EP0978864A2 - Lampe à halogénure métallique à double culot à basse puissance - Google Patents
Lampe à halogénure métallique à double culot à basse puissance Download PDFInfo
- Publication number
- EP0978864A2 EP0978864A2 EP99115050A EP99115050A EP0978864A2 EP 0978864 A2 EP0978864 A2 EP 0978864A2 EP 99115050 A EP99115050 A EP 99115050A EP 99115050 A EP99115050 A EP 99115050A EP 0978864 A2 EP0978864 A2 EP 0978864A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal halide
- arc chamber
- electrode
- end type
- type metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/82—Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
- H01J61/827—Metal halide arc lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0732—Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
Definitions
- the present invention relates to a double end type metal halide bulb or lamp with low power consumption for use in automotive lighting, and more particularly to a composition of the metal halide bulb or lamp capable of providing sufficient light emitting efficiency in spite of a small input power of less than 35 W.
- the shape or diameter of the electrodes are adjusted in order to keep a temperature within a discharge chamber in a rated power range of 20-30 W, thereby obviating or preventing the evaporation of any amount of the metal halide and also preventing the strength of the metal spectrum from decreasing.
- Metal halide bulbs or lamps are used in various fields including illumination in sports facilities, because of their characteristics such as high color rendering property and high efficiency. In recent years, energy saving is becoming more important, and it is expected to further improve the efficiency of the metal halide lamps. Specifically, low power consumption and size reduction are major subjects when developing new models.
- a metal halide bulb or lamp is in endoscopes.
- the metal halide lamp in an endoscope operates with 21 W having arc length 1.2 mm, resulting in high incidental efficiency to an optical fiber.
- 35 W metal halide bulbs have started to prevail, and are used in some automobile models in Europe and Japan.
- standards for 35 W metal halide bulbs for use in automobiles are on the way to be established, and in Japan discussions for establishment of standards will start in the near future.
- Fig. 4 illustrates the spectrum of the metal halide composition included in these low wattage metal halide bulbs or lamps.
- the major element of the metal halide is Scl 3 -Nal.
- the composition having Scl 3 -Nal as a major element of the metal halide composition enables the metal halide lamp to provide high radiation efficiency in visible wavelengths and also high efficiency, as compared with the metal halide composition of Na-Tl-ln, or Dy-Tl-(ln).
- This double end type metal halide lamp with low power consumption has a relatively short arc length, is substantially a dot light source, and a large amount of light is obtained.
- the 35 W metal halide bulb for use in automobiles is required to have instant lumen output, and a rare gas is sealed in said bulb by applying predetermined pressure for enabling a very high, i. e. excessive current flow at start-up of the metal halide lamp.
- Fig. 5 illustrates such a conventional double end type metal halide lamp with low power consumption which is optimally designed in terms of thermal capacity for obtaining a sufficient temperature within a glass envelope in order to start and keep the evaporation of metal halide therein.
- the dimensions of the glass envelope are as follows.
- the thickness t of the glass envelope at a maximum external diameter portion 62 is more than 1.5 mm (t > 1.5 mm);
- the diameter ⁇ a of an arc chamber 66 is more than 2.6 mm ( ⁇ a > 2.6 mm); in the arc chamber 66, a distance d between a tip portion 65 of an electrode 69 and a wall 67 of the arc chamber 66 is equal to or more than around 1.0 mm (d ⁇ 1.0 mm).
- Fig. 6(a) illustrates an enlarged cross sectional view Sg of the first neck portion 63 and the second neck portion 64 of the glass envelope made of quartz glass.
- Fig. 6(b) illustrates an enlarged cross sectional view S of the maximum external diameter portion 62 along a surface perpendicular to the longitudinal axis of the glass envelope.
- the pair of electrodes 69 is substantially a cylinder, respectively, and its diameter ⁇ is equal to or more than 0.25 mm.
- the electrode tip portion 65 has substantially the same diameter as the remaining portion of the electrode 69.
- the pair of electrodes 69 respectively, have electrical connections to a molybdenum foil, whose end has a shape like a knife blade or a wedge, for obtaining predetermined air-tightness and avoiding excessive stress concentration; said foil having the following dimensions: thickness 20-28 ⁇ m, width 1.5-2.0 mm, and length 6-8 mm.
