[go: up one dir, main page]

EP0956485A1 - Systeme frigorifique a absorption et melange de travail pour ce systeme - Google Patents

Systeme frigorifique a absorption et melange de travail pour ce systeme

Info

Publication number
EP0956485A1
EP0956485A1 EP97953990A EP97953990A EP0956485A1 EP 0956485 A1 EP0956485 A1 EP 0956485A1 EP 97953990 A EP97953990 A EP 97953990A EP 97953990 A EP97953990 A EP 97953990A EP 0956485 A1 EP0956485 A1 EP 0956485A1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
pressure
generator
temperature
cresol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97953990A
Other languages
German (de)
English (en)
Inventor
Meng Heng Huor
Gilles Le Halpere
Michel Prevost
Isabelle Soide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Publication of EP0956485A1 publication Critical patent/EP0956485A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to an absorption refrigeration system and a solvent-refrigerant working pair for use in an absorption refrigeration system.
  • absorption refrigeration system three types are known: the absorption system with single separation effect, the absorption system with single separation effect and recompression, and the absorption system with double separation effect.
  • the absorption system with double separation effect is that which makes it possible to obtain the coefficient of refrigeration performance (COP), defined as the ratio of the amount of heat absorbed at the cold source to the amount of energy. calorific absorbed at the source of motive heat, the highest.
  • COP coefficient of refrigeration performance
  • This coefficient of refrigeration performance or COP is thus representative of the performance of the refrigeration system.
  • the COP does not exceed the value of 1 whereas in theory, this COP can reach the value of 1, 3.
  • the invention aims to overcome this drawback.
  • an absorption refrigeration system of the double separation effect type comprising in particular: (a) a first generator at high pressure and high temperature, (b) a second generator which is at a pressure and a temperature below those of the first generator and supplying, by a refrigerant vapor pipe, a condenser at the same pressure as the second generator but at a temperature lower than this second generator, (c) a condenser at the same pressure as the second generator mentioned above and at a temperature lower than the temperature of the latter; (d) an evaporator at a pressure and temperature lower than that of the condenser; (e) an absorber at the same pressure as the evaporator and at the same temperature as the condenser; and (f) a compression means located on the pipe which supplies the first generator with a solution rich in refrigerant, this solution coming from the absorber, characterized in that the above-mentioned condenser is at a pressure higher than the pressure of the aforementioned second generator and lower than the
  • the pressure of the condenser is obtained by compression of the refrigerant vapors from said second generator by means of compression of these vapors located on the pipe supplying refrigerant vapor to said condenser.
  • said solution rich in refrigerant is a solvent-refrigerant working pair where the solvent is a compound chosen from the group of methylphenols, taken individually or as a mixture.
  • said methylphenols are ortho-cresol, meta-cresol and para-cresol.
  • the invention also provides a solvent-refrigerant working pair intended for use in an absorption refrigeration system characterized in that the refrigerant is a compound chosen from the group of methylphenols, taken individually or as a mixture, and in that the solvent is methanol.
  • FIG. 1 schematically represents the refrigeration system with double separation absorption effect of the prior art in relation to the operating conditions of each element in terms of pressure and temperature, where the temperature is plotted on the abscissa and the pressure on the ordinate
  • FIG. 2 schematically represents the refrigeration system of the invention in relation to the operating conditions of each element in terms of pressure and temperature, where the temperature is plotted on the abscissa and the pressure is plotted on the ordinate.
  • This system uses the reciprocal affinity of the molecules, on the one hand of a volatile substance, the refrigerant or agent producing cold in the evaporator denoted E in FIG. 1 and on the other hand of a substance remaining liquid, l 'absorbent.
  • This absorbent is also called a solvent.
  • the solvent-refrigerant couple is also called working couple, the refrigerant being the more volatile of the two substances present.
  • the refrigerant In this type of refrigeration system, only the refrigerant must pass through the part of the circuit of the system where the cold is produced, that is to say the part of the circuit between the condenser denoted K2 and the absorber denoted A in FIG. 1, circuit 5. Indeed, the cold is produced at one evaporator S where the phenomenon of evaporation of the refrigerant consumes the heat energy, noted not Q in FIG. 1, supplied in part, by the element to be cooled and cooled.
  • this separation is obtained in two successive stages, in the generator noted G1 in FIG. 1 and in the generator noted G2 in FIG. 1.
  • the solution rich in refrigerant (mixture solvent + refrigerant), which comes from the absorber A via a possible storage of the solution rich in refrigerant, which is at the temperature noted ⁇ in figure 1 and at the pressure noted Po in figure 1
  • the generator Gl which is at the temperature denoted ⁇ m in FIG. 1 and at the pressure denoted Ph in FIG. 1 obtained by the compression means denoted P in FIG. 1, by crossing two heat exchangers denoted ET1 and ET2 in FIG. 1 .
  • the solution rich in refrigerant is then heated to the temperature ⁇ m in Gl.
  • a first solvent-refrigerant separation is carried out in this generator G1 producing refrigerant vapors.
  • This first separation requires an external supply of calorific energy from any source called motive calorific energy and denoted ⁇ m in FIG. 1.
  • the refrigerant vapors from Gl are then brought, via the pipe marked 2 in FIG. 1, to the second generator G2.
  • the solution depleted in refrigerant contained in Gl is also sent into G2 via the heat exchanger ET2 undergoing upstream or downstream of the latter a pressure drop by any suitable means.
  • ET2 the hot solution depleted in refrigerant, circulating in line 3, provides thermal energy to the solution rich in refrigerant which comes from the absorber and which circulates in line 1.
