EP1006999A2 - Use of submicron oil-in-water emulsions with dna vaccines - Google Patents
Use of submicron oil-in-water emulsions with dna vaccinesInfo
- Publication number
- EP1006999A2 EP1006999A2 EP98933312A EP98933312A EP1006999A2 EP 1006999 A2 EP1006999 A2 EP 1006999A2 EP 98933312 A EP98933312 A EP 98933312A EP 98933312 A EP98933312 A EP 98933312A EP 1006999 A2 EP1006999 A2 EP 1006999A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- antigen
- vector
- virus
- submicron oil
- hiv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229960005486 vaccine Drugs 0.000 title claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 18
- 239000000839 emulsion Substances 0.000 title abstract description 16
- 108091007433 antigens Proteins 0.000 claims abstract description 104
- 102000036639 antigens Human genes 0.000 claims abstract description 104
- 239000000427 antigen Substances 0.000 claims abstract description 102
- 239000000203 mixture Substances 0.000 claims abstract description 48
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 34
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 33
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 33
- 230000003053 immunization Effects 0.000 claims abstract description 19
- 238000002649 immunization Methods 0.000 claims abstract description 18
- 239000013598 vector Substances 0.000 claims description 67
- 230000028993 immune response Effects 0.000 claims description 23
- 230000014509 gene expression Effects 0.000 claims description 19
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 17
- 239000007764 o/w emulsion Substances 0.000 claims description 17
- 230000003612 virological effect Effects 0.000 claims description 17
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 14
- 241000700721 Hepatitis B virus Species 0.000 claims description 13
- 230000001177 retroviral effect Effects 0.000 claims description 11
- 241000711549 Hepacivirus C Species 0.000 claims description 10
- 239000013603 viral vector Substances 0.000 claims description 10
- 238000001727 in vivo Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 206010046865 Vaccinia virus infection Diseases 0.000 claims description 8
- 208000007089 vaccinia Diseases 0.000 claims description 8
- 101710121417 Envelope glycoprotein Proteins 0.000 claims description 6
- 101710177291 Gag polyprotein Proteins 0.000 claims description 5
- 101710132601 Capsid protein Proteins 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 3
- 208000006454 hepatitis Diseases 0.000 claims description 3
- 231100000283 hepatitis Toxicity 0.000 claims description 3
- 241000178270 Canarypox virus Species 0.000 claims description 2
- 101710125418 Major capsid protein Proteins 0.000 claims 4
- 102100021696 Syncytin-1 Human genes 0.000 claims 4
- 108700039791 Hepatitis C virus nucleocapsid Proteins 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 46
- 239000002671 adjuvant Substances 0.000 abstract description 43
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 abstract description 7
- 229940023146 nucleic acid vaccine Drugs 0.000 abstract description 7
- 108090000623 proteins and genes Proteins 0.000 description 77
- 210000004027 cell Anatomy 0.000 description 47
- 102000004169 proteins and genes Human genes 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 17
- 241000700605 Viruses Species 0.000 description 17
- 108091026890 Coding region Proteins 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 230000004044 response Effects 0.000 description 14
- -1 Quillaja saponaria Chemical class 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 239000002502 liposome Substances 0.000 description 13
- 238000003556 assay Methods 0.000 description 12
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 12
- 208000015181 infectious disease Diseases 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 241000701022 Cytomegalovirus Species 0.000 description 9
- 210000001744 T-lymphocyte Anatomy 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 244000052769 pathogen Species 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 8
- 229940037003 alum Drugs 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- JMUHBNWAORSSBD-WKYWBUFDSA-N mifamurtide Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OCCNC(=O)[C@H](C)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1NC(C)=O JMUHBNWAORSSBD-WKYWBUFDSA-N 0.000 description 8
- 229960005225 mifamurtide Drugs 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 210000004988 splenocyte Anatomy 0.000 description 8
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 230000024932 T cell mediated immunity Effects 0.000 description 7
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 7
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- 230000003834 intracellular effect Effects 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 229940031439 squalene Drugs 0.000 description 7
- 241001430294 unidentified retrovirus Species 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 101710137500 T7 RNA polymerase Proteins 0.000 description 6
- 241000700618 Vaccinia virus Species 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000001476 gene delivery Methods 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 241000271566 Aves Species 0.000 description 5
- 108010039939 Cell Wall Skeleton Proteins 0.000 description 5
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 210000004520 cell wall skeleton Anatomy 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 229920000053 polysorbate 80 Polymers 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 238000002255 vaccination Methods 0.000 description 5
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 description 4
- 241000700663 Avipoxvirus Species 0.000 description 4
- 238000011735 C3H mouse Methods 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 210000002443 helper t lymphocyte Anatomy 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 239000003022 immunostimulating agent Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000021633 leukocyte mediated immunity Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 230000001717 pathogenic effect Effects 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- XETCRXVKJHBPMK-MJSODCSWSA-N trehalose 6,6'-dimycolate Chemical compound C([C@@H]1[C@H]([C@H](O)[C@@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](COC(=O)C(CCCCCCCCCCC3C(C3)CCCCCCCCCCCCCCCCCC)C(O)CCCCCCCCCCCCCCCCCCCCCCCCC)O2)O)O1)O)OC(=O)C(C(O)CCCCCCCCCCCCCCCCCCCCCCCCC)CCCCCCCCCCC1CC1CCCCCCCCCCCCCCCCCC XETCRXVKJHBPMK-MJSODCSWSA-N 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 241000712461 unidentified influenza virus Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000031886 HIV Infections Diseases 0.000 description 3
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 3
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 3
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 3
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 3
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 208000029570 hepatitis D virus infection Diseases 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 235000019419 proteases Nutrition 0.000 description 3
- 229930182490 saponin Natural products 0.000 description 3
- 150000007949 saponins Chemical class 0.000 description 3
- 235000017709 saponins Nutrition 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 2
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 108010049048 Cholera Toxin Proteins 0.000 description 2
- 102000009016 Cholera Toxin Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 101710091045 Envelope protein Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000531123 GB virus C Species 0.000 description 2
- 241000724675 Hepatitis E virus Species 0.000 description 2
- 241000709721 Hepatovirus A Species 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 2
- 241000701806 Human papillomavirus Species 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241001467552 Mycobacterium bovis BCG Species 0.000 description 2
- 108700020354 N-acetylmuramyl-threonyl-isoglutamine Proteins 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- 101710188315 Protein X Proteins 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- DSNRWDQKZIEDDB-GCMPNPAFSA-N [(2r)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C/CCCCCCCC DSNRWDQKZIEDDB-GCMPNPAFSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229940028617 conventional vaccine Drugs 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 239000000568 immunological adjuvant Substances 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 208000037797 influenza A Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000010686 shark liver oil Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229940031626 subunit vaccine Drugs 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- YHQZWWDVLJPRIF-JLHRHDQISA-N (4R)-4-[[(2S,3R)-2-[acetyl-[(3R,4R,5S,6R)-3-amino-4-[(1R)-1-carboxyethoxy]-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound C(C)(=O)N([C@@H]([C@H](O)C)C(=O)N[C@H](CCC(=O)O)C(N)=O)C1[C@H](N)[C@@H](O[C@@H](C(=O)O)C)[C@H](O)[C@H](O1)CO YHQZWWDVLJPRIF-JLHRHDQISA-N 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000702628 Birnaviridae Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 101000686777 Escherichia phage T7 T7 RNA polymerase Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000272496 Galliformes Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000815628 Homo sapiens Regulatory-associated protein of mTOR Proteins 0.000 description 1