- the Scl 3 -Nal metal halide lamp As described above, on designing of the 35 W automotive metal halide lamp, it is sufficient to consider just the entire shape and end portion structure of the glass envelope for obtaining sufficient temperature to start and keep the evaporation of metal halide within the glass envelope, and it is not required to determine in detail the entire shape or diameter of the electrode. However, when designing the Scl 3 -Nal metal halide lamp with a power consumption of less than 35 W, it is required to determine more specifically the electrode structure, because light color shifts to blue due to low light emitting efficiency. As the input power is small, the evaporation amount of metal halide is also small.
- the conventional metal halide lamp with low power consumption has the following problems. On designing a metal halide lamp with a power consumption less than 35 W, it is impossible to achieve sufficient a temperature in an arc chamber 66 by downsizing the scale of designing parameters of the parameters for 35 W bulbs. When each of the designing parameters is just downsized, the evaporation amount of the metal halide is insufficient such that the light emitting efficiency decreases and the light color shifts to blue.
- the aforementioned metal halide lamp with an operating power 21 W has overcome the light emitting efficiency problem to the extent that it can be used as an endoscope.
- designing parameters are different for uses between endoscope and automobile. Since the endoscope is not required to have instant lumen output property, the metal halide lamp in 21 W has not yet overcome the standards of start-up properties for use in automobiles.
- the present invention is directed to an automobile headlight that substantially obviates one or more of the above problems due to the limitations and disadvantages of the related art.
- the above object is achieved by sealing Xenon gas under high pressure and applying excessive current at start-up of the metal halide lamp, and by providing an electrode structure capable of enduring excessive current at start-up of the metal halide lamp.
- the electrode structure is achieved by adjusting the designing parameters of electrode such as the diameter or entire shape, for mitigating thermal emission from electrode tip portions such that the temperature in the glass envelope is maintained. Thereby low light-emitting efficiency due to low power input and light color shift to blue are prevented.
- the double end type Scl 3 -Nal metal halide lamp with rated power consumption smaller than 35W, more specifically 20-30 W, of the present invention comprises a pair of electrodes whose diameter ⁇ n is equal to or less than 0.25 mm ( ⁇ n ⁇ 0.25 mm), and the diameter ⁇ P of the electrode tip portion is equal to or larger than the diameter ⁇ S of the remaining electrode portion ( ⁇ P ⁇ ⁇ S).
- the electrode tip portion is spherical or cylindrical, and the cross section area of the electrode increases as a cross section moves toward the tip portion for mitigating thermal emission from the electrode tip portion and preventing low light emission efficiency due to small input power.
- the arc chamber is substantially a sphere, ellipsoid, or any similar shape, and comprises the pair of electrodes, mercury, rare gas, and at least one kind of metal halide sealed therein. Since a rare gas, more specifically Xenon gas, is sealed within an arc chamber under high pressure, when excessive current, is applied instant lumen output is achieved.
- Fig. 1 illustrates a front view and cross sectional views of the first preferred embodiment of the present invention.
- the double end type metal halide bulb or lamp with low power consumption being operated with a power of less than 35 W comprises a glass envelope 100, an arc chamber 6, an electrode structure comprising molybdenum foils 21 and a pair of electrodes 20.
- the glass envelope 100 comprises an arc chamber portion 1 surrounding the arc chamber 6 and at least one sealed portion 8 adjacent to the arc chamber portion 1.
- the length q of the sealed portion is shown in Fig. 1.
- the entire shape and end structure of the glass envelope is adjusted as described in Japanese patent application No. HEI 10-195647. Detailed description about how to determine dimensions of the glass envelope will be provided later.
- Figs. 2 (a)-(d) illustrate electrode structures of the first to fourth preferred embodiments of the present invention.
- the electrode material of the present invention is tungsten (including W-1.7% ThO 2 ).
- the first electrode structure in Fig .2(a) comprises a molybdenum foil 21 and a first or second electrode 20 which is electrically connected to the molybdenum foil 21 and is projected within arc chamber 6.
- a diameter ⁇ n of the first or second electrode 20 is equal to or less than 0.25 mm ( ⁇ n ⁇ 0.25), thereby mitigating thermal emission from the electrode 20 and maintaining the temperature in the glass envelope.
- Tip portions 23 of the electrodes 20 have substantially the same diameter as the remaining portions 22 of the electrodes 20.
- the second electrode structure in Fig. 2(b) comprises a molybdenum foil 21 and a first or second electrode 20 which is electrically connected to the molybdenum foil 21 and is projected within an arc chamber 6.
- the electrode 20 comprises a spherical electrode tip portion 23 and remaining electrode portion 22.