  • the liquid refrigerant leaving G2 (refrigerant vapors coming from Gl and condensed in K1) and, on the other hand the refrigerant vapors coming from generator G2, are sent to the condenser noted K2 in figure 1 by pipes marked 7 and 4, respectively, in FIG. 1, while the solution even more depleted in refrigerant is returned, by the pipe noted 8 in FIG. 1, to the absorber A by passing through the heat exchanger ET1 where it transfers part of its thermal energy to the solution rich in refrigerant circulating in line 1.
  • the condenser K2 is at the same pressure Pk as the generator G2 and at the same temperature ⁇ as the absorber A.
  • the refrigerant vapors from the generator G2 are condensed.
  • Refrigerant liquid of stream 7 undergoes a pressure drop by any suitable means before being admitted into K2.
  • the liquid refrigerant is then transferred, by the pipe marked 5 in FIG. 1, with lowering of the pressure by any suitable means, to the evaporator E.
  • the evaporator E is at the same pressure Po as the absorber A and at the temperature noted ⁇ o in figure 1, temperature ⁇ o which is lower than the temperature ⁇ of the absorber.
  • the refrigerant is evaporated by consuming heat energy noted not 0 in FIG. 1 and which is supplied by the element to be cooled.
  • This evaporator E is the cold source of the system.
  • the refrigerant vapors produced in the evaporator E are then sent to the absorber A, via the pipe marked 6 in FIG. 1.
  • the refrigerant vapors are absorbed in the solution depleted in refrigerant coming from the generator G2, after lowering the pressure of the solution, to reconstitute the solution rich in refrigerant which will again be sent to the generator Gl, for a new operating cycle.
  • the invention consists in shifting the working pressure of the generator G2 and the condenser K2. This is achieved, as shown in Figure 2, in which the same reference signs indicate the same elements as in Figure 1, by introducing compression of the refrigerant vapors leaving the generator G2. This can be implemented by providing in the pipe denoted 4 in FIG. 2, a compression means denoted P2 in FIG. 2. This compression means can be any compression means known to those skilled in the art such as mechanical or electrical compression.
  • the condenser K2 is then at a temperature ⁇ ′ which can be identical to the temperature ⁇ of the prior art or different, but at the pressure denoted Pk2 in FIG. 2 with Pk ⁇ Pk2 ⁇ Ph.
  • the refrigeration system with double separation effect of the invention also comprises, although not described and shown in FIG. 2, the same pressure drop members as the refrigeration system with double effect of separation of the prior art.
  • this depletion leads to a reduction in the quantity of heat ⁇ m to be supplied to the generator Gl by modification of the circulation needs of the low-refrigerant solution with fixed desired cooling capacity. Then, it can also make it possible to significantly lower the minimum working temperature ⁇ m in Gl, which also allows a reduction in losses by sensible heat. In other words, the driving heat energy ⁇ m is better used in the system of the invention.
  • the pressure Ph of the generator Gl in the double-acting refrigeration system with recompression of the invention could be 2, 2 to 2.5 bars in comparison to a pressure Ph of the generator Gl in the double-separation refrigeration system of the prior art from 3 to 3.5 bars.
  • the coefficient of performance or COP of the refrigeration system of the invention could be increased in comparison with that of the system of the prior art.
  • the performance of the absorption refrigeration system of the invention depends on the practical application of the solvent-refrigerant working couple used.
  • This couple must have a priori a negative deviation from Raoult's law.
  • this deviation should not be too large. Indeed, in the case where a very favorable solvent-refrigerant working couple is used giving rise to low solution rates, then the gain provided by the compression is no longer significant compared to the energy surplus necessary to ensure this. compression.
  • methanol is often used as a refrigerant, combined with an absorbent (solvent) such as salts of the lithium bromide or zinc bromide type.
  • organic solvents such as tetraethylene glycol dimethyl ether and glycerol have been used as methanol solvents.
  • the invention provides a new solvent-refrigerant working couple which makes it possible to further improve the COP of the refrigeration system of the invention.
  • This couple is made up of methanol as a refrigerant, associated with a methylphenol or a mixture of methylphenols, products also known under the name cresols or by the name cresilic acid often adopted by Anglo-Saxons.
  • the cresols have the raw chemical formula C7HgO. These are cyclic alcohols which allow a significant absorption of methanol due to the possibility of creating strong hydrogen bonds between the solvent and the solute. In addition, they have high boiling temperatures favorable for separation in the generators. Their stability is linked to the absence in the circuit of any substance or material capable of inducing a gradation reaction of one of the compounds of the working couple; air can be cited as an example. Finally their cost is low. Cresols exist in the ortho-cresol, meta-cresol and para-cresol forms. The cresols-methanol pair perfectly meets the thermodynamic requirements of the cycle involved in the refrigeration system of the invention. Indeed, the deviations induced with respect to Raoult's law exist but are smaller than in the case of an association of methanol with one or more salts.
  • the refrigeration system of the invention does not make it possible to obtain a significant gain in relation to the energy surplus necessary for the recompression introduced into the refrigeration system of the invention
  • the refrigeration system of the invention may be used with another working pair than that specifically described in the invention.
  • the invention is in no way limited to the embodiments described and illustrated which have been given only by way of example.
  • the refrigeration system of the invention can be used both to produce cold, the cold source then being one evaporator E as to produce heat, the hot source then being the condenser K2 as well as the absorber A.
  • the invention includes all the technical equivalents of the means described as well as their combinations if these are carried out according to the spirit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Le système frigorifique à absorption est un système frigorifique à absorption du type à double effet de séparation dans lequel la pression du condenseur (K2) est décalée par rapport à la pression du second générateur (G2). Dans un tel système frigorifique à absorption un couple de travail est constitué de méthanol comme frigorigène et un composé du groupe des méthylphénols comme solvant. Un tel système trouve application à la production de froid ou de chaleur, en particulier pour climatiser des éléments d'immeubles.

