[go: up one dir, main page]

EP0995023B1 - Circuit de commande de puissance pour actionneur electromagnetique tel qu'injecteur ou electrovanne - Google Patents

Circuit de commande de puissance pour actionneur electromagnetique tel qu'injecteur ou electrovanne Download PDF

Info

Publication number
EP0995023B1
EP0995023B1 EP98936459A EP98936459A EP0995023B1 EP 0995023 B1 EP0995023 B1 EP 0995023B1 EP 98936459 A EP98936459 A EP 98936459A EP 98936459 A EP98936459 A EP 98936459A EP 0995023 B1 EP0995023 B1 EP 0995023B1
Authority
EP
European Patent Office
Prior art keywords
coil
switching means
capacitor
actuating
closure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98936459A
Other languages
German (de)
English (en)
Other versions
EP0995023A1 (fr
Inventor
Bernard Boucly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP0995023A1 publication Critical patent/EP0995023A1/fr
Application granted granted Critical
Publication of EP0995023B1 publication Critical patent/EP0995023B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • H01F2007/1822Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator using a capacitor to produce a boost voltage

Definitions

  • the invention relates to a circuit for controlling power, for the power supply of a actuating coil of at least one electromagnetic actuator, such as a solenoid valve or a fuel, in particular for internal combustion engine direct injection.
  • injectors have a very short response time to both opening and closing, so that the durations of the fuel injection phases by the injectors correspond as precisely as possible to the durations calculated by an electronic control unit and calculation, commonly called engine control computer, which notably controls the injection of fuel, and, if necessary ignition, if necessary, from operating parameters engine speed, such as engine speed, pressure of air to the intake manifold, temperature of the engine cooling, oxygen content in gases which are detected by appropriate detectors.
  • engine control computer which notably controls the injection of fuel, and, if necessary ignition, if necessary, from operating parameters engine speed, such as engine speed, pressure of air to the intake manifold, temperature of the engine cooling, oxygen content in gases which are detected by appropriate detectors.
  • electromagnetic injectors are open by the power supply electric from their actuating coil so as to develop a sufficiently intense electromagnetic force on a movable member of the injector, called needle, to spread it, against return springs, against a seat which it is kept applied with sealing by said springs in the closed position.
  • FR-A-2 538 942 EP-A-0 548 915 and FR-A-2 735 591 of power control circuits, for power supply electric of an actuating coil of at least one electromagnetic actuator, such as a fuel
  • circuits including an accumulation stage or booster, connected to a power source direct current at low voltage, such as motor vehicle battery, and comprising a capacitor of energy accumulation, a self induction coil for the accumulation of energy, and of the first means switches, cyclically controlled at closing and at opening by a switching control unit, for ensure in succession at least two consistent sequences each to charge the self induction coil from said power source and then charging the capacitor from the self induction coil and through a diode, and second switching means, controlled by the closing by said control unit to ensure supply of said actuating coil by discharge of said capacitor, to also obtain the establishment fast of a high inrush current.
  • the actuating coil of the electromagnetic actuator directly as a coil self induction for energy accumulation in the floor booster, to simplify the implementation and reduce the cost of such power control circuits.
  • the problem underlying the invention is to perfect these power control circuits known from so that their energy storage stage can store then discharge more energy than known circuits to be able to actuate electromagnetic actuators requiring great control power, such as electro-magnetic injectors for direct injection of fuel in the combustion chambers of diesel engines or spark ignition engines, in which the injectors are supplied with high pressure fuel and are returned to the closed position by springs of powerful recall, without the control circuits of power of the invention to be much more complex nor much more expensive than known circuits.
  • the power control circuit of the invention is characterized in that said self induction coil is separate from said actuation coil, and in that after charging the capacitor and before supplying said coil actuation, said switching control unit controls the closing of said first switching means to charge said self induction coil, so that the closure of said second switching means, said actuating coil is powered by simultaneous discharge of said capacitor and of said self induction coil.
  • the circuit of power control of the invention is no more complex neither significantly more expensive, and essentially requires a modification of the control mode of the switching means which is provided by the switching control unit.
  • This modification of the command mode is reduced to a modification control software when, advantageously, the switching means include electronic switches, in particular transistorized, controlled by a command logic delivered by the switching control unit, which includes at least one microprocessor or microcontroller.
  • the circuit of the invention advantageously comprises in addition to the third switching means, interposed between the power source and the self induction coil, and orders; by the closing control unit for ensure the initial charges of the capacitor and the self induction coil, then after closing the second switching means, cyclically controlled at opening and closing to ensure in the coil actuation, a lower intensity holding current to that of the inrush current resulting from the discharge of the capacitor and the self induction coil.
  • the self induction coil and the capacitor are used, as a first step, as reservoir, of energy, restored in a second time to provide high inrush current with rise time very fast, but the self induction coil and the capacitor can, in combination with the third means switches, used for the maintenance of a holding current, thanks to a DC converter structure in direct current which has the advantage of being of low radiation electro-magnetic, because it can work almost resonance, so that the power circuit of the invention can meet electromagnetic emission standards more stringent which will soon be in force, especially for on-board equipment on vehicles automobiles, such as solenoid valves and injectors, especially for direct fuel injection installation.
  • third switching means it is possible after the closing of the second switch means controlling the simultaneous discharge of the capacitor and the inductor induction in the actuating coil, and before the holding current delivery, cyclic control the third switching means at the opening and at the closing by the switching control unit, so maintain the inrush current at an intensity close to that resulting from the simultaneous discharge of the capacitor and from the self induction coil to the actuation coil.
  • This maintenance phase of the inrush current at a level high can thus take place between the initial phase quick establishment of inrush current and phase setting the holding current at a lower level intensity.
