EP0947777B1 - Replenishing and degassing device - Google Patents
Replenishing and degassing device Download PDFInfo
- Publication number
- EP0947777B1 EP0947777B1 EP99201037A EP99201037A EP0947777B1 EP 0947777 B1 EP0947777 B1 EP 0947777B1 EP 99201037 A EP99201037 A EP 99201037A EP 99201037 A EP99201037 A EP 99201037A EP 0947777 B1 EP0947777 B1 EP 0947777B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- replenishing
- pressure
- expansion
- compartment
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/10—Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
- F24D3/1083—Filling valves or arrangements for filling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/10—Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
- F24D3/1008—Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system expansion tanks
Definitions
- the invention relates to a system for replenishing and degassing circulation water of a central heating system.
- a device is generally referred to as a server and is known from the international patent application WO 95/20.132.
- expansion volume and replenishing volume are formed by separate bodies, enclosing expansion and replenishing volumes, ducts and components such as the pump and separate valves in said ducts between the bodies.
- the device according to the invention as defined in claim 1, which is referred to as a microserver, can advantageously take a small form and is primarily intended for application as inexpensive mass-produced article in central heating systems for dwellings.
- the invention can however also be used for larger systems.
- the expansion and replenishing volumes are formed as compartments of a unitary device, interconnections between the compartments via valves and other components can be provided in a simple and compact manner, and even preferably with mechanical components and valves in stead of electrically controlled distant connections to valves and components, whereby complex configurations and control systems of the prior art can, to a large extent, if not completely, be avoided.
- microserver according to the invention is particularly intended for mounting instead of the traditional (hanging) expansion tank.
- a suitable embodiment of the device according to the invention is characterized in claim 2.
- the expansion compartment is herein formed by the annular space round the cylindrical chamber.
- a very suitable embodiment of the pressure-controlled switch is herein obtained with the embodiment characterized in claim 4. Owing to the pressure-dependent up and downward movement of the plunger the base plate is mounted such that the contacts thereof are closed when a pressure corresponding to a determined minimal operating pressure prevails in the central heating system.
- Control of the replenishing valve is achieved in simple manner by applying the feature of claim 6.
- the replenishing valve At a normal pressure level in the central heating system the replenishing valve will be activated in the desired manner to compensate water loss through for instance degassing of the c.h. water. However, when the pressure is too low as a consequence of leakage or the like, the replenishing valve will not be activated.
- the microserver 1 In the manner of a usual expansion tank the microserver 1 is fixed with a connecting tube 6 to the expansion pipe of a c.h. system. A connection to the water supply system is made on replenishing valve 10. In addition, a connection to the sewer is possible by means of pipe 12.
- Microserver 1 is divided into two compartments: an expansion tank 2 and a replenishing buffer 3 in an inner pipe 4.
- the pressure in expansion tank 2 can vary from an underpressure to practically atmospheric.
- the pressure in replenishing buffer 3 is always atmospheric due to a direct connection with the outside air.
- connection 6 on the expansion pipe to the c.h. system the central heating water under pressure is guided to a distribution dish 5 in the bottom of tank 1.
- Distribution dish 5 connects the c.h. system to main control valve 7. From the connection onto the c.h. system to the underside of the plunger of the main control valve the pressure is substantially the same as the pressure in the c.h. system.
- the main control valve 7 regulates the feed of water out of the c.h. system to expansion tank 2, whereby the pressure in the c.h. system is reduced.
- the main control valve transfers a low pressure in the c.h. system to a mercury switch 26, whereafter a pump 28 is switched on to increase the pressure in the c.h. system.
- the pressure in the c.h. system can be adjusted to any desired value, depending of course on the embodiment of the microserver in terms of pump capacity and main control valve.
- the pressure can be increased (screwing in) or decreased (unscrewing).
- a tensioning bracket 15 is rotated upward or downward with the tensioner whereby the upper cover 16 on the valve housing is then moved in the same direction.
- the spring tension on the plunger in main control valve 7 is hereby increased or decreased.
- the different positions of the plunger are transferred via a connecting rod 17 to a base plate 24 on which are mounted two mercury switches 25, 26.
- the plunger will pull base plate 24 so far downward via connecting rod 17 that mercury switch 26 associated with pump 28 makes contact as shown in figure 3.
- Pump 28 then draws water out of expansion tank 2 via suction line 27 and pumps this water to the c.h. system via pressure line 29 which is connected to connecting tube 6.
- the pressure in the c.h. system is increased, whereby the plunger in main control valve 7 is moved upward from the lowest position.
- the base plate 24 with mercury switches 25, 26 is hereby tilted into the neutral position of fig. 2 and pump 28 is switched off.
- Connecting rod 17 can move with limited freedom in a slot in base plate 24.
- valve is controlled directly by water from the c.h. system, wherein the plunger is opened further and eventually completely as the pressure increases, as shown in figure 2, safety in respect of overpressure in the c.h. system is ensured. A separate safety valve is therefore unnecessary. It will be evident that when main control valve 7 is opened, wherein the plunger moves upward, the pressure in the c.h. system becomes lower as a result of water being taken from the c.h. system into the expansion tank until a new balance has been found at the set pressure.
