive tracks 62 and the insulating layer 15.
  • This resistive coating 67 has discontinuities (that is to say interruptions) on three small regularly spaced portions 16, corresponding to the upstream part (in the direction of advancement of the jet) of the conductive tracks 62, this to avoid propagation of the signal origin U on the coating 67 against the jet.
  • the electrodes 11, 12 and 13 are brought to the potential U i , the electrode 81 to the potential U ⁇ and the conductive tracks 62 to the potential U2 •
  • the ink jet 4 undergoes two attractive forces coming from the potentials U2 and you]_ . These two forces are in opposition. Their difference produces the inclination of the incident jet constantly and / or dynamically if the potential U2 is variable. This provides the jet with a kinematic disturbance over time leading to the subsequent separation of the jet into drops. The jet then progressing in the liquid projection control system has its inclination and its disturbance which are amplified.
  • the force coming from the potential U2 evolves progressively and is replaced by a force coming from the signals U3 then U4 supplied to the conductive tracks 63 and 64.
  • the dynamic disturbance of the potential U2 according to time is rapidly attenuated by the presence of the insulating layer 15 as will be seen next.
  • the static inclination given first by the potential U2 then progressively evolves according to the potential U3.
  • the force coming from the potential U] _ essentially changes by modifying the distance between the jet and the position of the potential U ] _.
  • the kinematic disturbance given by the fractionation signal reduces the diameter of the jet in certain places under the action of surface forces. This progresses until the cancellation of this diameter. It is the splitting of the jet, or the breaking. It is the moment of the sampling of the electric charge of the drop formed according to the potentials U3, U4 and U ] _ associated with the distances between the liquid and these potentials.
  • the potentials U3 and U4 are equal and represent the charge control signal. This gives a certain independence of the electric charge of the drop with respect to the place of fractionation.
  • the jet or the drops Since entering the system, the jet or the drops are constantly deflected by the action of forces from the surrounding potentials and the charges of the drops and the jet. The charged drops then evolve into a space where the deflection field remains large and becomes constant over time. We move away from the influence of the load control provided by the potentials U3 and U4.
  • the free space between the potentials of the resistive coating 67 and Ui is defined as increasing according to the needs of the printer to be defined. In practice, this prevents the drops from approaching the internal surfaces of the system in an unstable manner.
  • the definition of the potentials brought to the resistive coating 67 is predefined to guarantee an operation without electric shocks, and without risk for the cohesion of the drops.
  • the drops obtained by the fractionation signal have, at the output of the system according to the invention, trajectories controlled by the charge signal supplying the potentials U3, U4 and by the tilt signal supplying the potential U2.
  • the different static potentials used in the ink spraying control system according to the invention are obtained by electrical circuits within the reach of those skilled in the art.
  • a chopping transistor defining a low voltage potential at the terminals of the primary of a step-up transformer and having several secondary.
  • Diodes connected to the transformer secondary provide positive and negative rectified voltages of the same amplitude. This makes it possible to obtain the supply voltages of two amplifiers supplying the potentials U2-U3 and U4.
  • the potential U ⁇ is obtained in an analogous manner.
  • the potentials U5 and Ug can be obtained using multiplier cells formed by diodes and capacitors and which make it possible to obtain multiples of the peak-to-peak voltage appearing at a secondary of the transformer.
  • a control device is provided, this device receiving the voltage measurements representing the result of the voltage behavior in the deflection X.
  • the measurements are used to modify either the low voltage supplying the 'together or the rhythm of the chopper, ie the information sent to obtain the potentials U3, U4 or U2 • This makes it possible to obtain the constancy of the deflection X vis-à-vis the variations of the circuits for obtaining the electrical voltages.
  • a variable air thickness is used between the inlet of the jet and the outlet of the drops.
  • the increase in the electric field possible at short distance is used.
  • This is well known and is illustrated by the Paschen curve defining the voltage giving an uncontrollable ionization, in a pressurized gas, between two conductive plates spaced apart by a given distance.
  • This combined with the actual deflection of the charged drops, provides the particular curvature of the surface to be generated.
  • the reduction in free space gives a substantial decrease in the amplitude of the control voltages with increased deflection efficiency.
  • the present invention makes it possible to drop the voltages used to 2300 V in comparison with a conventional design using 8000 V.
  • the value of a is given essentially by the ratio between the capacity between two drops in flight and Ce. Here the distance between the drop and the electrode is reduced. This rises and thus is reduced. The development of the charge of the drops becomes less sensitive to this phenomenon.
  • an ink deposit causes the existence of a disturbing current which passes through it.
  • the diagram of the potentials U is compared with a set of electrodes 22, 23 and 24 carried respectively to potentials U22 ' u 23 and 24 and separated by insulating parts 25 and 26.
  • the surface 27 of the insulating part 25 is easily polluted by electric charges parasites. If an ink deposit 28 occurs between the electrodes 23 and 24, a disturbing current i will flow in the ink deposit above the insulating part 26.
  • the potential diagram shown is obtained with corresponding potential variations to intense electric fields, in particular for the insulating part 25. The potentials and the currents are then modified and the measurements make it possible to alert the control member.
  • the system can decide to modify orders or to stop periodic closings of the chopper.
  • FIG. 5 takes up the principle of the invention: presence of an insulating support 60 supporting conductive tracks 62, 63 and 64 and a continuous resistive coating 67.
  • the conductive tracks 62, 63 and 64 are brought respectively to the potentials U2, U3 and U4.
  • the presence of an ink deposit 18 between the conductive tracks 63 and 64 causes the circulation of a small disturbing current i between the tracks 63 and 64.
  • the resistive coating 67 makes it possible to define and reduce the electric field on the insulating. Thus, the potential drop between the electrodes is organized.
  • the associated potential diagram clearly shows that the surface electric field is weak between the conductive tracks.
  • the insulator is no longer accessible to the static field of the free space, the charges flow on the surface, without taking the time to disturb the deflection of the liquid.
  • This principle makes it possible to define the intermediate continuous potentials on the surfaces between the potentials imposed by the conducting tracks, as one can see it on figure 5. A minor deposit gives a weaker disturbing current and if it is enough, it does not degrade the accuracy of the printer, nor does it cause a major alert to the controller.
  • the resistive coating deposited on the insulating support 60, and possibly on the electrode 81, can have a square resistance of 5 M ⁇ to 100 M ⁇ .
  • the ink used by inkjet printers has a volatile liquid that creates condensation, especially on surfaces near the inkjet.
  • a volatile liquid that creates condensation, especially on surfaces near the inkjet.
  • partial tensions of the various gases, temperature gradients the surfaces close to the ink jet are lined with liquid, which causes conduction on the walls. We then notice a drift in the deflection of the drops.
  • this imposes a value range of the square resistance of the resistive coating.
  • the use of such a coating advantageously makes it possible to obtain the desired surface potential and the local heating of this same surface.
  • the surfaces close to the ink jet can be moderately heated using the potential differences used to control the movement of the ink.
  • Sufficient dissipation power can be defined to raise the surfaces around the ink by about 1 degree. It is possible to provide for the square resistance allowing first of all the detection of the malfunctions linked to the disturbance of the electrical quantities during spurious ink deposits. Then, we have the heat dissipation paths from the resistive coating and nearby electrical components.
  • the method according to the invention employs a continuous surface common to the functions, from the inlet of the jet to the outlet of the drops. This makes it possible to reduce and even eliminate the local elevations of the electric field due to the use of small radii of curvature. Thus, the discharge limits restricting the operation and increasing the efficiency of the deflection can be followed more finely. We can thus eliminate the discharges of the second type regulated by Langmuir's law described above.
  • the potentials of the fractionation, charge, deflection functions are generated continuously on a continuous surface to control the surface electric field of interface between the functions.
  • the dimension along the deflection axis begins at the entry of the jet with values of the order of several jet diameters.
  • the limits of the electric fields are increased by the small size of the dimensions used.
  • the electric fields of the present invention are greater than the 1.5 MV / m used in conventional printers. They can reach 6 MV / m.
  • the limiting factors come from the imbalance of the liquid surface by the electric pressure opposing the surface pressure. For the same desired deflection result, the useful distance of the required liquid path can be reduced.
  • U4 is the control signal sampled during breaking .
  • the drop is negatively charged and takes a trajectory giving positive X.
  • the drop runs along the upper surface limit.
  • U4 of -350 V the drop is positively charged and takes a trajectory giving negative X.
  • the drop runs along the lower surface limit.
  • Ui is the control signal sampled during the break.
  • U] _ of +300 V the drop is negatively charged, and takes a trajectory giving positive X.
  • the drop runs along the upper surface limit.
  • U] _ of -50 V the drop is positively charged and takes a trajectory giving X negative.
  • the drop runs along the lower surface limit.
  • U ] _ 200 V
  • U2 0,
  • U3 -300 V
  • U 4 -350 V
  • U 5 -400 V
  • Ug -1000 V.
  • U jet is the signal for order sampled during breakage.
  • U jet of -50 V the drop is negatively charged and takes a trajectory giving positive X.
  • the drop runs along the upper surface limit.
  • U jet of +200 V the drop is positively charged and takes a trajectory giving X negative.
  • the drop runs along the lower surface limit.
  • the first control mode gives the preferred combination, adaptable to the multijet.
  • the jets and U] _, U2, U5, Ug potentials are common to the different jets.
  • the control voltage is comparatively higher excursion.
  • the second control mode gives the preferred combination, adaptable to the monojet if one wishes to keep the simplicity of the potential U] _. It is possible to replace the equipotential U] _ by a second monolithic circuit. The latter carries out before each break a specific charge voltage in the manner of the potentials U3, U4. On the rest of the surface, we defines a constant potential, framing the load controls.
  • the third control mode gives a variant, adaptable to the monojet.
  • the drop charge control potential is that of the jet.
  • the control voltage is comparatively lower excursion.
  • the implementation is simple, the nozzle is at control potential.
  • the ink supply to the nozzle is carried out under an insulating tube. For example, if the length of the insulating tube is 0.5 m, its internal section is 2 mm 2 and if the resistivity of the ink is 8 ⁇ . , the load resistance of the control is then 2 M ⁇ , which represents a slight disturbance for the load control generator.
  • the potential U2 makes it possible to modify, by its static value, the inclination of the incident jet or / and to dynamically deflect the jet and / or to propagate a disturbance in lieu of liquid separation information.
  • the signal penetration range is given by the formula: (cd. ⁇ . rd) "for an amplitude greater than half of the dynamic signal and a phase less than 0.2 ⁇ * Radian.
  • - cd is the capacitance distributed between the resistive coating and the conductive deposit at the potential U i in F / m, given by the insulating layer 15, - rd is the distributed resistance of the resistive coating in ⁇ / m,
  • cd is around 150 nF / m and that of rd is 2.5 G ⁇ / m.
  • a penetration range of 78 ⁇ m is obtained.
  • the entire resistive coating is at the static potential U2 and makes it possible to obtain a significant static deflection to adjust the inclination of the jet.
  • the equivalent dynamic potential width of the electrode is that of the conductor at potential U2 • This width is defined to obtain the maximum of the fractionation for the highest frequency for the formation of the drops, at least for the most small distance between two consecutive future drops.
  • a first mode is similar to the process described in US-A-4,220,958. Its principle is to use a "pump electrode" adjacent to the column of fluid, connected to a source of electrical energy to establish an electric field. variable, developing a normal force on the fluid column, to cause the formation of drops at substantially constant spacing. As shown in FIG. 6, the length of an electrode for applying the potential U 2 (t) is approximately half a spacing between drops. The period of the voltage U 2 (t) is that of the formation of the drops.
  • the effective length of the electrode establishing a variable electric field for developing a normal force on the jet is also of the order of half a spacing between drops.
  • this effective length of the electrode is achieved by summing a fixed conductive electrode to which is added a diffuse length linked to the propagation of the variable signal U 2 on the resistive deposit coupled to the capacitive deposit.
  • the method according to the invention allows a certain adaptation of the effective length of the electrode establishing a variable electric field on the jet.
  • the variation of the effective length of the electrode as a function of the frequency of the signal U 2 (t) makes it possible to effectively stimulate over a larger frequency band.
  • a deflection of the jet is created by the action of the electric field emitted by the resistive electrode to stretch the jet in the inflection points of its trajectory.
  • the surface tension continues the flow of the liquid from these inflection points to then give the future breaks between drops.
  • the advantage of this control mode is to define dimensions of the electrode twice as large in the direction of advancement of the jet. If the design proposed in US-A-4 220 958 was half a drop spacing for its electrode, the present mode of attack of the jet requires a drop spacing. As shown in Figure 7, the period of voltage U ; (t) is then twice that of the formation of the drops. Under the reference 50, the inflection points of the trajectory of the ink jet have been shown.
  • the lithography technique used for the production of conductive and resistive electrodes to then be coarser. This provides an advantage since the width dimension of the conductive track must be smaller than the spacing between drops. You can choose a half spacing between drops for the width of the conductive track, the resistive track taking over to transmit the potential U 2 .
  • the spacing between drops is then 250 ⁇ m.
  • the width dimension of the track is then 125 ⁇ m. This value is easy to obtain by the screen printing techniques for depositing conductive ink of the thick layer type of the electronic industry.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

