[go: up one dir, main page]

EP0968393A1 - Device for modifying the temperature of a fluid - Google Patents

Device for modifying the temperature of a fluid

Info

Publication number
EP0968393A1
EP0968393A1 EP98912551A EP98912551A EP0968393A1 EP 0968393 A1 EP0968393 A1 EP 0968393A1 EP 98912551 A EP98912551 A EP 98912551A EP 98912551 A EP98912551 A EP 98912551A EP 0968393 A1 EP0968393 A1 EP 0968393A1
Authority
EP
European Patent Office
Prior art keywords
path
exchange
transfer
fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98912551A
Other languages
German (de)
French (fr)
Inventor
Marc D'alencon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEFA
Original Assignee
TEFA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEFA filed Critical TEFA
Publication of EP0968393A1 publication Critical patent/EP0968393A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a device for modifying the temperature of a useful fluid.
  • the refrigeration unit is only put into operation when the atmospheric temperature is inappropriate to allow the heat exchange between the working fluid and the ambient air to bring the working fluid back to the set temperature.
  • this solution increases the pressure drops and the risks of leakage affecting the useful fluid circuit.
  • a valve can be provided to bypass the refrigeration exchanger when the refrigeration circuit is at rest, but this further increases the complexity of structure and control, as well as the risk of leakage.
  • EP-A-0 143 855 is a device in which the useful fluid is incoming air which is heated with heat recovered in outgoing air, via a transfer fluid.
  • the transfer fluid in its path to the exchanger with the incoming air, receives heat from the condenser of a refrigerating machine and, in its path of return to the exchanger with the outgoing air, is cooled by contact with the evaporator of the same refrigerating machine.
  • a machine has the aim of thermal optimization at the cost of great technical complexity.
  • the object of the present invention is to remedy these drawbacks by proposing a device making it possible to modify the temperature of a useful fluid, which is both less bulky, more economical and more reliable than known devices.
  • the device for modifying the temperature of a useful fluid comprising:
  • a refrigeration circuit comprising, for a refrigerant, a second and a third heat exchange path having one of a function of absorption of heat by the refrigeration circuit and the other of a function of generation of heat by the circuit refrigeration, at least at certain stages of operation, one of the second and third exchange paths being installed in heat exchange relation with the transfer path upstream of the first exchange path, so that the temperature of the fluid transfer is modified by heat exchange with the refrigerant before the heat exchange between the transfer fluid and the useful fluid traversing the first exchange path, is characterized in that the transfer path is an open path having, in upstream of the exchange paths, an entry path in which the temperature conditions are substantially independent of the operating conditions of the device.
  • the temperature of the transfer fluid is first modified-by the refrigeration circuit.
  • a person skilled in the art is dissuaded from the solution according to the invention since the heat exchange efficiency between the working fluid and the refrigerating fluid via the transfer fluid is not very favorable due to the multiple interfaces between these fluids.
  • this drawback is more than offset by the advantages set out above, in particular in the preferred applications where the refrigeration circuit is only put into operation in the case of relatively infrequent climatic conditions.
  • the construction according to the invention differs fundamentally from that according to EP 0 143 855 where the transfer fluid circulates in a closed loop and where the refrigerating machine has the essential function of creating a difference between the average temperature in the exchanger with the incoming air and that in the heat recovery exchanger in the outgoing air.
  • At least one of the inlet and outlet paths is connectable to a reserve of transfer fluid belonging to the environment.
  • the transfer fluid is preferably atmospheric air or ambient air from a room. he can also be sea, lake, river or basin water, or a discharge fluid such as smoke.
  • the first exchange path is installed in the transfer path in series between the second and the third exchange path.
  • the three exchange paths are placed one after the other in the same path of a transfer fluid which can be the air taken from the external atmosphere, the interior atmosphere of a room, sea, lake or river water, etc.
  • This transfer fluid is first cooled by the evaporator of the refrigeration unit, then heated by the first route exchange which is that traversed by the useful fluid, then further heated by the condenser of the refrigeration unit.
  • the observation which is the basis of this embodiment of the invention is that the temperature of the transfer fluid after the heating by the first exchange path is approximately the same as that of atmospheric air or other fluid. transfer entering the device according to the invention.
  • the condenser undergoes the same cooling effect from the transfer fluid as if a separate flow of transfer fluid struck the condenser directly.
  • This version of the invention therefore saves a second transfer fluid path, a means such as a fan motor for conveying the fluid transfer in this second transfer path, as well as the operating energy of this motor-fan.
  • the three heat exchange paths can be mounted one behind the other in the transfer path common to all of them, the construction is both simpler and more compact.
  • the device according to the invention may also consist of a heating device in which the transfer fluid passes first in contact with the refrigerating condenser and then in contact with the first exchange path leading to the useful fluid.
  • the transfer fluid cooled by contact with the first heat exchange path then passes into contact with one refrigeration evaporator which cools it even more.
  • the refrigeration circuit then operates as a heat pump.
  • means are provided for reversing the direction of circulation of the transfer fluid.
  • one of the directions of circulation, going from the evaporator to the condenser serves to cool the useful fluid while the other direction of circulation, from the condenser to the evaporator, serves to heat the useful fluid.
  • This simple reversal is enough to operate the refrigeration unit in the refrigerator or on the contrary in a heat pump.
  • the reversal of the direction of circulation of the transfer fluid can be obtained by reversing the direction of rotation of a motor-fan driving the transfer fluid, or by selective start-up of one or the other of two motor-fans adapted to produce opposite directions of circulation.
  • the means provided for setting in motion the transfer fluid in the transfer path and the useful fluid in the first exchange path can operate when the refrigeration unit is stopped. It is thus possible to reduce the overall energy expenditure of the device and the wear of the refrigeration unit when the temperature of the transfer fluid naturally has a value suitable for bringing, by heat exchange, the temperature of the useful fluid to the desired value.
  • the refrigeration unit only works - as the case may be in a refrigerator or in a heat pump as mentioned above - only if the natural temperature of the transfer fluid is inappropriate to modify or sufficiently modify the temperature of the useful fluid in the desired direction.
  • first two cases regulation is possible by varying the speed of circulation of the transfer fluid.
  • second two operating cases there may be added on / off or more sophisticated regulation, of known type, of the refrigeration unit, to vary the thermal power transferred by the refrigeration unit.
  • An even finer adjustment is possible by providing a refrigeration unit with multiple evaporators, some of which can be deactivated when the need for cooling is not maximum, and / or with multiple condensers, some of which can be deactivated when the need for heating of the cooling fluid. transfer is not maximum.
  • FIG. 1 is a diagram of a simple embodiment of the invention
  • Figure 2 is a schematic perspective view of an embodiment of the three exchange paths of the device of Figure 1
  • Figure 3 is a view of a detail of Figure 1 in an alternative embodiment
  • Figure 4 is a view similar to Figure 1 but relating to another embodiment
  • FIG. 5 is a diagram at the end of a bundle of tubes for the exchange paths of Figure 4; and - Figure 6 is a diagram similar to Figure 5 but relating to a variant.
  • a useful fluid a first heat exchange path 1 which is mounted between the outlet 11 and the inlet 12 of a use 13.
  • the use 13 corresponds to a domestic or industrial process which is not part of the invention.
  • the useful fluid leaves the use 13 at a temperature T 0 ⁇ which must be modified in the first exchange path 1 to become, at the input 12 of the use 13, a temperature T u2 which is 30 ° C in the nonlimiting example described.
  • the first heat exchange path 1 is placed in a transfer path 2, in which a transfer fluid can be set in motion in the direction represented by the arrows in solid lines, by means of a motor-fan 3.
  • the useful fluid circulating in the exchange path 1 is in heat exchange relationship with the transfer fluid in the transfer path 2.
  • the transfer fluid may be ambient air, or another gas, or else a fluid consisting of a gas (such as ambient air) and liquid mixture, the gaseous part being predominantly volume percentage, so that the flow preferably has an essentially gaseous character.
  • the transfer path 2 There is also in the transfer path 2 a second heat exchange path 6 and a third heat exchange path 8 placed respectively upstream and downstream of the first exchange path 1 relative to the direction of flow. transfer fluid in the transfer path 2.
  • the second heat exchange path 6 constitutes the evaporator of a refrigeration circuit 4.
  • the third exchange path 8 constitutes the condenser of the same refrigeration circuit 4.
  • the circuit 4 further includes a refrigeration compressor 7 mounted between the outlet of the second exchange path 6 and the inlet of the third exchange path 8 so as to draw the refrigerant gas into the second exchange path 6 to discharge it to the compressed state in the third exchange path 8.
  • the refrigeration circuit 4 also includes an expansion device 9 for expanding the refrigerant between the outlet of the third exchange path 8 and the inlet of the second e exchange route 6.
  • the transfer path 2 is an open path having, upstream of the exchange paths 6, 1, 8, an inlet path 24 starting with an inlet opening 26, and, downstream of the exchange paths 6, 1, 8, an outlet path 27 terminated by an outlet opening 28.
  • the path is open in particular in the sense that the fluid present at the inlet opening 26 is not, or in any case not necessarily, a fluid coming directly from the outlet opening 28.
  • the transfer fluid entering the path 2 has temperature conditions which are independent of the operating conditions of the device, and in particular the temperature of the transfer fluid in the outlet path 28.
  • the orifices 26 and 28 are both connected to the same reserve or source of large capacity, preferably belonging to the environment, such as the external atmosphere, the ambient air of a room, a sea, a lake. , a river, or an artificial reserve such as a basin, or two different sources or reserves.
  • the path 2 is defined by a sheath 29 open at its two ends.
  • the fan motor 3 is installed in the outlet path 27 to operate as an extractor.
  • the temperature of the incoming transfer fluid which is for example atmospheric air, is not controlled.
  • the motor-driven fan 3 is put into operation while maintaining the refrigeration circuit 4 at rest.
  • the refrigeration circuit 4 and the fan motor 3 are put into operation simultaneously.
  • the condenser 8 is just as well cooled by the fluid having been successively cooled then reheated in the path 2 by the second then the first heat exchange path, as it would have been by a possible second path of transfer provided only for the condenser 8.
  • the invention therefore makes it possible to group the three exchange paths 6, 1, 8 in the same transfer path 2 with a single motor-fan 3.
  • FIG. 2 schematically illustrates an embodiment of the three exchange paths in the form of a single bundle of tubes, of generally parallelepipedal shape, placed across the path 2.
  • the bundle tubes are connected with the rest of the device and with the use 13 so that two end plies of the bundle form one the second exchange path 6 and the other the third exchange path 8 of the refrigeration circuit while a central ply forms the first path exchange 1.
  • the bundle of tubes can be of the fin type 22. For the clarity of the figure, only a small number have been represented. fins 22, but in practice the fins are provided at regular intervals, relatively small, all along the tubes.
  • the fins are metal plates having perforations in which the metal tubes are crimped so as to achieve good thermal contact between tubes and fins.
  • the fins increase the contact surface with the transfer fluid.
  • the fins constitute thermal conductors having in particular the effect of transferring heat directly between the beam exchange paths.
  • the fins directly evacuate heat from path 1 to path 6 constituting one evaporator.
  • dashed lines 16 and 18 in FIG. 2 one can alternatively replace the single beam which has just been described by three similar individual beams, stacked one on the other according to the direction of circulation of the transfer fluid in the transfer path 2. If, unlike the example given in FIG.
  • This can be obtained by reversing the direction of flow in path 2, which then becomes that represented by dotted arrows in FIG. 1.
  • This reversal can be obtained by reversing the direction of rotation of the motor-fan 3 or by putting a second motor-fan 31 shown in dotted lines in FIG. 1 into service in the entry path. 24, suitable for producing the aforementioned reverse flow.
  • the transfer fluid is firstly heated by the condenser 8 to the temperature of 45 ° C. in the example, then cooled to the temperature of 30 ° C by contact with the useful fluid circulating in the first exchange path 1, then further cooled by the second exchange path 6 constituting one evaporator.
  • the transfer fluid is in this case discharged into the atmosphere with a final temperature of 20 ° C, the atmosphere constituting the cold source of the refrigeration circuit 4 then operating as a heat pump.
  • Figure 3 shows another way to operate the refrigeration circuit as a heat pump capable of heating the useful fluid.
  • a four-way valve 71 is placed at the inlet and at the outlet of the compressor 7, between the latter and on the one hand the second heat exchange path 6 and on the other hand the third heat exchange path 8
  • the valve 71 shown diagrammatically, allows the compressor 7 to operate either as it was said above by sucking in the second exchange path 6 and by discharging into the third exchange path 8, or on the contrary by sucking in the third exchange path 8 which thus becomes an evaporator and by discharging into the second exchange path 6 which thus becomes a condenser.
  • the second exchange path 6 When the second exchange path 6 operates as a condenser, it heats the transfer fluid circulating according to the arrows shown in solid lines in FIG. 1, then the transfer fluid is capable of heating the useful fluid.
  • the refrigeration circuit 4 therefore operates, in this way too, as a heat pump.
  • the first exchange path 1 is extended upstream relative to the direction of circulation of the useful fluid by a fourth exchange path 14 which is not located in the transfer flow 2 bathing the evaporator 6 and the condenser 8 but in a second transfer flow 21 not coming into contact with the second and third exchange paths 6 and 8.
  • this second transfer flow 21 is constituted as the first flow transfer 2 by air taken from the atmosphere with a possible addition of drops of liquid such as water.
  • the second flow 21 is set in motion by another motor-fan 32 defining a second transfer path parallel to the first transfer path.
  • the sheaths that can be used to channel the transfer flows are not illustrated.
  • savings are made on the power consumed by the refrigeration circuit.
  • FIG. 5 illustrates a practical embodiment of a single bundle of tubes for all the exchange paths of the embodiment of FIG. 4.
  • all the tubes of the bundle belong to the fourth path exchange 14 traversed by the useful fluid.
  • the left part of the beam is organized so to form three successive groups of tubes constituting, in the order in which they are encountered by the transfer flow 2, the evaporator 6, the exchange path 1 and the condenser 8. It is seen that a thermal optimization can lead to create, on the left of FIG.
  • the fourth exchange path occupies only one median group of tubes in the right part of the bundle, and it is disposed between an additional evaporator 61, located upstream, and an additional condenser 81, located downstream.
  • the additional evaporator 61 and the additional condenser 81 belong to a second refrigeration circuit 41, which can be put into operation independently of the circuit 4.
  • the putting into operation of the circuit 41 can be reserved for exceptional cases where it is necessary to assist the circuit 4 when the temperature of the useful fluid is very high at the end of use and / or the ambient temperature is very high.
  • the transfer fluid can be a fluid other than atmospheric air.
  • the useful fluid can be liquid or gaseous.
  • the refrigeration circuit (s) may be of a type other than the condensation-evaporation type described. They can in particular be of the absorption, adsorption, Peltier effect type, etc.
  • the transfer route is not necessarily open in the immediate vicinity of the exchange routes. Pipes or other passages may be necessary to connect at least one of the ends of the transfer path with a source or reserve of large capacity, supplied in particular by the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A used fluid passes through an exchange path (1), located in a fluid flow transfer (2), before returning for use (13) at a required temperature (TU2). In the transfer path (2) the exchange path (1) is set between the evaporator (6) and the condenser (8) of a refrigerating circuit (4). The refrigerating circuit (4) is actuated only when the temperature (TA1) of the transfer fluid, consisting for example of ambient air, is unsuitable for properly modifying the used fluid temperature by means of the exchange path (1). The used fluid can be heated by simply reversing the direction of the flow in the transfer path (2). The invention is useful for rearranging exchange paths (1, 6, 8) into a single transfer path (2), for example in a single bundle of tubes arranged in several tube layers of suitably connected tubes.