- 101000652747 Homo sapiens Target of rapamycin complex 2 subunit MAPKAP1 Proteins 0.000 description 1
- 101000648491 Homo sapiens Transportin-1 Proteins 0.000 description 1
- 206010020460 Human T-cell lymphotropic virus type I infection Diseases 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000714259 Human T-lymphotropic virus 2 Species 0.000 description 1
- 241000701027 Human herpesvirus 6 Species 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 206010022941 Iridocyclitis Diseases 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000187480 Mycobacterium smegmatis Species 0.000 description 1
- 101000783356 Naja sputatrix Cytotoxin Proteins 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000150350 Peribunyaviridae Species 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 240000001987 Pyrus communis Species 0.000 description 1
- 241001454523 Quillaja saponaria Species 0.000 description 1
- 235000009001 Quillaja saponaria Nutrition 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000035415 Reinfection Diseases 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000392514 Salmonella enterica subsp. enterica serovar Dublin Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000055236 Scolytus unispinosus Species 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000710960 Sindbis virus Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- 102100028748 Transportin-1 Human genes 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- NWGKJDSIEKMTRX-BFWOXRRGSA-N [(2r)-2-[(3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)C1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-BFWOXRRGSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 201000004612 anterior uveitis Diseases 0.000 description 1
- 230000027645 antigenic variation Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960000190 bacillus calmette–guérin vaccine Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 229950004398 broxuridine Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000002340 cardiotoxin Substances 0.000 description 1
- 231100000677 cardiotoxin Toxicity 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- UMGXUWVIJIQANV-UHFFFAOYSA-M didecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC UMGXUWVIJIQANV-UHFFFAOYSA-M 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 101150030339 env gene Proteins 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003721 gunpowder Substances 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000017555 immunoglobulin mediated immune response Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 229940065638 intron a Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 125000001446 muramyl group Chemical group N[C@@H](C=O)[C@@H](O[C@@H](C(=O)*)C)[C@H](O)[C@H](O)CO 0.000 description 1
- 210000001167 myeloblast Anatomy 0.000 description 1
- 229940022007 naked DNA vaccine Drugs 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000008041 oiling agent Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001566 pro-viral effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108700004030 rev Genes Proteins 0.000 description 1
- 101150098213 rev gene Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940069764 shark liver oil Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000010907 stover Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 241001147422 tick-borne encephalitis virus group Species 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 108010055094 transporter associated with antigen processing (TAP) Proteins 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- JOPDZQBPOWAEHC-UHFFFAOYSA-H tristrontium;diphosphate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JOPDZQBPOWAEHC-UHFFFAOYSA-H 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 208000000143 urethritis Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/21—Retroviridae, e.g. equine infectious anemia virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
- A61K39/292—Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates generally to vaccine compositions.
- the invention relates to the use of submicron oil-in-water emulsions with nucleic acid vaccines.
- vaccine formulations which include attenuated pathogens or subunit protein antigens, have been developed.
- Conventional vaccine compositions often include immunological adjuvants to enhance immune responses.
- depot adjuvants are frequently used which adsorb and/or precipitate administered antigens and which can retain the antigen at the injection site.
- Typical depot adjuvants include aluminum compounds and water-in-oil emulsions.
- depot adjuvants although increasing antigenicity, often provoke severe persistent local reactions, such as granulomas, abscesses and scarring, when injected subcutaneously or intramuscularly.
- adjuvants such as lipopolysacharrides and muramyl dipeptides
- Saponins such as Quillaja saponaria
- MF59 a safe, highly immunogenic, submicron oil-in- water emulsion, has been developed for use in vaccine compositions. See, e.g., Ott et al .
- Cytotoxic T-lymphocytes play an important role in cell -mediated immune defense against intracellular pathogens such as viruses and tumor- specific antigens produced by malignant cells.
- CTLs mediate cytotoxicity of virally infected cells by recognizing viral determinants in conjunction with class I MHC molecules displayed by the infected cells. Cytoplasmic expression of proteins is a prerequisite for class I MHC processing and presentation of antigenic peptides to CTLs.
- immunization with killed or attenuated viruses often fails to produce the CTLs necessary to curb intracellular infection.
- conventional vaccination techniques against viruses displaying marked genetic heterogeneity and/or rapid mutation rates that facilitate selection of immune escape variants, such as HIV or influenza are problematic. Accordingly, alternative techniques for vaccination have been developed.
- nucleic acid immunization has been shown to elicit both humoral and cell-mediated immune responses.
- sera from mice immunized with a human immunodeficiency virus type 1 (HIV-1) DNA construct encoding the envelope glycoprotein, gpl60 were shown to react with recombinant gpl60 in immunoassays and lymphocytes from the injected mice were shown to proliferate in response to recombinant gpl20.
- mice immunized with a plasmid containing a genomic copy of the human growth hormone (hGH) gene demonstrated an antibody-based immune response.
- hGH human growth hormone
- the present invention is based on the surprising and unexpected discovery that the use of a submicron oil-in-water emulsion serves to enhance the immunogenicity of nucleic acid vaccines .
- the use of such emulsions provides a safe and effective approach for enhancing the immunogenicity of nucleic acid vaccines against a wide variety of pathogens.
- the submicron oil-in-water emulsion need not be administered at the same time as the gene of interest, but may be administered prior or subsequent to delivery of the gene. Indeed, surprisingly good results are seen when the emulsion is administered prior to delivery of the gene.
- the invention is directed to a method of immunization which comprises administering a submicron oil-in-water emulsion to a vertebrate subject, and transfecting cells of said subject with a recombinant vector comprising a nucleic acid molecule encoding an antigen of interest, under conditions that permit the expression of said antigen, thereby eliciting an immunological response to said antigen of interest.
- the recombinant vector is a nonviral vector, or a viral vector, such as a retroviral, vaccinia or canarypox vector.
- the invention is directed to a method of immunization which comprises administering MF59 to a mammalian subject and immunizing said subject with a recombinant vector comprising a nucleic acid molecule encoding a viral antigen of interest, under conditions that permit the expression of said antigen, thereby eliciting an immunological response to said antigen of interest.
- Figures IA and IB show the results of a 51 Cr release assay performed on splenocytes from C3H mice given the specified adjuvant two days prior to retroviral vector delivery, as described in Example 2a.
- Figure IA depicts results from mice administered undiluted retrovirus vector 6A3.
- Figure IB depicts results from mice administered retrovirus vector 6A3 , diluted 1:10.
- Figure 2 shows the average IgGl response to gpl20 in mice pretreated with the specified adjuvant two days prior to retroviral vector delivery, as described in Example 3.
- nucleic acid immunization is meant the introduction of a nucleic acid molecule encoding one or more selected antigens into a host cell, for the in vivo expression of the antigen or antigens.
