[go: up one dir, main page]

EP1006263B1 - Vane cooling - Google Patents

Vane cooling Download PDF

Info

Publication number
EP1006263B1
EP1006263B1 EP98811184A EP98811184A EP1006263B1 EP 1006263 B1 EP1006263 B1 EP 1006263B1 EP 98811184 A EP98811184 A EP 98811184A EP 98811184 A EP98811184 A EP 98811184A EP 1006263 B1 EP1006263 B1 EP 1006263B1
Authority
EP
European Patent Office
Prior art keywords
blade
cooling
channel
drawer
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811184A
Other languages
German (de)
French (fr)
Other versions
EP1006263A1 (en
Inventor
Hartmut Hähnle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP98811184A priority Critical patent/EP1006263B1/en
Priority to DE59810560T priority patent/DE59810560D1/en
Priority to US09/450,729 priority patent/US6328532B1/en
Priority to CN99125857.6A priority patent/CN1261673C/en
Publication of EP1006263A1 publication Critical patent/EP1006263A1/en
Application granted granted Critical
Publication of EP1006263B1 publication Critical patent/EP1006263B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades

Definitions

  • the invention relates to an internally cooled blade of a turbomachine. especially a gas turbine, with guidance from Flow of a cooling fluid in a cooling channel.
  • turbomachinery especially gas turbines
  • the efficiency of turbomachinery, especially gas turbines, can about an increase in pressure and temperature of the fluid as a parameter determining the cycle process improved become.
  • convection cooling is predominantly used as a cooling method for cooling blades by means of a cooling fluid, mostly cooling air, which is common today.
  • the cooling fluid is passed through the blades, which are each hollow or provided with cooling channels.
  • the material temperature that is set is below the maximum permissible temperature of the blade material.
  • the cooling fluid usually flows out into the main flow via one or more openings in the blade wall.
  • the cooling fluid is also conducted into another internal chamber at the end of the cooling channel and from there into another cooling channel or also into the main flow.
  • Another method for cooling blades is the so-called film cooling.
  • a cooling fluid usually also cooling air, which is supplied in cooling channels, is blown out onto the blade surface through openings in the blade.
  • the cooling fluid forms a separating layer, similar to a fluid film, between the blade wall and the hot flow fluid.
  • the invention has for its object the flow of a Cooling fluids of a cooled blade of a turbomachine to run along a top wall and / or side wall in such a way that its cooling effect is increased.
  • At least one insertion element is arranged in at least one recess in the blade for guiding the cooling fluid, and this insertion element is directly adjacent to the top wall and / or one side wall or both side walls of the blade and at least one flow channel is arranged in the insertion element which is connected to the cooling channel via at least one opening and has at least one outlet opening, the flow channel being formed by means of a groove arranged in the insertion element and the adjacent top wall and / or an adjacent side wall of the blade.
  • the flow channel is usually designed with a smaller flow cross section than the cooling channel. It is particularly expedient to design the outlet opening of the flow channel as a through opening in the adjacent top wall and / or an adjacent side wall.
  • the cooling duct has no further outlet openings, the entire cooling fluid supplied to the cooling duct thus flows through the flow duct. If there are further outlet openings of the cooling channel, the cooling fluid mass flow is divided accordingly. If several cooling channels are arranged in the blade or the cooling channel is subdivided into partial channels, the outlet opening of the flow channel can also expediently open into a further cooling channel or a further partial channel of the cooling channel. It was found that the cooling fluid can be guided in a targeted manner along the adjacent top wall and / or the adjacent side wall by means of such a flow channel. This enables targeted cooling of wall areas that were previously poorly or not at all cooled. In addition, it has been found that the cooling effect of the cooling fluid guided in such a flow channel is often increased.
  • Turbulators which lead to an increase in the degree of turbulence of the cooling fluid flowing through the flow channel are particularly expediently arranged in the flow channel. As a result, the heat transfer of the cooling fluid to the side walls is increased again and the cooling effect is thus increased. Simple transverse webs, for example, can be used as such turbulators in the flow channel.
  • the recess and the insertion element are preferably designed with a rectangular or slot-shaped cross section.
  • the cross section to be considered here is the cross section perpendicular to the insertion direction of the insertion element. It is particularly expedient to design the dimensions of the cutout and of the insertion element with respect to one another in the form of an interference fit. As a result, the insert element can be inserted into the recess by means of a positive fit. The insertion element is often also soldered appropriately. Furthermore, it is advantageous to arrange the insertion element perpendicular to the blade height direction in the recess. In an advantageous embodiment, at least the insertion element has a shoulder or a continuously reducing cross-section.
  • the cross section of the insertion element is advantageously reduced in the insertion direction of the insertion element into the recess.
  • the cutout is expediently designed in the same way, so that the insert element can be inserted into the cutout by means of a positive fit.
  • Both the recess and the insert element expediently extend from the suction side to the pressure side of the blade.
  • the recess can be manufactured and processed in a simple manner in terms of production technology.
  • the outer contour of the insert element is advantageously adapted to the contour of the blade profile at the point of the recess. In this way, tripping point-like transitions in the course of the wall contour of the blade are avoided. Such tripping point-like transitions would lead to higher flow losses in the main flow of the turbomachine.
  • Figure 1 shows an internally cooled blade 110 in a turbomachine with a recess 121 according to the invention and a Insert element arranged according to the invention in the recess 120.
  • the illustrated blade 110 is in the area of Insert element 120 executed without a cover tape.
  • the Indian The cooling channel running in blade 110 is not shown in FIG. 1.
  • the recess 121 and the insertion element 120 are here in the area of the blade tip in an advantageous Design approximately perpendicular to the blade height direction 118 arranged.
  • the recess 121 and the insertion element 120 in the area of maximum Blade thickness arranged in the blade and extend in the longitudinal direction of the blade only over a portion of the Shovel.
  • the arrangement of the insert element and the recess in a shovel can also be used on another the position of the blade shown.
  • the illustration shows the recess 121 and the insertion element 120 has a rectangular cross section.
  • the one looked at here Cross section is the cross section perpendicular to the direction of insertion of the insert element.
  • the dimensions of the recess 121 and the insert element 120 are expedient to one another here realized as a press fit.
  • the insert element fixed in the recess by soldering. hereby it is possible in a simple and inexpensive way to fix the insert element in the recess.
  • the exterior The contour of the insert element 120 is the blade profile contour adjusted at the point of the recess. Consequently become stumbling point-like transitions in the contour course the shovel avoided.
  • FIG. 2 the arrangement according to the invention of the insertion element 220 in the cutout 221 of the blade 210 is shown in perspective in a section through the blade 210.
  • the blade 210 which is hollow on the inside, has, in addition to a pressure-side and a suction-side wall 211, a top wall 212 which closes off the cavity inside the blade.
  • the cavity inside the blade serves here as a one-piece cooling channel 213 of the blade 210.
  • the cooling fluid 230 is fed to the blade through a feed opening in the blade root (not shown in the figure).
  • the insertion element 220 shown in FIG. 2 is arranged in the blade tip region approximately perpendicular to the blade height direction in the recess 221.
  • the recess 221 and the insert element 220 extend only over a partial area of the blade 210, whereas both the recess 221 and the insert element 220 extend continuously in the blade thickness direction from the pressure side to the suction side of the blade.
  • the outer contours of the insert element 220 are expediently adapted to the outer profile contours of the blade 210, and thus the pressure-side and suction-side blade profile contours.
  • the recess 221 and the insert element 220 are each designed with a cross-section which is matched to one another and are joined together by means of an interference fit.
  • the flat top of the insert element 220 directly adjoins the inside of the blade of the top wall 212.
  • the insert element 220 in the illustrated embodiment of the invention has a plurality of grooves such that two grooves, which are arranged separately from one another on the upper side of the insert element 220, form two flow channels 222 together with the top wall 212. These flow channels 222 thus run parallel to the top wall 212 along this.
  • the flow channels 222 are connected to the cooling channel 213 of the blade 210 via further openings 223 arranged in the front end face of the insertion element 220. Cooling fluid 230 can thus flow from the cooling channel 213 into the flow channels 222.
  • the illustrated flow channels 222 and the openings 223 are designed as rectangular grooves; the designs of the grooves are, however, basically freely selectable.
  • an outlet opening 224 realized as a passage opening is arranged in the top wall 212 or in the side wall 211 for each flow duct 222.
  • FIG 3 shows the arrangement of the passage opening 224 in the Sidewall 211 of the blade in an enlargement.
  • the Through opening 224 is designed as a bore and runs inclined to the surface of the side wall 211.
  • the passage opening opens at the closed end of the Flow channel 222 in this.
  • the angle of attack of the passage opening 224 was advantageously chosen here so that emerging Fluid the smallest possible misalignment to the has the main flow flowing around the blade.
  • Cooling fluid 230 in the blade 210 has a higher resting pressure as the main flow fluid flowing around the blade, this flows from the cooling channel 213 to the flow channel 222 added cooling fluid through the passage openings 224 in the mainstream. A continuous one is thus formed Cooling fluid flow through the flow channels and through openings out.
  • FIG. 4 shows a side view of a section through an internally cooled blade with a further embodiment of the insert element 320 arranged according to the invention in the recess 321.
  • the section runs in the center of the blade and shows, in addition to the cut top wall 312 of the blade, a section of the cooling channel 313 running in the blade.
  • the arrangement of the recess 321 was chosen here such that a part of the recess 321 extends into the top wall 312.
  • the insertion element 320 inserted into the recess 321 is also proportionally fitted into the top wall 312 here.
  • the insert element 320 expediently has a rectangular cross section. The insert element is thus positioned in the recess by means of a positive fit.
  • the insert element and the cutout can also be designed with other cross sections, for example with oval, trapezoidal, rhomboidal or polygonal cross sections, which, however, are then in turn to be coordinated with one another.
  • the insert element 320 in the illustrated embodiment has two grooves, which are shown in the middle in FIG. 4. The groove arranged on the upper side of the insert element, together with the adjacent top wall 312, forms a flow channel 322 running parallel to the top wall 312 on the underside of the top wall 312. This flow channel 322 is via the opening 323 through the second one on the front side of the insert element 320 arranged groove is formed, connected to the cooling channel 313.
  • the opening 323 could also be designed as a bore provided in the insert element 320.
  • a passage opening 324 is made in the top wall 312 by means of an obliquely positioned bore.
  • This passage opening 324 opens into the flow channel 322 at the end of the flow channel 322 which is closed toward the cooling channel 313.
  • Cooling fluid 330 flows from the cooling channel 313 via the flow channel 322 arranged in the insertion element 320 into the passage opening 324 and from there onto the top of the top wall 312 and thus into the main flow flowing around the blade.
  • a targeted cooling of the wall adjoining the flow channel 322 is established.
  • the passage opening 324 can be designed with a larger cross section due to the upstream arrangement of the flow channel 322 and the pressure loss occurring in the flow channel 322 compared to an arrangement without an upstream flow channel. This leads to a low risk of clogging the passage openings during the operation of a turbomachine due to foreign particles.
  • FIG Cut through an internally cooled shovel The The cooling duct shown here is through an intermediate wall 417 divided into two sub-channels 415, 416.
  • the inventive Arrangement of the insert element 420 in the recess 421 of the Blade in the embodiment of the invention shown here corresponds to the arrangement according to FIG. 4. This correspondence limits the freely and independently selectable Embodiments of the invention in FIGS. 4 and 5 not a.
  • the cooling fluid flows out 430 not in the main flow, but is by means of the insertion element 420 from the first sub-channel 415 of the cooling channel deflected into the second subchannel 416.
  • the one in the insert element For this purpose, 420 arranged flow channel 422 is by means of an opening 423 with the respective subchannels 415, 416 connected. That in the flow channel 422 along the top wall 412 from the first subchannel 415 into the second subchannel 416 flowing cooling fluid 430 leads to a targeted Cooling the top wall 412.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine innengekühlte Schaufel einer Turbomaschine, insbesondere einer Gasturbine, mit Führung der Strömung eines Kühlfluides in einem Kühlkanal.The invention relates to an internally cooled blade of a turbomachine. especially a gas turbine, with guidance from Flow of a cooling fluid in a cooling channel.