Description

DESCRIPTION "Dispositif pour modifier la température d'un fluide" La présente invention concerne un dispositif pour modifier la température d'un fluide utile. DESCRIPTION "Device for modifying the temperature of a fluid" The present invention relates to a device for modifying the temperature of a useful fluid.
Il existe dans l'industrie des besoins pour donner à un fluide utile une température modérée, c'est à dire de l'ordre de grandeur des températures ambiantes. Il s'agit par exemple de maintenir à une température déterminée un fluide utile, liquide ou gazeux, alors que ce fluide participe par ailleurs à au moins un processus tendant à l'écarter de cette température de consigne. On rencontre de telles situations par exemple dans le domaine agro-alimentaire ou encore dans le cas de fluides d'ambiance, par exemple à 1 ' intérieur de compartiments renfermant des installations électriques ou électroniques. On peut souvent assurer la régulation de manière très économique sur le plan énergétique par échange thermique avec l'air atmosphérique au moyen d'un dispositif dit "aéroréfrigérant". Cependant, la température de l'air atmosphérique varie très fortement en fonction des conditions climatiques. Dans le cas fréquent où il faut refroidir le fluide utile, cela n'est plus possible lorsque la température ambiante est supérieure à la température de consigne. De même, dans une application où le fluide utile nécessiterait un réchauffage, celui-ci n'est plus possible lorsque la température atmosphérique est inférieure à la température de consigne. Pour remédier à cette difficulté, on sait refroidir l'air en y évaporant une partie du fluide utile (en général de l'eau) ou un fluide d'apport avant de provoquer l'échange thermique par convection entre l'air et le fluide utile. Ce procédé est volumineux, produit un panache de vapeur et des dépôts minéraux dans l'appareillage. Lorsque c'est le fluide utile qui est évaporé, il circule donc en circuit ouvert, avec des risques de contamination bactérienne et d'encrassement. On sait encore faire passer le fluide utile par un autre trajet d'échange où le fluide utile subit l'action d'un groupe frigorifique. Le groupe frigorifique n'est mis en fonctionnement que lorsque la température atmosphérique est inappropriée pour permettre à l'échange thermique entre le fluide utile et l'air ambiant de ramener le fluide utile à la température de consigne. Mais cette solution augmente les pertes de charge et les risques de fuite affectant le circuit du fluide utile. Pour réduire les pertes de charge, une vanne peut être prévue pour by-passer 1 ' échangeur frigorifique lorsque le circuit frigorifique est au repos, mais cela augmente encore la complexité de structure et de commande, ainsi que les risques de fuite. On connaît encore, d'après le EP-A-0 143 855, un dispositif dans lequel le fluide utile est de l'air entrant que l'on réchauffe avec de la chaleur récupérée dans de l'air sortant, par l'intermédiaire d'un fluide de transfert. Pour compléter l'apport calorifique à l'air entrant, le fluide de transfert, dans son trajet vers l' échangeur avec l'air entrant, reçoit de la chaleur de la part du condenseur d'une machine frigorifique et, dans son trajet de retour vers 1 ' échangeur avec l'air sortant, est refroidi par contact avec 1 ' évaporateur de la même machine frigorifique. Une telle machine a là encore un but d'optimisation thermique au prix d'une grande complexité technique. Le but de la présente invention est de remédier à ces inconvénients en proposant un dispositif permettant de modifier la température d'un fluide utile, qui soit à la fois moins encombrant, plus économique et plus fiable que les dispositifs connus.There is a need in industry to give a useful fluid a moderate temperature, that is to say of the order of magnitude of ambient temperatures. This involves, for example, maintaining a useful fluid, liquid or gaseous at a determined temperature, while this fluid also participates in at least one process tending to separate it from this set temperature. Such situations are encountered, for example in the food industry or in the case of ambient fluids, for example inside compartments containing electrical or electronic installations. It is often possible to regulate very economically from an energy point of view by heat exchange with atmospheric air by means of a device called "air cooler". However, the temperature of the atmospheric air varies greatly depending on climatic conditions. In the frequent case where it is necessary to cool the useful fluid, this is no longer possible when the ambient temperature is higher than the set temperature. Likewise, in an application where the useful fluid would require reheating, this is no longer possible when the atmospheric temperature is lower than the set temperature. To overcome this difficulty, it is known to cool the air by evaporating part of the useful fluid (generally water) or a filler fluid there before causing the heat exchange by convection between the air and the fluid. useful. This process is bulky, produces a plume of vapor and mineral deposits in the apparatus. When the useful fluid is evaporated, it therefore circulates in an open circuit, with the risk of bacterial contamination and fouling. It is also known to pass the useful fluid through another exchange path where the useful fluid undergoes the action of a refrigeration unit. The refrigeration unit is only put into operation when the atmospheric temperature is inappropriate to allow the heat exchange between the working fluid and the ambient air to bring the working fluid back to the set temperature. However, this solution increases the pressure drops and the risks of leakage affecting the useful fluid circuit. To reduce pressure drops, a valve can be provided to bypass the refrigeration exchanger when the refrigeration circuit is at rest, but this further increases the complexity of structure and control, as well as the risk of leakage. Also known from EP-A-0 143 855 is a device in which the useful fluid is incoming air which is heated with heat recovered in outgoing air, via a transfer fluid. To complete the heat supply to the incoming air, the transfer fluid, in its path to the exchanger with the incoming air, receives heat from the condenser of a refrigerating machine and, in its path of return to the exchanger with the outgoing air, is cooled by contact with the evaporator of the same refrigerating machine. Again, such a machine has the aim of thermal optimization at the cost of great technical complexity. The object of the present invention is to remedy these drawbacks by proposing a device making it possible to modify the temperature of a useful fluid, which is both less bulky, more economical and more reliable than known devices.
Suivant l'invention, le dispositif pour modifier la température d'un fluide utile, comprenant :According to the invention, the device for modifying the temperature of a useful fluid, comprising:
- un premier trajet d'échange de chaleur traversé par le fluide utile et installé en relation d'échange thermique avec un trajet de transfert parcouru par un fluide de transfert; et un circuit frigorifique comprenant, pour un fluide frigorifique, un deuxième et un troisième trajet d'échange de chaleur ayant l'un une fonction d'absorption de chaleur par le circuit frigorifique et l'autre une fonction de dégagement de chaleur par le circuit frigorifique, au moins à certains stades du fonctionnement, l'un des deuxième et troisième trajets d'échange étant installé en relation d'échange thermique avec le trajet de transfert en amont du premier trajet d'échange, de manière que la température du fluide de transfert soit modifiée par échange de chaleur avec le fluide frigorifique avant l'échange thermique entre le fluide de transfert et le fluide utile parcourant le premier trajet d'échange, est caractérisé en ce que le trajet de transfert est un trajet ouvert ayant, en amont des trajets d'échange, un trajet d'entrée dans lequel les conditions de température sont sensiblement indépendantes des conditions de fonctionnement du dispositif .a first heat exchange path crossed by the useful fluid and installed in heat exchange relation with a transfer path traversed by a transfer fluid; and a refrigeration circuit comprising, for a refrigerant, a second and a third heat exchange path having one of a function of absorption of heat by the refrigeration circuit and the other of a function of generation of heat by the circuit refrigeration, at least at certain stages of operation, one of the second and third exchange paths being installed in heat exchange relation with the transfer path upstream of the first exchange path, so that the temperature of the fluid transfer is modified by heat exchange with the refrigerant before the heat exchange between the transfer fluid and the useful fluid traversing the first exchange path, is characterized in that the transfer path is an open path having, in upstream of the exchange paths, an entry path in which the temperature conditions are substantially independent of the operating conditions of the device.
Notamment lorsque la température du fluide de transfert entrant, tel que l'air ambiant, est inappropriée pour que l'échange avec le fluide de transfert ramène le fluide utile à la température voulue, on modifie d'abord la température du fluide de transfert-grâce au circuit frigorifique. On aboutit ainsi à une construction simple, compacte, et particulièrement fiable, notamment à l'égard des risques de fuites, des encrassements et des contaminations bactériennes. L'homme de métier est dissuadé de la solution selon l'invention car le rendement d'échange thermique entre le fluide utile et le fluide frigorifique par l'intermédiaire du fluide de transfert est peu favorable en raison des multiples interfaces entre ces fluides. Mais il a été trouvé selon l'invention que cet inconvénient est plus que compensé par les avantages exposés plus haut, notamment dans les applications préférentielles où le circuit frigorifique n'est mis en fonctionnement que dans des cas de conditions climatiques relativement peu fréquentes . La construction selon 1 ' invention se distingue fondamentalement de celle selon le EP 0 143 855 où le fluide de transfert circule en boucle fermée et où la machine frigorifique a pour fonction essentielle de créer un écart entre la température moyenne dans l' échangeur avec l'air entrant et celle dans 1 ' échangeur de récupération de chaleur dans l'air sortant .Particularly when the temperature of the incoming transfer fluid, such as ambient air, is inappropriate for the exchange with the transfer fluid to bring the useful fluid to the desired temperature, the temperature of the transfer fluid is first modified-by the refrigeration circuit. This results in a simple, compact and particularly reliable construction, in particular with regard to the risks of leaks, fouling and bacterial contamination. A person skilled in the art is dissuaded from the solution according to the invention since the heat exchange efficiency between the working fluid and the refrigerating fluid via the transfer fluid is not very favorable due to the multiple interfaces between these fluids. However, it has been found according to the invention that this drawback is more than offset by the advantages set out above, in particular in the preferred applications where the refrigeration circuit is only put into operation in the case of relatively infrequent climatic conditions. The construction according to the invention differs fundamentally from that according to EP 0 143 855 where the transfer fluid circulates in a closed loop and where the refrigerating machine has the essential function of creating a difference between the average temperature in the exchanger with the incoming air and that in the heat recovery exchanger in the outgoing air.