- a diameter ⁇ S of the remaining electrode portion 22 is equal to or smaller than the diameter ⁇ P of the spherical electrode tip portion 23, and the diameter ⁇ P of the spherical electrode tip portion 23 is equal to or less than 0.25 mm ( ⁇ S ⁇ ⁇ P ⁇ 0.25 mm). Since the cross section area of the spherical electrode tip portion 23 is enlarged enabling the mitigation of thermal emission from the electrode tip portion 23 to the extent of maintaining evaporation of metal halide, sufficient light-emitting efficiency is achieved in spite of small input power.
- the third electrode structure in Fig. 2(c) comprises a molybdenum foil 21 and a first or second electrode 20 which is electrically connected to the molybdenum foil 21 and is projected within an arc chamber 6.
- the shape of the electrode tip portion 23 is a cylinder.
- the electrode 20 comprises said cylindrical electrode tip portion 23 and remaining electrode portion 22.
- a diameter ⁇ Y of the remaining electrode portion 22 is equal to or smaller than the diameter ⁇ X of the cylindrical electrode tip portion 23, and the diameter ⁇ X of the cylindrical electrode tip portion 23 is equal to or smaller than 0.25 mm ( ⁇ Y ⁇ ⁇ X ⁇ 0.25 mm).
- the cross section area of the cylindrical electrode tip portion 23 is further enlarged as compared with the second preferred embodiment.
- the third electrode structure is also able to mitigate thermal emission from the electrode 20 such that evaporation of metal halide is maintained. Accordingly, it is prevented to decrease light-emitting efficiency even though input power decreases.
- the fourth electrode structure in Fig. 2(d) comprises a molybdenum foil 21 and a first or second electrode 20 which is electrically connected to the molybdenum foil 21 and is projected within an arc chamber 6.
- the cross section area of the electrode 20 increases as a cross section moves toward the projecting end of the electrode 20.
- a diameter ⁇ K of the projecting end of the electrode 20 is equal to or smaller than 0.25 mm ( ⁇ K ⁇ 0.25 mm).
- the fourth electrode structure is also able to mitigate thermal emission from the electrode 20, and it is prevented from decreasing the light-emitting efficiency even though input power decreases.
- the entire shape and end structure of the glass envelope is adjusted as described in the Japanese patent Application No. 10-195647.
- Such preferred dimensions of the glass envelope are briefly explained as follows based on the metal halide lamp in Fig. 1.
- the thickness t at a portion 2 having the maximum external diameter of the glass envelope is equal to or smaller than 1.5 mm (t ⁇ 1.5 mm).
- the maximum internal diameter of the arc chamber ⁇ a is equal to or smaller than 2.6 mm ( ⁇ a ⁇ 2.6 mm).
- the thickness t and the maximum internal diameter ⁇ a are determined for the purpose of maintaining the temperature within the glass envelope for achieving sufficient light emitting efficiency in spite of small input power.
- the distance d between an electrode tip portion 5 and a wall 7 of the arc chamber 6 is 0.6-1.3 mm (0.6 mm ⁇ d ⁇ 1.3 mm).
- the maximum value 1.3 mm is determined for the purpose of maintaining temperature in the glass envelope and achieving sufficient light emitting efficiency in spite of small input power.
- the minimum value 0.6 mm is determined for preventing occurrence of a non-stabilized arc which may cause a sudden turn-off of the metal halide lamp.
- the volumes of the glass envelope 100 at the arc chamber portion 1 surrounding the arc chamber 6, and sealed portions 8 are determined as follows.
- the volume Vg of the arc chamber portion 1 having a length l between the first neck portion 3 and the second neck portion 4, the volume Vs 1 of the sealed portion 8 extending the length l from the first neck portion 3 toward a nearer end of the glass envelope 100, and the volume Vs 2 of the sealed portion 8 extending the length l from the second neck portion 4 toward a nearer end of the glass envelope 100 have the following relationship: 0.4Vg ⁇ Vs 1 , and Vs 2 ⁇ 0.9Vg.
- the above-identified double end type metal halide lamp with low power consumption comprises a spherical or elliptic arc chamber 6 which includes a pair of electrodes 20, mercury, rare gas, and at least one kind of metal halide.
- the rare gas, Xenon gas is also sealed in the arc chamber 6 under high pressure enabling an excessive current flow at the start-up of the bulb or lamp. The excessive current flow is required for instant lumen output which is essential for use in automobiles.