L'invention concerne un système de commande de projection d'un liquide électriquement conducteur (3) et émis sous forme d'un jet sous pression (4) par au moins une buse (2), comprenant des moyens pour fractionner le jet de liquide en gouttes, des moyens pour charger électriquement lesdites gouttes et des moyens pour appliquer un champ électrique de déflexion auxdites gouttes chargées. Ce système comprend: un premier (8) et un deuxième (6) élément monolithique présentant chacun une surface continue, disposés de façon que les surfaces continues soient en vis-à-vis et définissent entre elles un espace (5) dans lequel le jet sous pression (4) est émis par ladite buse (2), lesdits éléments (6, 8) incluant des moyens permettant d'établir continûment des potentiels sur lesdites surfaces continues pour obtenir ladite charge électrique des gouttes et ledit champ électrique de déflexion, des moyens électroniques (31 à 36) de commande desdits potentiels et de contrôle de l'intensité des courants électriques pouvant circuler sur lesdites surfaces continues.

Description

SYSTEME DE COMMANDE DE PROJECTION DE LIQUIDE ELECTRIQUEMENT CONDUCTEUR
La présente invention concerne un système de commande de projection de liquide électriquement conducteur. Un tel système est en particulier utilisable dans une tête d'impression à jet d'encre utilisant le procédé du jet continu- Dans un système de commande de projection de liquide ayant un ou plusieurs jets continus utilisé dans les imprimantes à jet d'encre, chaque jet de liquide électriquement conducteur est fractionné en gouttes. Les gouttes sont chargées électriquement et leur trajet est ensuite défléchi par un champ électrique qui, en fonction d'une information à reproduire, dévie chaque goutte soit vers une gouttière de récupération de l'encre, soit vers le support où l'encre doit être déposée.
Dans les imprimantes à jet continu, l'encre est mise sous pression en amont d'une buse d'éjection. A la sortie de la buse, il y a émission d'un jet continu. Ce jet continu est traité par le système de commande de projection de liquide grâce à plusieurs organes assurant diverses fonctions. Le jet est d'abord divisé en gouttes par un organe commandé par un signal de fractionnement. Simultanément, les gouttes se séparant du jet continu se chargent électriquement sous l'effet du champ électrique établi entre l'électrode de charge et le liquide. Elles passent ensuite dans un champ électrique de déflexion généré entre deux électrodes ou plaques de déflexion pour y être déviées en fonction de la valeur de ce champ électrique. En sortie du système de commande de projection de liquide, les gouttes d'encre sont soit récupérées pour retourner au circuit d'alimentation en encre, soit déposées sur le support. En pratique, les systèmes de commande de projection de liquide mis en service sur les imprimantes présentent un certain nombre d'inconvénients. Ils nécessitent de nombreuses pièces réalisées et positionnées avec précision. Ces pièces sont complexes et doivent être séparées par des distances dites de sécurité et/ou par des blindages et par des espaces vides ou isolants assurant la séparation des fonctions, ce qui allonge inutilement le trajet des gouttes. Les pièces réalisant chaque fonction créent des surfaces discontinues qui provoquent des élévations locales de champ électrique dans l'espace intérieur, propices aux décharges électriques. Ces surfaces sont en outre difficiles à nettoyer lors de l'élimination des résidus de matière à l'intérieur de la tête d'impression. Les pièces réalisant chaque fonction étant supportées par des isolants, leurs surfaces peuvent se charger électriquement de façon variable et le liquide subit alors des champs électriques parasites. Il en résulte des déflexions aléatoires des gouttes. Avec de tels systèmes de commande, les tensions électriques mises en oeuvre peuvent atteindre 10 kV.
Dans l'état de l'art actuel, il est souvent fait appel à des déflexions de gouttes dans l'espace à pression atmosphérique. Les gouttes étant chargées électriquement au préalable, elles subissent une force proportionnelle à leur charge et au champ électrique. Ce champ électrique est obtenu par deux plaques conductrices proches de la trajectoire des gouttes et soumise à une différence de potentiel entre elles. Il a été proposé, dans le document GB-A-2 249 995, de revêtir l'une des plaques de déflexion d'un revêtement diélectrique afin d'éviter les décharges électrostatiques accidentelles et/ou pour adapter le potentiel de l'espace libre où passent les gouttes. Selon le document US-A-4 845 512, ce revêtement diélectrique pourrait avoir une polarisation électrique permanente (électret) afin de générer le potentiel électrique ou une partie de celui-ci. Ceci se ferait sans connexion électrique. Dans cet environnement, la projection de liquide et la présence de gaz soumis à des champs électriques assez intenses créent des particules de matières et des charges en mouvement dans l'espace libre. La projection et les forces électriques entraînent ces éléments libres (particules et charges) sur les parois se trouvant autour du jet. En particulier ces éléments s'agglutinent sur la surface libre de l'isolant soumis au champ électrique et sont attirés par les charges opposées. Ainsi, ils viennent compenser les charges de l' électret ou de l'électrode revêtue préalablement d'isolant. Par conséquent, le champ utile dans l'espace libre se réduit progressivement au profit d'une croissance du champ électrique dans le diélectrique. L'efficacité de la déflexion se réduit en relation avec la réduction du champ électrique dans l'espace libre.
Le document WO 94/16896 préconise l'emploi de matière plastique électriquement conductrice pour réaliser un système de commande de projection de liquide électriquement conducteur. Cela permet de réduire le coût, le nombre de pièces annexes comme les blindages et de simplifier le câblage. La matière plastique électriquement conductrice capte aussi les charges électriques. Cette matière plastique peut être du polyacétylène qui est un polymère conducteur intrinsèque. De préférence, il s'agit d'une résine plastique telle que le Nylon®, le polyester, l'acétal contenant des fibres conductrices (de carbone, d'acier inoxydable) revêtues de nickel. L'hétérogénéité d'une résine fibreuse s'accroît en surface, particulièrement avec une fabrication moulée. La partie isolante de la matière plastique fibreuse étant plutôt en surface, les charges statiques peuvent s'y accumuler. L'effet escompté de la conductivité diminue donc en surface et les dérives de déflexion apparaissent comme cela est annoncé dans les documents US-A-4 845 512 et GB-A-2 249 995. Pour améliorer l'homogénéité de surface, il est possible d'usiner les surfaces fonctionnelles des pièces incriminées, mais cela augmente leur coût de fabrication.
Par ailleurs, l'utilisation de liquide volatil dans la constitution de l'encre provoque de la condensation. Progressivement, au gré de la ventilation interne de l'imprimante, des tensions partielles des divers gaz environnants et des gradients de température, les parties proches du jet d'encre se tapissent de liquide. Cela provoque des phénomènes de conduction sur les parois des électrodes de déflexion et la réduction de l'entrefer entre jet et électrodes. On note alors une dérive de la déflexion des gouttes au cours de l'utilisation du système de commande de projection.
Pour remédier à ce problème il a été proposé, dans le document US-A-5 001 497, de chauffer l'électrode de déflexion concernée au moyen d'une résistance électrique pour vaporiser le liquide déposé. L'emploi d'une telle résistance a été critiqué dans le document GB-A-2 249 995 à cause de la chaleur dégagée par cette résistance et à cause de la valeur du courant nécessaire à son bon fonctionnement.
Un phénomène nuisible dans ces têtes d'impression à jet d'encre provient de l'interaction possible entre gouttes en vol. Un bon système de commande de projection se doit de procurer un trajet des gouttes faible pour lutter contre ce phénomène.
Certains constructeurs ont choisi de ne pas revêtir les plaques conductrices de déflexion avec un matériau diélectrique. Afin d'éviter les décharges électrostatiques accidentelles, ils placent des résistances dans le circuit d'alimentation électrique des plaques de déflexion afin de limiter le courant de décharge dans le circuit. Plusieurs types de décharge électrique peuvent survenir dans le fonctionnement d'une imprimante.