De préférence, l'un au moins des trajets d'entrée et de sortie est raccordable à une réserve de fluide de transfert appartenant à l'environnement.Preferably, at least one of the inlet and outlet paths is connectable to a reserve of transfer fluid belonging to the environment.
Le fluide de transfert est de préférence l'air atmosphérique ou l'air ambiant d'un local. Il peut aussi être de l'eau de mer, de lac, de rivière ou de bassin, ou encore un fluide de rejet comme des fumées.The transfer fluid is preferably atmospheric air or ambient air from a room. he can also be sea, lake, river or basin water, or a discharge fluid such as smoke.
Typiquement, on ne maîtrise pas ou mal la températu-re d'arrivée du fluide de transfert, et on se soucie peu ou pas du tout de la température à laquelle le fluide de transfert est rejeté à l'autre extrémité du trajet de transfert.Typically, one does not control or badly the temperature of arrival of the transfer fluid, and one cares little or not at all of the temperature at which the transfer fluid is discharged at the other end of the transfer path.
De préférence, le premier trajet d'échange est installé dans le trajet de transfert en série entre le deuxième et le troisième trajet d'échange.Preferably, the first exchange path is installed in the transfer path in series between the second and the third exchange path.
Ainsi, les trois trajets d'échange, constitués par exemple par des faisceaux de tubes, sont placés les uns à la suite des autres dans un même trajet d'un fluide de transfert qui peut être l'air prélevé dans l'atmosphère extérieure, l'atmosphère intérieure d'un local, de l'eau de mer, de lac ou de rivière, etc.... Ce fluide de transfert est d'abord refroidi par 1 ' évaporateur du groupe frigorifique, puis réchauffé par le premier trajet d'échange qui est celui parcouru par le fluide utile, puis encore davantage réchauffé par le condenseur du groupe frigorifique. La constatation qui est à la base de cette réalisation de l'invention, est que la température du fluide de transfert après le réchauffage par le premier trajet d'échange est à peu près la même que celle de l'air atmosphérique ou autre fluide de transfert entrant dans le dispositif selon l'invention. Ainsi, le condenseur subit de la part du fluide de transfert le même effet de refroidissement que si un flux séparé de fluide de transfert frappait directement le condenseur. Cette version de l'invention permet donc d'économiser un deuxième trajet de fluide de transfert, un moyen tel que moto-ventilateur pour véhiculer le fluide de transfert dans ce deuxième trajet de transfert, ainsi que l'énergie de fonctionnement de ce moto-ventilateur. En outre, comme les trois trajets _d' échange thermique peuvent ê-tre montés les uns derrière les autres dans le trajet de transfert commun à eux tous, la construction est à la fois plus simple et plus compacte.Thus, the three exchange paths, constituted for example by bundles of tubes, are placed one after the other in the same path of a transfer fluid which can be the air taken from the external atmosphere, the interior atmosphere of a room, sea, lake or river water, etc. This transfer fluid is first cooled by the evaporator of the refrigeration unit, then heated by the first route exchange which is that traversed by the useful fluid, then further heated by the condenser of the refrigeration unit. The observation which is the basis of this embodiment of the invention is that the temperature of the transfer fluid after the heating by the first exchange path is approximately the same as that of atmospheric air or other fluid. transfer entering the device according to the invention. Thus, the condenser undergoes the same cooling effect from the transfer fluid as if a separate flow of transfer fluid struck the condenser directly. This version of the invention therefore saves a second transfer fluid path, a means such as a fan motor for conveying the fluid transfer in this second transfer path, as well as the operating energy of this motor-fan. In addition, since the three heat exchange paths can be mounted one behind the other in the transfer path common to all of them, the construction is both simpler and more compact.
Le dispositif selon l'invention peut également consister en un dispositif de chauffage dans lequel le fluide de transfert passe d'abord au contact du condenseur frigorifique puis au contact du premier trajet d'échange conduisant le fluide utile. Le fluide de transfert refroidi par le contact avec le premier trajet d'échange thermique passe ensuite au contact de 1 ' évaporateur frigorifique qui le refroidit encore davantage. Le circuit frigorifique fonctionne alors en pompe à chaleur.The device according to the invention may also consist of a heating device in which the transfer fluid passes first in contact with the refrigerating condenser and then in contact with the first exchange path leading to the useful fluid. The transfer fluid cooled by contact with the first heat exchange path then passes into contact with one refrigeration evaporator which cools it even more. The refrigeration circuit then operates as a heat pump.
Selon une version perfectionnée de l'invention, des moyens sont prévus pour inverser le sens de circulation du fluide de transfert. Ainsi, l'un des sens de circulation, allant de 1 ' évaporateur vers le condenseur, sert à refroidir le fluide utile tandis que l'autre sens de circulation, du condenseur vers 1 ' évaporateur, sert à réchauffer le fluide utile. Cette simple inversion suffit à faire fonctionner le groupe frigorifique en réfrigérateur ou au contraire en pompe à chaleur. L'inversion du sens de circulation du fluide de transfert peut être obtenue par inversion du sens de rotation d'un moto-ventilateur d'entraînement du fluide de transfert, ou par mise en route sélective de l'un ou l'autre de deux moto-ventilateurs adaptés à produire des sens de circulation opposés.According to an improved version of the invention, means are provided for reversing the direction of circulation of the transfer fluid. Thus, one of the directions of circulation, going from the evaporator to the condenser, serves to cool the useful fluid while the other direction of circulation, from the condenser to the evaporator, serves to heat the useful fluid. This simple reversal is enough to operate the refrigeration unit in the refrigerator or on the contrary in a heat pump. The reversal of the direction of circulation of the transfer fluid can be obtained by reversing the direction of rotation of a motor-fan driving the transfer fluid, or by selective start-up of one or the other of two motor-fans adapted to produce opposite directions of circulation.
Pour faire sélectivement fonctionner le circuit frigorifique en réfrigérateur ou au contraire en pompe à chaleur, et faire ainsi fonctionner le dispositif selon l'invention sélectivement en refroidisseur ou en réchauffeur du fluide utile, il est également possible d'inverse-r le sens de circulation du fluide frigorifique. On passe d'un mode de onctionnement à l'autre en faisant débiter un compresseur du groupe frigorifique vers le trajet d'échange qui constituait précédemment 1 ' évaporateur et qui constitue donc, désormais le condenseur, le compresseur aspirant le gaz frigorifique dans ce qui constitue désormais 1 ' évaporateur et qui constituait précédemment le condenseur. Une telle sélection entre les deux modes de fonctionnement est possible au moyen d'un système de vannes placé à l'entrée et à la sortie du compresseur et qui peut être manoeuvré de façon à réaliser au choix l'un ou l'autre des deux modes de fonctionnement qui viennent d'être décrits.To selectively operate the refrigeration circuit in a refrigerator or, on the contrary, in a pump heat, and thus operate the device according to the invention selectively as a cooler or as a reheater of the working fluid, it is also possible to reverse the direction of circulation of the refrigerating fluid. We pass from one mode of operation to the other by debiting a compressor from the refrigeration unit towards the exchange path which previously constituted the evaporator and which therefore now constitutes the condenser, the compressor sucking the refrigerant gas in which now constitutes the evaporator and which previously constituted the condenser. Such a selection between the two operating modes is possible by means of a system of valves placed at the inlet and at the outlet of the compressor and which can be operated so as to carry out either of the two operating modes which have just been described.
Il est avantageux que les moyens prévus pour mettre en mouvement le fluide de transfert dans le trajet de transfert et le fluide utile dans le premier trajet d'échange puissent fonctionner lorsque le groupe frigorifique est à l'arrêt. On peut ainsi réduire la dépense d'énergie globale du dispositif et l'usure du groupe frigorifique lorsque la température du fluide de transfert a naturellement une valeur adaptée pour ramener, par échange thermique, la température du fluide utile à la valeur voulue. Le groupe frigorifique ne fonctionne - selon le cas en réfrigérateur ou en pompe à chaleur comme il a été dit plus haut - que si la température naturelle du fluide de transfert est inappropriée pour modifier ou suffisamment modifier la température du fluide utile dans le sens voulu. On peut ainsi avoir quatre modes de fonctionnement : rafraîchissement du fluide utile par la températuxe naturelle du fluide de transfert; - réchauffage du fluide utile par la température naturelle du fluide de transfert;It is advantageous that the means provided for setting in motion the transfer fluid in the transfer path and the useful fluid in the first exchange path can operate when the refrigeration unit is stopped. It is thus possible to reduce the overall energy expenditure of the device and the wear of the refrigeration unit when the temperature of the transfer fluid naturally has a value suitable for bringing, by heat exchange, the temperature of the useful fluid to the desired value. The refrigeration unit only works - as the case may be in a refrigerator or in a heat pump as mentioned above - only if the natural temperature of the transfer fluid is inappropriate to modify or sufficiently modify the temperature of the useful fluid in the desired direction. We can thus have four operating modes: cooling of the useful fluid by the natural temperature of the transfer fluid; - heating of the useful fluid by the natural temperature of the transfer fluid;