- the nucleic acid molecule can be introduced into the recipient subject, using nonviral vectors, viral vectors or bacterial vectors (as described further below) such as by injection, inhalation, oral, intranasal and mucosal administration, or the like, or can be introduced ex vivo, into cells which have been removed from the host. In the latter case, the transformed cells are reintroduced into the subject where an immune response can be mounted against the antigen encoded by the nucleic acid molecule.
- an epitope is meant a molecule which contains one or more epitopes that will stimulate a host's immune system to make a cellular antigen-specific immune response when the antigen is presented, or a humoral antibody response. Normally, an epitope will include between about 3-15, generally about 5-15, amino acids.
- antigens can be derived from any of several known viruses, bacteria, parasites and fungi. The term also intends any of the various tumor antigens.
- an “antigen” refers to a protein which includes modifications, such as deletions, additions and substitutions (generally conservative in nature) , to the native sequence, so long as the protein maintains the ability to elicit an immunological response. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the antigens .
- an "immunological response" to an antigen or composition is the development in a subject of a humoral and/or a cellular immune response to molecules present in the composition of interest.
- a “humoral immune response” refers to an immune response mediated by antibody molecules
- a “cellular immune response” is one mediated by T-lymphocytes and/or other white blood cells.
- CTL cytolytic T- cells
- CTLs have specificity for peptide antigens that are presented in association with proteins encoded by the major histocompatibility complex (MHC) and expressed on the surfaces of cells.
- helper T-cells help induce and promote the intracellular destruction of intracellular microbes, or the lysis of cells infected with such microbes.
- Another aspect of cellular immunity involves an antigen-specific response by helper T-cells.
- Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide antigens in association with MHC molecules on their surface.
- a "cellular immune response” also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells.
- a composition or vaccine that elicits a cellular immune response may serve to sensitize a vertebrate subject by the presentation of antigen in association with MHC molecules at the cell surface.
- the cell -mediated immune response is directed at, or near, cells presenting antigen at their surface.
- antigen-specific T-lymphocytes can be generated to allow for the future protection of an immunized host.
- the ability of a particular antigen or composition to stimulate a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliteration (lymphocyte activation) assays, CTL cytotoxic cell assays, or by assaying for T-lymphocytes specific for the antigen in a sensitized subject.
- assays are well known in the art. See, e.g., Erickson et al . , J. Immunol . (1993) 151:4189- 4199; Doe et al . , Bur. J " . Immunol. (1994) 24 :2369- 2376; and the examples below.
- an immunological response as used herein may be one which stimulates the production of CTLs, and/or the production or activation of helper T- cells.
- the antigen of interest may also elicit an antibody-mediated immune response.
- an immunological response may include one or more of the following effects: the production of antibodies by B- cells; and/or the activation of suppressor T-cells and/or y ⁇ T-cells directed specifically to an antigen or antigens present in the composition or vaccine of interest.
- These responses may serve to neutralize infectivity, and/or mediate antibody-complement , or antibody dependent cell cytotoxicity (ADCC) to provide protection to an immunized host.
- ADCC antibody dependent cell cytotoxicity
- a "coding sequence” or a sequence which "encodes" a selected antigen is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vivo when placed under the control of appropriate regulatory sequences.
- the boundaries of the coding sequence are determined by a start codon at the 5 ' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus.
- a coding sequence can include, but is not limited to, cDNA from viral, procaryotic or eucaryotic mRNA, genomic DNA sequences from viral or procaryotic DNA, and even synthetic DNA sequences.
- a transcription termination sequence may be located 3' to the coding sequence .
- a "nucleic acid" molecule can include, but is not limited to, procaryotic sequences, eucaryotic mRNA, cDNA from eucaryotic mRNA, genomic DNA sequences from eucaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences.
- the term also captures sequences that include any of the known base analogs of DNA and RNA.
- vector any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, recombinant virus, etc., which can deliver gene sequences to a desired cell or tissue.
- the term includes cloning and expression vehicles, as well as viral vectors.
- “Operably linked” refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function.
- a given promoter operably linked to a coding sequence is capable of effecting the expression of the coding sequence when the proper enzymes are present.
- the promoter need not be contiguous with the coding sequence, so long as it functions to direct the expression thereof.
- intervening untranslated yet transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered “operably linked” to the coding sequence.
- Recombinant as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of the polynucleotide with which it is associated in nature ; and/or (2) is linked to a polynucleotide other than that to which it is linked in nature.
- the term "recombinant” as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide.
- nucleic acid or polypeptide sequences are "substantially homologous" when at least about 70%, preferably at least about 80-90%, and most preferably at least about 95%, of the nucleotides or amino acids match over a defined length of the molecule.
- substantially homologous also refers to sequences showing identity to the specified nucleic acid or polypeptide sequence.
- Nucleic acid sequences that are substantially homologous can be identified in a Southern hybridization experiment under, for example, stringent conditions, as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Sambrook et al . , supra; DNA Cloning, vols I & II, supra; Nucleic Acid Hybridization, supra . Such sequences can also be confirmed and further characterized by direct sequencing of PCR products.
- an agent refers to a nontoxic but sufficient amount of the agent to provide the desired immunological response and corresponding therapeutic effect.
- the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, and the particular antigen of interest, mode of administration, and the like.
- An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
- treatment refers to any of
- treatment may be effected prophylactically (prior to infection) or therapeutically (following infection) .
- vertebrate subject any member of the subphylum cordata, including, without limitation, humans and other primates, including non- human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs; birds, including domestic, wild and game birds such as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like.
- the term does not denote a particular age. Thus, both adult and newborn individuals are intended to be covered.
- the system described above is intended for use in any of the above vertebrate species, since the immune systems of all of these vertebrates operate similarly.
- the present invention is based on the discovery that the use of submicron oil-in-water emulsions in combination with nucleic acid immunization, can provide a vigorous immune response, even when the gene delivered encodes for a protein which is by itself weakly immunogenic.
- the method of the invention provides for cell-mediated immunity, and/or humoral antibody responses.
- the system herein described can provide for, e.g., the association of the expressed antigens with class I MHC molecules such that an in vivo cellular immune response to the antigen of interest can be mounted which stimulates the production of CTLs to allow for future recognition of the antigen.
- the method may elicit an antigen-specific response by helper T-cells.
- the methods of the present invention will find use with any antigen for which cellular and/or humoral immune responses are desired, including antigens derived from viral, bacterial, fungal and parasitic pathogens that may induce antibodies, T-cell helper epitopes and T-cell cytotoxic epitopes .
- antigens include, but are not limited to, those encoded by human and animal viruses and can correspond to either structural or non-structural proteins.
- the technique is particularly useful for immunization against intracellular viruses and tumor cell antigens which normally elicit poor immune responses.
- the present invention will find use for stimulating an immune response against a wide variety of proteins from the herpesvirus family, including proteins derived from herpes simplex virus (HSV) types 1 and 2, such as HSV-1 and HSV-2 glycoproteins gB, gD and gH; antigens derived from varicella zoster virus (VZV) , Epstein-Barr virus (EBV) and cytomegalovirus (CMV) including CMV gB and gH; and antigens derived from other human herpesviruses such as HHV6 and HHV7.
- HSV herpes simplex virus
- VZV varicella zoster virus
- EBV Epstein-Barr virus
- CMV cytomegalovirus
- antigens derived from other human herpesviruses such as HHV6 and HHV7.