Le premier type de décharge est donné dans le cas d'une tension appliquée entre deux plateaux bien polis. Le champ électrique est identique partout et les conditions d'ionisation par choc se réalisent uniformément en moyenne. L'agitation thermique provoque, en un lieu, à un moment donné, une élévation brutale du courant qui passe alors d'une valeur quasi nulle à une valeur gigantesque s'il n'y a pas de résistances dans le circuit. L'énergie stockée est utilisée presque totalement en un bref instant lié à la forme du condensateur de stockage, et cette forme définissant le régime électromagnétique du transitoire de décharge. La puissance volumique dissipée est gigantesque et se concentre très localement. Dans le cas de l'utilisation de plaques métalliques raccordées par environ trois mètres de câble à l'alimentation haute tension, l'énergie stockée peut dépasser 1 mJ.
Dans d'autres cas, les fuites électriques sont des sources particulières dans l'espace (pointes conductrices, défauts d'isolation, corps étrangers) où le champ suffisamment fort localement génère une source d'ions ou d'électrons. Le débit de cette source se régule plus ou moins à l'aide de la charge d'espace créée. On obtient d'abord un courant stable suivant vraisemblablement la loi de Langmuir, et ensuite apparaissent des fluctuations du courant, celui-ci restant fini. Ce second cas de décharge cause des variations du champ déflecteur, et aussi des variations de la charge de la goutte. Ceci réduit la précision des imprimantes à jet d'encre.
Pour résoudre les problèmes liés au premier type de décharge, il est connu de placer des résistances de protection également pour la sécurité des personnes et du matériel (le revêtement des électrodes risque 1 ' électroérosion à terme), le risque d'incendie. L'emplacement de ces résistances doit se faire pour morceler l'énergie électrique stockée. Surtout, il faut réduire l'énergie stockée dans les lieux à risques comme l'espace de déflexion. Il y a communément, de l'ordre de 20 μJ stockée, dans cet espace.
Un premier objet de la présente invention est de réduire le nombre de composants mécaniques et électriques d'un système de commande de projection de liquide.
Un second objet de la présente invention est de supprimer les discontinuités des surfaces internes du système de commande de projection de liquide.
Un troisième objet de la présente invention est de réduire le parcours des gouttes soumises aux interactions entre elles dans le système de commande de projection de liquide.
Un quatrième objet de la présente invention est d'intégrer les circuits électriques nécessaires au système de commande de projection de liquide dans un même composant.
Ces objets sont atteints par la présente invention qui concerne un système de commande de projection d'un liquide électriquement conducteur et émis sous forme d'un jet sous pression par au moins une buse, comprenant des moyens pour fractionner le jet de liquide en gouttes, des moyens pour charger électriquement lesdites gouttes et des moyens pour appliquer un champ électrique de déflexion auxdites gouttes chargées, comprenant :
- deux éléments présentant chacun une surface continue, disposés de façon que les surfaces continues soient en vis-à-vis et définissent entre elles un espace dans lequel le jet sous pression est émis par ladite buse, lesdits éléments incluant des moyens permettant d'établir continûment des potentiels sur lesdites surfaces continues pour obtenir ladite charge électrique des gouttes et ledit champ électrique de déflexion, - des moyens électroniques de commande desdits potentiels et de contrôle de l'intensité des courants électriques pouvant circuler sur lesdites surfaces continues .
Avantageusement, la surface continue du premier élément est conductrice et possède des moyens de liaison électrique à l'un desdits potentiels, la surface continue du deuxième élément est constituée par une face d'un support isolant, cette face étant équipée de pistes conductrices possédant des moyens de liaison électriques à des potentiels choisis parmi lesdits potentiels, un revêtement résistif, ayant une valeur de résistance carrée comprise entre 5 MΩ et 100 MΩ, s 'étendant continûment sur ladite face.
La surface continue du premier élément peut également être recouverte d'un revêtement résistif continu.
Le premier et le deuxième élément peuvent présenter également des moyens permettant de fractionner le jet de liquide en gouttes et d'incliner le jet. Ces moyens permettent d'appliquer un champ électrique sur le jet et peuvent inclure des moyens résistifs et des moyens capacitifs. Dans ce cas, les moyens résistifs sont avantageusement constitués par une partie du revêtement résistif qui présente, de préférence, des discontinuités dans certaines portions afin d'accroître l'efficacité du fractionnement du jet. Les moyens capacitifs peuvent comprendre ledit revêtement supporté par une couche isolante, cette couche isolante servant de diélectrique et étant supportée par des moyens conducteurs supportés par ledit support isolant.
L'invention sera mieux comprise et d'autres détails et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- la figure 1 représente, en vue longitudinale, la partie mécanique d'un système de commande de projection d'encre selon la présente invention, - la figure 2 est une vue selon le plan II-II de la figure 1,
- la figure 3 est une vue de détail agrandie de la partie mécanique représentée à la figure 1,
- la figure 4 est un diagramme montrant l'évolution d'un potentiel électrique le long d'une surface d'un dispositif de projection d'encre selon l'art antérieur,
- la figure 5 est un diagramme montrant l'évolution d'un potentiel électrique le long d'une surface d'un dispositif de projection d'encre selon 1 ' invention,
- les figures 6 et 7 sont des schémas explicatifs de deux modes de commande de la stimulation dynamique du jet d'encre. A titre d'exemple, la suite de la description va porter sur un système de commande de projection d'encre pour tête d'impression à jet continu. L'encre peut être émise selon un ou plusieurs jets qui sont fractionnés en gouttes. Les gouttes d'encre, chargées électriquement, sont ensuite défléchies par un champ électrique pour aboutir soit vers un circuit de récupération et de recyclage de l'encre, soit vers un support sur lequel l'encre doit être déposée. Comme le montre la figure 1, de l'encre 3, contenue dans une cavité 1, est émise sous pression par une buse 2 . Le jet d'encre 4, émis par la buse 2, est projeté dans l'espace 5 défini par les surfaces continues présentées par deux éléments 6 et 8, ces surfaces se trouvant en vis-à-vis. Plusieurs jets d'encre, tel que le jet 4, peuvent être émis par plusieurs buses entre ces surfaces continues, comme le montre la figure 2.
L'élément 6 comporte un support isolant plan 60, par exemple en alumine, dont la face située vers l'espace 5 supporte des pistes conductrices 62 à 66 et un revêtement résistif 67. Les pistes conductrices 62 à 66 relient électriquement le revêtement résistif 67 à des générateurs de tension, respectivement 32 à 36, destinés à fournir des potentiels de commande, respectivement U2 à Ug. L'autre face du support 60 peut également supporter des pistes conductrices, par exemple 71, 72, 73, des revêtements résistifs, par exemple le revêtement résistif 74, le revêtement diélectrique 76 et des composants électriques ou électroniques, par exemple le composant 75 (voir la figure 2) .
Les composants électriques ou électroniques déposés sur le support 60 peuvent être des circuits intégrés analogiques ou logiques, des transistors des diodes, des condensateurs, un transformateur. Ils permettent de réaliser les élévations de tensions, les mesures de courant et de tension, les générations de signaux nécessaires au fractionnement du jet d'encre (le cas échéant) et à la charge des gouttes, les générations des tensions d'alimentation.
Les liaisons électriques entre les deux faces principales du support 60 peuvent se faire par des trous métallisés, tels que le trou métallisé 77. Ceci est la description d'un élément monolithique constitué dans la masse d'isolant électrique, lequel est habituellement utilisé comme support de composants électroniques. Ces composants réalisent les fonctions d'interface de commande en amont, vers les électrodes de projection de liquide.