  • the third switching means are advantageously controlled by the control unit with a variable opening duty cycle to ensure holding current and / or maintaining the inrush current.
  • the second switching means are controlled at opening by the control unit, preferably when the actuating coil is traversed by the holding current, so as to quickly cancel the current in this coil, to obtain a brief cut of the current, necessary to obtain good accuracy of actuator operation.
  • the circuit of the invention is also advantageous by the fact that the booster stage can supply in parallel the actuating coils of at least two actuators electromagnetic, and in particular the coils of all the injectors of an internal combustion engine.
  • the second and third switching means can be ordered at closing to obtain a recovery of at least two feed times actuating coils, which allows recoveries to be managed injection duration, with a single power circuit, in the case of applications to injection engines.
  • the third means switches and the self induction coil form a converter which advantageously ensures an increase holding current during these recoveries.
  • the power control circuit of Figure 1 includes a self induction coil 1 connected by a end in series with a switch 2 connected to the terminal "+" from a DC power source 3 at low voltage Vbat, which is the battery of a motor vehicle, whose terminal "-" is earthed.
  • coil 1 is connected in parallel to another switch 4, connected to ground, and via a diode 5, on the one hand to a terminal of a capacitor 6, whose other terminal is connected to ground, and, on the other hand, with four actuator actuator coils 7, 8, 9 and 10, which are connected in parallel with each other, and each of which is connected to ground via one respectively of four power switches 11, 12, 13 and 14, the overvoltage at the terminals of each coil of injector 7 to 10 being limited, for example to around 80V, by a Zenner diode 15 in parallel on the switch 11, 12, 13 or 14 corresponding.
  • a capacitor 17, with a value of about 0.5 ⁇ F at about 5 ⁇ F, and a reverse diode 18 are each mounted in parallel on switch 2, and diode 18 can be the diode integrated in a MOS type switching transistor channel P constituting the switch 2.
  • a diode reverse 19 is connected in parallel on switch 4, and this diode can be the integrated diode of a transistor N-type MOS switching device constituting the switch 4.
  • All switches 2, 4, 11, 12, 13 and 14 are solid state electronic switches controlled by opening and closing by control signals low and high level logic delivered by a unit of switching logic control 16 with microprocessors or microcontrollers, and which is connected to each of the switches ordered through a command line.
  • Coil 1 for example having a coefficient self-induction from about 10 ⁇ H to about 50 ⁇ H, is a energy storage coil.
  • the capacitor 6, by example with a capacity between 1 and 10 ⁇ F, is a capacitor of a technology other than chemical, of preferably for storing capacitive energy and for ensure energy transfer from the self induction coil 1 to at least one injector coil 7 to 10.
  • Switch 4 is cyclically controlled at the closing and opening by unit 16 to ensure, when switch 2 is closed, the coil load 1, for a time varying from approximately 20 ⁇ s to approximately 100 ⁇ s, when switch 4 is closed, then to ensure the charging of the capacitor 6 through the diode 5, by transfer of inductive energy from coil 1, when switch 4 is open.
  • Switch 2 is also ordered to close by unit 16 during a time from about 10 ⁇ s to about 70 ⁇ s, to ensure the load of coil 1, then in a later phase explained below, switch 2 is controlled so cyclic at closing and opening by unit 16 for maintain the current at a determined value, about 3 to 5 A, in at least one of the injector coils 7 to 10 supplied by closing the switch 11 to 14 correspondent. Indeed, each of the switches 11 to 14 is intended to ensure the conduction of the coil of injector 7 to 10 corresponding.
  • Diode 5 is for function of avoiding the discharge of the capacitor 6 by the switches 2 and 4 when closed.
  • the circuit operation sequencing, controlled by unit 16 is as follows: closing switches 2 and 4 causes the load of the coil 1, traversed by a current iL which increases linearly from 0 to about 15 A for a time of about 20 ⁇ s to about 100 ⁇ s.
  • the opening switch 4 causes the capacitor 6 to charge by energy transfer from coil 1 to the capacitor 6, through diode 5.
  • the voltage across the capacitor 6 grows along an exponential curve, at the same time that a current peak occurs.
  • This sequence comprising a charge of coil 1 followed by a charge of capacitor 6 is renewed a certain number of times up to charge capacitor 6 at a voltage of 80 V about.
  • one of the injector switches by example switch 11 is closed, while switch 2 remains closed and switch 4 is open (see Figures 3 and 4), so that a simultaneous discharge of coil 1 and capacitor 6 into the coil injector 7, traversed by an intense inrush current, which reaches 15 to 20 A after a time of 30 to 50 ⁇ s, and corresponds to the sum of the currents resulting from the discharge capacitive of capacitor 6 and the inductive discharge of coil 1.
  • an intense inrush current which reaches 15 to 20 A after a time of 30 to 50 ⁇ s, and corresponds to the sum of the currents resulting from the discharge capacitive of capacitor 6 and the inductive discharge of coil 1.
  • the control unit 16 cyclically controls the switch 2 with a variable aperture duty cycle, which is then lowered to decrease the current to an intensity of 3 to 5 A approximately, then keep it around this value to ensure a holding current of the injector in its coil 7.
  • the booster stage comprising the coil 1, the diode 5, the switch 4 and the capacitor 6, supplies parallel the injector coils 7 to 10.
  • Switch 2 and the two switches for example 11 and 12 of the two injector coils 7 and 8 to be supplied with recovery are controlled upon opening by the control unit 16 of so as to ensure this recovery of feeding times.
  • Curves (a) and (b) in Figure 6 show the currents i1 and i2 in the injector coils 7 and 8 after the two time-shifted switch 4 closures - see curve (d) - to load coil 1 just before shifted closings of switches 11 and 12, which are at the origin of currents i1 and 12.
  • the charges of coil 1 resulting from the closings of switch 4 are visible on the curve (c) of figure 6, representing the current iL in this coil 1.
  • the switch 2 command with a variable duty cycle after the openings of the switch 4 allows maintaining the inrush current then obtaining the inrush current maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Le circuit de commande de puissance, pour l'alimentation d'une bobine (7-10) d'au moins un actionneur tel qu'un injecteur de carburant, comprend un étage survolteur connecté à une source (3) d'alimentation à basse tension, et comportant un condensateur (6) et une bobine de self induction (1) destinés à accumuler de l'énergie, et des premiers commutateurs (4) cycliquement fermés et ouverts par une unité de commande (16) pour successivement et à plusieurs reprises charger la bobine (1) à partir de la source (3) puis charger le condensateur (6) à partir de la bobine (1), et enfin charger à nouveau la bobine (1) avant de fermer les seconds commutateurs (11-14) pour assurer l'alimentation d'au moins une bobine d'actionnement (7-10) par décharge simultanée du condensateur (6) et de la bobine de self induction (1). Application à l'alimentation électrique des actionneurs électro-magnétiques tels qu'électrovanne et injecteurs pour moteur à combustion interne à injection directe.