Description

SYSTEME FRIGORIFIQUE A ABSORPΗON ET MELANGE DE TRAVAIL POUR CE SYSTEME
L'invention concerne un système frigorifique à absorption et un couple de travail solvant-frigorigène destiné à être utilisé dans un système frigorifique à absorption. Actuellement, trois types de système frigorifique à absorption sont connus : le système à absorption à simple effet de séparation, le système à absorption à simple effet de séparation et recompression, et le système-absorption à double effet de séparation. Parmi ces trois systèmes, le système à absorption à double effet de séparation est celui qui permet d'obtenir le coefficient de performance frigorifique (COP), défini comme le rapport de la quantité de chaleur absorbée à la source froide à la quantité d'énergie calorifique absorbée à la source de chaleur motrice, le plus élevé.
Ce coefficient de performance frigorifique ou COP est ainsi représentatif du rendement du système frigorifique. Cependant, même avec le système frigorifique à absorption à double effet de séparation, le COP ne dépasse pas la valeur de 1 alors qu'en théorie, ce COP peut atteindre la valeur de 1, 3. L'invention vise à pallier cet inconvénient. A cet effet, elle propose un système frigorifique à absorption du type à double effet de séparation comprenant notamment : (a) un premier générateur à haute pression et haute température, (b) un second générateur qui est à une pression et une température inférieures à celles du premier générateur et alimentant, par une canalisation en vapeur de frigorigene un condenseur à la même pression que le second générateur mais à une température inférieure à ce second générateur, (c) un condenseur à la même pression que le second générateur précité et à une température inférieure à la température de ce dernier ; (d) un évaporateur à une pression et une température inférieures à celles du condenseur ; (e) un absorbeur à la même pression que 1 ' évaporateur et à la même température que le condenseur ; et (f) un moyen de compression situé sur la canalisation qui alimente le premier générateur en solution riche en frigorigene, cette solution provenant de 1 'absorbeur, caractérisé en ce que le condenseur précité est à une pression supérieure à la pression du second générateur précité et inférieure à la pression du premier générateur précité.
Selon une autre caractéristique du système frigorifique de l'invention, la pression du condenseur est obtenue par une compression des vapeurs de frigorigene issues dudit second générateur par un moyen de compression de ces vapeurs situé sur la canalisation alimentant en vapeur de frigorigene ledit condenseur. Selon encore une autre caractéristique du système frigorifique de l'invention, ladite solution riche en frigorigene est un couple de travail solvant-frigorigène où le solvant est un composé choisi dans le groupe des méthylphénols, pris individuellement ou en mélange. Selon toujours une caractéristique du système frigorifique de l'invention, lesdits méthylphénols sont 1 ' ortho-crésol, le méta-crésol et le para-crésol.
L'invention propose également un couple de travail solvant-frigorigène destiné à être utilisé dans un système frigorifique à absorption caractérisé en ce que le frigorigene est un composé choisi dans le groupe des méthylphénols, pris individuellement ou en mélange, et en ce que le solvant est du methanol.
Selon une caractéristique du couple de travail de l'invention, lesdits méthylphénols sont 1 ' ortho-crésol, le méta-crésol et le para-crésol. L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celles-ci apparaîtront plus clairement au cours de la description explicative qui va suivre fait en référence aux figures annexées dans lesquelles : la figure 1 représente schématiquement le système frigorifique à absorption à double effet de séparation de l'art antérieur en relation avec les conditions de fonctionnement de chaque élément en termes de pression et de température, où la température est portée en abscisse et la pression en ordonnée, et la figure 2 représente schématiquement le système frigorifique de l'invention en relation avec les conditions de fonctionnement de chaque élément en termes de pression et de température, où la température est portée en abscisse et la pression en ordonnée.
Le principe de fonctionnement et les éléments essentiels du système frigorifique à absorption à double effet de séparation de l'art antérieur vont maintenant être décrits en référence à la figure 1.