- refroidissement du fluide utile par du fluide de transfert préalablement refroidi par 1 ' évaporateur du groupe frigorifique; - réchauffage du fluide utile par du fluide de transfert préalablement réchauffé par le condenseur du groupe frigorifique.- cooling of the useful fluid by transfer fluid previously cooled by one evaporator of the refrigeration unit; - reheating of the useful fluid by transfer fluid previously heated by the condenser of the refrigeration unit.
Dans les deux premiers cas, une régulation est possible en faisant varier la vitesse de circulation du fluide de transfert. Dans les deux seconds cas de fonctionnement, il peut s'y ajouter une régulation marche/arrêt ou plus sophistiquée, de type connu, du groupe frigorifique, pour faire varier la puissance thermique transférée par le groupe frigorifique. Un ajustement encore plus fin est possible en prévoyant un groupe frigorifique à évaporateurs multiples dont certains peuvent être désactivés lorsque le besoin de froid n'est pas maximal, et/ou à condenseurs multiples dont certains peuvent être désactivés lorsque le besoin de réchauffement du fluide de transfert n'est pas maximal.In the first two cases, regulation is possible by varying the speed of circulation of the transfer fluid. In the second two operating cases, there may be added on / off or more sophisticated regulation, of known type, of the refrigeration unit, to vary the thermal power transferred by the refrigeration unit. An even finer adjustment is possible by providing a refrigeration unit with multiple evaporators, some of which can be deactivated when the need for cooling is not maximum, and / or with multiple condensers, some of which can be deactivated when the need for heating of the cooling fluid. transfer is not maximum.
D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs. Aux dessins annexés : la figure 1 est un schéma d'un mode de réalisation simple de l'invention; la figure 2 est une vue schématique en perspective d'un mode de réalisation des trois trajets d'échange du dispositif de la figure 1; la figure 3 est une vue d'un détail de la figure 1 dans une variante de réalisation;Other features and advantages of the invention will emerge from the description below, relating to nonlimiting examples. In the accompanying drawings: FIG. 1 is a diagram of a simple embodiment of the invention; Figure 2 is a schematic perspective view of an embodiment of the three exchange paths of the device of Figure 1; Figure 3 is a view of a detail of Figure 1 in an alternative embodiment;
- la figure 4 est une vue analogue à la figure 1 mais relative à un autre mode de réalisation;- Figure 4 is a view similar to Figure 1 but relating to another embodiment;
- la figure 5 est un schéma en bout d'un faisceau de tubes pour les trajets d'échange de la figure 4; et - la figure 6 est un schéma analogue à la figure 5 mais concernant une variante.- Figure 5 is a diagram at the end of a bundle of tubes for the exchange paths of Figure 4; and - Figure 6 is a diagram similar to Figure 5 but relating to a variant.
Dans l'exemple représenté à la figure 1, il est prévu pour un fluide utile un premier trajet d'échange de chaleur 1 qui est monté entre la sortie 11 et l'entrée 12 d'une utilisation 13. L'utilisation 13 correspond à un processus domestique ou industriel qui ne fait pas partie de l'invention. Le fluide utile sort de l'utilisation 13 à une température T0ι qui doit être modifiée dans le premier trajet d'échange 1 pour devenir, à l'entrée 12 de l'utilisation 13, une température Tu2 qui est de 30 °C dans l'exemple non limitatif décrit.In the example shown in Figure 1, there is provided for a useful fluid a first heat exchange path 1 which is mounted between the outlet 11 and the inlet 12 of a use 13. The use 13 corresponds to a domestic or industrial process which is not part of the invention. The useful fluid leaves the use 13 at a temperature T 0 ι which must be modified in the first exchange path 1 to become, at the input 12 of the use 13, a temperature T u2 which is 30 ° C in the nonlimiting example described.
Le premier trajet d'échange de chaleur 1 est placé dans un trajet de transfert 2, dans lequel un fluide de transfert peut être mis en mouvement dans le sens représenté par les flèches en traits pleins, au moyen d'un moto-ventilateur 3. Le fluide utile circulant dans le trajet d'échange 1 est en relation d'échange thermique avec le fluide de transfert dans le trajet de transfert 2. Le fluide de transfert peut être de l'air ambiant, ou un autre gaz, ou encore un fluide constitué d'un mélange gaz (tel que air ambiant) et liquide, la partie gazeuse étant majoritaire en pourcentage volumique, de façon que l'écoulement ait de préférence un caractère essentiellement gazeux.The first heat exchange path 1 is placed in a transfer path 2, in which a transfer fluid can be set in motion in the direction represented by the arrows in solid lines, by means of a motor-fan 3. The useful fluid circulating in the exchange path 1 is in heat exchange relationship with the transfer fluid in the transfer path 2. The transfer fluid may be ambient air, or another gas, or else a fluid consisting of a gas (such as ambient air) and liquid mixture, the gaseous part being predominantly volume percentage, so that the flow preferably has an essentially gaseous character.
Il y a également dans le trajet de transfert 2 un deuxième .trajet d'échange de chaleur 6 et un troisième trajet d'échange de chaleur 8 placés respectivement en amont et en aval du premier trajet d'échange 1 relativement au sens d'écoulement du fluide de transfert dans le trajet de transfert 2. Le deuxième trajet d'échange de chaleur 6 constitue 1 ' évaporateur d'un circuit frigorifique 4. Le troisième trajet d'échange 8 constitue le condenseur du même circuit frigorifique 4. Le circuit 4 comprend en outre un compresseur frigorifique 7 monté entre la sortie du deuxième trajet d'échange 6 et l'entrée du troisième trajet d'échange 8 de manière à aspirer le gaz frigorifique dans le deuxième trajet d'échange 6 pour le refouler à l'état comprimé dans le troisième trajet d'échange 8. Le circuit frigorifique 4 comprend encore un dispositif d'expansion 9 pour détendre le fluide frigorifique entre la sortie du troisième trajet d'échange 8 et l'entrée du deuxième trajet d'échange 6.There is also in the transfer path 2 a second heat exchange path 6 and a third heat exchange path 8 placed respectively upstream and downstream of the first exchange path 1 relative to the direction of flow. transfer fluid in the transfer path 2. The second heat exchange path 6 constitutes the evaporator of a refrigeration circuit 4. The third exchange path 8 constitutes the condenser of the same refrigeration circuit 4. The circuit 4 further includes a refrigeration compressor 7 mounted between the outlet of the second exchange path 6 and the inlet of the third exchange path 8 so as to draw the refrigerant gas into the second exchange path 6 to discharge it to the compressed state in the third exchange path 8. The refrigeration circuit 4 also includes an expansion device 9 for expanding the refrigerant between the outlet of the third exchange path 8 and the inlet of the second e exchange route 6.
Le trajet de transfert 2 est un trajet ouvert présentant, en amont des trajets d'échange 6, 1, 8, un trajet d'entrée 24 commençant par une ouverture d'entrée 26, et, en aval des trajets d'échange 6, 1, 8, un trajet de sortie 27 terminé par une ouverture de sortie 28. Le trajet est ouvert notamment en ce sens que le fluide se présentant à l'ouverture d'entrée 26 n'est pas, ou en tout cas pas nécessairement, un fluide provenant directement de l'ouverture de sortie 28. Au contraire, le fluide de transfert entrant dans le trajet 2 a des conditions de température qui sont indépendantes des conditions de fonctionnement du dispositif, et en particulier de la température du fluide de transfert dans le trajet de sortie 28.The transfer path 2 is an open path having, upstream of the exchange paths 6, 1, 8, an inlet path 24 starting with an inlet opening 26, and, downstream of the exchange paths 6, 1, 8, an outlet path 27 terminated by an outlet opening 28. The path is open in particular in the sense that the fluid present at the inlet opening 26 is not, or in any case not necessarily, a fluid coming directly from the outlet opening 28. On the contrary, the transfer fluid entering the path 2 has temperature conditions which are independent of the operating conditions of the device, and in particular the temperature of the transfer fluid in the outlet path 28.
Typiquement, les orifices 26 et 28 sont tous deux raccordés à une même réserve ou source de grande capacité, appartenant de préférence à l'environnement, telle que l'atmosphère extérieure, l'air ambiant d'un local, une mer, un lac, une rivière, ou encore à une réserve artificielle telle qu'un bassin, ou encore à deux sources ou réserves différentes. Dans l'exemple représenté, le trajet 2 est défini par une gaine 29 ouverte à ses deux extrémités. Le moto-ventilateur 3 est installé dans le trajet de sortie 27 pour fonctionner en extracteur.Typically, the orifices 26 and 28 are both connected to the same reserve or source of large capacity, preferably belonging to the environment, such as the external atmosphere, the ambient air of a room, a sea, a lake. , a river, or an artificial reserve such as a basin, or two different sources or reserves. In the example shown, the path 2 is defined by a sheath 29 open at its two ends. The fan motor 3 is installed in the outlet path 27 to operate as an extractor.
Le fonctionnement du dispositif qui vient d'être décrit est le suivant, dans le cas où la température 0ι à laquelle le fluide utile sort de l'utilisation 13 est égale à 35°C.The operation of the device which has just been described is as follows, in the case where the temperature 0 ι at which the useful fluid leaves the use 13 is equal to 35 ° C.
On suppose qu'on ne maîtrise pas la température du fluide de transfert entrant, qui est par exemple de l'air atmosphériqueIt is assumed that the temperature of the incoming transfer fluid, which is for example atmospheric air, is not controlled.