Stand der TechnikState of the art

Der Wirkungsgrad von Turbomaschinen, insbesondere von Gasturbinen, kann über eine Erhöhung des Druckes und der Temperatur des Fluides als den Kreisprozess bestimmende Parameter verbessert werden.The efficiency of turbomachinery, especially gas turbines, can about an increase in pressure and temperature of the fluid as a parameter determining the cycle process improved become.

Die im Betrieb von Turbomaschinen heutzutage üblichen Fluidtemperaturen liegen insbesondere im Turbineneintrittsbereich bereits deutlich über den zulässigen Materialtemperaturen der Bauteile. Vor allem die Beschaufelung der Turbine ist hierbei unmittelbar der heißen Fluidströmung ausgesetzt. Die durch die Wärmeleitung des Materials bedingte Wärmeabfuhr der Turbinenschaufeln ist in der Regel nicht ausreichend, um eine Übertemperatur der Schaufeln zu vermeiden. Zu hohe Materialtemperaturen führen zunächst zu einem Rückgang der Festigkeitswerte des Werkstoffs. Hierbei kommt es oftmals zur Rissbildung in Bauteilen. Im Falles des Überschreitens der Schmelztemperatur des Werkstoffs kommt es darüber hinaus zu einer lokalen oder auch vollständigen Zerstörung des Bauteils. Um diese fatalen Folgen zu vermeiden, ist es somit erforderlich, insbesondere die Turbinenschaufeln einer Turbomaschine zusätzlich zu kühlen.
Als ein heutzutage übliches Kühlverfahren zur Kühlung von Schaufeln mittels eines Kühlfluides, zumeist Kühlluft, kommt vorwiegend die sogenannte Konvektionskühlung zum Einsatz. Hierbei wird das Kühlfluid durch die jeweils hohl ausgebildeten oder mit Kühlkanälen versehenen Schaufeln geleitet. Infolge der niedrigeren Temperatur des Kühlfluides im Vergleich zur Temperatur des Schaufelmaterials kommt es infolge erzwungener Konvektion in den Kühlkanälen zu einem Wärmeübergang zwischen dem Schaufelmaterial und dem Kühlfluid. Bei einer effizienten Kühlung liegt die sich einstellende Materialtemperatur somit unter der maximal zulässigen Temperatur des Schaufelwerkstoffs. Das Kühlfluid strömt am Ende des Kühlkanals zumeist über eine oder mehrere Öffnungen in der Schaufelwand in die Hauptströmung aus. Oftmals wird das Kühlfluid aber auch am Ende des Kühlkanals in eine weitere, interne Kammer geleitet und gelangt von dort in einen weiteren Kühlkanal oder auch in die Hauptströmung.
Ein weiteres Verfahren zur Kühlung von Schaufeln stellt die sogenannte Filmkühlung dar. Hierbei wird ein Kühlfluid, zumeist ebenso Kühlluft, das in Kühlkanälen zugeführt wird, durch Öffnungen in der Schaufel auf die Schaufeloberfläche ausgeblasen. Das Kühlfluid bildet hierbei eine einem Fluidfilm ähnliche Trennschicht zwischen der Schaufelwand und dem heissen Strömungsfluid aus. Somit kommt es zu keinem direkten Wärmeübergang zwischen dem heissen Fluid der Hauptströmung und der Schaufel.
Beide Verfahren weisen nachteilig auf, dass die Schaufel nicht überall gleichmässig gekühlt wird. Im Falle der Konvektionskühlung ist die Wärmeübertragung direkt abhängig von den Strömungsverhältnissen in den Kühlkanälen. Höhere Strömungsgeschwindigkeiten des Kühlfluides erhöhen die Wärmeübertragung. Insbesondere Bereiche in der Schaufelspitze sind hierbei oftmals benachteiligt, da sich hier insbesondere längs der die Schaufel abschliessenden Deckwand Bereiche mit nur sehr geringen Strömungsgeschwindigkeiten des Kühlfluides oder auch Totwassergebiete ergeben. Diese Nachteile konnten bisher nur mittels sehr komplizierter Verläufe der Kühlkanäle in der Schaufel ausgeglichen werden. Die Herstellung solcher Schaufeln ist äusserst aufwendig und somit teuer. Aufgrund der giesstechnischen Herstellung der Schaufeln verbleiben überdies in der Regel zudem eine oder mehrere Öffnungen in den Schaufelwänden, die während des Giessens zur Fixierung des Giesskerns erforderlich waren.
US 4177010 hat eine filmgekühlte Laufschaufel zum Gegenstand, welche innerhalb der Kühlkanäle mit einem Einsatz ausgerüstet ist, welcher eine Doppelfunktion erfüllt. Zum einen schliesst er Öffnungen, die herstellungsbedingt während des Giessens in den Kanalwänden verbleiben, und zum anderen übernimmt er die Aufteilung des Kühlfluids auf einzelne voneinander getrennte Zweige der Kühlkanäle. Auf diese Weise gelingt es, die getrennten Zweige, die Filmkühlbohrungen in unterschiedlichen Bereichen der Schaufel speisen, welche unterschiedlichen Umgebungsdrücken ausgesetzt sind, mit Kühlfluid unterschiedlichen Drucks zu beaufschlagen mit der Folge einer insgesamt gleichmässigeren Filmkühlwirkung.
The fluid temperatures that are common today in the operation of turbomachinery, especially in the turbine inlet area, are already well above the permissible material temperatures of the components. Above all, the blading of the turbine is directly exposed to the hot fluid flow. The heat dissipation of the turbine blades caused by the heat conduction of the material is generally not sufficient to prevent the blades from overheating. Too high material temperatures initially lead to a decrease in the strength values of the material. This often leads to cracking in components. If the melting temperature of the material is exceeded, the component is locally or completely destroyed. In order to avoid these fatal consequences, it is therefore necessary to additionally cool the turbine blades of a turbomachine in particular.
So-called convection cooling is predominantly used as a cooling method for cooling blades by means of a cooling fluid, mostly cooling air, which is common today. Here, the cooling fluid is passed through the blades, which are each hollow or provided with cooling channels. As a result of the lower temperature of the cooling fluid compared to the temperature of the blade material, there is a heat transfer between the blade material and the cooling fluid as a result of forced convection in the cooling channels. With efficient cooling, the material temperature that is set is below the maximum permissible temperature of the blade material. At the end of the cooling channel, the cooling fluid usually flows out into the main flow via one or more openings in the blade wall. Often, however, the cooling fluid is also conducted into another internal chamber at the end of the cooling channel and from there into another cooling channel or also into the main flow.
Another method for cooling blades is the so-called film cooling. Here, a cooling fluid, usually also cooling air, which is supplied in cooling channels, is blown out onto the blade surface through openings in the blade. The cooling fluid forms a separating layer, similar to a fluid film, between the blade wall and the hot flow fluid. Thus there is no direct heat transfer between the hot fluid of the main flow and the blade.