Ce système utilise l'affinité réciproque des molécules, d'une part d'une substance volatile, le frigorigene ou agent producteur de froid dans 1 ' évaporateur noté E dans la figure 1 et d'autre part d'une substance demeurant liquide, l'absorbant. Cet absorbant est également appelé solvant. Le couple solvant-frigorigène est également appelé couple de travail, le frigorigene étant le plus volatil des deux substances présentes. Dans ce type de système frigorifique, seul le frigorigene doit parcourir la partie de circuit du système où le froid est produit c'est-à-dire la partie du circuit entre le condenseur noté K2 et l' absorbeur noté A dans la figure 1, circuit 5. En effet, le froid est produit à 1 ' évaporateur S où le phénomène d'évaporation du frigorigene consomme de l'énergie calorifique, notée φQ dans la figure 1 , fournie en partie, par l'élément à refroidir et refroidi .
Puisque seul le frigorigene doit parcourir cette partie du circuit, une séparation aussi complète du frigorigene et du solvant quand il le faut, est importante.
Dans le système montré en figure 1, cette séparation est obtenue en deux étapes successives, dans le générateur noté Gl en figure 1 et dans le générateur noté G2 en figure 1. Ainsi, comme montré en figure 1, la solution riche en frigorigene (mélange solvant + frigorigene), qui est issue de l' absorbeur A via un éventuel stockage de la solution riche en frigorigene, qui est à la température notée θ en figure 1 et à la pression notée Po en figure 1, est amenée par la canalisation notée 1 en figure 1 au générateur Gl qui est à la température notée θm en figure 1 et à la pression notée Ph en figure 1 obtenue par le moyen de compression noté P en figure 1, en traversant deux échangeurs thermiques notés ET1 et ET2 en figure 1.
La solution riche en frigorigene est alors chauffée à la température θm dans Gl.
Une première séparation solvant-frigorigène est effectuée dans ce générateur Gl produisant des vapeurs de frigorigene.
Cette première séparation nécessite un apport extérieur d'énergie calorifique de toute origine appelée énergie calorifique motrice et notée φm dans la figure 1.
Les vapeurs du frigorigene issues de Gl sont alors amenées, par la canalisation notée 2 en figure 1 au second générateur G2. La solution appauvrie en frigorigene contenue dans Gl est également envoyée dans G2 en passant par l'echangeur thermique ET2 en subissant en amont ou en aval de ce dernier une chute de pression par un moyen quelconque approprié. Dans ET2 , la solution appauvrie en frigorigene, chaude, circulant dans la canalisation 3, fournit de l'énergie thermique à la solution riche en frigorigene qui provient de 1' absorbeur et qui circule dans la canalisation 1.
Dans le générateur G2 qui est à la température notée θi en figure 1 et à la pression notée Pk en figure 1, avec θ < θi < θm et Po < Pk < Ph, les vapeurs de frigorigene issues de Gl circulant dans la canalisation 2 échauffent la solution appauvrie provenant du générateur 1 et se condensent à la pression Ph dans un condenseur noté Kl dans la figure 1.
Il y a alors dans G2 , une nouvelle séparation du frigorigene de la solution appauvrie en frigorigene provenant de Gl, avec production de nouvelles vapeurs de frigorigene.
C'est ce qu'on appelle le double effet de séparation.
Ensuite, d'une part le frigorigene liquide sortant de G2 (vapeurs de frigorigene provenant de Gl et condensées dans Kl) et, d'autre part les vapeurs de frigorigene issues du générateur G2, sont envoyés au condenseur noté K2 en figure 1 par les canalisations notées 7 et 4 , respectivement, en figure 1, alors que la solution encore plus appauvrie en frigorigene est renvoyée, par la canalisation notée 8 en figure 1, à 1' absorbeur A en traversant l'echangeur thermique ET1 où elle transfère une partie de son énergie thermique à la solution riche en frigorigene circulant dans la canalisation 1.
Le condenseur K2 est à la même pression Pk que le générateur G2 et à la même température θ que l' absorbeur A.
Dans le condenseur K2, les vapeurs de frigorigene issues du générateur G2 sont condensées. Le frigorigene liquide du courant 7 subit une chute de pression par un moyen quelconque approprié avant d'être admis dans K2.
Il faut noter qu'à partir du générateur G2, et jusqu'à l' absorbeur A, seul le frigorigene est en circulation.
Donc seul, le frigorigene liquide est alors transféré, par la canalisation notée 5 en figure 1, avec abaissement de la pression par un moyen quelconque approprié, à 1 ' évaporateur E. L' évaporateur E est à la même pression Po que l' absorbeur A et à la température notée θo dans la figure 1, température θo qui est inférieure à la température θ de l' absorbeur.