L'élément 8, dans l'exemple décrit, comporte un support continu 81, par exemple en alumine, ou en une autre matière isolante, recouvert d'un revêtement résistif continu 82. Un générateur de tension 31 permet de fournir un potentiel Ui au revêtement résistif continu 82. L'élément 8 peut aussi être constitué simplement de métal ou d'une autre matière conductrice offrant une surface continue. Le générateur de tension 31 est alors directement raccordé au matériau de cet élément.
Le jet d'encre 4, qui entre dans le système de commande de projection selon l'invention, possède un potentiel électrique Ujet qui sera pris comme potentiel de référence pour simplifier les explications. Ce jet d'encre peut être préalablement doté d'une perturbation cinématique suivant le temps et conduisant à la séparation du jet en gouttes après un laps de temps, par exemple grâce à un résonateur inclus dans la cavité 1. Il peut être au contraire dépourvu de perturbation cinématique en sortant de la buse, auquel cas le fractionnement en gouttes est réalisé par le système de commande de projection selon l'invention.
On va décrire maintenant, en relation avec la figure 3, la manière dont on peut réaliser le fractionnement du jet en gouttes grâce au système de commande de projection selon l'invention. Le support isolant 60 supporte, dans sa partie située à proximité de la buse d'éjection d'encre, trois électrodes 11, 12 et 13 disposées successivement dans la direction du jet d'encre et recouvertes d'une couche isolante 15. Les pistes conductrices 62 (voir aussi la figure 1) sont déposées sur la couche isolante 15, de manière à encadrer les électrodes 11 et 12. Le revêtement résistif 67 recouvre à la fois les pistes conductrices 62 et la couche isolante 15. Ce revêtement résistif 67 présente des discontinuités (c'est-à-dire des interruptions) sur trois petites portions 16 régulièrement espacées, correspondant à la partie amont (au sens de l'avancement du jet) des pistes conductrices 62, ceci pour éviter la propagation du signal d'origine U sur le revêtement 67 à contresens du jet.
Les électrodes 11, 12 et 13 sont portées au potentiel Uje , l'électrode 81 au potentiel U^ et les pistes conductrices 62 au potentiel U2 • A l'entrée, le jet d'encre 4 subit deux forces attractives issues des potentiels U2 et U]_ . Ces deux forces s'opposent. Leur différence produit l'inclinaison du jet incident de façon constante et/ou de façon dynamique si le potentiel U2 est variable. Cela fournit au jet une perturbation cinématique suivant le temps conduisant à la séparation ultérieure du jet en gouttes. Le jet progressant ensuite dans le système de commande de projection de liquide a son inclinaison et sa perturbation qui s'amplifient. Du fait de l'établissement du potentiel U2 sur le revêtement résistif 67, la force issue du potentiel U2 évolue progressivement et est remplacée par une force issue des signaux U3 puis U4 fournis aux pistes conductrices 63 et 64. La perturbation dynamique du potentiel U2 suivant le temps s'atténue rapidement par la présence de la couche isolante 15 comme on le verra ensuite. L'inclinaison statique donnée d'abord par le potentiel U2 évolue ensuite progressivement suivant le potentiel U3. La force issue du potentiel U]_ évolue essentiellement par la modification de la distance entre le jet et la position du potentiel U]_ .
La perturbation cinématique donnée par le signal de fractionnement réduit le diamètre du jet en certains lieux sous l'action des forces superficielles. Ceci évolue jusqu'à l'annulation de ce diamètre. C'est le fractionnement du jet, ou la brisure. C'est le moment de l'échantillonnage de la charge électrique de la goutte formée suivant les potentiels U3, U4 et U]_ associés aux distances entre le liquide et ces potentiels. Dans l'exemple décrit ici, les potentiels U3 et U4 sont égaux et représentent le signal de commande de charge. Cela donne une certaine indépendance de la charge électrique de la goutte vis-à-vis du lieu de fractionnement.
Depuis l'entrée dans le système, le jet ou les gouttes sont constamment défléchies sous l'action des forces issues des potentiels environnants et des charges des gouttes et du jet. Les gouttes chargées ensuite évoluent vers un espace où le champ de déflexion reste important et devient constant suivant le temps. On s'éloigne de l'influence de la commande de charge fournie par les potentiels U3 et U4. L'espace libre entre les potentiels du revêtement résistif 67 et Ui est défini croissant suivant les besoins de l'imprimante à définir. En pratique, cela évite que les gouttes ne s'approchent de façon instable des surfaces internes du système. La définition des potentiels apportés au revêtement résistif 67 est prédéfinie pour garantir un fonctionnement sans décharges électriques, et sans risque pour la cohésion des gouttes. Ainsi les gouttes obtenues par le signal de fractionnement ont, en sortie du système selon l'invention, des trajectoires commandées par le signal de charge alimentant les potentiels U3, U4 et par le signal d'inclinaison alimentant le potentiel U2.
Les différents potentiels statiques utilisés dans le système de commande de projection d'encre selon l'invention sont obtenus par des circuits électriques à la portée de l'homme de l'art concerné. A titre indicatif, on peut utiliser un transistor hacheur définissant un potentiel basse tension aux bornes du primaire d'un transformateur élévateur de tension et possédant plusieurs secondaires. Des diodes branchées aux secondaires du transformateur fournissent des tensions redressées positives et négatives de même amplitude. Cela permet d'obtenir les tensions d'alimentation de deux amplificateurs fournissant les potentiels U2- U3 et U4. Le potentiel U^ est obtenu de manière analogue. Les potentiels U5 et Ug peuvent être obtenus à l'aide de cellules multiplicatrices formées de diodes et de capacités et qui permettent d'obtenir des multiples de la tension crête à crête apparaissant à un secondaire du transformateur. Pour maîtriser la précision et vérifier le fonctionnement du système, un organe de contrôle est prévu, cet organe recevant les mesures des tensions représentant la résultante du comportement en tension dans la déflexion X. Ainsi, les mesures servent à modifier soit la basse tension alimentant l'ensemble ou le rythme du hacheur, soit les informations envoyées pour obtenir les potentiels U3, U4 ou U2 • Ceci permet d'obtenir la constance de la déflexion X vis-à-vis des variations des circuits d'obtention des tensions électriques.
En raison de l'utilisation d'un revêtement résistif dans la partie du système selon l'invention correspondant aux plaques de déflexion de l'art connu, il n'y a pas de stockage d'énergie électrostatique susceptible de se décharger brutalement dans cette partie. Les résistances de protection utilisées dans certains dispositifs de l'art connu sont supprimées. L'emploi, dans le système selon l'invention, de revêtements résistifs et l'existence de courants parasites ne modifie par la déflexion des gouttes compte tenu des moyens mis en oeuvre ci-dessus pour maîtriser la précision.
Dans la présente invention, on utilise une épaisseur d'air variable entre l'entrée du jet et la sortie des gouttes. On utilise l'augmentation du champ électrique possible à faible distance. Cela est bien connu et est illustré par la courbe de Paschen définissant la tension donnant une ionisation non contrôlable, dans un gaz sous pression, entre deux plateaux conducteurs écartés d'une distance donnée. Cela, combiné à la déflexion réelle des gouttes chargées, permet de fournir la courbure particulière de la surface à engendrer. La réduction de l'espace libre donne une diminution substantielle de l'amplitude des tensions de commande à efficacité de déflexion accrue. La présente invention permet de faire chuter les tensions employées à 2300 V en comparaison d'une conception classique utilisant 8000 V.
Un autre avantage lié aux faibles distances vient de la réduction de la "charge historique". Celle-ci vient de l'influence de la goutte déjà chargée sur la charge acquise par la goutte quittant le jet. La valeur de la charge historique peut être donnée par le coefficient a dans la formule de transfert de charge :
q(n) = -Ce[v(n) - a . v (n-1 ) - ... ]
q(n) : succession de charges de gouttes,
Ce : capacité entre la goutte et l'électrode de charge, v(n) : succession des tensions de charges de gouttes.