Si la température naturelle de 1 ' air atmosphérique constituant le fluide de transfert est par exemple égale à 20°C, on met en fonctionnement le moto-ventilateur 3 tout en maintenant le circuit frigorifique 4 au repos. Le fluide utile est refroidi de Toi = 35°C à Tu2 = 30°C par échange thermique de l'air atmosphérique à 20°C avec le fluide utile dans le trajet de transfert 2.If the natural temperature of the atmospheric air constituting the transfer fluid is for example equal to 20 ° C., the motor-driven fan 3 is put into operation while maintaining the refrigeration circuit 4 at rest. The useful fluid is cooled from Toi = 35 ° C to T u2 = 30 ° C by heat exchange of atmospheric air to 20 ° C with the useful fluid in transfer path 2.
Si comme représenté à la figure 1 le fluide de transfert a une température naturelle TAι = 30°C, on met simultanément en fonctionnement le circuit frigorifique 4 et le moto-ventilateur 3. Le fluide de transfert est dans un premier temps refroidi jusqu'à une température TA2 = 20°C par échange thermique avec 1 ' évaporateur 6 du circuit frigorifique 4 puis réchauffé à une température TA3 = 30°C par échange thermique, avec le fluide utile circulant dans le premier trajet d'échange 1, ce qui permet de ramener comme précédemment le fluide utile à la température voulue Tu2 = 30°C. Ensuite, le fluide de transfert est réchauffé encore davantage jusqu'à la température TA4 = 45°C par échange thermique avec le condenseur 8 du circuit frigorifique 4. Il est remarquable de constater que les températures TAι et TA3 sont sensiblement égales. Ainsi, le condenseur 8 est tout aussi bien refroidi par le fluide ayant été successivement refroidi puis réchauffé dans le trajet 2 par le deuxième puis le premier trajet d'échange de chaleur, qu'il ne l'aurait été par un éventuel deuxième trajet de transfert prévu uniquement pour le condenseur 8. L'invention permet donc de regrouper les trois trajets d'échanges 6, 1, 8 dans un même trajet de transfert 2 avec un moto-ventilateur unique 3.If, as shown in FIG. 1, the transfer fluid has a natural temperature T A ι = 30 ° C, the refrigeration circuit 4 and the fan motor 3 are put into operation simultaneously. The transfer fluid is first cooled to 'at a temperature T A2 = 20 ° C by heat exchange with one evaporator 6 of the refrigeration circuit 4 then reheated to a temperature T A3 = 30 ° C by heat exchange, with the useful fluid circulating in the first exchange path 1, this which allows the useful fluid to be brought back as previously to the desired temperature T u2 = 30 ° C. Then, the transfer fluid is further heated to the temperature T A4 = 45 ° C by heat exchange with the condenser 8 of the refrigeration circuit 4. It is remarkable to note that the temperatures T A ι and T A3 are substantially equal . Thus, the condenser 8 is just as well cooled by the fluid having been successively cooled then reheated in the path 2 by the second then the first heat exchange path, as it would have been by a possible second path of transfer provided only for the condenser 8. The invention therefore makes it possible to group the three exchange paths 6, 1, 8 in the same transfer path 2 with a single motor-fan 3.
La figure 2 illustre schématiquement un mode de réalisation des trois trajets d'échange sous la forme d'un unique faisceau de tubes, de forme générale parallépipédique, placé en travers du trajet 2. Les tubes du faisceau sont raccordés avec le reste du dispositif et avec l'utilisation 13 de manière que deux nappes extrêmes du faisceau forment l'une le second trajet d'échange 6 et l'autre le troisième trajet d'échange 8 du circuit frigorifique tandis qu'une nappe centrale forme le premier trajet d'échange 1. On a également illustré à la figure 2 que le faisceau de tubes peut être du type à ailettes 22. Pour la clarté de la figure, on n'a représenté qu'un petit nombre d'ailettes 22, mais en pratique les ailettes sont prévues à intervalle régulier, relativement faible, tout le long des tubes. Les ailettes sont des plaques métalliques présentant des perforations dans lesquelles les tubes métalliques sont sertis de façon à réaliser au bon contact thermique entre tubes et ailettes . On peut réaliser un tel faisceau en utilisant des tubes en cuivre ayant un diamètre extérieur initial permettant le libre engagement des tubes dans les perforations des ailettes, puis on élargit les tubes en faisant passer dans les tubes un outil d'élargissement appelé "olive". Les ailettes augmentent la surface de contact avec le fluide de transfert. En outre, les ailettes constituent des conducteurs thermiques ayant notamment pour effet de transférer directement de la chaleur entre les trajets d'échange du faisceau. En particulier, les ailettes évacuent directement de la chaleur du trajet 1 vers le trajet 6 constituant 1 ' évaporateur . Comme visualisé par des traits mixtes 16 et 18 à la figure 2, on peut en variante remplacer le faisceau unique qui vient d'être décrit par trois faisceaux individuels semblables, empilés les uns sur les autres selon la direction de circulation du fluide de transfert dans le trajet de transfert 2. Si contrairement à l'exemple chiffré à la figure 1, la température Toi de sortie de l'utilisation 13 est par exemple égale à 25°C, c'est à dire plus généralement inférieure à la température T02 = 30°C voulue dans cet exemple pour l'entrée dans l'utilisation 13, le fluide utile nécessite un réchauffage au lieu d'un refroidissement. Ceci peut être obtenu par inversion du sens d'écoulement dans le trajet 2, qui devient alors celui représenté par des flèches en pointillés à la figure 1. Cette inversion peut être obtenue par inversion du sens de rotation du moto-ventilateur 3 ou par mise en service d'un second moto-ventilateur 31 représenté en pointillés à la figure 1 dans le trajet d'entrée 24, approprié pour produire l'écoulement dans le sens inverse précité. Avec un tel écoulement inverse, les trajets d'entrée et de sortie 24 et 27 prennent des fonctions de sortie et d'entrée respectivement, le fluide de transfert est d'abord réchauffé par le condenseur 8 jusqu'à la température de 45°C dans l'exemple, puis refroidi jusqu'à la température de 30°C par contact avec le fluide utile circulant dans le premier trajet d'échange 1, puis encore davantage refroidi par le second trajet d'échange 6 constituant 1 ' évaporateur . Le fluide de transfert est dans ce cas rejeté à l'atmosphère avec une température finale de 20°C, l'atmosphère constituant la source froide du circuit frigorifique 4 fonctionnant alors en pompe à chaleur. La figure 3 visualise un autre moyen pour faire fonctionner le circuit frigorifique en pompe à chaleur capable de réchauffer le fluide utile. Une vanne à quatre voies 71 est placée à l'entrée et à la sortie du compresseur 7, entre celui-ci et d'une part le deuxième trajet d'échange thermique 6 et d'autre part le troisième trajet d'échange thermique 8. La vanne 71, représentée schématiquement , permet au compresseur 7 de fonctionner soit comme il a été dit plus haut en aspirant dans le deuxième trajet d'échange 6 et en refoulant dans le troisième trajet d'échange 8, ou au contraire en aspirant dans le troisième trajet d'échange 8 qui devient ainsi un évaporateur et en refoulant dans le deuxième trajet d'échange 6 qui devient ainsi un condenseur. Dans ce cas, il y a un seul moto-ventilateur 3 pour le trajet 2 et celui-ci n'a pas besoin d'être capable de fonctionner dans les deux sens, car le fluide de transfert s'écoule toujours dans le même sens le long du trajet 2. Lorsque le second trajet d'échange 6 fonctionne en condenseur, il réchauffe le fluide de transfert circulant selon les flèches représentées en traits pleins à la figure 1, puis le fluide de transfert est capable de réchauffer le fluide utile. Le circuit frigorifique 4 fonctionne donc, de cette façon là également, en pompe à chaleur.FIG. 2 schematically illustrates an embodiment of the three exchange paths in the form of a single bundle of tubes, of generally parallelepipedal shape, placed across the path 2. The bundle tubes are connected with the rest of the device and with the use 13 so that two end plies of the bundle form one the second exchange path 6 and the other the third exchange path 8 of the refrigeration circuit while a central ply forms the first path exchange 1. It has also been illustrated in FIG. 2 that the bundle of tubes can be of the fin type 22. For the clarity of the figure, only a small number have been represented. fins 22, but in practice the fins are provided at regular intervals, relatively small, all along the tubes. The fins are metal plates having perforations in which the metal tubes are crimped so as to achieve good thermal contact between tubes and fins. One can make such a beam using copper tubes having an initial outside diameter allowing the free engagement of the tubes in the perforations of the fins, then the tubes are enlarged by passing through the tubes a widening tool called "olive". The fins increase the contact surface with the transfer fluid. In addition, the fins constitute thermal conductors having in particular the effect of transferring heat directly between the beam exchange paths. In particular, the fins directly evacuate heat from path 1 to path 6 constituting one evaporator. As shown by dashed lines 16 and 18 in FIG. 2, one can alternatively replace the single beam which has just been described by three similar individual beams, stacked one on the other according to the direction of circulation of the transfer fluid in the transfer path 2. If, unlike the example given in FIG. 1, the temperature Toi leaving the use 13 is for example equal to 25 ° C., that is to say more generally lower than the temperature T 02 = 30 ° C desired in this example for entry into use 13, the useful fluid requires heating instead of cooling. This can be obtained by reversing the direction of flow in path 2, which then becomes that represented by dotted arrows in FIG. 1. This reversal can be obtained by reversing the direction of rotation of the motor-fan 3 or by putting a second motor-fan 31 shown in dotted lines in FIG. 1 into service in the entry path. 24, suitable for producing the aforementioned reverse flow. With such a reverse flow, the inlet and outlet paths 24 and 27 take on outlet and inlet functions respectively, the transfer fluid is firstly heated by the condenser 8 to the temperature of 45 ° C. in the example, then cooled to the temperature of 30 ° C by contact with the useful fluid circulating in the first exchange path 1, then further cooled by the second exchange path 6 constituting one evaporator. The transfer fluid is in this case discharged into the atmosphere with a final temperature of 20 ° C, the atmosphere constituting the cold source of the refrigeration circuit 4 then operating as a heat pump. Figure 3 shows another way to operate the refrigeration circuit as a heat pump capable of heating the useful fluid. A four-way valve 71 is placed at the inlet and at the outlet of the compressor 7, between the latter and on the one hand the second heat exchange path 6 and on the other hand the third heat exchange path 8 The valve 71, shown diagrammatically, allows the compressor 7 to operate either as it was said above by sucking in the second exchange path 6 and by discharging into the third exchange path 8, or on the contrary by sucking in the third exchange path 8 which thus becomes an evaporator and by discharging into the second exchange path 6 which thus becomes a condenser. In this case, there is only one motor-fan 3 for path 2 and this does not need to be able to operate in both directions, since the transfer fluid always flows in the same direction along the path 2. When the second exchange path 6 operates as a condenser, it heats the transfer fluid circulating according to the arrows shown in solid lines in FIG. 1, then the transfer fluid is capable of heating the useful fluid. The refrigeration circuit 4 therefore operates, in this way too, as a heat pump.