Description

L'invention concerne un circuit de commande de puissance, pour l'alimentation en courant électrique d'une bobine d'actionnement d'au moins un actionneur électro-magnétique, tel qu'une électrovanne ou un injecteur de carburant, en particulier pour moteur à combustion interne à injection directe.
Il est connu que certains actionneurs électro-magnétiques, tels que les électrovannes, notamment pour les installations de recirculation des gaz d'échappement de moteur à combustion interne de véhicules automobiles, et les injecteurs de carburant de moteurs à combustion interne, comprennent des bobines ou enroulements d'actionnements devant être alimentés par des courants d'appel de forte intensité, à établissement et à coupure rapides, afin d'obtenir des durées d'actionnement précises, en particulier des durées précises d'injection de carburant par des injecteurs.
En effet, le bon fonctionnement d'un moteur à injection, aux plans tout à la fois de la puissance délivrée, de la pollution et de la consommation, suppose que les injecteurs présentent un temps de réponse très court à l'ouverture comme à la fermeture, afin que les durées effectives des phases d'injection de carburant par les injecteurs correspondent aussi précisément que possible aux durées calculées par une unité électronique de commande et calcul, communément appelée calculateur de contrôle moteur, qui commande notamment l'injection du carburant, et, le cas échéant, l'allumage à partir de paramètres de fonctionnement du moteur, tels que régime de rotation du moteur, pression d'air au collecteur d'admission, température du fluide de refroidissement du moteur, teneur en oxygène dans les gaz d'échappement, qui sont détectés par des détecteurs appropriés.
Il est de plus connu que les injecteurs électro-magnétiques sont ouverts par l'alimentation en courant électrique de leur bobine d'actionnement de sorte à développer une force électro-magnétique suffisamment intense sur un organe mobile de l'injecteur, appelé aiguille, pour l'écarter, à l'encontre de ressorts de rappel, d'un siège contre lequel il est maintenu appliqué avec étanchéité par lesdits ressorts en position de fermeture.
Pour obtenir un actionnement rapide, en particulier à l'ouverture, d'un injecteur sous une tension d'alimentation de sa bobine d'actionnement que cette dernière ne supporterait pas en permanence comme étant bien supérieure à la tension d'alimentation normale de cette bobine à partir d'une source d'alimentation conventionnelle à basse tension et à courant continu, telle qu'une batterie de véhicule automobile, et alors que la tension d'alimentation normale doit suffire à assurer le maintien de l'injecteur dans son état d'ouverture après une ouverture rapide initiale, il a déjà été proposé d'associer à la commande d'un injecteur électromagnétique un étage d'accumulation d'énergie, qui est soumis à des moyens de commande de décharge en phase initiale d'alimentation de la bobine d'actionnement de chaque injecteur considéré, afin d'obtenir, dans cette phase initiale, un courant d'appel élevé, capable d'assurer une ouverture rapide de l'injecteur, puis, dans une phase ultérieure, un courant de maintien d'intensité réduite par rapport à celle du courant d'appel, et permettant de maintenir l'injecteur ouvert par l'alimentation de sa bobine d'actionnement.
Par FR-A-2 425 137, on a proposé un tel circuit de commande de puissance avec étage d'accumulation d'énergie par charge d'une bobine de self induction raccordée à la source d'alimentation à basse tension et associée à des premiers moyens commutateurs commandés à la fermeture pour charger la bobine de self induction, puis à l'ouverture en même temps que des seconds moyens commutateurs, associés à la bobine d'actionnement de l'actionneur électro-magnétique et préalablement ouverts sont commandés à la fermeture, pour décharger la bobine de self induction dans la bobine d'actionnement et obtenir dans cette dernière l'établissement rapide d'un courant d'appel élevé.
Parallèlement aux circuits de commande de puissance à décharge selfique, il a été proposé des circuits analogues à décharge capacitive. En particulier, on connait par FR-A-2 538 942, EP-A-0 548 915 et FR-A-2 735 591 des circuits de commande de puissance, pour l'alimentation électrique d'une bobine d'actionnement d'au moins un actionneur électro-magnétique, tel qu'un injecteur de carburant, les circuits comprenant un étage d'accumulation d'énergie ou survolteur, connecté à une source d'alimentation en courant continu à basse tension, telle qu'une batterie de véhicule automobile, et comportant un condensateur d'accumulation d'énergie, une bobine de self induction pour l'accumulation d'énergie, et des premiers moyens commutateurs, commandés cycliquement à la fermeture et à l'ouverture par une unité de commande de commutation, pour assurer en succession au moins deux séquences consistant chacune à charger la bobine de self induction à partir de ladite source d'alimentation, puis à charger le condensateur à partir de la bobine de self induction et au travers d'une diode, et des deuxièmes moyens commutateurs, commandés à la fermeture par ladite unité de commande pour assurer une alimentation de ladite bobine d'actionnement par la décharge dudit condensateur, pour obtenir également l'établissement rapide d'un courant d'appel élevé.
Dans les circuits de commande de puissance à décharge capacitive décrits dans les trois documents de brevet précités, on utilise la bobine d'actionnement de l'actionneur électro-magnétique directement comme bobine de self induction pour l'accumulation d'énergie dans l'étage survolteur, afin de simplifier la réalisation et réduire le coût de tels circuits de commande de puissance.