- Polynucleotide sequences encoding antigens from the hepatitis family of viruses including hepatitis A virus (HAV) , hepatitis B virus (HBV) , hepatitis C virus (HCV) , the delta hepatitis virus (HDV) , hepatitis E virus (HEV) and hepatitis G virus
- HCV human immunodeficiency virus
- the viral genomic sequence of HCV is known, as are methods for obtaining the sequence. See, e.g., International Publication ⁇ os . WO 89/04669; WO 90/11089; and WO 90/14436.
- the sequences encoding each of these proteins, as well as antigenic fragments thereof, will find use in the present methods.
- the coding sequence for the ⁇ - antigen from HDV is known (see, e.g., U.S. Patent No.
- antigens derived from HBV such as the core antigen, the surface antigen, sAg, as well as the presurface sequences, pre-Sl and pre-S2 (formerly called pre-S) , as well as combinations of the above, such as sAg/pre- Sl, sAg/pre-S2, sAg/pre-Sl/pre-S2 , and pre-Sl/pre-S2 , will find use herein. See, e.g., "HBV Vaccines - from the laboratory to license: a case study" in Mackett, M. and Williamson, J.D., Human Vaccines and Vaccination, pp.
- Polynucleotide sequences encoding antigens derived from other viruses will also find use in the claimed methods, such as without limitation, proteins from members of the families Picornaviridae (e.g., polioviruses, etc.); Caliciviridae; Togaviridae (e.g., rubella virus, dengue virus, etc.); Flaviviridae; Coronaviridae; Reoviridae; Birnaviridae; Rhabodoviridae (e.g., rabies virus, etc.); Filoviridae; Paramyxoviridae (e.g., mumps virus, measles virus, respiratory syncytial virus, etc.); Orthomyxoviridae (e.g., influenza virus types A, B and C, etc.); Bunyaviridae; Arenaviridae; Retroviradae (e.g., HTLV-I; HTLV-II; HIV-1 (also known as HTLV-III, L
- antigens may also be derived from human papillomavirus (HPV) and the tick-borne encephalitis viruses. See, e.g. Virology, 3rd Edition (W.K. Joklik ed. 1988) ; Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991), for a description of these and other viruses.
- HPV human papillomavirus
- tick-borne encephalitis viruses See, e.g. Virology, 3rd Edition (W.K. Joklik ed. 1988) ; Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991), for a description of these and other viruses.
- genes encoding the gpl20 envelope protein from any of the above HIV isolates are known and reported (see, e.g., Myers et al . , Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al . , Human Retroviruses and Aids, 1990, Los Alamos, New Mexico: Los Alamos National Laboratory; and Modrow et al . , J. Virol . (1987) 6JL: 570-578, for a comparison of the envelope gene sequences of a variety of HIV isolates) and sequences derived from any of these isolates will find use in the present methods.
- the invention is equally applicable to other immunogenic proteins derived from any of the various HIV isolates, including any of the various envelope proteins such as gpl60 and gp41, gag antigens such as p24gag and p55gag, as well as proteins derived from the pol region.
- influenza virus is another example of a virus for which the present invention will be particularly useful.
- the envelope glycoproteins HA and NA of influenza A are of particular interest for generating an immune response.
- Numerous HA subtypes of influenza A have been identified (Kawaoka et al . , Virology (1990) 179 -. 159 -161 ; Webster et al . , "Antigenic variation among type A influenza viruses," p. 127-168. In: P. Palese and D.W. Kingsbury (ed.), Genetics of influenza viruses . Springer-Verlag, New York) .
- the gene sequences encoding proteins derived from any of these isolates can also be used in the nucleic acid immunization techniques described herein.
- the techniques can be used for the delivery of discrete antigens, larger portions of the genome in question and, for example, a proviral DNA which includes nearly all of the viral genome.
- the methods described herein will also find use with DNA sequences encoding numerous bacterial antigens, such as those derived from organisms that cause diphtheria, cholera, tuberculosis, tetanus, pertussis, meningitis, and other pathogenic states, including, without limitation, Meningococcus A, B and C, Hemophilus influenza type B (HIB) , and Helicobacter pylori .
- bacterial antigens include those derived from organisms causing malaria and Lyme disease .
- the methods described herein provide a means for treating a variety of malignant cancers.
- the system of the present invention can be used to mount both humoral and cell- mediated immune responses to particular proteins specific to the cancer in question, such as an activated oncogene, a fetal antigen, or an activation marker.
- tumor antigens include any of the various MAGEs (melanoma associated antigen E) , including MAGE 1, 2, 3, 4, etc. (Boon, T.
- polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene from a vector known to include the same.
- the desired gene can be isolated directly from cells and tissues containing the same, using standard techniques, such as phenol extraction and PCR of cDNA or genomic DNA. See, e.g., Sambrook et al . , supra, for a description of techniques used to obtain and isolate DNA.
- the gene of interest can also be produced synthetically, rather than cloned.
- the nucleotide sequence can be designed with the appropriate codons for the particular amino acid sequence desired. In general, one will select preferred codons for the intended host in which the sequence will be expressed.
- the complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge, Nature (1981) 292 :756; Nambair et al . , Science (1984) 223 :1299; Jay et al., J. Biol . Chem . (1984) 259:6311.
- the gene sequence encoding the desired antigen can be inserted into a vector which includes control sequences operably linked to the desired coding sequence, which allow for the expression of the gene in vivo in the subject species.
- typical promoters for mammalian cell expression include the SV40 early promoter, a CMV promoter such as the CMV immediate early promoter (Chapman et al . , Nucl . Acids Res . (1991) JL9_: 3979-3986) , the mouse mammary tumor virus LTR promoter, the adenovirus major late promoter (Ad MLP) , and the herpes simplex virus promoter, among others.
- transcription termination and polyadenylation sequences will also be present, located 3' to the translation stop codon.
- a sequence for optimization of initiation of translation located 5' to the coding sequence, is also present.
- transcription terminator/polyadenylation signals include those derived from SV40, as described in Sambrook et al . , supra, as well as a bovine growth hormone terminator sequence.
- Introns, containing splice donor and acceptor sites, may also be designed into the constructs for use with the present invention.
- Enhancer elements may also be used herein to increase expression levels of the mammalian constructs. Examples include the SV40 early gene enhancer, as described in Dijkema et al . , EMBO J. (1985) 4 . : 761, the enhancer/promoter derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus, as described in Gorman et al . , Proc . Natl . Acad . Sci . USA (1982b) 2:6777 and elements derived from human CMV, as described in Boshart et al . , Cell (1985) 4_1:521, such as elements included in the CMV intron A sequence .
- LTR long terminal repeat
- plasmids can be constructed which include a chimeric gene sequence, encoding e.g., multiple antigens of interest, for example derived from more than one viral isolate.
- genes coding for immune modulating agents which can enhance antigen presentation, attract lymphocytes to the site of gene expression or promote expansion of the population of lymphocytes to the site of gene expression or promote expansion of the population of lymphocytes which respond to the expressed antigen, can also be present.
- Such agents include cytokines, lymphokines, and chemokines, including but not limited to IL-2, modified IL-2 (cysl25 ⁇ serl25) , GM-CSF, IL-12, ⁇ -interferon, IP-10, MIPlo;, MIP1/3 and RANTES .