Both methods have the disadvantage that the blade is not cooled uniformly everywhere. In the case of convection cooling, the heat transfer is directly dependent on the flow conditions in the cooling channels. Higher cooling fluid flow rates increase heat transfer. Areas in the blade tip, in particular, are often disadvantaged here, since areas with only very low flow rates of the cooling fluid or even dead water areas result in particular along the top wall closing the blade. Until now, these disadvantages could only be compensated for by means of very complicated courses of the cooling channels in the blade. The manufacture of such blades is extremely complex and therefore expensive. Due to the technical manufacture of the blades, one or more openings generally remain in the blade walls that were required during the casting process to fix the casting core.
US 4177010 has the object of a film-cooled rotor blade, which is equipped within the cooling channels with an insert which fulfills a double function. On the one hand, it closes openings that remain in the channel walls during the casting process, and on the other hand it takes over the division of the cooling fluid into separate branches of the cooling channels. In this way, it is possible to apply cooling fluid of different pressures to the separate branches that feed film cooling bores in different areas of the blade, which are exposed to different ambient pressures, with the result of an overall more uniform film cooling effect.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, die Strömung eines Kühlfluides einer gekühlten Schaufel einer Turbomaschine längs einer Deckwand und/oder Seitenwand derart zu führen, dass dessen Kühlwirkung erhöht wird.The invention has for its object the flow of a Cooling fluids of a cooled blade of a turbomachine to run along a top wall and / or side wall in such a way that its cooling effect is increased.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass zur Führung des Kühlfluides zumindest ein Einschubelement in zumindest einer Aussparung der Schaufel angeordnet ist, und dieses Einschubelement unmittelbar an die Deckwand und/oder eine Seitenwand oder beide Seitenwände der Schaufel angrenzt und in dem Einschubelement zumindest ein Strömungskanal angeordnet ist, welcher über zumindest eine Öffung mit dem Kühlkanal verbunden ist sowie zumindest eine Auslassöffnung aufweist, wobei der Strömungskanal mittels einer in dem Einschubelement angeordneten Nut und der angrenzenden Deckwand und/oder einer angrenzenden Seitenwand der Schaufel gebildet ist.
Üblicherweise ist der Strömungskanal hierbei mit einem kleineren Strömungsquerschnitt ausgeführt als der Kühlkanal. Es ist besonders zweckmässig, die Auslassöffnung des Strömungskanals als Durchlassöffnung in der angrenzenden Deckwand und/oder einer angrenzenden Seitenwand auszuführen. Sofern der Kühlkanal keine weiteren Auslassöffnungen aufweist, durchströmt somit das gesamte, dem Kühlkanal zugeführte Kühlfluid den Strömungskanal. Sind weitere Auslassöffnungen des Kühlkanals vorhanden, so teilt sich der Kühlfluidmassenstrom entsprechend auf. Sofern in der Schaufel mehrere Kühlkanäle angeordnet sind oder der Kühlkanal in Teilkanäle unterteilt ist, kann die Auslassöffnung des Strömungskanals auch zweckmässig in einen weiteren Kühlkanal oder einen weiteren Teilkanal des Kühlkanals einmünden. Es stellte sich heraus, dass mittels eines derartigen Strömungskanals das Kühlfluid gezielt längs der angrenzenden Deckwand und/oder der angrenzenden Seitenwand geführt werden kann. Dies ermöglicht eine gezielte Kühlung von Wandbereichen, die zuvor schlecht oder gar nicht gekühlt waren. Darüber hinaus wurde gefunden, dass die Kühlwirkung des in einem derartigen Strömungskanal geführten Kühlfluids oftmals erhöht wird. Dies resultiert aus dem erhöhten Wärmeübergang infolge höherer Strömungsgeschwindigkeiten innerhalb des Strömungskanals im Vergleich zur Strömungsgeschwindigkeit des Kühlfluids im Kühlkanal der Schaufel. Besonders zweckmässig sind in dem Strömungskanal Turbulatoren angeordnet, die zu einer Erhöhung des Turbulenzgrades des durch den Strömungskanal strömenden Kühlfluides führen. Hierdurch wird der Wärmeübergang des Kühlfluides auf die Seitenwände nochmals erhöht und die Kühlwirkung somit gesteigert. Als derartige Turbulatoren können beispielsweise einfache Querstege in den Strömungskanal eingesetzt werden.
This object is achieved in that at least one insertion element is arranged in at least one recess in the blade for guiding the cooling fluid, and this insertion element is directly adjacent to the top wall and / or one side wall or both side walls of the blade and at least one flow channel is arranged in the insertion element which is connected to the cooling channel via at least one opening and has at least one outlet opening, the flow channel being formed by means of a groove arranged in the insertion element and the adjacent top wall and / or an adjacent side wall of the blade.
The flow channel is usually designed with a smaller flow cross section than the cooling channel. It is particularly expedient to design the outlet opening of the flow channel as a through opening in the adjacent top wall and / or an adjacent side wall. If the cooling duct has no further outlet openings, the entire cooling fluid supplied to the cooling duct thus flows through the flow duct. If there are further outlet openings of the cooling channel, the cooling fluid mass flow is divided accordingly. If several cooling channels are arranged in the blade or the cooling channel is subdivided into partial channels, the outlet opening of the flow channel can also expediently open into a further cooling channel or a further partial channel of the cooling channel. It was found that the cooling fluid can be guided in a targeted manner along the adjacent top wall and / or the adjacent side wall by means of such a flow channel. This enables targeted cooling of wall areas that were previously poorly or not at all cooled. In addition, it has been found that the cooling effect of the cooling fluid guided in such a flow channel is often increased. This results from the increased heat transfer due to higher flow velocities within the flow channel in comparison to the flow rate of the cooling fluid in the cooling channel of the blade. Turbulators which lead to an increase in the degree of turbulence of the cooling fluid flowing through the flow channel are particularly expediently arranged in the flow channel. As a result, the heat transfer of the cooling fluid to the side walls is increased again and the cooling effect is thus increased. Simple transverse webs, for example, can be used as such turbulators in the flow channel.