Le problème à la base de l'invention est de perfectionner ces circuits de commande de puissance connus de sorte que leur étage d'accumulation d'énergie puisse stocker puis décharger davantage d'énergie que les circuits connus pour pouvoir actionner des actionneurs électro-magnétiques nécessitant une grande puissance de commande, tels que les injecteurs électro-magnétiques pour l'injection directe de carburant dans les chambres de combustion de moteurs diesel ou de moteurs à allumage commandé, dans lesquels les injecteurs sont alimentés en carburant à haute pression et sont rappelés en position de fermeture par des ressorts de rappel puissants, sans que les circuits de commande de puissance de l'invention soient beaucoup plus complexes ni beaucoup plus coûteux que les circuits connus.
A cet effet, le circuit de commande de puissance de l'invention, du type présenté ci-dessus et connu par les trois documents de brevet précités, se caractérise en ce que ladite bobine de self induction est distincte de ladite bobine d'actionnement, et en ce qu'après la charge du condensateur et avant l'alimentation de ladite bobine d'actionnement, ladite unité de commande de commutation commande la fermeture desdits premiers moyens commutateurs pour charger ladite bobine de self induction, de sorte qu'à la fermeture desdits deuxièmes moyens commutateurs, ladite bobine d'actionnement est alimentée par la décharge simultanée dudit condensateur et de ladite bobine de self induction.
Le transfert à la bobine d'actionnement de l'énergie accumulées dans le condensateur et dans la bobine de self induction par des décharges capacitive et selfique simultanées permet la commande en courant de la bobine d'actionnement avec un courant pic élevé établi plus rapidement qu'avec les circuits de commande de puissance de l'état de la technique. Par rapport à ces derniers, le circuit de commande de puissance de l'invention n'est pas plus complexe ni sensiblement plus coûteux, et nécessite essentiellement une modification du mode de commande des moyens commutateurs qui est assuré par l'unité de commande de commutation. Cette modification du mode de commande se réduit à une modification d'un logiciel de commande lorsque, avantageusement, les moyens commutateurs comprennent des commutateurs électroniques, notamment transistorisés, pilotés par une commande logique délivrée par l'unité de commande de commutation, qui comprend au moins un microprocesseur ou microcontrôleur.
Le circuit de l'invention comprend avantageusement de plus des troisièmes moyens commutateurs, interposés entre la source'd'alimentation et la bobine de self induction, et commandés; par l'unité de commande à la fermeture pour assurer les charges initiales du condensateur et de la bobine de self induction, puis, après la fermeture des deuxièmes moyens commutateurs, commandés cycliquement à l'ouverture et à la fermeture pour assurer dans la bobine d'actionnement, un courant de maintien d'intensité inférieure à celle du courant d'appel résultant de la décharge simultanée du condensateur et de la bobine de self induction. Ainsi, non seulement la bobine de self induction et le condensateur sont utilisés, dans un premier temps, comme réservoir, d'énergie, restituée dans un second temps pour fournir un courant d'appel élevé avec un temps de montée très rapide, mais la bobine de self induction et le condensateur peuvent, en combinaison avec les troisièmes moyens commutateurs, servir à l'entretien d'un courant de maintien, grâce à une structure de convertisseur de courant continu en courant continu qui a l'avantage d'être à faible rayonnement électro-magnétique, car pouvant fonctionner en quasi résonnance, de sorte que le circuit de puissance de l'invention peut respecter les normes d'émission électro-magnétiques plus strictes qui seront prochainement en vigueur, notamment pour des équipements embarqués sur véhicules automobiles, tels qu'électrovannes et injecteurs, en particulier pour installation d'injection directe de carburant.
Avantageusement de plus, grâce à la présence des troisièmes moyens commutateurs, il est possible, après la fermeture des deuxièmes moyens commutateurs commandant la décharge simultanée du condensateur et de la bobine de self induction dans la bobine d'actionnement, et avant la délivrance du courant de maintien, de commander cycliquement les troisièmes moyens commutateurs à l'ouverture et à la fermeture par l'unité de commande de commutation, de sorte à entretenir le courant d'appel à une intensité voisine de celle résultant de la décharge simultanée du condensateur et de la bobine de self induction dans la bobine d'actionnement. Cette phase d'entretien du courant d'appel à un niveau élevé peut ainsi se dérouler entre la phase initiale d'établissement rapide du courant d'appel et la phase d'établissement du courant de maintien à un niveau inférieur d'intensité.
A cet effet, les troisièmes moyens commutateurs sont avantageusement commandés par l'unité de commande avec un rapport cyclique d'ouverture variable pour assurer le courant de maintien et/ou entretenir le courant d'appel.
En outre, les deuxièmes moyens commutateurs sont commandés à l'ouverture par l'unité de commande, de préférence lorsque la bobine d'actionnement est parcourue par le courant de maintien, de sorte à annuler rapidement le courant dans cette bobine, pour obtenir une coupure brève du courant, nécessaire à l'obtention d'une bonne précision de fonctionnement de l'actionneur.