Dans 1 ' évaporateur E, le frigorigene est évaporé en consommant de l'énergie calorifique notée φ0 en figure 1 et qui est fournie par l'élément à refroidir. Cet évaporateur E est la source froide du système.
Les vapeurs de frigorigene produites dans 1 ' évaporateur E sont alors envoyées dans l' absorbeur A, par la canalisation notée 6 en figure 1.
Enfin dans l' absorbeur A, les vapeurs de frigorigene s'absorbent dans la solution appauvrie en frigorigene provenant du générateur G2, après abaissement de la pression de la solution, pour reconstituer la solution riche en frigorigene qui sera à nouveau envoyée au générateur Gl, pour un nouveau cycle de fonctionnement.
Comme on le voit en figure 1, dans ce système, le condenseur K2 et le générateur G2 sont à la même pression de travail.
L'homme de l'art comprendra aisément que le fonctionnement de ce système nécessite la présence d'organes de chute de pression à chaque fois que nécessaire. Ces organes et leurs emplacements sont connus de l'homme de l'art et bien que non décrits ici et que non représentés dans les figures 1 et 2 , ces organes font partie du système frigorifique à double effet de séparation, auquel on se réfère ici.
L'invention consiste à décaler la pression de travail du générateur G2 et du condenseur K2. Cela est réalisé, comme montré en figure 2, dans laquelle les mêmes signes de référence indiquent les mêmes éléments que dans la figure 1, en introduisant une compression des vapeurs de frigorigene sortant du générateur G2. Ceci peut être mis en oeuvre en prévoyant dans la canalisation notée 4 en figure 2, un moyen de compression noté P2 en figure 2. Ce moyen de compression peut être tout moyen de compression connu de l'homme de l'art tel qu'un moyen de compression mécanique ou électrique. Le condenseur K2 est alors à une température θ' pouvant être identique à la température θ de l'art antérieur ou différente, mais à la pression notée Pk2 en figure 2 avec Pk < Pk2 < Ph.
Il est à noter ici que le système frigorifique à double effet de séparation de l'invention comprend également, bien que non décrits et représentés en figure 2, les mêmes organes de chute de pression que le système frigorifique à double effet de séparation de l'art antérieur. En augmentant la pression de travail de K2 par rapport à la pression de travail de G2 , on crée un état d'équilibre thermodynamique dans G2 moins favorable au frigorigene et donc la solution sortant de G2 est plus appauvrie en frigorigene que ne le serait la même solution dans le système frigorifique de l'art antérieur.
Tout d'abord, cet appauvrissement conduit à une diminution de la quantité de chaleur φm à fournir au générateur Gl par modification des besoins de circulation de la solution pauvre en frigorigene à puissance frigorifique recherchée fixée. Ensuite, il peut aussi permettre d'abaisser significativement la température minimale θm de travail dans Gl, ce qui permet également une réduction des pertes par chaleur sensible. En d'autres termes, l'énergie calorifique motrice φm est mieux utilisée dans le système de l'invention.
De plus, avec le système de l'invention, on peut travailler, à une pression Ph inférieure (dans Gl) à celle utilisée dans un système à double effet de séparation classique.
Ceci signifie que l'énergie à fournir à la solution (organe P en figures 1 et 2 ) pour obtenir cette pression sera inférieure à celle nécessaire avec le système classique. Enfin, dans le système de l'invention, uniquement la partie des vapeurs de frigorigene issues de G2 est comprimée ce qui demande moins d'énergie que si on voulait comprimer toutes les vapeurs de frigorigene, c'est-à-dire celles issues de Gl et de G2 ou celles circulant dans un système frigorifique à absorption à simple effet de séparation.
En plus de cette diminution d'énergie, on aura également une diminution de la taille de l'équipement nécessaire à la compression et à la condensation des vapeurs issues de G2 par rapport à la taille de l'équipement nécessaire pour comprimer la totalité des vapeurs issues de Gl et de G2. Il peut également résulter une diminution de la taille de tous les équipements en raison de la réduction des débits de circulation des solutions, réduction induite par des conditions opératoires pouvant être plus favorables par rapport à celles utilisées dans l'art antérieur.
Ainsi, avec le système de l'invention, on peut maintenir la température minimale de fonctionnement θm du générateur Gl identique à celle utilisée dans le système de l'art antérieur mais la source d'énergie calorifique φm sera mieux exploitée, la pression du générateur Gl pourra, elle, être abaissée par rapport à celle du système de l'art antérieur.