Bevorzugt sind die Aussparung und das Einschubelement mit rechteckigem oder schlitzförmigem Querschnitt ausgeführt. Der zu betrachtende Querschnitt ist hierbei der Querschnitt senkrecht zur Einschubrichtung des Einschubelements. Besonders zweckmässig ist es, die Abmessungen der Aussparung und des Einschubelements zueinander in Form einer Presspassung auszuführen. Infolgedessen kann das Einschubelement mittels Formschluss in die Aussparung eingefügt werden. Zweckmässig wird das Einschubelement oftmals auch gelötet. Ferner ist es von Vorteil, das Einschubelement senkrecht zur Schaufelhöhenrichtung in der Aussparung anzuordnen.
In einer vorteilhaften Ausgestaltung weist zumindest das Einschubelement einen Absatz oder eine stetig verlaufende Querschnittsverminderung auf. Der Querschnitt des Einschubelements wird hierbei vorteilhaft in Einschubrichtung des Einschubelements in die Aussparung vermindert. Die Aussparung ist zweckmässig in gleicher Weise ausgeführt, so dass das Einschubelement mittels Formschluss in die Aussparung eingefügt werden kann. Insbesondere bei Rotorschaufeln ist es besonders zweckmässig, den Absatz so anzuordnen, dass der Querschnitt des Einschubelements entgegen der Drehrichtung des Rotors vermindert wird, und der Formschluss zwischen dem Einschubelement und der Aussparung in dem Bereich der Querschnittsverminderung gegeben ist. Es stellte sich heraus, dass mit einer solchen Anordnung infolge der während einer Beschleunigung des Rotors auf das Einschubelement wirkenden Trägheitskräfte als auch der fluiddynamischen Druckkräfte des Strömungsfluides ein Lösen des Einschubelements in der Aussparung besonders gut verhindert wird.
Sowohl die Aussparung als auch das Einschubelement erstrecken sich zweckmässig von der Saugseite zur Druckseite der Schaufel. Insbesondere die Aussparung kann hierdurch fertigungstechnisch in einfacher Weise hergestellt und bearbeitet werden. Die äussere Kontur des Einschubelementes ist vorteilhaft der Kontur des Schaufelprofils an der Stelle der Aussparung angepasst. Somit werden stolperstellenähnliche Übergänge im Verlauf der Wandkontur der Schaufel vermieden. Derartige stolperstellenähnliche Übergänge würden zu höheren Strömungsverlusten der Hauptströmung der Turbomaschine führen.
The recess and the insertion element are preferably designed with a rectangular or slot-shaped cross section. The cross section to be considered here is the cross section perpendicular to the insertion direction of the insertion element. It is particularly expedient to design the dimensions of the cutout and of the insertion element with respect to one another in the form of an interference fit. As a result, the insert element can be inserted into the recess by means of a positive fit. The insertion element is often also soldered appropriately. Furthermore, it is advantageous to arrange the insertion element perpendicular to the blade height direction in the recess.
In an advantageous embodiment, at least the insertion element has a shoulder or a continuously reducing cross-section. The cross section of the insertion element is advantageously reduced in the insertion direction of the insertion element into the recess. The cutout is expediently designed in the same way, so that the insert element can be inserted into the cutout by means of a positive fit. In the case of rotor blades in particular, it is particularly expedient to arrange the shoulder in such a way that the cross section of the insert element is reduced counter to the direction of rotation of the rotor, and the form fit between the insert element and the recess is provided in the area of the reduced cross section. It was found that with such an arrangement, loosening of the insertion element in the recess is particularly well prevented due to the inertial forces acting on the insertion element during acceleration of the rotor and the fluid dynamic pressure forces of the flow fluid.
Both the recess and the insert element expediently extend from the suction side to the pressure side of the blade. In particular, the recess can be manufactured and processed in a simple manner in terms of production technology. The outer contour of the insert element is advantageously adapted to the contour of the blade profile at the point of the recess. In this way, tripping point-like transitions in the course of the wall contour of the blade are avoided. Such tripping point-like transitions would lead to higher flow losses in the main flow of the turbomachine.

Die Aussparung und das Einschubelement so anzuordnen, dass das in der Aussparung angeordnete Einschubelement unmittelbar an die Deckwand und/oder zumindest eine Seitenwand angrenzt oder zumindest teilweise in die Deckwand und/oder die Seitenwand integriert ist und hierbei zumindest eine Öffnung des Kühlkanals zumindest teilweise verschliesst, ist insbesondere dann von Vorteil, wenn der Kühlkanal zusätzlich zu der Einlassöffnung und den Auslassöffnungen weitere oder auch zu grosse Öffnungen aufweist, durch die das Kühlfluid zu rasch entweichen würde. Derartige Öffnungen können beispielsweise als Folge giesstechnisch bedingter Giesskernhalterungen auftreten.Arrange the recess and the insert element so that the insertion element arranged in the recess is immediate adjacent to the top wall and / or at least one side wall or at least partially in the top wall and / or the side wall is integrated and at least one opening of the Cooling channel at least partially closes, in particular then advantageous if the cooling channel in addition to the inlet opening and the outlet openings more or too has large openings through which the cooling fluid too quickly would escape. Such openings can for example occur as a result of casting core mounts due to casting technology.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt.
Es zeigen:

  • Fig. 1 eine perspektivische Ansicht einer Schaufel mit einer Aussparung im Bereich der Schaufelspitze und einem in der Aussparung angeordneten Einschubelement.
  • Fig. 2 einen perspektivischen Schnitt durch eine Schaufel mit einer Aussparung und einem in der Aussparung angeordneten, an die Deckwand der Schaufel angrenzenden Einschubelement und zwei in dem Einschubelement verlaufende Strömungskanäle.
  • Fig. 3 eine Vergrösserung des Strömungskanals und der Auslassöffnung des Strömungskanals aus Fig. 2.
  • Fig. 4 einen Schnitt durch eine Schaufel in der Seitenansicht mit einem an die Deckwand der Schaufel angrenzenden Einschubelement, wobei das Einschubelement einen Strömungskanal aufweist, aus dem das Kühlfluid in die Hauptströmung ausströmt.
  • Fig. 5 einen Schnitt durch eine Schaufel in der Seitenansicht mit einem mehrteiligen, durch eine Zwischenwand unterteilten Kühlkanal und einem an die Deckwand der Schaufel angrenzenden Einschubelement, wobei das Einschubelement einen Strömungskanal aufweist, aus dem das Kühlfluid aus dem ersten Teilkanal des Kühlkanals in den zweiten Teilkanal des Kühlkanals strömt.
  • Exemplary embodiments of the invention are shown in the drawings.
    Show it:
  • Fig. 1 is a perspective view of a blade with a recess in the area of the blade tip and an insertion element arranged in the recess.
  • 2 shows a perspective section through a blade with a recess and an insert element arranged in the recess and adjoining the top wall of the blade and two flow channels running in the insert element.
  • 3 shows an enlargement of the flow channel and the outlet opening of the flow channel from FIG. 2.
  • 4 shows a section through a vane in a side view with an insert element adjoining the top wall of the vane, the insert element having a flow channel from which the cooling fluid flows into the main flow.
  • 5 shows a section through a vane in a side view with a multi-part cooling channel divided by an intermediate wall and an insertion element adjoining the top wall of the vane, the insertion element having a flow channel from which the cooling fluid from the first sub-channel of the cooling channel into the second Sub-channel of the cooling channel flows.
  • Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

    Figur 1 zeigt eine innengekühlte Schaufel 110 in einer Turbomaschine mit einer erfindungsgemässen Aussparung 121 und einem erfindungsgemäss in der Aussparung angeordneten Einschubelement 120. Die dargestellte Schaufel 110 ist im Bereich des Einschubelements 120 deckbandlos ausgeführt. Der in der Schaufel 110 verlaufende Kühlkanal ist in Figur 1 nicht dargestellt. Die Aussparung 121 und das Einschubelement 120 sind hier im Bereich der Schaufelspitze in einer vorteilhaften Ausgestaltung in etwa senkrecht zur Schaufelhöhenrichtung 118 angeordnet. In der dargestellten Ausführung sind die Aussparung 121 und das Einschubelement 120 im Bereich maximaler Schaufeldicke in der Schaufel angeordnet und erstrecken sich in Schaufellängsrichtung nur über einen Teilbereich der Schaufel. Die Anordnung des Einschubelements und der Aussparung in einer Schaufel kann aber auch an einer anderen als der dargestellten Position der Schaufel erfolgen. Gemäss der Darstellung weisen die Aussparung 121 und das Einschubelement 120 einen rechteckigen Querschnitt auf. Der hierbei betrachtete Querschnitt ist der Querschnitt senkrecht zur Einschubrichtung des Einschubelements. Die Abmessungen der Aussparung 121 und des Einschubelements 120 sind hier zweckmässig zueinander als Presspassung realisiert. Ferner ist das Einschubelement in der Aussparung mittels Löten fixiert. Hierdurch ist es in einer einfachen und kostengünstigen Weise möglich, das Einschubelement in der Aussparung zu befestigen. Der äussere Konturverlauf des Einschubelements 120 ist der Schaufelprofilkontur an der Stelle der Aussparung angepasst. Infolgedessen werden stolperstellenähnliche Übergänge in dem Konturverlauf der Schaufel vermieden.Figure 1 shows an internally cooled blade 110 in a turbomachine with a recess 121 according to the invention and a Insert element arranged according to the invention in the recess 120. The illustrated blade 110 is in the area of Insert element 120 executed without a cover tape. The Indian The cooling channel running in blade 110 is not shown in FIG. 1. The recess 121 and the insertion element 120 are here in the area of the blade tip in an advantageous Design approximately perpendicular to the blade height direction 118 arranged. In the embodiment shown are the recess 121 and the insertion element 120 in the area of maximum Blade thickness arranged in the blade and extend in the longitudinal direction of the blade only over a portion of the Shovel. The arrangement of the insert element and the recess in a shovel can also be used on another the position of the blade shown. According to the The illustration shows the recess 121 and the insertion element 120 has a rectangular cross section. The one looked at here Cross section is the cross section perpendicular to the direction of insertion of the insert element. The dimensions of the recess 121 and the insert element 120 are expedient to one another here realized as a press fit. Furthermore, the insert element fixed in the recess by soldering. hereby it is possible in a simple and inexpensive way to fix the insert element in the recess. The exterior The contour of the insert element 120 is the blade profile contour adjusted at the point of the recess. Consequently become stumbling point-like transitions in the contour course the shovel avoided.

    In Figur 2 ist die erfindungsgemässe Anordnung des Einschubelements 220 in der Aussparung 221 der Schaufel 210 in einem Schnitt durch die Schaufel 210 perspektivisch dargestellt. Die innen hohl ausgeführte Schaufel 210 weist neben einer druckseitigen und einer saugseitigen Seitenwand 211 eine den schaufelinneren Hohlraum abschliessende Deckwand 212 auf. Der schaufelinnere Hohlraum dient hier als einteiliger Kühlkanal 213 der Schaufel 210. Das Kühlfluid 230 wird der Schaufel durch eine in der Figur nicht dargestellte Zuführöffnung im Schaufelfuss zugeführt.
    Das in Figur 2 dargestellte Einschubelement 220 ist im Schaufelspitzenbereich näherungsweise senkrecht zur Schaufelhöhenrichtung in der Aussparung 221 angeordnet. In Schaufellängsrichtung erstreckt sich die Aussparung 221 und das Einschubelement 220 nur über einen Teilbereich der Schaufel 210, wohingegen sich sowohl die Aussparung 221 als auch das Einschubelement 220 in Schaufeldickenrichtung durchgängig von der Druckseite zur Saugseite der Schaufel erstrecken. Die schaufeläusseren Konturen des Einschubelements 220 sind zweckmässig den äusseren Profilkonturen der Schaufel 210, somit der druckseitigen und der saugseitigen Schaufelprofilkontur, angepasst. Die Aussparung 221 und das Einschubelement 220 sind jeweils mit einem aufeinander abgestimmten Querschnitt ausgeführt und mittels Presspassung zusammengefügt. Die plan ausgeführte Oberseite des Einschubelements 220 grenzt hier unmittelbar an die schaufelinnere Seite der Deckwand 212 an. Darüber hinaus weist das Einschubelement 220 in der dargestellten Ausführung der Erfindung mehrere Nuten dergestalt auf, dass zwei auf der Oberseite des Einschubelements 220 getrennt voneinander angeordnete Nuten zusammen mit der Deckwand 212 zwei Strömungskanäle 222 bilden. Diese Strömungskanäle 222 verlaufen somit parallel zur Deckwand 212 entlang dieser. Die Strömungskanäle 222 sind über weitere, in der vorderen Stirnseite des Einschubelements 220 angeordnete Öffnungen 223 mit dem Kühlkanal 213 der Schaufel 210 verbunden. Kühlfluid 230 kann somit aus dem Kühlkanal 213 in die Strömungskanäle 222 einströmen. Die dargestellten Strömungskanäle 222 und die Öffnungen 223 sind zwar als Rechteck-Nuten ausgeführt; die Ausführungen der Nuten sind aber grundsätzlich frei wählbar. Um ein Abströmen des aus dem Kühlkanal 213 zugeführten Kühlflluides 230 aus den Strömungskanälen 222 zu ermöglichen, ist je Strömungskanal 222 eine als Durchlassöffnung realisierte Auslassöffnung 224 in der Deckwand 212 oder in der Seitenwand 211 angeordnet.
    In FIG. 2, the arrangement according to the invention of the insertion element 220 in the cutout 221 of the blade 210 is shown in perspective in a section through the blade 210. The blade 210, which is hollow on the inside, has, in addition to a pressure-side and a suction-side wall 211, a top wall 212 which closes off the cavity inside the blade. The cavity inside the blade serves here as a one-piece cooling channel 213 of the blade 210. The cooling fluid 230 is fed to the blade through a feed opening in the blade root (not shown in the figure).
    The insertion element 220 shown in FIG. 2 is arranged in the blade tip region approximately perpendicular to the blade height direction in the recess 221. In the longitudinal direction of the blade, the recess 221 and the insert element 220 extend only over a partial area of the blade 210, whereas both the recess 221 and the insert element 220 extend continuously in the blade thickness direction from the pressure side to the suction side of the blade. The outer contours of the insert element 220 are expediently adapted to the outer profile contours of the blade 210, and thus the pressure-side and suction-side blade profile contours. The recess 221 and the insert element 220 are each designed with a cross-section which is matched to one another and are joined together by means of an interference fit. The flat top of the insert element 220 directly adjoins the inside of the blade of the top wall 212. In addition, the insert element 220 in the illustrated embodiment of the invention has a plurality of grooves such that two grooves, which are arranged separately from one another on the upper side of the insert element 220, form two flow channels 222 together with the top wall 212. These flow channels 222 thus run parallel to the top wall 212 along this. The flow channels 222 are connected to the cooling channel 213 of the blade 210 via further openings 223 arranged in the front end face of the insertion element 220. Cooling fluid 230 can thus flow from the cooling channel 213 into the flow channels 222. The illustrated flow channels 222 and the openings 223 are designed as rectangular grooves; the designs of the grooves are, however, basically freely selectable. In order to allow the cooling fluid 230 supplied from the cooling duct 213 to flow out of the flow ducts 222, an outlet opening 224 realized as a passage opening is arranged in the top wall 212 or in the side wall 211 for each flow duct 222.