- immune molecules such as TAP transporters, costimulatory molecules such as B7, 32M, class I or II MHC genes (syngeneic or allogeneic) , and other genes coding for proteins that are required for efficient immune responses but are not expressed due to specific inhibition or deletion, will also find use in the constructs. This is particularly relevant in tumor cells and in some infected cells where antigen presentation is often reduced.
- the above sequences can be administered using separate vectors or can be present on the vector bearing the gene encoding the antigen of interest. If present on the same vector, the additional gene sequences can either precede or follow the gene encoding the antigen of interest in a dicistronic gene configuration. Additional control elements can be situated between the various genes for efficient translation of RNA from the distal coding region. Alternatively, a chimeric transcription unit having a single open reading frame encoding both the gene of interest and the modulator, can also be constructed.
- Either a fusion can be made to allow for the synthesis of a chimeric protein or alternatively, protein processing signals can be engineered to provide cleavage by a protease such as a signal peptidase, thus allowing liberation of the two or more proteins derived from translation of the template RNA.
- a protease such as a signal peptidase
- Such signals for processing of a polyprotein exist in, e.g., flaviviruses, pestiviruses such as HCV, and picornaviruses, and can be engineered into the constructs.
- the processing protease may also be expressed in this system either independently or as part of a chimera with the antigen and/or cytokine coding region (s) .
- the protease itself can be both a processing enzyme and a vaccine antigen.
- the constructs are used for nucleic acid immunization using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Patent Nos. 5,399,346, 5,580,859, 5,589,466.
- Genes can be delivered either directly to the vertebrate subject or, alternatively, delivered ex vivo, to cells derived from the subject and the cells reimplanted in the subject. Genes can be delivered using nonviral vectors, as described above, viral vectors or bacterial vectors.
- retroviral systems have been developed for gene transfer into mammalian cells.
- retroviruses provide a convenient platform for gene delivery systems.
- a selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art.
- the recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo .
- retroviral systems have been described (see, e.g., U.S. Patent No. 5,219,740; International Publication Nos. WO 91/02805 and WO 93/15207; Miller and Rosman, BioTechniques (1989) 2:980-990; Miller,
- adenovirus vectors have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj -Ahmad and Graham, J. Virol . (1986) 5_7:267-274; Bett et al . , J. Virol . (1993) 62:5911-5921; Mittereder et al . , Human Gene Therapy (1994) 5_:717-729; Seth et al . , J. Virol . (1994) £8:933-940; Barr et al .
- AAV vector systems have been developed for gene delivery.
- AAV vectors can be readily constructed using techniques well known in the art. See, e.g., U.S. Patent Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 (published 23 January 1992) and WO 93/03769 (published 4 March 1993); Lebkowski et al . , Molec . Cell . Biol . (1988) .
- Additional viral vectors which will find use for delivering the nucleic acid molecules encoding the antigens of interest include those derived from the pox family of viruses, including vaccinia virus and avian poxvirus.
- vaccinia virus recombinants expressing the genes can be constructed as follows. The DNA encoding the particular antigen is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK) . This vector is then used to transfect cells which are simultaneously infected with vaccinia.
- TK thymidine kinase
- Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the antigen of interest into the viral genome.
- the resulting TK " recombinant can be selected by culturing the cells in the presence of 5-bromodeoxyuridine and picking viral plaques resistant thereto.
- avipoxviruses such as the fowlpox and canarypox viruses, can also be used to deliver the genes. Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species.
- an avipox vector is particularly desirable in human and other mammalian species since members of the avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells.
- Methods for producing recombinant avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, e.g., WO 91/12882; WO 89/03429; and WO 92/03545.
- Molecular conjugate vectors such as the adenovirus chimeric vectors described in Michael et al., J. Biol . Chem . (1993) 268:6866-6869 and Wagner et al., Proc . Natl . Acad . Sci . USA (1992) 89:6099-6103, can also be used for gene delivery. Additionally, the gene of interest can be delivered using pseudovirions, such as a noninfectious retrovirus-like particle, described in e.g., International Publication No. WO 91/05864, published 2 May 1991.
- a vaccinia based infection/transfection system can be conveniently used to provide for inducible, transient expression of the gene of interest in a host cell.
- cells are first infected in vi tro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays vibrant specificity in that it only transcribes templates bearing T7 promoters.
- RNA RNA
- an amplification system can be used that will lead to high level expression following introduction into host cells.
- a T7 RNA polymerase promoter preceding the coding region for T7 RNA polymerase can be engineered. Translation of RNA derived from this template will generate T7 RNA polymerase which in turn will transcribe more template. Concomitantly, there will be a cDNA whose expression is under the control of the T7 promoter. Thus, some of the T7 RNA polymerase generated from translation of the amplification template RNA will lead to transcription of the desired gene.
- T7 RNA polymerase can be introduced into cells along with the template (s) to prime the transcription reaction.
- the polymerase can be introduced as a protein or on a plasmid encoding the RNA polymerase .
- Bacterial vectors may also be used to deliver the gene of interest, such as but not limited to vectors derived from Mycobacteria, such as M. smegmatis and M. bovis bacillus Calmette-Guerin (BCG) (see, e.g., Stover et al . , Nature (1991) 351 :456 and Aldovini and Young, Nature (1991) 351:479) ; Salmonella-derived vectors, such as attenuated mutants of S . typhimurium, S . sobrinus and S. dublin (see, e.g., Cardenas and Clements, Vaccine (1993) ⁇ :126 and Sch ⁇ del et al .
- BCG M. smegmatis and M. bovis bacillus Calmette-Guerin
- the gene of interest can also be packaged in liposomes prior to delivery to the subject or to cells derived therefrom, with or without the accompanying antigen.
- Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid.
- the ratio of condensed D ⁇ A to lipid preparation can vary but will generally be around 1:1 (mg D ⁇ A:micromoles lipid), or more of lipid.
- Liposomal preparations for use in the instant invention include cationic (positively charged) , anionic (negatively charged) and neutral preparations, with cationic liposomes particularly preferred.
- Cationic liposomes are readily available.
- N [1-2 , 3-dioleyloxy) propyl] -N,N,N- triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Feigner et al . , Proc . Natl . Acad . Sci . USA (1987) 84:7413-7416).
- Other commercially available lipids include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger) .
- DOTAP 1, 2-bis (oleoyloxy) -3- (trimethylammonio) propane
- anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids
- Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC) , dioleoylphosphatidyl glycerol (DOPG) , dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
- the liposomes can comprise multilammelar vesicles (MLVs) , small unilamellar vesicles (SUVs) , or large unilamellar vesicles (LUVs) .
- MLVs multilammelar vesicles
- SUVs small unilamellar vesicles
- LUVs large unilamellar vesicles
- the various liposome-nucleic acid complexes are prepared using methods known in the art. See, e.g., Straubinger et al., in METHODS OF IMMUNOLOGY (1983), Vol. 101, pp. 512-527; Szoka et al . , Proc . Natl . Acad . Sci . USA
- DNA and/or protein antigen (s) can also be delivered in cochleate lipid compositions similar to those described by Papahadjopoulos et al . , Biochem. Biophys . Acta . (1975) 394:483-491. See, also, U.S. Patent Nos. 4,663,161 and 4,871,488.