Bien entendu, lorsque le circuit frigorifique 4 est au repos, le sens de circulation du fluide de transfert le long du trajet de transfert 2 est sans importance.Of course, when the refrigeration circuit 4 is at rest, the direction of circulation of the transfer fluid along the transfer path 2 is of no importance.
Dans l'exemple représenté à la figure 4, le premier trajet d'échange 1 est prolongé vers l'amont relativement au sens de circulation du fluide utile par un quatrième trajet d'échange 14 qui n'est pas situé dans le flux de transfert 2 baignant 1 ' évaporateur 6 et le condenseur 8 mais dans un deuxième flux de transfert 21 ne venant pas en contact avec les deuxième et troisième trajets d'échange 6 et 8. Typiquement, ce deuxième flux de transfert 21 est constitué comme le premier flux de transfert 2 par de l'air prélevé dans l'atmosphère avec une éventuelle addition de gouttes de liquide tel que de l'eau. Le deuxième flux 21 est mis en mouvement par un autre moto-ventilateur 32 définissant un deuxième trajet de transfert parallèle au premier trajet de transfert. Pour alléger la figure, les gaines pouvant être utilisées pour canaliser les flux de transfert ne sont pas illustrées. Ce mode de réalisation est utile lorsqu'il faut modifier relativement beaucoup la température du fluide utile, par exemple pour la ramener de T01 = 45°C à Tu2 = 30°C. Dans ce cas, en reprenant l'exemple d'une température ambiante TAι = 30°C, la température du fluide utile est abaissée de 45°C à Tu3 = 35°C par échange thermique avec le flux de transfert 21 non réfrigéré, le flux réfrigéré n'ayant plus ensuite qu'à assurer le passage du fluide utile de la température Tϋ3 = 35°C à Tu2 = 30°C comme dans l'exemple précédent. Ainsi, on réalise des économies sur la puissance consommée par le circuit frigorifique.In the example shown in FIG. 4, the first exchange path 1 is extended upstream relative to the direction of circulation of the useful fluid by a fourth exchange path 14 which is not located in the transfer flow 2 bathing the evaporator 6 and the condenser 8 but in a second transfer flow 21 not coming into contact with the second and third exchange paths 6 and 8. Typically, this second transfer flow 21 is constituted as the first flow transfer 2 by air taken from the atmosphere with a possible addition of drops of liquid such as water. The second flow 21 is set in motion by another motor-fan 32 defining a second transfer path parallel to the first transfer path. To simplify the figure, the sheaths that can be used to channel the transfer flows are not illustrated. This embodiment is useful when it is necessary to modify the temperature of the useful fluid relatively much, for example to bring it back from T 01 = 45 ° C to T u2 = 30 ° C. In this case, using the example of an ambient temperature T A ι = 30 ° C, the temperature of the useful fluid is lowered from 45 ° C to T u3 = 35 ° C by heat exchange with the transfer flow 21 no refrigerated, the refrigerated stream then only having to ensure the passage of the useful fluid from the temperature T ϋ3 = 35 ° C to T u2 = 30 ° C as in the previous example. Thus, savings are made on the power consumed by the refrigeration circuit.
La figure 5 illustre une réalisation pratique d'un faisceau de tubes unique pour tous les trajets d'échange du mode de réalisation de la figure 4. Dans la partie située à droite de la figure 5, tous les tubes du faisceau appartiennent au quatrième trajet d'échange 14 parcouru par le fluide utile. Le flux de transfert 21, qui traverse cette partie droite du faisceau, ne rencontre donc que des tubes parcourus par du fluide utile qui n'a pas encore échangé de chaleur avec le flux de transfert 2. La partie gauche du faisceau est organisée de manière à former trois groupes de tubes successifs constituant, dans l'ordre où ils sont rencontrés par le flux de transfert 2, 1 ' évaporateur 6, le trajet d'échange 1 et le condenseur 8. On voit qu'une optimisation thermique peut conduire à créer, à gauche de la figure 1, une zone 23 où chaque veine d'écoulement du flux de transfert 2 rencontre davantage de tubes de 1 ' évaporateur 6 puis moins de tubes du trajet d'échange 1. Dans la zone 23, les veines du flux 23 sont donc davantage refroidies par 1 ' évaporateur 6. Ensuite, ces veines très refroidies rencontrent les derniers tubes 17 que le fluide utile parcourt dans le trajet 1 avant de retourner à l'utilisation 13. Le fluide utile subit donc un refroidissement supplémentaire dans ces derniers tubes 17. Les flèches sinueuses de la figure 5 indiquent l'ordre dans lequel chaque fluide parcourt les tubes qui lui sont affectés. En pratique, des raccordements série-parallèle sont possibles pour optimiser la réalisation en termes de performances d'échange, pertes de charge dues à l'écoulement, volume et coût du faisceau etc.FIG. 5 illustrates a practical embodiment of a single bundle of tubes for all the exchange paths of the embodiment of FIG. 4. In the part situated to the right of FIG. 5, all the tubes of the bundle belong to the fourth path exchange 14 traversed by the useful fluid. The transfer flow 21, which crosses this right part of the beam, therefore only encounters tubes traversed by useful fluid which has not yet exchanged heat with the transfer flow 2. The left part of the beam is organized so to form three successive groups of tubes constituting, in the order in which they are encountered by the transfer flow 2, the evaporator 6, the exchange path 1 and the condenser 8. It is seen that a thermal optimization can lead to create, on the left of FIG. 1, a zone 23 where each flow stream of the transfer flow 2 encounters more tubes of the evaporator 6 then fewer tubes of the exchange path 1. In zone 23, the veins flow 23 are therefore further cooled by one evaporator 6. Then, these very cooled veins meet the last tubes 17 that the useful fluid travels in the path 1 before returning to use 13. The useful fluid therefore undergoes additional cooling in these latter tubes 17. The sinuous arrows of FIG. 5 indicate the order in which each fluid runs through the tubes assigned to it. In practice, series-parallel connections are possible to optimize the implementation in terms of exchange performance, pressure losses due to flow, volume and cost of the beam, etc.
L'exemple de la figure 6 ne sera décrit que pour ses différences par rapport à celui de la figure 5. Le quatrième trajet d'échange n'occupe plus qu'un groupe médian de tubes dans la partie droite du faisceau, et il est disposé entre un évaporateur supplémentaire 61, situé en amont, et un condenseur supplémentaire 81, situé en aval. L ' évaporateur supplémentaire 61 et le condenseur supplémentaire 81 appartiennent à un second circuit frigorifique 41, pouvant être mis en fonctionnement indépendamment du circuit 4. Par exemple, la mise en fonctionnement du circuit 41 peut être réservée à des cas exceptionnels où il faut assister le circuit 4 lorsque la température du fluide utile est très élevée à la sortie de l'utilisation et/ou la température ambiante est très élevée.The example in FIG. 6 will only be described for its differences from that of FIG. 5. The fourth exchange path occupies only one median group of tubes in the right part of the bundle, and it is disposed between an additional evaporator 61, located upstream, and an additional condenser 81, located downstream. The additional evaporator 61 and the additional condenser 81 belong to a second refrigeration circuit 41, which can be put into operation independently of the circuit 4. For example, the putting into operation of the circuit 41 can be reserved for exceptional cases where it is necessary to assist the circuit 4 when the temperature of the useful fluid is very high at the end of use and / or the ambient temperature is very high.
Bien entendu, l'invention n'est pas limitée aux exemples décrits et représentés. Les trajets d'échange ne sont pas nécessairement réalisés par des faisceaux de tubes. Le fluide de transfert peut être un fluide autre que l'air atmosphérique. Le fluide utile peut être liquide ou gazeux. On pourrait modifier les réalisations des figures 5 et 6 en plaçant par exemple deux évaporateurs successifs en amont du trajet d'échange 1 et/ou du trajet d'échange 14. Pour des applications de chauffage du fluide utile, on pourrait prévoir plusieurs condenseurs successifs. Le ou les circuits frigorifiques peuvent être d'un type autre que le type à condensation-évaporation décrit. Ils peuvent être en particulier du type à absorption, adsorption, effet Peltier etc.Of course, the invention is not limited to the examples described and shown. The exchange paths are not necessarily carried out by bundles of tubes. The transfer fluid can be a fluid other than atmospheric air. The useful fluid can be liquid or gaseous. We could modify the embodiments of Figures 5 and 6 by placing for example two successive evaporators upstream of the exchange path 1 and / or of the exchange path 14. For applications of heating the useful fluid, one could provide several successive condensers. The refrigeration circuit (s) may be of a type other than the condensation-evaporation type described. They can in particular be of the absorption, adsorption, Peltier effect type, etc.
Le trajet de transfert n'est pas nécessairement ouvert à proximité immédiate des trajets d'échange. Des canalisations ou autres passages peuvent être nécessaires pour raccorder l'une au moins des extrémités du trajet de transfert avec une source ou réserve de grande capacité, fournie notamment par l'environnement. The transfer route is not necessarily open in the immediate vicinity of the exchange routes. Pipes or other passages may be necessary to connect at least one of the ends of the transfer path with a source or reserve of large capacity, supplied in particular by the environment.