    Figur 3 zeigt die Anordnung der Durchlassöffnung 224 in der Seitenwand 211 der Schaufel in einer Vergrösserung. Die Durchlassöffnung 224 ist hier als Bohrung ausgeführt und verläuft schräg angestellt zur Oberfläche der Seitenwand 211. Die Durchlassöffnung mündet hierbei am geschlossenen Ende des Strömungskanals 222 in diesen. Der Anstellwinkel der Durchlassöffnung 224 wurde hier vorteilhaft so gewählt, dass austretendes Fluid einen möglichst geringen Fehlwinkel zu der die Schaufel umströmenden Hauptströmung aufweist. Weist das Kühlfluid 230 in der Schaufel 210 einen höheren Ruhedruck auf, als das die Schaufel umströmende Fluid der Hauptströmung, so strömt das aus dem Kühlkanal 213 dem Strömungskanal 222 zugefügte Kühlfluid durch die Durchlassöffnungen 224 in die Hauptströmung aus. Es bildet sich somit ein kontinuierlicher Kühlfluidstrom durch die Strömungskanäle und die Durchlassöffnungen aus. Hierbei kommt es zu einem Wärmeaustausch des Kühlfluides 230 mit der an den Strömungskanal 222 angrenzenden Wandung (Deckwand 212 und/oder Seitenwand 211) und somit zu einer gezielten Kühlung der angrenzenden Wandung. Aufgrund des kleineren Strömungsquerschnittes des Strömungskanals 222 im Vergleich zu dem Strömungsquerschnitt des Kühlkanals 213 durchströmt das Kühlfluid 230 darüber hinaus den Strömungskanal zudem mit einer erhöhten Geschwindigkeit. Diese höhere Strömungsgeschwindigkeit führt zu einer zusätzlichen Erhöhung des Wärmeübergangs und somit zu einer verbesserten Kühlung der Wandung.Figure 3 shows the arrangement of the passage opening 224 in the Sidewall 211 of the blade in an enlargement. The Through opening 224 is designed as a bore and runs inclined to the surface of the side wall 211. The passage opening opens at the closed end of the Flow channel 222 in this. The angle of attack of the passage opening 224 was advantageously chosen here so that emerging Fluid the smallest possible misalignment to the has the main flow flowing around the blade. Know that Cooling fluid 230 in the blade 210 has a higher resting pressure as the main flow fluid flowing around the blade, this flows from the cooling channel 213 to the flow channel 222 added cooling fluid through the passage openings 224 in the mainstream. A continuous one is thus formed Cooling fluid flow through the flow channels and through openings out. This results in heat exchange of the cooling fluid 230 with that adjacent to the flow channel 222 Wall (top wall 212 and / or side wall 211) and thus for targeted cooling of the adjacent wall. by virtue of of the smaller flow cross section of the flow channel 222 compared to the flow cross section of the cooling channel 213 also flows through the cooling fluid 230 Flow channel also at an increased speed. This higher flow rate leads to an additional one Increase in heat transfer and thus an improved one Cooling the wall.