- Particulate systems and polymers can be used for the in vivo or ex vivo delivery of the gene of interest.
- polymers such as polylysine, polyarginine, polyornithine, spermine, spermidine, as well as conjugates of these molecules, are useful for transferring a nucleic acid of interest.
- DEAE dextran-mediated transfection, calcium phosphate precipitation or precipitation using other insoluble inorganic salts, such as strontium phosphate, aluminum silicates including bentonite and kaolin, chromic oxide, magnesium silicate, talc, and the like, will find use with the present methods. See, e.g., Feigner, P.L., Advanced Drug Delivery Reviews (1990)
- biolistic delivery systems employing particulate carriers such as gold and tungsten, are especially useful for delivering genes of interest.
- the particles are coated with the gene to be delivered and accelerated to high velocity, generally under a reduced atmosphere, using a gun powder discharge from a "gene gun.”
- a gun powder discharge from a "gene gun” For a description of such techniques, and apparatuses useful therefore, see, e.g., U.S. Patent Nos. 4,945,050; 5,036,006; 5,100,792; 5,179,022; 5,371,015; and 5 , 478 , 744.
- compositions for delivery to the vertebrate subject are formulated into compositions for delivery to the vertebrate subject.
- compositions may either be prophylactic (to prevent infection) or therapeutic (to treat disease after infection) .
- the compositions will comprise a "therapeutically effective amount" of the gene of interest such that an amount of the antigen can be produced in vivo so that an immune response is generated in the individual to which it is administered. The exact amount necessary will vary depending on the subject being treated; the age and general condition of the subject to be treated; the capacity of the subject's immune system to synthesize antibodies; the degree of protection desired; the severity of the condition being treated; the particular antigen selected and its mode of administration, among other factors.
- an effective amount can be readily determined by one of skill in the art.
- a "therapeutically effective amount” will fall in a relatively broad range that can be determined through routine trials.
- an effective dose will typically range from about 1 ⁇ g to about 100 mg, more preferably from about 10 ⁇ g to about 1 mg, of the DNA constructs.
- compositions will generally include one or more "pharmaceutically acceptable excipients or vehicles" such as water, saline, glycerol , polyethyleneglycol, hyaluronic acid, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Certain facilitators of nucleic acid uptake and/or expression can also be included in the compositions or coadministered, such as, but not limited to, bupivacaine, cardiotoxin and sucrose.
- pharmaceutically acceptable excipients or vehicles such as water, saline, glycerol , polyethyleneglycol, hyaluronic acid, ethanol, etc.
- auxiliary substances such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.
- Certain facilitators of nucleic acid uptake and/or expression can also be included in the compositions or coadministered,
- compositions of the invention can be administered directly to the subject or, alternatively, delivered ex vivo, to cells derived from the subject, using methods such as those described above.
- methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and will include e.g., dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, lipofectamine and LT-1 mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide (s) (with or without the corresponding antigen) in liposomes, and direct microinjection of the DNA into nuclei.
- Direct delivery of the compositions in vivo will generally be accomplished with or without viral vectors, as described above, by injection using either a conventional syringe or a gene gun, such as the Accell ® gene delivery system (Agracetus, Inc., Middleton, WI) .
- the constructs can be injected either subcutaneously, epidermally, intradermally, intramucosally such as nasally, rectally and vaginally, intraperitoneally, intravenously, orally or intramuscularly.
- delivery of DNA into cells of the epidermis provides access to skin- associated lymphoid cells and provides for a transient presence of DNA in the vaccine recipient .
- Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications .
- Dosage treatment may be a single dose schedule or a multiple dose schedule.
- a multiple dose schedule is one in which a primary course of vaccination may be with 1-10 separate doses, followed by other doses given at subsequent time intervals, chosen to maintain and/or reinforce the immune response, for example at 1-4 months for a second dose, and if needed, a subsequent dose(s) after several months.
- the boost may be with the nucleic acid vaccines or may comprise subunit antigen compositions including the antigen encoded by the delivered nucleic acid constructs.
- the dosage regimen will, at least in part, be determined by the need of the subject and be dependent on the judgment of the practitioner.
- the vaccines are generally administered prior to primary infection with the pathogen of interest. If treatment is desired, e.g., the reduction of symptoms or recurrences, the vaccines are generally administered subsequent to primary infection.
- a submicron oil-in-water emulsion formulation will also be administered to the vertebrate subject, either prior to, concurrent with, or subsequent to, delivery of the gene. If simultaneous delivery is desired, the submicron oil- in-water formulation can be included in the nucleic acid compositions. Alternatively, and preferably, the oil-in-water emulsions are administered separately, prior to delivery of the gene, either to the same site of delivery as the nucleic acid compositions or to a different delivery site.
- the formulations can be administered as early as 5-10 days prior to nucleic acid immunization, preferably 3-5 days prior to nucleic acid immunization and most preferably 1-3 or 2 days prior to immunization with the nucleic acids of interest .
- suitable submicron oil-in-water formulations for use with the present invention will include nontoxic, metabolizable oils, such as vegetable oils, fish oils, animal oils or synthetically prepared oils.
- Fish oils such as cod liver oil, shark liver oils and whale oils, are preferred, with squalene, 2 , 6, 10 , 15 , 19 , 23-hexamethyl- 2 , 6, 10, 14 , 18 , 22-tetracosahexaene, found in shark liver oil, particularly preferred.
- the oil component will be present in an amount of from about 0.5% to about 20% by volume, preferably in an amount up to about 15%, more preferably in an amount of from about 1% to about 12% and most preferably from 1% to about 4% oil.
- the aqueous portion of the adjuvant can be buffered saline or unadulterated water. If the compositions are to be administered parenterally, it is preferable to make up the final solutions so that the tonicity, i.e., osmolality, is essentially the same as normal physiological fluids, in order to prevent post-administration swelling or rapid absorption of the composition due to differential ion concentrations between the composition and physiological fluids. If saline is used rather than water, it is preferable to buffer the saline in order to maintain a pH compatible with normal physiological conditions. Also, in certain instances, it may be necessary to maintain the pH at a particular level in order to insure the stability of certain composition components.
- tonicity i.e., osmolality
- the pH of the compositions will generally be pH 6-8 and pH can be maintained using any physiologically acceptable buffer, such as phosphate, acetate, tris, bicarbonate or carbonate buffers, or the like.
- the quantity of the aqueous agent present will generally be the amount necessary to bring the composition to the desired final volume.
- Emulsifying agents suitable for use in the oil-in-water formulations include, without limitation, sorbitan-based non-ionic surfactants such as those commercially available under the name of Span ® or Arlacel ® ; polyoxyethylene sorbitan monoesters and polyoxyethylene sorbitan triesters, commercially known by the name Tween ® ; polyoxyethylene fatty acids available under the name Myrj ® ; polyoxyethylene fatty acid ethers derived from lauryl, acetyl , stearyl and oleyl alcohols, such as those known by the name of Brij ® ; and the like. These substances are readily available from a number of commercial sources, including ICI America's Inc., Wilmington, DE.
- emulsifying agents may be used alone or in combination.