Comme cela est exprimé dans la formule, on peut aussi énoncer la charge suivant la tension actuelle de l'électrode de charge et suivant la tension à la formation de la goutte précédente. La valeur de a est donnée essentiellement par le rapport entre la capacité entre deux gouttes en vol et Ce. Ici la distance entre la goutte et l'électrode est plus réduite. Ce s'élève et ainsi a se réduit. L'élaboration de la charge des gouttes devient moins sensible à ce phénomène.
Lors d'un démarrage de l'imprimante, même satisfaisant, de petits dépôts d'encre sont inévitables à l'intérieur du système de projection. On risque aussi des dysfonctionnements plus importants si accidentellement du liquide se dépose sur le revêtement résistif ou sur les rares lieux ou l'isolant apparaît entre deux conducteurs surfaciques.
Dans l'art antérieur, ainsi que cela est illustré sur la figure 4, un dépôt d'encre provoque l'existence d'un courant perturbateur qui le traverse. Le diagramme des potentiels U est mis en regard d'un ensemble d'électrodes 22, 23 et 24 portées respectivement à des potentiels U22' u23 et 24 et séparées par des parties isolantes 25 et 26. La surface 27 de la partie isolante 25 est facilement polluée par des charges électriques parasites. Si un dépôt d'encre 28 se produit entre les électrodes 23 et 24, un courant perturbateur i va circuler dans le dépôt d'encre au-dessus de la partie isolante 26. On obtient le diagramme des potentiels indiqué avec des variations de potentiel correspondant à des champs électriques intenses, notamment pour la partie isolante 25. Les potentiels et les courants sont alors modifiés et les mesures permettent d'alerter l'organe de contrôle. Suivant des critères prédéfinis, le système peut décider des modifications de commandes ou d'arrêter les fermetures périodiques du hacheur. On peut attendre, suivant le type d'encre, le séchage de l'encre et la modification de la résistance du dépôt parasite, et remettre en fonctionnement le hacheur pour une nouvelle mesure de la perturbation.
Selon la présente invention, une très faible proportion de surface libre d'isolant peut être atteinte par l'encre. Cela est illustré par la figure 5 qui reprend le principe de l'invention : présence d'un support isolant 60 supportant des pistes conductrices 62, 63 et 64 et d'un revêtement résistif continu 67. Les pistes conductrices 62, 63 et 64 sont portées respectivement aux potentiels U2, U3 et U4. La présence d'un dépôt d'encre 18 entre les pistes conductrices 63 et 64 provoque la circulation d'un faible courant perturbateur i entre les pistes 63 et 64. Le revêtement résistif 67 permet de définir et de réduire le champ électrique sur l'isolant. Ainsi, on organise la chute de potentiel entre les électrodes. Le diagramme des potentiels associé montre bien que le champ électrique superficiel est faible entre les pistes conductrices.
L'isolant n'est plus accessible au champ statique de l'espace libre, les charges s'écoulent en surface, sans prendre le temps de perturber la déflexion du liquide. Ce principe permet de définir les potentiels continus intermédiaires sur les surfaces entre les potentiels imposés par les pistes conductrices, comme on peut le voir sur la figure 5. Un dépôt mineur donne un courant perturbateur plus faible et s'il l'est suffisamment, il n'entraîne pas une dégradation de la précision de l'imprimante, ni d'alerte majeure vers l'organe de contrôle.
Le revêtement résistif déposé sur le support isolant 60, et éventuellement sur l'électrode 81, peut avoir une résistance carrée de 5 MΩ à 100 MΩ.
L'encre utilisée par les imprimantes à jet d'encre comporte un liquide volatil qui crée de la condensation, particulièrement sur les surfaces proches du jet d'encre. Progressivement, dans les imprimantes de l'art connu, au gré de la ventilation interne, des tensions partielles des divers gaz, des gradients de température, les surfaces proches du jet d'encre se tapissent de liquide, ce qui provoque de la conduction sur les parois. On remarque alors une dérive de la déflexion des gouttes.
Dans le cas de la présente invention cela impose un domaine de valeur de la résistance carrée du revêtement résistif. L'utilisation d'un tel revêtement permet avantageusement d'obtenir le potentiel de surface voulu et 1 'échauffement local de cette même surface. Ainsi, les surfaces proches du jet d'encre peuvent être chauffées modérément à l'aide des différences de potentiel utilisées pour commander le mouvement de l'encre. On peut définir une puissance de dissipation suffisante pour élever d'environ 1 degré les surfaces vis-à-vis de l'encre. On peut prévoir la résistance carrée permettant d'abord la détection des dysfonctionnements liés à la perturbation des grandeurs électriques lors de dépôts parasites d'encre. Ensuite, on dispose les chemins de dissipation de la chaleur issue du revêtement résistif et des composants électriques proches.
Le procédé selon l'invention emploie une surface continue commune aux fonctions, de l'entrée du jet à la sortie des gouttes. Cela permet de réduire et même de supprimer les élévations locales du champ électrique dues à l'emploi de rayons de courbure faibles. Ainsi on peut suivre plus finement les limites de décharges restreignant le fonctionnement et accroître l'efficacité de la déflexion. On peut ainsi supprimer les décharges du second type régulées par la loi de Langmuir exposées plus haut. Dans le système selon l'invention, les potentiels des fonctions fractionnement, charge, déflexion, sont générés de façon continue sur une surface continue pour contrôler le champ électrique superficiel d'interface entre les fonctions .
La dimension suivant l'axe de déflexion débute à l'entrée du jet avec des valeurs de l'ordre de plusieurs diamètres de jet. Les limites des champs électriques sont accrues par la petitesse des dimensions utilisées. Les champs électriques de la présente invention sont supérieurs au 1,5 MV/m utilisé dans les imprimantes classiques. Ils peuvent atteindre 6 MV/m. Les facteurs limitants viennent du déséquilibre de la surface liquide par la pression électrique contrariant la pression superficielle. Pour un même résultat de déflexion désiré, la distance utile du parcours du liquide nécessaire peut être réduite.
Comme indiqué plus haut, on utilise des tensions beaucoup plus faibles. Ainsi les potentiels entre les trois fonctions sont réduits, et les distances nécessaires pour aménager les interfaces ou "distances de sécurité" entre fonctions sont aussi réduites. On obtient une réduction importante du parcours global des gouttes. Ainsi la durée de transit de gouttes est réduite. Les impulsions données par les forces d'interactions se réduisent de la même façon. La liste des potentiels autour du jet d'encre est par ordre, à partir de la buse d'émission d'encre (voir les figures 1 et 3) :
- Ujet, U_, U2, U3 et U4 : plutôt des potentiels variables, de faibles valeurs commandant la trajectoire du jet et la charge de la goutte,
- U5 et Ug : plutôt des potentiels constants, de fortes valeurs, amplifiant la trajectoire initiale de la goutte.
A partir de ces potentiels, on peut résumer les diverses façons de commander les potentiels et donner leurs conséquences. On supposera que le jet d'encre émis est plus proche de l'électrode de potentiel Ui que de l'élément à multipotentiel U2 à Ug.
Selon un premier mode de commande, Ujet=0, Uι=0, U2=0, U3=U , U5=-400 V et Ug=-1200 V. U4 est le signal de commande échantillonné lors de la brisure. Pour une tension U4 de +100 V, la goutte est chargée négativement et prend une trajectoire donnant X positif. La goutte longe la limite de surface supérieure. Pour une tension U4 de -350 V, la goutte est chargée positivement et prend une trajectoire donnant X négatif. La goutte longe la limite de surface inférieure .
Selon un deuxième mode de commande, Ujet=0, U2=0, U3=-300 V, U4=-350 V, U5=-400 V et ϋg=-1000 V. Ui est le signal de commande échantillonné lors de la brisure. Pour une tension U]_ de +300 V, la goutte est chargée négativement, et prend une trajectoire donnant X positif. La goutte longe la limite de surface supérieure. Pour une tension U]_ de -50 V, la goutte est chargée positivement et prend une trajectoire donnant X négatif. La goutte longe la limite de surface inférieure.
Selon un troisième mode de commande, U]_=200 V, U2=0, U3=-300 V, U4=-350 V, U5=-400 V et Ug=-1000 V. Ujet est le signal de commande échantillonné lors de la brisure. Pour une tension Ujet de -50 V, la goutte est chargée négativement et prend une trajectoire donnant X positif. La goutte longe la limite de surface supérieure. Pour une tension Ujet de +200 V, la goutte est chargée positivement et prend une trajectoire donnant X négatif. La goutte longe la limite de surface inférieure .