Le circuit de l'invention est également avantageux par le fait que l'étage survolteur peut alimenter en parallèle les bobines d'actionnement d'au moins deux actionneurs électro-magnétiques, et en particulier les bobines de tous les injecteurs d'un moteur à combustion interne. A cet effet, les deuxièmes et troisièmes moyens commutateurs peuvent être commandés à la fermeture de façon à obtenir un recouvrement des durées d'alimentation d'au moins deux bobines d'actionnement, ce qui permet de gérer les recouvrements de durée d'injection, avec un seul circuit de puissance, dans le cas des applications aux moteurs à injection.
Dans cette configuration de gestion du recouvrement des durées d'actionnement des actionneurs, les troisièmes moyens commutateurs et la bobine de self induction forment un convertisseur qui assure avantageusement une augmentation du courant de maintien pendant ces recouvrements.
D'autres avantages et caractéristiques de l'invention découleront de la description donnée ci-dessous, à titre non limitatif, d'un exemple de réalisation décrit en référence aux dessins annexés sur lesquels :
  • la figure 1 est un schéma synoptique du circuit de l'invention pour l'alimentation en parallèle des bobines d'actionnement de quatre injecteurs d'un moteur à combustion interne de véhicule à injection directe,
  • la figure 2 est un chronogramme représentant les évolutions de la tension Vout à la borne commune du condensateur et de la diode de charge et du courant iL de la bobine de self induction en fonction de la commande logique des premiers moyens commutateurs pendant la phase de charges successives du condensateur,
  • la figure 3 est un chronogramme représentant schématiquement l'évolution du courant i dans une bobine d'injecteur et la commande logique des seconds et troisièmes moyens commutateurs pour l'entretien du courant d'appel puis l'obtention du courant de maintien, jusqu'à la coupure du courant dans cette bobine,
  • la figure 4 représente des chronogrammes montrant en superposition l'évolution respectivement du courant i dans une bobine d'injecteur et de la tension V aux bornes de cette bobine, en fonction de la commande logique des premiers moyens commutateurs pendant la phase de décharge,
  • la figure 5 représente l'évolution du courant iL dans la bobine de self induction pendant la décharge, et
  • la figure 6 représente des chronogrammes montrant l'évolution des courants i1 et i2 dans le cas du recouvrement des alimentations de deux bobines d'injecteur, ainsi que le courant iL dans la bobine de self induction en fonction des commandes logiques des premiers et troisièmes moyens commutateurs en phase de recouvrement.
Le circuit de commande de puissance de la figure 1 comprend une bobine de self induction 1 connectée par une extrémité en série avec un commutateur 2 relié à la borne "+" d'une source d'alimentation 3 en courant continu à basse tension Vbat, qui est la batterie d'un véhicule automobile, dont la borne "-" est mise à la masse. Par son autre extrémité, la bobine 1 est connectée en parallèle à un autre commutateur 4, relié à la masse, et, par l'intermédiaire d'une diode 5, d'une part à une borne d'un condensateur 6, dont l'autre borne est reliée à la masse, et, d'autre part, à quatre bobines d'actionnement d'injecteurs 7, 8, 9 et 10, qui sont branchées en parallèle les unes sur les autres, et dont chacune est reliée à la masse par l'intermédiaire de l'un respectivement de quatre commutateurs d'alimentation 11, 12, 13 et 14, la surtension aux bornes de chaque bobine d'injecteur 7 à 10 étant limitée, par exemple à environ 80V, par une diode Zenner 15 en parallèle sur le commutateur 11, 12, 13 ou 14 correspondant.
Un condensateur 17, d'une valeur d'environ 0,5 µF à environ 5 µF, et une diode inverse 18 sont montés chacun en parallèle sur le commutateur 2, et la diode 18 peut être la diode intégrée à un transistor de commutation de type MOS canal P constituant le commutateur 2. De même, une diode inverse 19 est branchée en parallèle sur le commutateur 4, et cette diode peut être la diode intégrée d'un transistor de commutation de type MOS canal N constituant le commutateur 4.
Tous les commutateurs 2, 4, 11, 12, 13 et 14 sont des commutateurs électroniques transistorisés pilotés à l'ouverture et à la fermeture par des signaux de commande logiques de niveaux bas et haut délivrés par une unité de commande logique de commutation 16 à microprocesseurs ou microcontrôleurs, et qui est reliée à chacun des commutateurs commandés par une ligne de commande.
La bobine 1, ayant par exemple un coefficient d'auto-induction d'environ 10 µH à environ 50 µH, est une bobine d'accumulation d'énergie. Le condensateur 6, par exemple d'une capacité comprise entre 1 et 10 µF, est un condensateur d'une technologie autre que chimique, de préférence, pour stocker de l'énergie capacitive et pour assurer un transfert d'énergie de la bobine de self induction 1 vers au moins une bobine d'injecteur 7 à 10.