- the conventional 35 W metal halide lamp is able to provide high temperatures to the extent of enabling sufficient evaporation of the metal halide.
- it is essential to adjust e. g. the entire shape or diameter of the electrode structure because, without such adjustments, light emitting efficiency decreases when the input power is smaller than 35 W, and the light color may shift to blue.
- Fig. 3 is a graph showing light-emitting efficiency of the metal halide lamp with low power consumption as a comparison between the preferred embodiment of the present invention in a solid line and a conventional 35 W metal halide lamp in a broken line.
- an electrode 20 has a diameter smaller than 0.25 mm, and the electrode tip portion 23 has larger diameter than the remaining electrode portions 22.
- the arc chamber portion 1 and sealed end of the arc chamber portion 1 are adjusted as described in the Japanese patent application No. 10-195647. As shown in this graph, the preferred embodiment of the present invention achieved light emitting efficiency of 60-90 lm/W in spite of small input power.
- the arc chamber portion is maintained in a sufficiently high temperature for metal halide evaporation. Therefore, although the power consumption decreases, light emitting efficiency does not decrease very much and light color shift to blue is prevented.
- instant lumen output is achieved in spite of a small input power of less than 35 W, specifically in the range of 20-30 W. This is achieved by adjusting the electrode shape and structure, by sealing Scl 3 and Nal in the arc chamber, and by applying an excessive current at start-up of the lamp. The combination of these parameters is able to provide more effective metal halide lamps.
Landscapes
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22047098 | 1998-08-04 | ||
JP22047098A JP2000057994A (ja) | 1998-08-04 | 1998-08-04 | ダブルエンド型低電力メタルハライドランプ |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0978864A2 true EP0978864A2 (fr) | 2000-02-09 |
EP0978864A3 EP0978864A3 (fr) | 2001-11-21 |
EP0978864B1 EP0978864B1 (fr) | 2007-12-12 |
Family
ID=16751620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990115050 Expired - Lifetime EP0978864B1 (fr) | 1998-08-04 | 1999-08-04 | Lampe à halogénure métallique à double culot à basse puissance |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0978864B1 (fr) |
JP (1) | JP2000057994A (fr) |
DE (1) | DE69937710T2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1339090A1 (fr) * | 2002-02-15 | 2003-08-27 | Harison Toshiba Lighting Corporation | Lampe aux halogénures métalliques et phare automobile |
EP1296356A3 (fr) * | 2001-09-13 | 2006-01-25 | Ushiodenki Kabushiki Kaisha | Lampe à décharge à très haute pression du type à arc court |
WO2007077504A3 (fr) * | 2006-01-03 | 2008-05-29 | Philips Intellectual Property | Lampe à décharge de vapeurs de mercure à haute pression et procédé de fabrication d’une lampe à décharge de vapeurs de mercure à haute pression |
US8410698B2 (en) | 2008-04-14 | 2013-04-02 | Koninklijke Philips Electronics N. V. | High efficiency discharge lamp |
EP2405464A4 (fr) * | 2009-03-06 | 2014-09-17 | Harison Toshiba Lighting Corp | Lampe à décharge pour véhicule, dispositif de lampe à décharge pour véhicule, dispositif de lampe à décharge pour véhicule du type combiné à un circuit d'éclairage, et circuit d'éclairage |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7893619B2 (en) | 2008-07-25 | 2011-02-22 | General Electric Company | High intensity discharge lamp |
CN105206501B (zh) * | 2008-09-10 | 2017-09-01 | 皇家飞利浦电子股份有限公司 | 带有改进的放电容器的放电灯 |
JP5428957B2 (ja) * | 2009-05-13 | 2014-02-26 | 東芝ライテック株式会社 | 車両用放電ランプ、および車両用放電ランプ装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL184550C (nl) * | 1982-12-01 | 1989-08-16 | Philips Nv | Gasontladingslamp. |
DE3842771A1 (de) * | 1988-12-19 | 1990-06-21 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Hochdruckentladungslampe kleiner elektrischer leistung und verfahren zum betrieb |
US5270620A (en) * | 1990-09-04 | 1993-12-14 | General Electric Company | High frequency resonant converter for operating metal halide lamps |