Bien sûr d'autres combinaisons sont possibles, particulièrement si toutes les tensions exprimées précédemment sont multipliées par -1 et si on modifie l'hypothèse de la proximité entre le jet et le potentiel U . Les combinaisons les plus caractéristiques ont été mentionnées. Cela est guidé par la détermination de la charge échantillonnée par la goutte. La goutte chargée est soumise ensuite à un champ quasiment constant.
Le premier mode de commande donne la combinaison préférée, adaptable au multijet. Les potentiels de jets et de U]_, U2, U5, Ug sont communs aux différents jets. La tension de commande est comparativement d'excursion plus élevée.
Le deuxième mode de commande donne la combinaison préférée, adaptable au monojet si on souhaite garder la simplicité du potentiel U]_ . Il est possible de remplacer 1 ' équipotentiel U]_ par un second circuit monolithique. Celui-ci réalise devant chaque brisure une tension spécifique de charge à la manière des potentiels U3, U4. Sur le reste de la surface, on définit un potentiel constant, encadrant les commandes de charge .
Le troisième mode de commande donne une variante, adaptable au monojet. Le potentiel de commande de charge de goutte est celui du jet. La tension de commande est comparativement d'excursion plus faible. La réalisation est simple, la buse est au potentiel de commande. L'alimentation en encre de la buse est faite sous tube isolant. A titre d'exemple, si la longueur du tube isolant est de 0,5 m, sa section interne de 2 mm2 et si la résistivité de l'encre est de 8 Ω. , la résistance de charge de la commande vaut alors 2 MΩ, ce qui représente une faible perturbation pour le générateur de commande de charge. Le potentiel U2 permet de modifier par sa valeur statique l'inclinaison du jet incident ou/et de défléchir dynamiquement le jet et/ou de propager une perturbation tenant lieu d'information de séparation du liquide. Déjà dans les brevets US-A-5 001 497 et US-A-5 070 341, le principe de déflexion de jet continu est réalisé. Cela permet de défléchir des portions de liquide ultérieurement non chargées électriquement. Dans le procédé, selon l'invention, l'essentiel de la déflexion résulte de la force appliquée sur la goutte chargée. Le potentiel U2 statique sert de réglage pour compenser les erreurs d'alignement des jets. Les moyens de réalisation de l'électrode de commande et le comportement électrique sont dans la présente invention particulièrement avantageux. Pour en revenir à la figure 3, la définition des dépôts résistifs, conducteur et isolant définit une propagation du potentiel U2(t) dans la direction d'avancement du jet. Ainsi le potentiel dynamique du dépôt résistif, significativement proche en amplitude et phase de U2 est présent sur une étendue variable suivant la fréquence désirée de formation des gouttes.
L'étendue de pénétration du signal est donnée par la formule : (cd.ω. rd) " pour une amplitude supérieure à la moitié du signal dynamique et une phase inférieure à 0,2 π* Radian. Dans cette formule :
- cd est la capacité répartie entre le revêtement résistif et le dépôt conducteur au potentiel Uje en F/m, donnée par la couche isolante 15, - rd est la résistance répartie du revêtement résistif en Ω/m,
- ω est la pulsation du fractionnement.
La valeur de cd est de l'ordre de 150 nF/m et celle de rd est de 2,5 GΩ/m. Pour une fréquence de 100 kHz, on obtient une étendue de pénétration de 78 μm.
En statique (à la pulsation nulle) , la totalité du revêtement résistif est au potentiel statique U2 et permet d'obtenir une déflexion statique importante pour régler l'inclinaison du jet.
A très hautes fréquences, la largeur en potentiel dynamique équivalente de l'électrode est celle du conducteur au potentiel U2 • On définit cette largeur pour obtenir le maximum du fractionnement pour la fréquence la plus élevée pour la formation des gouttes, du moins pour la plus petite distance entre deux gouttes futures consécutives.
Pour accroître l'efficacité de fractionnement, il est intéressant de créer des discontinuités en amont des dépôts conducteurs au potentiel U2 • Ainsi, en aval de ces dépôts, le signal U2(t) sur le revêtement résistif se retarde suivant le temps, et ainsi les crêtes de ce signal accompagnent le liquide du jet. Ce phénomène ne peut se produire dans le sens opposé au jet, et rapidement le signal sur le dépôt résistif en amont réduit l'efficacité du fractionnement. On prévoit plusieurs séquences associées aux conducteurs au potentiel U2 espacées d'une ou plusieurs distances entre deux gouttes. Ce principe de fractionnement permet de stimuler efficacement pour différentes gammes de fréquence de formation des gouttes.
On peut préciser deux modes de commande de la stimulation dynamique du jet. Un premier mode s'apparente au procédé décrit dans le brevet US-A-4 220 958. Son principe est d'utiliser une "électrode pompe" avoisinant la colonne de fluide, connectée à une source d'énergie électrique pour établir un champ électrique variable, développant une force normale sur la colonne de fluide, pour provoquer la formation de gouttes à espacement sensiblement constant. Comme le montre la figure 6, la longueur d'une électrode d'application du potentiel U2(t) est d'environ un demi-espacement entre gouttes. La période de la tension U2(t) est celle de la formation des gouttes.
Selon la présente invention, la longueur effective de l'électrode établissant un champ électrique variable pour développer une force normale sur le jet est aussi de l'ordre d'un demi-espacement entre gouttes. Cependant, cette longueur effective de l'électrode est réalisée par la sommation d'une électrode fixe conductrice à laquelle s'ajoute une longueur diffuse liée à la propagation du signal variable U2 sur le dépôt résistif couplé au dépôt capacitif. Le procédé selon l'invention permet une certaine adaptation de la longueur effective de l'électrode établissant un champ électrique variable sur le jet. Pour une même construction de l'électrode, la variation de la longueur effective de l'électrode en fonction de la fréquence du signal U2(t) permet de stimuler effectivement sur une plus grande bande de fréquence.
Dans le brevet US-A-4 220 958, comme dans le brevet US-A-4 658 269, il n'est développé qu'un aspect symétrique des forces normales autour du jet. Un second mode de commande de la stimulation dynamique du jet est décrit dans le brevet US-A-5 001 497. Selon ce dernier brevet, un aspect dissymétrique de la force électrique sur le jet permet de le défléchir. Celui-ci rencontre ensuite la surface du collecteur-section pour sélectionner les "saucisses" de liquide à imprimer vis-à-vis du liquide à récupérer.
Selon la présente invention, on crée une déflexion du jet par l'action du champ électrique émis par l'électrode résistive pour étirer le jet dans les points d'inflexion de sa trajectoire. La tension superficielle poursuit l'écoulement du liquide de ces points d'inflexion pour ensuite donner les futures brisures entre gouttes. L'avantage de ce mode de commande est de définir des dimensions de l'électrode deux fois plus grande dans la direction de l'avancement du jet. Si le dimensionnement proposé dans le brevet US-A-4 220 958 était d'un demi-espacement de goutte pour son électrode, le mode présent d'attaque du jet demande un espacement de goutte. Comme le montre la figure 7, la période de la tension U;(t) est alors le double de celle de la formation des gouttes. Sous la référence 50, on a représenté les points d'inflexion de la trajectoire du jet d'encre. La technique de lithographie utilisée pour la réalisation des électrodes conductrices et résistive pour alors être plus grossière. Cela procure un avantage puisque la dimension de largeur de la piste conductrice doit être plus petite que l'espacement entre gouttes. On peut choisir un demi-espacement entre gouttes pour la largeur de la piste conductrice, la piste résistive prenant la suite pour transmettre le potentiel U2.
Pour un jet d'encre brisé à 80 kHz, d'une vitesse de 20 m/s, l'espacement entre gouttes est alors de 250 μm. La dimension de largeur de la piste est alors de 125 μm. Cette valeur est facile à obtenir par les techniques de sérigraphie de dépôt d'encre conductrice de type couche épaisse de l'industrie électronique.