- the emulsifying agent will usually be present in an amount of 0.02% to about 2.5% by weight (w/w) , preferably 0.05% to about 1%, and most preferably 0.01% to about 0.5.
- the amount present will generally be about 20-30% of the weight of the oil used.
- the emulsions can also contain other immunostimulating agents, such as muramyl peptides, including, but not limited to, N-acetyl -muramyl -L- threonyl-D-isoglutamine (thr-MDP) , N-acteyl- normuramyl-L-alanyl-D-isogluatme (nor-MDP) , N- acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2- (1 ' -2 ' -dipalmitoyl-sn-glycero-3- huydroxyphosphoryloxy) -ethylamine (MTP-PE) , etc.
- muramyl peptides including, but not limited to, N-acetyl -muramyl -L- threonyl-D-isoglutamine (thr-MDP) , N-act
- Immunostimulating bacterial cell wall components such as monophosphorylipid A (MPL) , trehalose dimycolate (TDM) , and cell wall skeleton (CWS) , may also be present.
- MPL monophosphorylipid A
- TDM trehalose dimycolate
- CWS cell wall skeleton
- emulsifiers can be used that operate by the principle of high shear forces developed by forcing fluids through small apertures under high pressure .
- Examples of commercial emulsifiers include, without limitation, Model HOY microfluidizer (Microfluidics, Newton, MA) , Gaulin Model 30CD (Gaulin, Inc., Everett, MA), and Rainnie Minilab Type 8.30H (Miro Atomizer Food and Dairy, Inc., Hudson, WI) .
- the appropriate pressure for use with an individual emulsifier is readily determined by one of skill in the art. For example, when the Model HOY microfluidizer is used, operation at 5000 to 30,000 psi produces oil droplets with diameters of about 100 to 750 nm.
- the size of the oil droplets can be varied by changing the ratio of detergent to oil (increasing the ratio decreases droplet size) , operating pressure (increasing operating pressure reduces droplet size) , temperature (increasing temperature decreases droplet size) , and adding an amphipathic immunostimulating agent (adding such agents decreases droplet size) .
- Actual droplet size will vary with the particular detergent, oil and immunostimulating agent (if any) and with the particular operating conditions selected. Droplet size can be verified by use of sizing instruments, such as the commercial Sub-Micron
- substantially all droplets are less than 1 micron in diameter, preferably less than about 0.8 microns in diameter, and most preferably less than about 0.5 microns in diameter.
- substantially all is meant at least about 80% (by number) , preferably at least about 90%, more preferably at least about 95%, and most preferably at least about 98%.
- the particle size distribution is typically Gaussian, so that the average diameter is smaller than the stated limits.
- Particularly preferred submicron oil-in- water emulsions for use herein are squalene/water emulsions optionally containing varying amounts of MTP-PE, such as the submicron oil-in-water emulsion known as "MF59” (International Publication No. WO 90/14837; Ott et al . , "MF59 -- Design and Evaluation of a Safe and Potent Adjuvant for Human Vaccines" in Vaccine Design : The Subuni t and Adjuvant Approach
- MF59 contains 4-5% w/v Squalene (e.g., 4.3%), 0.25-0.5% w/v Tween 80 ® , and 0.5% w/v Span 85 ® and optionally contains various amounts of MTP-PE, formulated into submicron particles using a microfluidizer such as Model HOY microfluidizer (Microfluidics, Newton, MA) .
- a microfluidizer such as Model HOY microfluidizer (Microfluidics, Newton, MA) .
- MTP-PE may be present in an amount of about 0-500 ⁇ g/dose, more preferably 0-250 ⁇ g/dose and most preferably, 0-100 ⁇ g/dose.
- MF59-0 refers to the above submicron oil-in-water emulsion lacking MTP-PE, while MF59-100 contains 100 ⁇ g MTP-PE per dose .
- MF69 another submicron oil-in-water emulsion for use herein, contains 4.3% w/v squalene, 0.25% w/v Tween 80 ® , and 0.75% w/v Span 85 ® an optionally MTP-PE.
- Yet another submicron oil-in-water emulsion is SAF, containing 10% squalene, 0.4% Tween 80 ® , 5% pluronic-blocked polymer L121, and thr-MDP, also microfluidized into a submicron emulsion.
- RibiTM adjuvant system Ribi Immunochem, Hamilton, MT
- Ribi Immunochem Ribi Immunochem, Hamilton, MT
- MPL monophosphorylipid A
- TDM trehalose dimycolate
- CWS cell wall skeleton
- adjuvants include, but are not limited to: (1) aluminum salts (alum) , such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.; (2) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) , or particles generated therefrom such as ISCOMs (immunostimulating complexes) ; (3) Complete Freunds Adjuvant (CFA) and Incomplete Freunds Adjuvant (IFA) ; (4) cytokines, such as interleukins (IL-1, IL-
- M- CSF macrophage colony stimulating factor
- TNF tumor necrosis factor
- a bacterial ADP-ribosylating toxin such as a cholera toxin (CT) , a pertussis toxin (PT) , or an E.
- coli heat-labile toxin LT
- LT-K63 where lysine is substituted for the wild-type amino acid at position 63
- LT-R72 where arginine is substituted for the wild-type amino acid at position 72
- CT-S109 where serine is substituted for the wild-type amino acid at position 109
- PT- K9/G129 where lysine is substituted for the wild-type amino acid at position 9 and glycine substituted at position 129)
- DNA BALB/c mice were divided into four treatment groups. One group, which received no adjuvant, served as a control.
- Group 2 was injected bilaterally with 50 ⁇ l of alum, mixed 1:1 with saline, in the tibialis anterior (TA) muscles.
- Group 3 was injected as above with MF59-0 (4.3% w/v squalene, 0.5% w/v Tween 80 ® , 0.5% w/v Span 85), mixed 1:1 with saline, and group 4 with MF59-100 (homogenization of a modified MF59 formulation containing 100 ⁇ g/dose MTP-PE), mixed 1:1 with saline. (See Van Nest et al .
- HIV- IT encodes the entire HIV-I IIIB env gene, preceded by the first exon of the rev gene to facilitate HIV- I protein expression. 21 days following injection of the adjuvant, primed splenocytes were harvested, CTL were restimulated in vi tro, and CTL activity assays were conducted.
- CTL precursor frequency assay CTL precursor frequency assay
- Another set of 60 wells received a different number of primed cells; a third set of wells received a third number of cells; and so on. All wells also received irradiated target cells to stimulate any CTL in the well specific for the target antigen. After incubation for 7-10 days, aliquots of cells were transferred to wells containing radiolabelled target cells and 51 Cr release was measured. Individual wells were scored either "+' "-" for CTL activity, compared to the baseline release from wells containing labelled targets, but no effectors .
- the frequency of CTL in the input population can be calculated according to formulae set forth in Taswell, J. Immunol . (1981) 126:1614-1619. (Data presented here were calculated by the "minimum ⁇ 2 " method; calculations using the “maximum likelihood” method yielded nearly identical results.)