Claims

REVENDICATIONS
1- Dispositif pour modifier la température d'un fluide utile, comprenant : un premier trajet d'échange de chaleur (1) parcouru par le fluide utile et installé en relation d'échange thermique avec un trajet de transfert (2) parcouru par un fluide de transfert; et1- Device for modifying the temperature of a useful fluid, comprising: a first heat exchange path (1) traversed by the useful fluid and installed in heat exchange relation with a transfer path (2) traversed by a transfer fluid; and
- un circuit frigorifique (4) comprenant, pour un fluide frigorifique, un deuxième (6) et un troisième (8) trajet d'échange de chaleur ayant l'un une fonction d'absorption de chaleur par le circuit frigorifique et 1 ' autre une fonction de dégagement de chaleur par le circuit frigorifique, au moins à certains stades du fonctionnement, l'un des deuxième (6) et troisième (8) trajets d'échange étant installé en relation d'échange thermique avec le trajet de transfert (2) en amont du premier trajet d'échange (1) de manière que la température du fluide de transfert soit modifiée par échange de chaleur avec le fluide frigorifique avant l'échange thermique entre le fluide de transfert et le fluide utile parcourant le premier trajet d'échange, caractérisé en ce que le trajet de transfert est un trajet ouvert ayant en amont des trajets d'échange un trajet d'entrée dans lequel les conditions de température sont sensiblement indépendantes des conditions de fonctionnement du dispositif.- a refrigeration circuit (4) comprising, for a refrigerant, a second (6) and a third (8) heat exchange path having one of a function of absorption of heat by the refrigeration circuit and one other a heat release function by the refrigeration circuit, at least at certain stages of operation, one of the second (6) and third (8) exchange paths being installed in heat exchange relation with the transfer path ( 2) upstream of the first exchange path (1) so that the temperature of the transfer fluid is modified by heat exchange with the refrigerant before the heat exchange between the transfer fluid and the useful fluid traversing the first path exchange path, characterized in that the transfer path is an open path having an input path upstream of the exchange paths in which the temperature conditions are substantially independent of the operating conditions d u device.
2- Dispositif selon la revendication 1, caractérisé en ce que l'un au moins des trajet d'entrée et de sortie est raccordable à une réserve de fluide de transfert appartenant à l'environnement.2- Device according to claim 1, characterized in that at least one of the inlet and outlet path is connectable to a reserve of transfer fluid belonging to the environment.
3- Dispositif selon la revendication 1 ou 2, caractérisé en ce que ledit "un des deuxième et troisième trajets d'échange" est celui par lequel le circuit frigorifique absorbe de la chaleur.3- Device according to claim 1 or 2, characterized in that said "one of the second and third exchange path "is that by which the refrigeration circuit absorbs heat.
4- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que le fluide de transfert est majoritairement gazeux, en pourcentage volumique .4- Device according to one of claims 1 to 3, characterized in that the transfer fluid is mainly gaseous, in volume percentage.
5- Dispositif selon la revendication 4, caractérisé en ce que le fluide de transfert est majoritairement composé d'air ambiant, en pourcentage volumique . 6- Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le premier trajet d'échange (1) est installé en série entre le deuxième (6) et le troisième (8) trajet d'échange, relativement à la direction d'écoulement du fluide de transfert dans le trajet de transfert (2) .5- Device according to claim 4, characterized in that the transfer fluid is mainly composed of ambient air, in volume percentage. 6- Device according to one of claims 1 to 5, characterized in that the first exchange path (1) is installed in series between the second (6) and the third (8) exchange path, relative to the direction of flow of the transfer fluid in the transfer path (2).
7- Dispositif selon la revendication 6, caractérisé en ce que, le circuit frigorifique (4) étant en fonctionnement, la température (TA ) du fluide de transfert en amont des trois trajets d'échange (6, 1, 8) et la température (TA3) de ce fluide à la sortie du premier trajet d'échange sont à peu près égales.7- Device according to claim 6, characterized in that, the refrigeration circuit (4) being in operation, the temperature (T A ) of the transfer fluid upstream of the three exchange paths (6, 1, 8) and the temperature (T A3 ) of this fluid at the outlet of the first exchange path are approximately equal.
8- Dispositif selon l'une des revendications 1 à8- Device according to one of claims 1 to
7, caractérisé par des moyens (31) pour inverser le sens de circulation du fluide de transfert dans le trajet du transfert (2) .7, characterized by means (31) for reversing the direction of circulation of the transfer fluid in the transfer path (2).
9- Dispositif selon l'une des revendications 1 à9- Device according to one of claims 1 to
8, caractérisé par des moyens pour faire circuler le fluide utile dans le premier trajet d'échange (1) et le fluide de transfert dans le trajet de transfert (2) tout en maintenant le circuit frigorifique (4) au repos .8, characterized by means for circulating the useful fluid in the first exchange path (1) and the transfer fluid in the transfer path (2) while maintaining the refrigeration circuit (4) at rest.
10- Dispositif selon l'une des revendications 1 à10- Device according to one of claims 1 to
9, caractérisé en ce que certains au moins des trajets d'échange (6, 1, 8) sont réalisés sous la forme de groupes de tubes appartenant à un même faisceau de tubes parallèles placé dans le trajet de transfert.9, characterized in that at least some of the paths exchange (6, 1, 8) are made in the form of groups of tubes belonging to the same bundle of parallel tubes placed in the transfer path.
11-, Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que certains au moins desdits trajets d'échange (6, 1, 8) sont réalisés sous la forme de faisceaux de tubes, empilés dans le trajet de transfert selon la direction d'écoulement du fluide de transfert . 12- Dispositif selon l'une des revendications 1 à11-, Device according to one of claims 1 to 9, characterized in that at least some of said exchange paths (6, 1, 8) are made in the form of bundles of tubes, stacked in the transfer path according to the direction of flow of the transfer fluid. 12- Device according to one of claims 1 to
11, caractérisé en ce qu'il comprend des conducteurs thermiques, en particulier des ailettes (22), reliant entre eux les trajets d'échange (6, 1, 8) dans le trajet de transfert. 13- Dispositif selon l'une des revendications 1 à11, characterized in that it comprises thermal conductors, in particular fins (22), interconnecting the exchange paths (6, 1, 8) in the transfer path. 13- Device according to one of claims 1 to
12, caractérisé en ce qu'il comprend, pour le fluide utile, un quatrième trajet d'échange (14) placé en amont du premier trajet d'échange (1) relativement au sens de circulation du fluide utile, et en ce que le quatrième trajet d'échange (14) est placé en relation d'échange thermique avec un second trajet de fluide de transfert (21) .12, characterized in that it comprises, for the useful fluid, a fourth exchange path (14) placed upstream of the first exchange path (1) relative to the direction of circulation of the useful fluid, and in that the fourth exchange path (14) is placed in heat exchange relationship with a second transfer fluid path (21).
14- Dispositif selon la revendication 13, caractérisé en ce que le deuxième (6) et le troisième (8) trajet d'échange sont thermiquement séparés du deuxième trajet de transfert (21) .14- Device according to claim 13, characterized in that the second (6) and the third (8) exchange path are thermally separated from the second transfer path (21).
15- Dispositif selon la revendication 13 ou 14, caractérisé en ce que l'une au moins des fonctions d'absorption et de dégagement de chaleur du circuit frigorifique est effectuée en deux étapes dont l'une est réalisée par un trajet d'échange supplémentaire (61) placé en relation d'échange thermique avec le deuxième trajet de transfert (21) en série, relativement à l'écoulement du fluide de transfert, avec le quatrième trajet d'échange (14) .15- Device according to claim 13 or 14, characterized in that at least one of the functions of absorption and release of heat from the refrigeration circuit is carried out in two stages, one of which is carried out by an additional exchange path (61) placed in heat exchange relation with the second transfer path (21) in series, relative to the flow of the transfer fluid, with the fourth exchange path (14).
16- Dispositif selon l'une des revendications 1 à 14, caractérisé en ce que l'une au moins des fonctions d'absorption et de dégagement de chaleur du circuit frigorifique est effectuée dans deux trajets d'échange (61, 6) placés en série dans le trajet de transfert (2) . 16- Device according to one of claims 1 to 14, characterized in that at least one of the functions of absorption and release of heat from the refrigeration circuit is performed in two exchange paths (61, 6) placed in series in the transfer path (2).
EP98912551A 1997-02-26 1998-02-26 Device for modifying the temperature of a fluid Ceased EP0968393A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9702285 1997-02-26
FR9702285A FR2760078B1 (en) 1997-02-26 1997-02-26 DEVICE FOR CHANGING THE TEMPERATURE OF A FLUID
PCT/FR1998/000375 WO1998038464A1 (en) 1997-02-26 1998-02-26 Device for modifying the temperature of a fluid