US5083059A (en) * | 1990-12-31 | 1992-01-21 | Welch Allyn, Inc. | Electrode for metal halide discharge lamp |
US5420477A (en) * | 1993-01-15 | 1995-05-30 | Welch Allyn, Inc. | Electrode for metal halide discharge lamp |
-
1998
- 1998-08-04 JP JP22047098A patent/JP2000057994A/ja active Pending
-
1999
- 1999-08-04 DE DE1999637710 patent/DE69937710T2/de not_active Expired - Lifetime
- 1999-08-04 EP EP19990115050 patent/EP0978864B1/fr not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1296356A3 (fr) * | 2001-09-13 | 2006-01-25 | Ushiodenki Kabushiki Kaisha | Lampe à décharge à très haute pression du type à arc court |
EP1339090A1 (fr) * | 2002-02-15 | 2003-08-27 | Harison Toshiba Lighting Corporation | Lampe aux halogénures métalliques et phare automobile |
US6879101B2 (en) | 2002-02-15 | 2005-04-12 | Harison Toshiba Lighting Corp. | Metal halide lamp with electrodes having a curved surface part and automotive headlamp apparatus |
WO2007077504A3 (fr) * | 2006-01-03 | 2008-05-29 | Philips Intellectual Property | Lampe à décharge de vapeurs de mercure à haute pression et procédé de fabrication d’une lampe à décharge de vapeurs de mercure à haute pression |
US8410698B2 (en) | 2008-04-14 | 2013-04-02 | Koninklijke Philips Electronics N. V. | High efficiency discharge lamp |
EP2405464A4 (fr) * | 2009-03-06 | 2014-09-17 | Harison Toshiba Lighting Corp | Lampe à décharge pour véhicule, dispositif de lampe à décharge pour véhicule, dispositif de lampe à décharge pour véhicule du type combiné à un circuit d'éclairage, et circuit d'éclairage |
Also Published As
Publication number | Publication date |
---|---|
EP0978864A3 (fr) | 2001-11-21 |
EP0978864B1 (fr) | 2007-12-12 |
JP2000057994A (ja) | 2000-02-25 |
DE69937710T2 (de) | 2008-11-27 |
DE69937710D1 (de) | 2008-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100762531B1 (ko) | 금속 할로겐화물 램프 | |
US6215254B1 (en) | High-voltage discharge lamp, high-voltage discharge lamp device, and lighting device | |
US6897613B2 (en) | Discharge lamp, light source and projecting display unit | |
US6307321B1 (en) | High-pressure discharge lamp and lighting apparatus | |
US7141932B2 (en) | Metal halide lamp and automotive headlamp apparatus | |
KR100392386B1 (ko) | 고압 방전램프, 고압 방전램프 장치 및 조명 장치 | |
EP0978864A2 (fr) | Lampe à halogénure métallique à double culot à basse puissance | |
US4612475A (en) | Increased efficacy arc tube for a high intensity discharge lamp | |
EP1958237A2 (fr) | Lampe a decharge ceramique de forte intensite pour automobiles | |
JP3623137B2 (ja) | 放電ランプと光源装置 | |
JP2004111390A (ja) | 自動車前照灯用高圧放電ランプ | |
EP1041603A1 (fr) | Lampe a decharge haute tension et dispositif d'eclairage | |
JP2003507877A (ja) | メタルハライドランプ | |
JP2007537564A (ja) | 高圧放電ランプ | |
JPH07105909A (ja) | メタルハロゲンランプ | |
JP4706205B2 (ja) | ショートアークランプ | |
JP4431174B2 (ja) | 高圧ガス放電ランプ | |
US20060108927A1 (en) | High-pressure discharge lamp | |
KR200200889Y1 (ko) | 메탈할라이드램프 | |
JP3957710B2 (ja) | 光源装置と投写型表示装置 | |
JP2002208377A (ja) | ショートアーク型超高圧放電ランプ | |
JP4756878B2 (ja) | セラミック放電ランプ点灯装置 | |
JPH07105916A (ja) | 放電ランプ、放電ランプ装置、原稿照明装置および画像形成装置 | |
JP2004349194A (ja) | 高圧放電ランプユニット | |
JP2000030665A (ja) | ダブルエンド型低電力メタルハライドランプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A2 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7H 01J 61/073 A, 7H 01J 61/82 B, 7H 01J 61/86 B |
|
17P | Request for examination filed |
Effective date: 20020521 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20050309 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69937710 Country of ref document: DE Date of ref document: 20080124 Kind code of ref document: P |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080926 |
|
26N | No opposition filed |
Effective date: 20080915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150729 Year of fee payment: 17 Ref country code: GB Payment date: 20150729 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69937710 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160804 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 |