A titre d'exemple purement illustratif, pour un même couple de travail solvant-frigorigène, et une même température de travail θm, la pression Ph du générateur Gl dans le système frigorifique à double effet à recompression de l'invention pourra être de 2,2 à 2,5 bars en comparaison à une pression Ph du générateur Gl dans le système frigorifique à double effet de séparation de l'art antérieur de 3 à 3,5 bars.
De la même façon, le coefficient de performance ou COP du système frigorifique de l'invention pourra être accru en comparaison avec celui du système de l'art antérieur.
Cependant, la performance du système frigorifique à absorption de l'invention dépend dans l'application pratique du couple de travail solvant-frigorigène utilisé. Ce couple doit posséder à priori une déviation négative par rapport à la loi de Raoult. Cependant, on a montré que cette déviation ne doit pas être trop importante. En effet, dans le cas où l'on utilise un couple de travail solvant-frigorigène très favorable donnant lieu à des taux de solution faibles, alors le gain fourni par la compression n'est plus significatif par rapport au surplus énergétique nécessaire pour assurer cette compression.
D'autres couples de travail destinés à être utilisés dans les systèmes frigorifiques à absorption sont connus. Par exemple, le methanol est souvent utilisé en tant que frigorigene, associé à un absorbant (solvant) tel que des sels du type bromure de lithium ou bromure de zinc.
Egalement, des solvants organiques tels que le tétraéthylène glycol dimethyléther et le glycérol ont été utilisés comme solvants du methanol. L'invention propose un nouveau couple de travail solvant-frigorigène qui permet d'améliorer encore plus le COP du système frigorifique de l'invention.
Ce couple est constitué du methanol en tant que frigorigene, associé à un methylphenol ou à un mélange de méthylphénols, produits aussi connus sous l'appellation crésols ou par le nom acide crésilique adopté souvent par les anglosaxons.
Les crésols ont pour formule chimique brute C7HgO. Ce sont des alcools cycliques qui permettent une absorption importante de methanol en raison de la possibilité de créer des liaisons hydrogènes fortes entre le solvant et le soluté. De plus, ils possèdent des températures d'ébullition élevées favorables à la séparation dans les générateurs. Leur stabilité est liée à l'absence dans le circuit de toute substance ou matériau pouvant induire une réaction de gradation d'un des composés du couple de travail ; l'air peut être cité à titre d'exemple. Enfin leur coût est faible. Les crésols existent sous les formes ortho-crésol, méta-crésol et para-crésol. Le couple crésols-méthanol répond parfaitement aux exigences thermodynamiques du cycle impliqué dans le système frigorifique de l'invention. En effet, les déviations induites par rapport à la loi de Raoult existent mais sont plus faibles que dans le cas d'une association du methanol avec un ou plusieurs sels.
A titre d'exemple purement illustratif, alors que le COP théorique obtenu, en utilisant le système à absorption à double effet de séparation avec recompression de l'invention avec un couple de travail méthanol-solvant de l'art antérieur, est de 0,9, le COP avec ce même système en utilisant le couple de travail crésols-méthanol de l'invention peut atteindre des valeurs de jusqu'à 1,3 et généralement non inférieures à 1,1. Comme cela apparaîtra clairement à l'homme de l'art, bien qu'ayant été décrit uniquement dans ce qui précède comme utilisé dans le système frigorifique à absorption à double effet de l'invention, le couple de travail crésols-méthanol de l'invention pourra également être utilisé dans tous les systèmes frigorifiques à absorption connus jusqu'à présent.
Par ailleurs, bien qu'on ait mentionné le fait que le système frigorifique de l'invention ne permette pas d'obtenir un gain significatif par rapport au surplus énergétique nécessaire pour la recompression introduite dans le système frigorifique de l'invention, lorsqu'on utilise un couple de travail bromure de lithium-eau, le système frigorifique de l'invention pourra être utilisé avec un autre couple de travail que celui précisément décrit dans l'invention.
Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemple. Ainsi, le système frigorifique de l'invention pourra être utilisé aussi bien pour produire du froid, la source froide étant alors 1 'évaporateur E que pour produire de la chaleur, la source chaude étant alors le condensateur K2 ainsi que l' absorbeur A. C'est dire que l'invention comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont effectuées suivant son esprit.