Le commutateur 4 est commandé de façon cyclique à la fermeture et à l'ouverture par l'unité 16 pour assurer, lorsque le commutateur 2 est fermé, la charge de la bobine 1, pendant un temps variant d'environ 20µs à environ 100µs, lorsque le commutateur 4 est fermé, puis pour assurer la charge du condensateur 6 au travers de la diode 5, par transfert d'énergie inductive provenant de la bobine 1, lorsque le commutateur 4 est ouvert. Le commutateur 2 est également commandé à la fermeture par l'unité 16 pendant un temps d'environ 10 µs à environ 70 µs, pour assurer la charge de la bobine 1, puis, dans une phase ultérieure expliquée ci-dessous, le commutateur 2 est commandé de façon cyclique à la fermeture et à l'ouverture par l'unité 16 pour assurer le maintien du courant à une valeur déterminée, d'environ 3 à 5 A, dans l'une au moins des bobines d'injecteur 7 à 10 alimentées par la fermeture du commutateur 11 à 14 correspondant. En effet, chacun des commutateurs 11 à 14 est destiné à assurer la mise en conduction de la bobine d'injecteur 7 à 10 correspondante. La diode 5 a pour fonction d'éviter la décharge du condensateur 6 par les commutateurs 2 et 4 lorsqu'ils sont fermés.
Tous les commutateurs 11 à 14 étant ouverts, le séquencement de fonctionnement du circuit, commandé par l'unité 16 est le suivant : la fermeture des commutateurs 2 et 4 entraíne la charge de la bobine 1, parcourue par un courant iL qui croít linéairement de 0 à environ 15 A pendant un temps d'environ 20 µs à environ 100 µs. L'ouverture du commutateur 4 entraíne la charge du condensateur 6 par transfert d'énergie de la bobine 1 vers le condensateur 6, au travers de la diode 5. La tension aux bornes du condensateur 6 croit selon une courbe exponentielle, en même temps que se produit un pic de courant. Cette séquence comprenant une charge de la bobine 1 suivie d'une charge du condensateur 6 est renouvelée un certain nombre de fois jusqu'à charger le condensateur 6 à une tension de 80 V environ. Cette séquence de charges successives est représentée sur la figure 2, dont les courbes (a) et (b) représentent la tension Vout au point A du circuit de la figure 1, qui est à la borne commune au condensateur 6 et à la diode 5, et le courant iL dans la bobine 1, en fonction de la commande logique du commutateur 4 (courbe (c)), le commutateur 2 étant fermé et donc passant pendant cette phase. Le circuit, dans lequel la bobine 1, le commutateur 4, la diode 5 et le condensateur 6 constituent un étage survolteur, est ensuite en situation d'attente jusqu'à un instant précédent la fermeture de l'un au moins des commutateurs 11 à 14 pour alimenter au moins une bobine d'injecteur 7 à 10. Juste avant la commande d'un injecteur, le commutateur 4 est fermé, comme montré sur la figure 4, pour charger à nouveau la bobines 1. Puis l'un des commutateurs d'injecteur, par exemple le commutateur 11, est fermé, alors que le commutateur 2 reste fermé et que le commutateur 4 est ouvert (voir figures 3 et 4), de sorte qu'il se produit simultanément une décharge de la bobine 1 et du condensateur 6 dans la bobine d'injecteur 7, parcourue par un courant d'appel intense, qui atteint de 15 à 20 A après un temps de 30 à 50 µs, et correspond à la somme des courants résultant de la décharge capacitive du condensateur 6 et de la décharge selfique de la bobine 1. Cet établissement rapide d'un courant d'appel intense est visible sur les courbes des figures 3 et 4.
L'entretien du courant d'appel est ensuite assuré par la commande cyclique du commutateur 2 pour ajuster le courant dans la bobine d'injecteur 7 à une valeur désirée et variant entre 15 et 20 A comme représenté sur la figure 3. L'unité de commande 16 commande cycliquement le commutateur 2 avec un rapport cyclique d'ouverture variable, qui est ensuite abaissé pour diminuer le courant à une intensité de 3 à 5 A environ, puis le maintenir autour de cette valeur pour assurer un courant de maintien de l'injecteur dans sa bobine 7.
Enfin, l'arrêt du courant dans la bobine d'injecteur 7 est obtenu par la commande de l'ouverture du commutateur 11, entraínant l'annulation rapide du courant (figure 3).
Pendant la décharge simultanée du condensateur 6 et de la bobine 1 dans la bobine 7, le courant iL dans la bobine 1 évolue comme montré sur la figure 5.
Avec un seul circuit de puissance selon l'invention, il est possible de commander simultanément l'alimentation de deux bobines d'injecteur telles que 7 et 8 par exemple. En effet, l'étage survolteur comprenant la bobine 1, la diode 5, le commutateur 4 et le condensateur 6, alimente en parallèle les bobines d'injecteurs 7 à 10. Le commutateur 2 et les deux commutateurs par exemple 11 et 12 des deux bobines d'injecteurs 7 et 8 à alimenter en recouvrement, sont commandés à l'ouverture par l'unité de commande 16 de façon à assurer ce recouvrement des durées d'alimentation. Les courbes (a) et (b) de la figure 6 montrent les courants i1 et i2 dans les bobines d'injecteur 7 et 8 après les deux fermetures décalées dans le temps du commutateur 4 - voir courbe (d) - pour charger la bobine 1 juste avant les fermetures décalées des commutateurs 11 et 12, qui sont à l'origine des courants i1 et 12. Les charges de la bobine 1 résultant des fermetures du commutateur 4 sont visibles sur la courbé (c) de la figure 6, représentant le courant iL dans cette bobine 1. Enfin, la commande du commutateur 2 avec un rapport cyclique variable après les ouvertures du commutateur 4 (voir courbe (e) de la figure 6) permet le maintien du courant d'appel puis l'obtention du courant de maintien. On constate pour la bobine 7, une augmentation du courant de maintien i1 fourni par le convertisseur constitué par la bobine 1 et le commutateur 2, dans un facteur de 2, comme représenté sur la courbe (a) de la figure 6, pendant la période de recouvrement, qui commence à l'établissement du courant i2 (fermeture du commutateur 12) et se termine à la coupure (non représentée sur la figure 6) du courant i1 (à l'ouverture du commutateur 11).