- mice Immunized with Adjuvant Formulations Prior to Administration of HBV Retroviral Vector C3H mice were divided into six treatment groups of three mice/group and injected with adjuvant (1:1 mixed with 140 mM NaCl) in the TA muscles, as described above. Two days later, mice received retroviral vector 6A3 , either undiluted or diluted, in the same muscle sites. The following groups were included:
- Vector 6A3 is a retroviral vector that encodes a chimeric protein which is a fusion between the hepatitis B core protein, and the neoR protein. See, e.g., International Publication No WO 93/15207. Previous work has shown that this vector induces weak CTL responses in C3H mice.
- spleens were harvested individually, and standard CTL activity assays were performed. Briefly, spleen cells from immunized BALB/c mice were cultured, restimulated, and assayed for CTL activity against 51 Cr-labelled target cells which expressed the HIV env/rev antigens and were thus susceptible to lysis by vector-induced CTL. Using known methods, target cells (T) were cultured with effector (E) cells at various E:T ratios for 4 hours. Aliquots of culture supernatants were harvested, and the release of 51 Cr into the supernatants was quantitated by scintillation counting.
- % specific (cpm released - spontaneous release) x 100 release (maximal release - spontaneous release)
- mice were divided into four treatment groups as described in Example 1 and administered alum, MF59-0 or MF59-100, each combined 1:1 with 140 mM NaCl , into the TA muscles, as described. Two days after adjuvant administration, mice were given the HIV-IT retrovirus vector as described in Example 1. At week nine, mice received a boost of HIV-IT vector without adjuvant.
- Serum samples were collected prior to the first treatment, and at regular intervals thereafter, and levels of IgGl specific for HIV gpl20 determined using standard ELISAs. See, e.g., Fuller et al . , AIDS Res . Hum. Retroviruses (1994) 10:1433-1441. The results are shown in Figure 2. Data are presented as the average of O.D. 450 for 1:100 serum dilutions. As can be seen, both alum and MF59-100 pretreatment enhanced Ig induction.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Communicable Diseases (AREA)
- Hematology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51944 | 1987-05-19 | ||
US5194497P | 1997-07-08 | 1997-07-08 | |
US5475697P | 1997-08-05 | 1997-08-05 | |
US54756 | 1997-08-05 | ||
PCT/US1998/014310 WO1999002132A2 (en) | 1997-07-08 | 1998-07-08 | Use of submicron oil-in-water emulsions with dna vaccines |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1006999A2 true EP1006999A2 (en) | 2000-06-14 |
Family
ID=26729981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98933312A Withdrawn EP1006999A2 (en) | 1997-07-08 | 1998-07-08 | Use of submicron oil-in-water emulsions with dna vaccines |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1006999A2 (en) |
JP (1) | JP2002509545A (en) |
AU (1) | AU8298298A (en) |
CA (1) | CA2295740A1 (en) |
WO (1) | WO1999002132A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2286792A1 (en) * | 1999-02-26 | 2011-02-23 | Novartis Vaccines and Diagnostics, Inc. | Microemulsions with an adsorbent surface, comprising a microdroplet emulsion |
GEP20053446B (en) | 1999-05-13 | 2005-02-25 | Wyeth Corp | Adjuvant Combination Formulations |
AR045702A1 (en) * | 2001-10-03 | 2005-11-09 | Chiron Corp | COMPOSITIONS OF ASSISTANTS. |
GB0622282D0 (en) | 2006-11-08 | 2006-12-20 | Novartis Ag | Quality control methods |
US8945590B2 (en) | 2008-03-25 | 2015-02-03 | Juvaris Biotherapeutics, Inc. | Enhancement of an immune response by administration of a cationic lipid-DNA complex (CLDC) |
GB0822001D0 (en) * | 2008-12-02 | 2009-01-07 | Glaxosmithkline Biolog Sa | Vaccine |
TW201618806A (en) * | 2010-03-29 | 2016-06-01 | 諾華公司 | Organic compound composition |
MX343410B (en) | 2010-07-06 | 2016-11-04 | Novartis Ag * | Cationic oil-in-water emulsions. |
MX350198B (en) | 2011-07-06 | 2017-08-30 | Novartis Ag | Oil-in-water emulsions that contain nucleic acids. |
ES2702318T3 (en) | 2011-07-06 | 2019-02-28 | Glaxosmithkline Biologicals Sa | Cationic emulsions of oil in water |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2017507C (en) * | 1989-05-25 | 1996-11-12 | Gary Van Nest | Adjuvant formulation comprising a submicron oil droplet emulsion |
IL108449A (en) * | 1993-01-26 | 2011-09-27 | Weiner David B | Use of a polynucleotide function enhancer and a nucleic acid molecule to manufacture a pharmaceutical composition for introducing genetic material into cells |
JPH10501136A (en) * | 1994-06-02 | 1998-02-03 | カイロン コーポレイション | Nucleic acid immunization using a virus-based infection / transfection system |
-
1998
- 1998-07-08 EP EP98933312A patent/EP1006999A2/en not_active Withdrawn
- 1998-07-08 WO PCT/US1998/014310 patent/WO1999002132A2/en not_active Application Discontinuation
- 1998-07-08 JP JP50895399A patent/JP2002509545A/en active Pending
- 1998-07-08 AU AU82982/98A patent/AU8298298A/en not_active Abandoned
- 1998-07-08 CA CA002295740A patent/CA2295740A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9902132A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO1999002132A2 (en) | 1999-01-21 |
WO1999002132A3 (en) | 1999-08-12 |
AU8298298A (en) | 1999-02-08 |
JP2002509545A (en) | 2002-03-26 |
CA2295740A1 (en) | 1999-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6355247B1 (en) | Nucleic acid immunization using a virus-based infection/transfection system | |
Gregoriadis | Genetic vaccines: strategies for optimization | |
AU741902C (en) | Detoxified mutants of bacterial adp-ribosylating toxins as parenteral adjuvants | |
Davis et al. | DNA vaccines for viral diseases | |
US8609109B2 (en) | HIV vaccine formulations | |
Haensler et al. | Intradermal DNA immunization by using jet-injectors in mice and monkeys | |
US20080102085A1 (en) | Vaccine comprising gp120 and nef and/or tat for the immunization against hiv | |
AU2433892A (en) | Induction of cytotoxic t-lymphocyte responses | |
JP2007259870A (en) | Bifunctional plasmids that can act as DNA vaccines and recombinant viral vectors | |
EP1119630B1 (en) | Nucleic acid constructs for genetic immunisation | |
EP1006999A2 (en) | Use of submicron oil-in-water emulsions with dna vaccines | |
AU2002360648B2 (en) | Methods for particle-assisted polynucleotide immunization using a pulsed electric field | |
US6881723B1 (en) | Nucleic acid constructs | |
JP2017512499A (en) | Mosaic HIV-1 sequences and uses thereof | |
EP1486215A2 (en) | Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants | |
AU771286B2 (en) | Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants | |
Berzofsky et al. | Design of engineered vaccines for HIV | |
Newman et al. | Characterization of Immune Responses Elicited by an Experimental Facilitated-DNA Vaccine for Human Immunodeficiency Virus Type-1 (HIV-1) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000105 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7A 61K 9/10 A, 7A 61P 37/04 B |
|
17Q | First examination report despatched |
Effective date: 20020218 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7A 61P 37/04 B Ipc: 7A 61K 9/10 A |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030621 |