Publications (1)

Publication Number Publication Date
EP0968393A1 true EP0968393A1 (en) 2000-01-05

Family

ID=9504196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98912551A Ceased EP0968393A1 (en) 1997-02-26 1998-02-26 Device for modifying the temperature of a fluid

Country Status (5)

Country Link
US (1) US6205811B1 (en)
EP (1) EP0968393A1 (en)
AU (1) AU6734498A (en)
FR (1) FR2760078B1 (en)
WO (1) WO1998038464A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808739B1 (en) * 2000-05-15 2004-04-02 Peugeot Citroen Automobiles Sa HEAT PUMP THERMAL CONTROL DEVICE FOR MOTOR VEHICLE
DE202006016781U1 (en) * 2006-11-03 2007-01-11 Industrie-Rohr-Bau Gmbh Autoclave has a fast turn-round operating cycle using an internal cooler linked by a heat transfer fluid closed circuit to a heat exchanger in an evaporative water cooling tower
NO342628B1 (en) * 2012-05-24 2018-06-25 Fmc Kongsberg Subsea As Active control of underwater coolers
DE102013214839A1 (en) * 2013-07-30 2015-02-05 Siemens Aktiengesellschaft cooler arrangement
DE102014203895B4 (en) * 2014-03-04 2018-08-16 Konvekta Ag refrigeration plant
DE102016218474B4 (en) * 2016-03-18 2022-08-04 Ford Global Technologies, Llc Paint shop with energy recovery device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2472243A (en) * 1946-09-10 1949-06-07 Lloyd M Berryman Air conditioning apparatus including a sterilizing means
FR1166159A (en) * 1957-02-02 1958-11-04 Loire Atel Forges Process and apparatus for recovering heat from gases leaving devices such as reaction or exchange in particular
US3139924A (en) * 1960-12-08 1964-07-07 I C E D Inc Internal combustion engine driven heat pump
FR2280039A1 (en) * 1974-07-24 1976-02-20 Alsthom Cgee THERMODYNAMIC MACHINE OPERATING AS A HEAT PUMP
US3947623A (en) 1975-04-14 1976-03-30 Preformed Line Products Co. Limited contact separator for linear bodies
GB1550351A (en) * 1976-04-26 1979-08-15 Secr Defence Apparatus for heating/cooling circulation fluid
US4313311A (en) * 1979-06-04 1982-02-02 Mccord James W Vapor generating and recovering apparatus
DE3142455A1 (en) * 1981-10-27 1983-05-05 Kurt Geier Device for producing hot water by means of a refrigerating medium compressor system
DE3222406C2 (en) 1982-06-15 1985-07-18 H. Krantz Gmbh & Co, 5100 Aachen Process for heat recovery
EP0143855A1 (en) * 1983-11-02 1985-06-12 H. Krantz GmbH & Co. Method of waste heat recovery
DE3819535C2 (en) * 1987-06-12 2002-02-28 Mitsubishi Electric Corp heat exchangers
KR920003697B1 (en) * 1989-11-13 1992-05-09 최영택 Tourmaline cooling and thermal air-conditioning system
US5181552A (en) * 1991-11-12 1993-01-26 Eiermann Kenneth L Method and apparatus for latent heat extraction
SE9600395L (en) * 1996-02-02 1997-08-03 Ericsson Telefon Ab L M Method and apparatus for arranging spare time for cooling systems
US5826443A (en) * 1997-12-06 1998-10-27 Ares; Roland Heat pump with heat-pipe enhancement and with primary system reheat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9838464A1 *

Also Published As

Publication number Publication date
FR2760078B1 (en) 1999-05-14
FR2760078A1 (en) 1998-08-28
AU6734498A (en) 1998-09-18
WO1998038464A1 (en) 1998-09-03
US6205811B1 (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP0622593B1 (en) Cooling and heating device using a solid sorbent
FR2611383A1 (en) REFRIGERATION APPARATUSES USING COLD BUILDING MATERIAL
WO2001061196A1 (en) Thermo-kinetic compressor
FR2847971A1 (en) STRUCTURE OF CROSS-CURRENT HEAT EXCHANGER WITH SNAKE TUBES
EP0125980A2 (en) Process and apparatus for the cooling and liquefaction of at least a low boiling point gas, such as natural gas
WO1998038464A1 (en) Device for modifying the temperature of a fluid
EP0148756B1 (en) System for the revaluation of low-level thermal energy using phenomena of evaporation, and solution of two fluids being in equilibrium of vapour pressure at different temperatures
FR2533270A1 (en) PROCESS AND DEVICE FOR THE RAPID REGENERATION OF AUTONOMOUS CRYOGENIC PUMPS
EP4010640A1 (en) Refrigeration device and system
FR2778970A1 (en) Deicing evaporators of refrigeration equipment and/or heat pumps
EP0007835B1 (en) Method for separating a gas and a condensable vapour and its applications
EP0609140A1 (en) Process and plant for making snow
EP2739918B1 (en) System and method for optimising the operation of a heat pump system
JP2002071239A (en) Multi-effect absorption refrigerator and operating method thereof
FR2469679A1 (en) AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
FR3033632B1 (en) THERMODYNAMIC HEAT TRANSFER DEVICE BY STEAM COMPRESSION (MONO OR MULTI-STAGE) AND PHASE CHANGES, REVERSIBLE AT HIGH YIELD.
EP0110763A1 (en) Heating plant equipped with an absorption heat pump
FR3050018A1 (en) NARGUIL AIR CONDITIONER
EP0836059A1 (en) Cold pump
FR2525330A1 (en) Evaporator de-icing in air heat pump driven by heat engine - using engine cooling water and exhaust heat to melt external ice on evaporator tubes
EP0244435B1 (en) Multiple energy generator with integrated thermal cycle
EP0041911A2 (en) Heat pumps
WO1998023906A1 (en) Heating and cooling pump
EP0156707A1 (en) Air conditioning plant using a heat pump with a static exterior heat exchanger and with dry vapour regulation by automatically changing the rate of flow through the expansion valve
WO2005103583A1 (en) Method for the liquefaction of a gas involving a thermo-acoustic cooling apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20001206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020624