Claims

Revendications
1. Système frigorifique à absorption du type à double effet de séparation comprenant notamment :
(a) un premier générateur (Gl) à une pression Ph et une température θm,
(b) un second générateur (G2) à une pression (Pk) inférieure Ph et une température θi < θm, alimentant par une canalisation (4), en vapeurs de frigorigene,
(c) un condenseur (K2) à la pression Pk précitée et à une température θ < θi,
(d) un évaporateur (E) à une pression Po < Pk et une température ΘO < θ,
(e) un absorbeur (A) à la pression Po précitée et à la température θ précitée, et
(f) un moyen de compression (P) situé sur la canalisation (1) alimentant le générateur (Gl) en solution riche en frigorigene, cette solution provenant de l' absorbeur (A), caractérisé en ce que le condenseur (K2) est à une pression Pk2 avec Pk < Pk2 < Ph.
2. Système frigorifique selon la revendication 1, caractérisé en ce que la pression Pk2 est obtenue par une compression des vapeurs de frigorigene issues du générateur (G2) par un moyen de compression (P2) de ces vapeurs, situé sur la canalisation (4) précitée.
3. Système frigorifique selon la revendication 1 ou 2, caractérisé en ce que la solution riche en frigorigene est un couple de travail solvant-frigorigène où le solvant est un composé choisi dans le groupe des méthylphénols, pris individuellement ou en mélange, le frigorigene est du methanol.
4. Système frigorifique selon la revendication 3, caractérisé en ce que lesdits methylsphenols sont 1 'ortho-crésol, le méta-crésol et le para-crésol.
5. Couple de travail solvant-frigorigène destiné à être utilisé dans un système frigorifique à absorption caractérisé en ce que le solvant est un composé choisi dans le groupe des méthylphénols, pris individuellement ou en mélange, et en ce que le frigorigene est le methanol .
6. Couple de travail selon la revendication 5, caractérisé en ce que lesdits méthylphénols sont 1 'ortho-crésol, le méta-crésol et le para-crésol.
EP97953990A 1997-01-20 1997-12-31 Systeme frigorifique a absorption et melange de travail pour ce systeme Ceased EP0956485A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9700543A FR2758616B1 (fr) 1997-01-20 1997-01-20 Systeme frigorifique a absorption et couple de travail solvant-frigorigene destine a etre utilise dans un systeme frigorifique a absorption
FR9700543 1997-01-20
PCT/FR1997/002474 WO1998031972A1 (fr) 1997-01-20 1997-12-31 Systeme frigorifique a absorption et melange de travail pour ce systeme

Publications (1)

Publication Number Publication Date
EP0956485A1 true EP0956485A1 (fr) 1999-11-17

Family

ID=9502773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97953990A Ceased EP0956485A1 (fr) 1997-01-20 1997-12-31 Systeme frigorifique a absorption et melange de travail pour ce systeme

Country Status (8)

Country Link
US (1) US6141987A (fr)
EP (1) EP0956485A1 (fr)
JP (1) JP2001518173A (fr)
KR (1) KR20000070316A (fr)
CN (1) CN1249031A (fr)
CA (1) CA2278654A1 (fr)
FR (1) FR2758616B1 (fr)
WO (1) WO1998031972A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237850A1 (de) * 2002-08-19 2004-03-04 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Mehrstufige Absorptionskältemaschine (AKM) oder Absorptionswärmepumpe (AWP) mit Einkopplung von Antriebswärme auf verschiedenen Temperaturniveaus
DE10237851A1 (de) * 2002-08-19 2004-03-04 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Ein- oder mehrstufige Absorptionskältemaschine (AKM) oder Absorptionswärmepumpe (AWP) sowie Verfahren zur Steuerung der Verdampferleistung in einer solchen AKP/AWP
KR101685729B1 (ko) * 2009-06-03 2016-12-12 이 아이 듀폰 디 네모아 앤드 캄파니 Cis-1,1,1,4,4,4-헥사플루오로-2-부텐을 함유하는 칠러 장치, 및 그 안에서 냉각을 생성하는 방법
WO2012116174A1 (fr) * 2011-02-23 2012-08-30 Jianguo Xu Dispositif d'amplification de pression activé thermiquement pour chauffage thermodynamique et génération d'énergie
CN102297541B (zh) * 2011-05-23 2013-09-18 李华玉 第三类吸收-发生系统与第三类吸收式热泵
US9385574B1 (en) * 2013-06-26 2016-07-05 Ever Source Science & Technology Development Co., Ltd. Heat transfer fluid based zero-gas-emission power generation
EP3236178B1 (fr) * 2016-04-22 2020-08-12 AGO AG Energie + Anlagen Pompe a chaleur a absorption et procede de circuit a absorption

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717007A (en) * 1971-04-02 1973-02-20 Arkla Ind Absorption refrigeration system with multiple generator stages
US4031712A (en) * 1975-12-04 1977-06-28 The University Of Delaware Combined absorption and vapor-compression refrigeration system
US4285211A (en) * 1978-03-16 1981-08-25 Clark Silas W Compressor-assisted absorption refrigeration system
US4171619A (en) * 1978-03-16 1979-10-23 Clark Silas W Compressor assisted absorption refrigeration system
US4285208A (en) * 1980-04-16 1981-08-25 Matsushita Electric Industrial Co., Ltd. Absorption type refrigerating machine of hybrid constructions
JPS58129172A (ja) * 1982-01-29 1983-08-02 株式会社日立製作所 冷却設備
SU1068671A1 (ru) * 1982-02-11 1984-01-23 Shlejnikov Vladimir M Абсорбционна бромистолитиева холодильна установка
SU1068672A1 (ru) * 1982-04-15 1984-01-23 Shlejnikov Vladimir M Абсорбционна бромистолитиева холодильна установка
US4475353A (en) * 1982-06-16 1984-10-09 The Puraq Company Serial absorption refrigeration process
US4474025A (en) * 1982-07-19 1984-10-02 Georg Alefeld Heat pump
SU1101634A2 (ru) * 1982-09-24 1984-07-07 Shlejnikov Vladimir M Абсорбционна бромистолитиева холодильна установка
US4475361A (en) * 1983-05-02 1984-10-09 Georg Alefeld Multi-effect heat-pump for heating and cooling
US4813242A (en) * 1987-11-17 1989-03-21 Wicks Frank E Efficient heater and air conditioner
US5582020A (en) * 1994-11-23 1996-12-10 Mainstream Engineering Corporation Chemical/mechanical system and method using two-phase/two-component compression heat pump
US5600967A (en) * 1995-04-24 1997-02-11 Meckler; Milton Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9831972A1 *