    Figur 4 zeigt in einer Seitenansicht einen Schnitt durch eine innengekühlte Schaufel mit einer weiteren Ausgestaltung des erfindungsgemäss in der Aussparung 321 angeordneten Einschubelements 320. Der Schnitt verläuft schaufelmittig und zeigt neben der geschnitten dargestellten Deckwand 312 der Schaufel einen Ausschnitt des in der Schaufel verlaufenden Kühlkanals 313.
    Die Anordnung der Aussparung 321 wurde hier so gewählt, dass sich ein Teil der Aussparung 321 in die Deckwand 312 hinein erstreckt. Das in die Aussparung 321 eingefügte Einschubelement 320 ist hier ebenso anteilig in die Deckwand 312 eingepasst. In gleicher Weise wie die Aussparung 321 weist das Einschubelement 320 zweckmässig einen recheckigen Querschnitt auf. Das Einschubelement wird somit mittels Formschluss in der Aussparung positioniert. Grundsätzlich können das Einschubelement und die Aussparung aber auch mit anderen Querschnitten, beispielsweise mit ovalen, trapezförmigen, rhombenförmigen oder auch vieleckförmigen Querschnitten, ausgeführt sein, die dann jedoch jeweils wiederum aufeinander abzustimmen sind. Darüber hinaus weist das Einschubelement 320 in der dargestellten Ausführung zwei Nuten auf, die in der Figur 4 mittig geschnitten dargestellt sind. Die auf der Oberseite des Einschubelements angeordnete Nut bildet hierbei zusammen mit der angrenzenden Deckwand 312 einen parallel zur Deckwand 312 an der Unterseite der Deckwand 312 verlaufenden Strömungskanal 322. Dieser Strömungskanal 322 ist über die Öffnung 323, die durch die zweite, an der Stirnseite des Einschubelements 320 angeordnete Nut gebildet wird, mit dem Kühlkanal 313 verbunden. Ebenso könnte die Öffnung 323 auch als in dem Einschubelement 320 vorgesehene Bohrung ausgeführt sein. Des weiteren ist in der Deckwand 312 mittels einer schräg angestellten Bohrung eine Durchlassöffnung 324 angebracht. Diese Durchlassöffnung 324 mündet am zum Kühlkanal 313 hin geschlossenen Ende des Strömungskanals 322 in diesen. Kühlfluid 330 strömt aus dem Kühlkanal 313 über den in dem Einschubelement 320 angeordneten Strömungskanal 322 in die Durchlassöffnung 324 und von dort auf die Oberseite der Deckwand 312 und somit in die die Schaufel umströmende Hauptströmung. Mittels des in dem Strömungskanal 322 geführten Kühlfluides 330 stellt sich eine gezielte Kühlung der an den Strömungskanal 322 angrenzenden Wandung ein. Ferner kann die Durchlassöffnung 324 aufgrund der vorgeschalteten Anordnung des Strömungskanals 322 und des in dem Strömungskanal 322 entstehenden Druckverlustes im Vergleich zu einer Anordnung ohne vorgeschalteten Strömungskanal mit einem grösseren Querschnitt ausgeführt werden. Dies führt zu einer geringen Gefahr des Verstopfens der Durchlassöffnungen während des Betriebs einer Turbomaschine aufgrund von Fremdpartikeln.
    FIG. 4 shows a side view of a section through an internally cooled blade with a further embodiment of the insert element 320 arranged according to the invention in the recess 321. The section runs in the center of the blade and shows, in addition to the cut top wall 312 of the blade, a section of the cooling channel 313 running in the blade.
    The arrangement of the recess 321 was chosen here such that a part of the recess 321 extends into the top wall 312. The insertion element 320 inserted into the recess 321 is also proportionally fitted into the top wall 312 here. In the same way as the recess 321, the insert element 320 expediently has a rectangular cross section. The insert element is thus positioned in the recess by means of a positive fit. In principle, however, the insert element and the cutout can also be designed with other cross sections, for example with oval, trapezoidal, rhomboidal or polygonal cross sections, which, however, are then in turn to be coordinated with one another. In addition, the insert element 320 in the illustrated embodiment has two grooves, which are shown in the middle in FIG. 4. The groove arranged on the upper side of the insert element, together with the adjacent top wall 312, forms a flow channel 322 running parallel to the top wall 312 on the underside of the top wall 312. This flow channel 322 is via the opening 323 through the second one on the front side of the insert element 320 arranged groove is formed, connected to the cooling channel 313. Likewise, the opening 323 could also be designed as a bore provided in the insert element 320. Furthermore, a passage opening 324 is made in the top wall 312 by means of an obliquely positioned bore. This passage opening 324 opens into the flow channel 322 at the end of the flow channel 322 which is closed toward the cooling channel 313. Cooling fluid 330 flows from the cooling channel 313 via the flow channel 322 arranged in the insertion element 320 into the passage opening 324 and from there onto the top of the top wall 312 and thus into the main flow flowing around the blade. By means of the cooling fluid 330 guided in the flow channel 322, a targeted cooling of the wall adjoining the flow channel 322 is established. Furthermore, the passage opening 324 can be designed with a larger cross section due to the upstream arrangement of the flow channel 322 and the pressure loss occurring in the flow channel 322 compared to an arrangement without an upstream flow channel. This leads to a low risk of clogging the passage openings during the operation of a turbomachine due to foreign particles.

    Eine weitere Ausführung der Erfindung ist in Figur 5 in einem Schnitt durch eine innengekühlte Schaufel abgebildet. Der dargestellte Kühlkanal ist hier durch eine Zwischenwand 417 in zwei Teilkanäle 415, 416 unterteilt. Die erfindungsgemässe Anordnung des Einschubelements 420 in der Aussparung 421 der Schaufel in der hier dargestellten Ausführung der Erfindung entspricht der Anordnung gemäss Figur 4. Diese Entsprechung schränkt hierbei die frei und unabhängig voneinander wählbaren Ausgestaltungen der Erfindung in den Figuren 4 und 5 nicht ein. Im Unterschied zu Figur 4 entströmt das Kühlfluid 430 nicht in die Hauptströmung, sondern wird mittels des Einschubelements 420 aus dem ersten Teilkanal 415 des Kühlkanals in den zweiten Teilkanal 416 umgelenkt. Der in dem Einschubelement 420 angeordnete Strömungskanal 422 ist hierzu jeweils mittels einer Öffnung 423 mit den jeweiligen Teilkanälen 415, 416 verbunden. Das in dem Strömungskanal 422 längs der Deckwand 412 aus dem ersten Teilkanal 415 in den zweiten Teilkanal 416 strömende Kühlfluid 430 führt hierbei zu einer gezielten Kühlung der Deckwand 412. Another embodiment of the invention is shown in FIG Cut through an internally cooled shovel. The The cooling duct shown here is through an intermediate wall 417 divided into two sub-channels 415, 416. The inventive Arrangement of the insert element 420 in the recess 421 of the Blade in the embodiment of the invention shown here corresponds to the arrangement according to FIG. 4. This correspondence limits the freely and independently selectable Embodiments of the invention in FIGS. 4 and 5 not a. In contrast to FIG. 4, the cooling fluid flows out 430 not in the main flow, but is by means of the insertion element 420 from the first sub-channel 415 of the cooling channel deflected into the second subchannel 416. The one in the insert element For this purpose, 420 arranged flow channel 422 is by means of an opening 423 with the respective subchannels 415, 416 connected. That in the flow channel 422 along the top wall 412 from the first subchannel 415 into the second subchannel 416 flowing cooling fluid 430 leads to a targeted Cooling the top wall 412.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    110, 210110, 210
    Schaufel (blade)Blade
    211, 311, 411211, 311, 411
    Seitenwand (side wall)Side wall
    212, 312, 412212, 312, 412
    Deckwand (cover wall)Cover wall
    213, 313213, 313
    Kühlkanal (cooling channel)Cooling channel
    415, 416415, 416
    Teilkanäle eines mehrteiligen Kühlkanals (partial channel of a composite cooling channel)Sub-channels of a multi-part cooling channel (partial channel of a composite cooling channel)
    417417
    Zwischenwand (partition wall)Partition wall
    118118
    Schaufelhöhenrichtung (blade height direction)Blade height direction
    120, 220, 320, 420120, 220, 320, 420
    in einer Aussparung angeordnetes Einschub- element (drawer inserted in a slot)slide-in module arranged in a recess element (drawer inserted in a slot)
    121, 221, 321121, 221, 321
    Aussparung (slot)Slot
    222, 322, 422222, 322, 422
    Strömungskanal (flow channel)Flow channel
    223, 323, 423223, 323, 423
    Öffnung zwischen dem Strömungskanal und dem Kühlkanal (opening between the flow channel and the cooling channel)Opening between the flow channel and the cooling channel (opening between the flow channel and the cooling channel)
    224, 324224, 324
    Auslassöffnung bzw. Durchlassöffnung (outlet)Outlet opening or passage opening (Outlet)
    230, 330, 430230, 330, 430
    Kühlfluid (cooling fluid)Cooling fluid

    Claims (6)

    1. Blade (_10) of a turbomachine, in particular a gas turbine, having a cooling channel (_13) which runs in the blade and through which cooling fluid flows, the cooling channel (_13), in addition to a feed opening, having at least one further opening (_24), and at least one drawer (_20) being arranged in at least one slot (_21) of the blade in order to direct the cooling fluid (_30), and this drawer (_20) being directly adjacent to the cover wall (_12) and/or a side wall (_11) or both side walls (_11) of the blade (_10), and in which at least one flow channel (_22) is arranged in the drawer (_20), which flow channel (_22) is connected via at least one opening (_23) to the cooling channel (_13) and has at least one outlet (_24), characterized in that the flow channel (_22) is formed by means of a groove arranged in the drawer (_20) and by means of the adj acent cover wall (_12) and/or an adjacent side wall (_11) of the blade (_10).
    2. Blade according to Claim 1, characterized in that the outlet (_24) is designed as a passage opening in the adjacent cover wall (12) [sic] or side wall (_11) of the blade (_10).
    3. Blade according to Claim 1, characterized in that the drawer (_20) and the slot (_21) are made with a rectangular or slit-like cross section.
    4. Blade according to Claim 1, characterized in that the drawer (_20) and the slot (_21) are arranged perpendicularly or approximately perpendicularly to the blade height direction (118).
    5. Blade according to Claim 1, characterized in that the drawer (_20) and the slot (_21) have a step or a continuous cross-sectional reduction.
    6. Blade according to Claim 1, characterized in that the drawer (_20) and the slot (_21) extend continuously from the suction side to the pressure side of the blade (_10), and the outer contour of the drawer (_20) is adapted to the blade profile.
    EP98811184A 1998-11-30 1998-11-30 Vane cooling Expired - Lifetime EP1006263B1 (en)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    EP98811184A EP1006263B1 (en) 1998-11-30 1998-11-30 Vane cooling
    DE59810560T DE59810560D1 (en) 1998-11-30 1998-11-30 blade cooling
    US09/450,729 US6328532B1 (en) 1998-11-30 1999-11-30 Blade cooling
    CN99125857.6A CN1261673C (en) 1998-11-30 1999-11-30 Cooling for vane