Claims (8)

  1. Circuit de commande de puissance, pour l'alimentation en courant électrique d'une bobine d'actionnement (7-10) d'au moins un actionneur électro-magnétique, tel qu'un injecteur de carburant pour moteur à combustion interne, le circuit comprenant un étage survolteur connecté à une source (3) d'alimentation en courant continu à basse tension, telle qu'une batterie de véhicule, et comportant un condensateur (6) d'accumulation d'énergie, une bobine de self induction (1) pour l'accumulation d'énergie, et des premiers moyens commutateurs (4) commandés cycliquement à la fermeture et à l'ouverture par une unité de commande de commutation (16), pour assurer en succession au moins deux séquences consistant chacune à charger la bobine de self induction (1) à partir de ladite source d'alimentation (3), puis à charger le condensateur (6) à partir de la bobine de self induction (1) et au travers d'une diode (5), et des seconds moyens commutateurs (11-14), commandés à la fermeture par ladite unité de commande (16) pour assurer l'alimentation de ladite bobine d'actionnement (7-10) par décharge dudit condensateur (6), caractérisé en ce que ladite bobine de self induction (1) est distincte de ladite bobine d'actionnement (7-10), et en ce qu'après la charge du condensateur (6) et avant l'alimentation de ladite bobine d'actionnement (7-10), ladite unité de commande de commutation (16) commande la fermeture desdits premiers moyens commutateurs (4) pour charger ladite bobine de self induction (1), de sorte qu'à la fermeture desdits deuxièmes moyens commutateurs (11-14), ladite bobine d'actionnement (7-10) est alimentée par la décharge simultanée dudit condensateur (6) et de ladite bobine de self induction (1).
  2. Circuit de commande de puissance selon la revendication 1, caractérisé en ce qu'il comprend de plus des troisièmes moyens commutateurs (2) interposés entre ladite source d'alimentation (3) et ladite bobine de self induction (1), et commandés par ladite unité de commande (16) à la fermeture pour assurer les charges initiales dudit condensateur (6) et de ladite bobine de self induction (1), puis, après la fermeture desdits deuxièmes moyens commutateurs (11-14), commandés cycliquement à l'ouverture et à la fermeture pour assurer dans ladite bobine d'actionnement (7-10), un courant de maintien d'intensité inférieure à celle du courant d'appel résultant de la décharge simultanée dudit condensateur (6) et de ladite bobine de self induction (1).
  3. Circuit de commande de puissance selon la revendication 2, caractérisé en ce qu'après la fermeture desdits deuxièmes moyens commutateurs (11-14) commandant la décharge simultanée du condensateur (6) et de la bobine de self induction (1) dans la bobine d'actionnement (7-10), et avant la délivrance dudit courant de maintien, lesdits troisièmes moyens commutateurs (2) sont commandés cycliquement à l'ouverture et à la fermeture par ladite unité de commande (16) de sorte à entretenir le courant d'appel à une intensité voisine de celle résultant de la décharge simultanée du condensateur (6) et de la bobine de self induction (1) dans la bobine d'actionnement (7-10).
  4. Circuit de commande de puissance selon l'une des revendications 2 et 3, caractérisé en ce que les troisièmes moyens commutateurs (2) sont commandés par ladite unité de commande (16) avec un rapport cyclique d'ouverture variable pour assurer ledit courant de maintien et/ou entretenir ledit courant d'appel.
  5. Circuit de commande de puissance selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deuxièmes moyens commutateurs (11-14) sont commandés à l'ouverture par ladite unité de commande (16) de sorte à annuler rapidement le courant d'alimentation de la bobine d'actionnement (7-10).
  6. Circuit de commande de puissance selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les moyens commutateurs (2, 4, 11-14) comprennent des commutateurs électroniques pilotés par une commande logique délivrée par ladite unité de commande de commutation (16), qui comprend au moins un microprocesseur ou microcontrôleur.
  7. Circuit de commande de puissance selon l'une quelconque des revendications 2 à 6, caractérisé en ce que l'étage survolteur (1, 4, 5, 6) alimente en parallèle les bobines d'actionnement (7-10) d'au moins deux actionneurs électromagnétiques et lesdits deuxièmes (11-14) et troisièmes (2) moyens commutateurs sont commandés à la fermeture de façon à obtenir un recouvrement des durées d'alimentation d'au moins deux bobines d'actionnement (7-10).
  8. Circuit de commande de puissance selon la revendication 7, caractérisé en ce que les troisièmes moyens commutateurs (2) et la bobine de self induction (1) forment un convertisseur assurant une augmentation du courant de maintien pendant un recouvrement de durées d'alimentation d'au moins deux bobines d'actionnement (7-10).
EP98936459A 1997-07-09 1998-07-07 Circuit de commande de puissance pour actionneur electromagnetique tel qu'injecteur ou electrovanne Expired - Lifetime EP0995023B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9708726A FR2766005B1 (fr) 1997-07-09 1997-07-09 Circuit de commande de puissance, pour actionneur electro-magnetique tel qu'injecteur ou electro-vanne
FR9708726 1997-07-09
PCT/FR1998/001452 WO1999002834A1 (fr) 1997-07-09 1998-07-07 Circuit de commande de puissance, pour actionneur electromagnetique tel qu'injecteur ou electrovanne