Also Published As

Publication number Publication date
FR2758616A1 (fr) 1998-07-24
CA2278654A1 (fr) 1998-07-23
CN1249031A (zh) 2000-03-29
JP2001518173A (ja) 2001-10-09
WO1998031972A1 (fr) 1998-07-23
FR2758616B1 (fr) 1999-04-09
US6141987A (en) 2000-11-07
KR20000070316A (ko) 2000-11-25

Similar Documents

Publication Publication Date Title
US7516619B2 (en) Efficient conversion of heat to useful energy
EP0057120B1 (fr) Procédé de chauffage d&#39;un local au moyen d&#39;une pompe à chaleur à compression fonctionnant avec un fluide mixte de travail
US6837056B2 (en) Turbine inlet air-cooling system and method
EP0041005A1 (fr) Procédé de production d&#39;énergie mécanique à partir de chaleur utilisant un mélange de fluides comme agent de travail
EP0162746B1 (fr) Nouveau procédé de production de froid et/ou de chaleur à absorption utilisant un mélange de plusieurs constitutants comme fluide de travail
FR2514875A1 (fr) Procede de chauffage et/ou de conditionnement thermique d&#39;un local au moyen d&#39;une pompe a chaleur a compression utilisant un melange specifique de fluides de travail
WO1998031972A1 (fr) Systeme frigorifique a absorption et melange de travail pour ce systeme
CA1170067A (fr) Procede de production de chaleur au moyen d&#39;une pompe a chaleur utilisant un melange specifique de fluides comme agent de travail
FR2472942A1 (fr) Installation d&#39;evaporation a plusieurs etages a systeme integre de recyclage de chaleur
EP0087540B1 (fr) Procédé de production de froid et/ou de chaleur mettant en oeuvre le dioxyde de carbone et un fluide condensable
EP3502577A1 (fr) Centrale de traitement de l&#39;air comprenant un dispositif à absorption et procédé associé
EP0081395B1 (fr) Fluide pour pompe à chaleur et procédé de chauffage et/ou de conditionnement thermique d&#39;un local au moyen d&#39;une pompe à chaleur à compression utilisant un fluide mixte de travail
EP0070756B1 (fr) Procédé de production de froid et/ou de chaleur mettant en oeuvre un cycle à absorption utilisant le dioxyde de carbone comme fluide de travail
FR2607142A1 (fr) Melange de fluides de travail utilisables dans les cycles thermodynamiques a compression comprenant du trifluoromethane et du chlorodifluoroethane
BE1013535A3 (fr) Dispositif de refroidissement combinant l&#39;utilisation d&#39;une boucle diphasique et d&#39;un systeme de refrigeration a absorption, notamment applicable pour le reffroidissement de l&#39;air d&#39;admission d&#39;un moteur a combustion interne.
EP3916337B1 (fr) Système de stockage thermique par mcp par contact direct d&#39;un solvant
FR3140399A1 (fr) Système de production d’énergie par cycle de Rankine organique et cycle à absorption intégrés
EP4092356A1 (fr) Machine à absorption comprenant des échangeurs à plaque en spirale
FR2508617A1 (fr) Procede et appareil pour extraire de l&#39;energie thermique d&#39;une substance
FR2505034A1 (fr) Machine frigorifique a compression comportant un circuit de solution et destinee en particulier a fonctionner comme pompe a chaleur
CA2630886A1 (fr) Methode et systeme de recuperation d&#39;energie par climatisation de l&#39;air
FR3029611A1 (fr) Systeme de liquefaction de gaz a machine a absorption et pompe a chaleur stirling
JPH1026009A (ja) 非共沸混合媒体サイクル発電システム
WO2023131628A1 (fr) Réactif pour machine thermique utilisant un sel sorbant
FR3152176A1 (fr) Transformateur de chaleur à absorption optimisé par éjecteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOIDE, ISABELLE

Inventor name: PREVOST, MICHEL

Inventor name: LE HALPERE, GILLES

Inventor name: HUOR, MENG, HENG

17Q First examination report despatched

Effective date: 20000626

RTI1 Title (correction)

Free format text: ABSORPTION REFRIGERATING SYSTEM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: ABSORPTION REFRIGERATING SYSTEM

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010930