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98811184A EP1006263B1 (en) 1998-11-30 1998-11-30 Vane cooling

    Publications (2)

    Publication Number Publication Date
    EP1006263A1 EP1006263A1 (en) 2000-06-07
    EP1006263B1 true EP1006263B1 (en) 2004-01-07

    Family

    ID=8236462

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98811184A Expired - Lifetime EP1006263B1 (en) 1998-11-30 1998-11-30 Vane cooling

    Country Status (4)

    Country Link
    US (1) US6328532B1 (en)
    EP (1) EP1006263B1 (en)
    CN (1) CN1261673C (en)
    DE (1) DE59810560D1 (en)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001049975A1 (en) * 2000-01-06 2001-07-12 Damping Technologies, Inc. Turbine engine damper
    DE10064265A1 (en) * 2000-12-22 2002-07-04 Alstom Switzerland Ltd Device and method for cooling a platform of a turbine blade
    US6749400B2 (en) * 2002-08-29 2004-06-15 General Electric Company Gas turbine engine disk rim with axially cutback and circumferentially skewed cooling air slots
    US6976826B2 (en) * 2003-05-29 2005-12-20 Pratt & Whitney Canada Corp. Turbine blade dimple
    DE102005013464B3 (en) * 2005-03-21 2006-08-24 Voith Turbo Gmbh & Co. Kg Fan wheel with outlet openings in the vanes, for pumps/turbines, has holes formed during casting to be finished by a long flexible drill to the required dimensions and alignments
    EP1847696A1 (en) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Component for a secondary combustion system in a gas turbine and corresponding gas turbine.
    US8082707B1 (en) 2006-10-13 2011-12-27 Damping Technologies, Inc. Air-film vibration damping apparatus for windows
    US7721844B1 (en) 2006-10-13 2010-05-25 Damping Technologies, Inc. Vibration damping apparatus for windows using viscoelastic damping materials
    US8167572B2 (en) 2008-07-14 2012-05-01 Pratt & Whitney Canada Corp. Dynamically tuned turbine blade growth pocket
    US20130051976A1 (en) * 2011-08-29 2013-02-28 General Electric Company Flow control module for a turbomachine
    WO2015112891A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Additive manufacturing process grown integrated torsional damper mechanism in gas turbine engine blade
    US9645120B2 (en) 2014-09-04 2017-05-09 Grant Nash Method and apparatus for reducing noise transmission through a window
    US9752440B2 (en) * 2015-05-29 2017-09-05 General Electric Company Turbine component having surface cooling channels and method of forming same
    US10787932B2 (en) 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
    BE1026579B1 (en) * 2018-08-31 2020-03-30 Safran Aero Boosters Sa PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR
    CN110142426B (en) * 2019-06-12 2023-12-08 温岭市文昌数控机床设备有限公司 Numerical control turret cooling structure
    US12215597B1 (en) * 2024-01-26 2025-02-04 Pratt & Whitney Canada Corp. Gas turbine engine rotor blade geometry and method for selecting same

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    BE795073A (en) * 1972-03-02 1973-05-29 Gen Electric PROCESS FOR MAKING HOLLOW AUBES
    FR2176315A5 (en) * 1972-03-15 1973-10-26 Neu Ets Turbine blades - of metal deposited on a lightweight (polyamide) or fusible core
    US3867068A (en) * 1973-03-30 1975-02-18 Gen Electric Turbomachinery blade cooling insert retainers
    GB1551678A (en) * 1978-03-20 1979-08-30 Rolls Royce Cooled rotor blade for a gas turbine engine
    JPS5390509A (en) * 1977-01-20 1978-08-09 Koukuu Uchiyuu Gijiyutsu Kenki Structure of air cooled turbine blade
    US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
    US5259730A (en) * 1991-11-04 1993-11-09 General Electric Company Impingement cooled airfoil with bonding foil insert
    DE19709607A1 (en) * 1997-03-08 1998-09-10 Abb Research Ltd Guide vane for steam turbines

    Also Published As

    Publication number Publication date
    CN1261673C (en) 2006-06-28
    DE59810560D1 (en) 2004-02-12
    CN1255581A (en) 2000-06-07
    EP1006263A1 (en) 2000-06-07
    US6328532B1 (en) 2001-12-11

    Similar Documents

    Publication Publication Date Title
    EP1006263B1 (en) Vane cooling
    DE60018817T2 (en) Chilled gas turbine blade
    EP1267039B1 (en) Cooling configuration for an airfoil trailing edge
    EP1320661B1 (en) Gas turbine blade
    EP1013884B1 (en) Turbine blade with actively cooled head platform
    EP1789654B1 (en) Turbine engine vane with fluid cooled shroud
    DE69320203T2 (en) STRUCTURE FOR A COOLED SHOVEL
    DE69932688T2 (en) Cooling openings for gas turbine components
    EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
    DE1946535C3 (en) Component for a gas turbine engine
    DE69324506T2 (en) COOLED TURBINE BLADE
    DE3789514T2 (en) Cooled gas turbine blade.
    DE60024517T2 (en) Turbine wall with grooves on the inside
    DE60015233T2 (en) Turbine blade with internal cooling
    DE102009003327B4 (en) Turbine blade tip shroud
    EP1008723B1 (en) Platform cooling in turbomachines
    CH702101B1 (en) Turbine blade with winglet.
    DE60122050T2 (en) Turbine vane with insert with areas for impingement cooling and convection cooling
    CH698297B1 (en) A nozzle segment with a cooling system and with a turbine nozzle segment.
    CH698339B1 (en) Turbine blade having a cooled shroud.
    EP1126136B1 (en) Turbine blade with air cooled tip shroud
    EP1591626A1 (en) Blade for gas turbine
    DE3711024A1 (en) COOLED SHOVEL FOR A GAS TURBINE ENGINE
    DE3507578A1 (en) TURBINE BLADE WITHOUT TAPE
    WO2003054356A1 (en) Thermally loaded component

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001027

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ABB (SCHWEIZ) AG

    AKX Designation fees paid

    Free format text: DE FR GB

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    17Q First examination report despatched

    Effective date: 20020702

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59810560

    Country of ref document: DE

    Date of ref document: 20040212

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041008

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59810560

    Country of ref document: DE

    Representative=s name: UWE ROESLER, DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120802 AND 20120808

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59810560

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Effective date: 20120918

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59810560

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: ALSTOM TECHNOLOGY LTD, CH

    Effective date: 20161110

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20161121

    Year of fee payment: 19

    Ref country code: FR

    Payment date: 20161118

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20161122

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59810560

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59810560

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20170824 AND 20170830

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

    Effective date: 20171221

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59810560

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20171130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20180731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171130

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171130