Claims

REVENDICATIONS
1. Système de commande de projection d'un liquide électriquement conducteur (3) et émis sous forme d'un jet sous pression (4) par au moins une buse (2), comprenant des moyens pour fractionner le jet de liquide en gouttes, des moyens pour charger électriquement lesdites gouttes et des moyens pour appliquer un champ électrique de déflexion auxdites gouttes chargées, caractérisé ce qu'il comprend :
- un premier (8) et un deuxième (6) élément monolithique présentant chacun une surface continue, disposés de façon que les surfaces continues soient en vis-à-vis et définissent entre elles un espace (5) dans lequel le jet sous pression (4) est émis par ladite buse (2), lesdits éléments (6, 8) incluant des moyens permettant d'établir continûment des potentiels sur lesdites surfaces continues pour obtenir ladite charge électrique des gouttes et ledit champ électrique de déflexion,
- des moyens électroniques (31 à 36) de commande desdits potentiels et de contrôle de l'intensité des courants électriques pouvant circuler sur lesdites surfaces continues.
2. Système de commande de projection selon la revendication 1, caractérisé en ce que la surface continue du premier élément (8) est conductrice et possède des moyens de liaison électrique à l'un (U]_) desdits potentiels, la surface continue du deuxième élément (6) est constituée par une face d'un support isolant (60), cette face étant équipée de pistes conductrices (62 à 66) possédant des moyens de liaison électriques à des potentiels (U2 à Ug) choisis parmi lesdits potentiels, un revêtement résistif (67), ayant une valeur de résistance carrée comprise entre 5 MΩ et 100 MΩ, s 'étendant continûment sur ladite face.
3. Système de commande de projection selon la revendication 2, caractérisé en ce que la surface continue du premier élément (8) est également recouverte d'un revêtement résistif continu (82) .
4. Système de commande de projection selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits éléments (6, 8) présentent également des moyens permettant de fractionner le jet de liquide en gouttes et d'incliner le jet.
5. Système de commande de projection selon la revendication 4, caractérisé en ce que les moyens permettant de fractionner et d'incliner ledit jet sont des moyens permettant d'appliquer un champ électrique sur ledit jet.
6. Système de commande de projection selon la revendication 5, caractérisé en ce que les moyens permettant d'appliquer un champ électrique sur ledit jet incluent des moyens résistifs et des moyens capacitifs .
7. Système de commande de projection selon la revendication 6, caractérisé en ce que les moyens capacitifs comprennent ledit revêtement résistif (67) supporté par une couche isolante (15), cette couche isolante servant de diélectrique et étant supportée par des moyens conducteurs (11, 12, 13) supportés par ledit support isolant (60) .
8. Système de commande de projection selon l'une des revendications 6 ou 7, caractérisé en ce que les moyens résistifs sont constitués par une partie du revêtement résistif (67) .
9. Système de commande de projection selon la revendication 8, caractérisé en ce que ladite partie du revêtement résistif (67) présente des discontinuités dans certaines portions (16) afin d'accroître l'efficacité du fractionnement du jet.
10. Système de commande de projection selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le premier (8) ou le deuxième (6) élément monolithique supporte au moins l'un des moyens électroniques (31 à 36) de commande et de contrôle.
11. Système de commande de projection selon la revendication 10, caractérisé en ce que l'élément monolithique supportant l'un au moins des moyens électroniques (31 à 36) de commande et de contrôle comporte un support isolant identique au support de composants électroniques.
12. Application du système de commande de projection selon l'une quelconque des revendications précédentes à une imprimante à jet d'encre.
EP98928414A 1997-06-03 1998-06-02 Systeme de commande de projection de liquide electriquement conducteur Expired - Lifetime EP1007363B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9706799 1997-06-03
FR9706799A FR2763870B1 (fr) 1997-06-03 1997-06-03 Systeme de commande de projection de liquide electriquement conducteur
PCT/FR1998/001107 WO1998055315A1 (fr) 1997-06-03 1998-06-02 Systeme de commande de projection de liquide electriquement conducteur

Publications (2)

Publication Number Publication Date
EP1007363A1 true EP1007363A1 (fr) 2000-06-14
EP1007363B1 EP1007363B1 (fr) 2002-09-18

Family

ID=9507522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98928414A Expired - Lifetime EP1007363B1 (fr) 1997-06-03 1998-06-02 Systeme de commande de projection de liquide electriquement conducteur

Country Status (10)