Publications (2)

Publication Number Publication Date
EP0995023A1 EP0995023A1 (fr) 2000-04-26
EP0995023B1 true EP0995023B1 (fr) 2002-04-10

Family

ID=9509055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98936459A Expired - Lifetime EP0995023B1 (fr) 1997-07-09 1998-07-07 Circuit de commande de puissance pour actionneur electromagnetique tel qu'injecteur ou electrovanne

Country Status (4)

Country Link
EP (1) EP0995023B1 (fr)
DE (1) DE69804801T2 (fr)
FR (1) FR2766005B1 (fr)
WO (1) WO1999002834A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979412A (en) * 1997-08-12 1999-11-09 Walbro Corporation Inductive discharge injector driver
DE19911863A1 (de) * 1999-03-17 2000-09-21 Philips Corp Intellectual Pty Schaltungsanordnung zum Steuern eines Aktuators
DE19922485B4 (de) * 1999-05-15 2008-06-12 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Ansteuerung eines Doppelspulen-Hochdruckeinspritzmagnetventils für die Kraftstoffeinspritzung
GB0107555D0 (en) * 2001-03-27 2001-05-16 Bae Systems Plc Electromagnetic actuation
FR2826200B1 (fr) 2001-06-15 2004-09-17 Sagem Procede d'alimentation d'un equipement electrique
DE10257840A1 (de) * 2002-12-11 2004-07-15 Robert Bosch Gmbh Vorrichtung zur Steuerung eines Verbrauchers
DE602004004664T2 (de) * 2004-10-08 2007-11-08 C.R.F. S.C.P.A. Vorrichtung zum Steuern der Elektroeinspritzventile und Elektroventile einer Brennkraftmaschine und eine Methode dafür

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1218673B (it) * 1987-08-25 1990-04-19 Marelli Autronica Circuito per il controllo di carichi induttivi in particolare per il comando degli elettroiniettori di un motore a ciclo diesel
IT1217171B (it) * 1987-08-25 1990-03-14 Marelli Autronica Circuito per il pilotaggio di carichi induttivi in particolare per il comando degli elettroiniettori di un motore a combustione interna a ciclo diesel

Also Published As

Publication number Publication date
WO1999002834A1 (fr) 1999-01-21
EP0995023A1 (fr) 2000-04-26
FR2766005A1 (fr) 1999-01-15
DE69804801D1 (de) 2002-05-16
FR2766005B1 (fr) 1999-09-17
DE69804801T2 (de) 2002-11-28

Similar Documents

Publication Publication Date Title
EP0753925A2 (fr) Dispositif d'alimentation électrique d'un véhicule automobile et procédés de commande d'un tel dispositif
EP0995023B1 (fr) Circuit de commande de puissance pour actionneur electromagnetique tel qu'injecteur ou electrovanne
FR2739217A1 (fr) Dispositif et procede pour la commande d'au moins deux utilisateurs electromagnetiques
FR2775825A1 (fr) Procede et dispositif pour commander un appareil utilisateur
FR2853448A1 (fr) Configuration de circuit et procede pour l'activation d'une electrovanne bistable
WO2013050720A1 (fr) Réseau électrique pour véhicule ayant au moins un composant activable
EP1067608B1 (fr) Dispositif et procédé de commande d'un actuateur piezo-électrique
WO2010043808A1 (fr) Dispositif et procede de commande d'un injecteur piezo-electrique ultrasonore resonant
FR2738688A1 (fr) Procede et dispositif de commande d'une charge electromagnetique
FR2807200A1 (fr) Procede et dispositif de commande d'au moins un consommateur electromagnetique
FR3039934A1 (fr) Procede de gestion de l’alimentation electrique d’un vehicule automobile
EP1420468B1 (fr) Dispositif d'actionnement muni d'une topologie électronique de pilotage
FR2935558A1 (fr) Systeme d'alimentation electrique a double stockage, pour vehicule equipe de la fonction stop&start
WO2008047018A1 (fr) Dispositif de commande d'un actionneur piezo-electrique ultrasonore
FR2533263A1 (fr) Dispositif de commande d'organes electromagnetiques a actionnement rapide, tels qu'electrovannes ou injecteurs pour moteurs a combustion interne
FR2792373A1 (fr) Systeme d'allumage pour moteur de vehicule automobile
WO2012160317A1 (fr) Alimentation pour allumage radiofrequence avec amplificateur a double etage
FR2667357A1 (fr) Dispositif de commande d'injecteurs de combustible dans un moteur a combustion interne.
FR2749814A1 (fr) Dispositif d'alimentation electrique d'un vehicule a moteur
FR2735591A1 (fr) Procede et dispositif de commande auto survolteur pour un actionneur comportant une self inductance
EP2260519B1 (fr) Dispositif de commande d'un actionneur piezo-electrique ultrasonore
WO2003071658A2 (fr) Systeme d'alimentation electrique par générateur et batterie associée
FR3096842A1 (fr) Circuit electrique de vehicule automobile comprenant un alterno-demarreur et un dispositif de maintien de tension centralise
FR2749990A1 (fr) Dispositif autosurvolteur pour actionneur
WO2006077295A1 (fr) Procede de pilotage electronique d'un actionneur piezo-electrique ultrasonore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 69804801

Country of ref document: DE

Date of ref document: 20020516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060629

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070707