Country Link
US (1) US6511164B1 (fr)
EP (1) EP1007363B1 (fr)
JP (1) JP2002502332A (fr)
CN (1) CN1095752C (fr)
AU (1) AU741223B2 (fr)
CA (1) CA2292641A1 (fr)
DE (1) DE69808104T2 (fr)
ES (1) ES2184279T3 (fr)
FR (1) FR2763870B1 (fr)
WO (1) WO1998055315A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821291B1 (fr) 2001-02-27 2003-04-25 Imaje Sa Tete d'impression et imprimante a electrodes de deflexion ameliorees
US7252372B2 (en) * 2004-03-08 2007-08-07 Fujifilm Corporation Liquid ejection apparatus and ejection control method
US7249828B2 (en) * 2004-03-17 2007-07-31 Kodak Graphic Communications Canada Company Method and apparatus for controlling charging of droplets
US7163281B2 (en) * 2004-05-05 2007-01-16 Eastman Kodak Company Method for improving drop charging assembly flatness to improved drop charge uniformity in planar electrode structures
JP4654706B2 (ja) * 2005-02-16 2011-03-23 セイコーエプソン株式会社 液体噴射装置
US7249829B2 (en) * 2005-05-17 2007-07-31 Eastman Kodak Company High speed, high quality liquid pattern deposition apparatus
JP4604953B2 (ja) * 2005-10-13 2011-01-05 セイコーエプソン株式会社 静電アクチュエータ、それを備えた液滴吐出ヘッド、液滴吐出装置及びデバイス並びに液滴吐出ヘッドの駆動方法
US7988247B2 (en) * 2007-01-11 2011-08-02 Fujifilm Dimatix, Inc. Ejection of drops having variable drop size from an ink jet printer
US8540351B1 (en) * 2012-03-05 2013-09-24 Milliken & Company Deflection plate for liquid jet printer
US9452602B2 (en) * 2012-05-25 2016-09-27 Milliken & Company Resistor protected deflection plates for liquid jet printer
ITMO20130269A1 (it) * 2013-09-27 2015-03-28 Smartjet S R L Unità ad elettrodi di controllo di fase e deflessione
CN109968811B (zh) 2014-01-27 2020-12-11 惠普印迪戈股份公司 用于向介质施加流体的系统
WO2018072809A1 (fr) 2016-10-17 2018-04-26 Wacker Chemie Ag Procédé de fabrication de pièces en élastomères de silicone présentant une qualité d'impression améliorée
CN107685539B (zh) 2017-09-22 2019-04-23 京东方科技集团股份有限公司 喷墨打印喷头、喷墨量测量系统和方法及喷墨量控制方法
CN107745580B (zh) * 2017-11-02 2023-04-07 北京赛腾标识系统股份公司 偏转电极及喷码机喷头
CN109808310B (zh) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 一种喷码机连续喷墨打印装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138686A (en) * 1977-04-06 1979-02-06 Graf Ronald E Electrostatic neutral ink printer
US4122458A (en) * 1977-08-19 1978-10-24 The Mead Corporation Ink jet printer having plural parallel deflection fields
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
JPS5931167A (ja) * 1982-08-13 1984-02-20 Hitachi Ltd インクジエツトプリンタ
US4560991A (en) * 1983-07-27 1985-12-24 Eastman Kodak Company Electroformed charge electrode structure for ink jet printers
EP0153436B1 (fr) * 1984-02-27 1990-04-04 Codi-Jet Markierungs Systeme GmbH Imprimante à projection d'encre
US4658269A (en) 1986-06-02 1987-04-14 Xerox Corporation Ink jet printer with integral electrohydrodynamic electrodes and nozzle plate
DE3787807T2 (de) * 1986-08-28 1994-02-10 Commw Scient Ind Res Org Methode und apparat zum drucken durch ablenkung eines flüssigkeitsstroms.
JPH02502897A (ja) 1987-03-02 1990-09-13 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼイション 液体ジエットプリンターのための液流偏向ジエット本体
US4845512A (en) 1988-10-12 1989-07-04 Videojet Systems International, Inc. Drop deflection device and method for drop marking systems
US4928113A (en) * 1988-10-31 1990-05-22 Eastman Kodak Company Constructions and fabrication methods for drop charge/deflection in continuous ink jet printer
GB2249995B (en) * 1990-11-21 1995-03-01 Linx Printing Tech Electrostatic deflection of charged particles
FR2681010B1 (fr) * 1991-09-10 1995-02-17 Imaje Module d'impression multijet et appareil d'impression comportant plusieurs modules.
JPH08501997A (ja) * 1992-10-13 1996-03-05 ヴィデオジェット システムズ インターナショナル インコーポレイテッド 小滴による表示方法及びシステム並びにこれと共に使用する小滴偏向器
US5363124A (en) 1993-01-26 1994-11-08 Videojet Systems International, Inc. Printhead for ink jet printers
EP0744291B1 (fr) * 1995-05-26 2000-07-12 SCITEX DIGITAL PRINTING, Inc. Procédé de fabrication d'électrodes de charge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9855315A1 *

Also Published As

Publication number Publication date
AU741223B2 (en) 2001-11-29
AU8024898A (en) 1998-12-21
CA2292641A1 (fr) 1998-12-10
DE69808104T2 (de) 2003-05-15
ES2184279T3 (es) 2003-04-01
US6511164B1 (en) 2003-01-28
CN1095752C (zh) 2002-12-11
WO1998055315A1 (fr) 1998-12-10
JP2002502332A (ja) 2002-01-22
DE69808104D1 (de) 2002-10-24
EP1007363B1 (fr) 2002-09-18
CN1265624A (zh) 2000-09-06
FR2763870B1 (fr) 1999-08-20
FR2763870A1 (fr) 1998-12-04

Similar Documents

Publication Publication Date Title
EP1007363B1 (fr) Systeme de commande de projection de liquide electriquement conducteur
FR2906755A1 (fr) Impression par deflexion d'un jet d'encre par un champ variable.
EP0051006B1 (fr) Procédé et dispositifs pour transférer des charges électriques de signes différents dans une zone d'espace et application aux éliminateurs d'électricité statique
EP2920597B1 (fr) Capteur de tension de ligne a tres haute tension a courant continu
WO1997011587A1 (fr) Procede et dispositif de mesure d'un flux d'ions dans un plasma
KR20070119072A (ko) 전자빔과 플라즈마빔을 생성, 가속 및 전파하기 위한 장치및 방법
JPH0716632B2 (ja) 静電噴霧装置
FR2729870A1 (fr) Dispositif d'ionisation pour pistolet de pulverisation electrostatique
EP1234670A2 (fr) Tête d'impression et imprimante à électrodes de déflexion améliorées
WO2014173837A1 (fr) Projecteur electrostatique de produit de revetement liquide et installation de projection comprenant un tel projecteur
FR2892052A1 (fr) Impression par deflexion differentielle de jet d'encre
EP0145253A2 (fr) Méthode pour le nettoyage d'une électrode
EP1767894A1 (fr) Nouveau dispositif embarqué de génération de décharge(s) plasma pour le pilotage d'un engin supersonique ou hypersonique
FR2552277A1 (fr) Perfectionnements dans la construction des paratonnerres
FR2837421A1 (fr) Raccord hydro-electrique pour tete d'imprimante et imprimante equipee
EP1987530B1 (fr) Installation et procede de nano -fabrication
EP0733407A1 (fr) Dispositif de projection électrostatique de produit de revêtement
FR2736773A1 (fr) Procede d'elaboration de haute tension et dispositif de projection electrostatique de produit de revetement
EP1629577A1 (fr) Eclateur, et notamment eclateur a haute tension
JPH078848A (ja) 静電霧化型塗布装置
FR3088242A1 (fr) Procede et dispositif de formation de gouttes a l'aide d'une cavite a facteur de qualite degrade
Matsukawa et al. Emission measurements and in-situ observation of ionic liquid electrospray thrusters with longitudinally grooved emitters
WO2003100932A1 (fr) Procede et installation d'ionisation par decharge electrique a barriere dielectrique et production de substrats traites en surface
FR2903726A1 (fr) Dispositif et procede pour la capture et l'elimination des particules contenues dans les gaz d'echappement d'un moteur a combustion interne de vehicule automobile.
CH677755A5 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17Q First examination report despatched

Effective date: 20010418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020918

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69808104

Country of ref document: DE

Date of ref document: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021205

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2184279

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030627

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040602

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050602