- inlet valve 22 When the liquid level in the expansion tank falls to below a minimum level, inlet valve 22 is opened by float 23 as shown in figure 4. If there is too great an underpressure in expansion space 2, a small opening is first created by displacing a small pin valve 33 in inlet valve 22 whereby the underpressure is eliminated. The float will then certainly be able to open inlet valve 22.
- Figure 6 shows an embodiment variant of the inlet valve or replenishing valve 22.
- Figure 6A shows the closed situation and figure 6B the situation wherein float 23 has descended just so far that pin valve 33 leaves clear the opening in inlet valve plate 22. The pressure difference over inlet valve plate 22 becomes small due to this opening, so that float can press the whole valve plate further open into the situation shown in figure 6C.
- Float 23 is embodied in this embodiment as a vessel in which water remains, thereby increasing the downward force of the float for pressing open the valve.
- the moment at which the replenishing valve is switched on depends on the angle of inclination of mercury switch 25 mounted on base plate 24.
- the water level in the replenishing valve will be reduced the moment the pump is activated.
- a low pressure in the c.h. system is after all the reason to pump water out of the expansion tank to the c.h. system.
- the position of the plunger in main control valve 7 is herein low and mercury switch 26 is closed.
- the different angles of inclination or angular positions of mercury switches 25 and 26 on base plate 24 are chosen such that a correct pressure is first obtained in the c.h. system.
- Mercury switch 26 remains closed until the plunger in main control valve 7 has reached a suitable higher position, which is the case when the pressure in the c.h. system is equal to the set value.
- Base plate 24 will now take up a neutral position on the side of rod 18.
- the now altered angle of inclination causes pump 28 to switch off and replenishing valve 10 to open.
- the mercury switch 25 for the replenishing valve is now closed and mercury switch 26 for the pump is open.
- the water level in the expansion tank may be at the minimum level while the c.h. system is fully operational. This may occur due to initial water leakages in a c.h. system, this being dealt with at length in the above mentioned patent applications. Work may also have been carried out on a c.h. system wherein water has been lost. The water cools after the c.h. system has been switched off. The microserver must now compensate the reduction in the volume of water in the c.h. system, while a minimal amount of water is present. If the c.h. system is sufficiently sealed, sufficient filling water will always be available in the microserver to compensate volume reduction during cooling of water in this c.h. system.
- the microserver must be able in a critical situation to maintain the pressure in the c.h. system with at least the quantity of water equal to the volume between the minimum and basic level of the expansion tank increased by the quantity of water present in the replenishing buffer. If this minimal supply of this collective volume of water present in the microserver virtually equals the maximum quantity of expansion water of the c.h. system (volume difference of water at highest operating temperature and lowest temperature at switch-off), the microserver can permanently ensure a correct operating pressure in the c.h. system.
- Vacuum valve 8 ensures a lower limit of the underpressure in the expansion tank, for instance an underpressure of a maximum of 0.5 bar below atmospheric or 0.5 bar absolute. Too great an underpressure can among other things endanger proper operation of pump 28. There will never be too great an underpressure due to the air buffer in the top of the expansion tank. As the case may arise, the water level in the expansion tank may have been too high, whereby an excessive underpressure is created during pumping out. Air can then be admitted with vacuum valve 8. Conversely, a situation may occur wherein the supply of water from the central heating system is too great. Pressure valve 9 then prevents a pressure occurring in the expansion tank which is higher than about atmospheric pressure. In such disastrous situations pressure valve 9 could open at a pressure of for instance 0.1 bar above atmospheric to drain the excess water.
- the microserver has two atmospheric interrupters. Firstly, there is a safe height difference between sewer connection 12 and the opening of outlet pipe 11. In addition, the top part of the horizontal part of the sewer connection is partially removed (13). Finally, it is possible in the design to make an opening in the wall in inner pipe 4 between outlet pipe 11 and the connection to sewer 12, whereby a further atmospheric interrupter is obtained.
- the dimensioning of diameters, distances and openings must be in accordance with local water safety regulations.
- Figure 7 shows a schematic view of an alternative embodiment of a device according to the present invention. Corresponding components are designated with the same reference numerals as in figure 1.
- Main control valve 7 is under the control of a membrane and, in contrast to the embodiment of figure 1, is arranged at the top of device 36. At high pressure the membrane is pushed aside and water can flow through tube 6 out of the c.h. system into expansion tank 2.
- switch 37 in main control valve 7 is energized, whereby pump 28 is set into operation to pump water out of expansion tank 2 back into the c.h. system via suction line 27.
- a minimum fixed air volume remains present to preclude an excessive underpressure at a low level in expansion tank 2.
- the spring-loaded valve 42 will open when the (over)pressure becomes too great, whereby the excess expansion water can be drained to the sewer via replenishing buffer 3 and outlet 12.
- a float 35 Arranged in replenishing tank 3 is a float 35 with which the water level in the replenishing tank is controlled in a similar manner as in the embodiment of figure 1, although via a central control 41 comparable to base plate 24 with mercury switches 25 and 26 of figure 1.
- the control 41 opens replenishing valve 10 so as to increase the liquid level in replenishing buffer 3 via pipe 11. Too high a level in replenishing buffer 3 can also be prevented here using the outlet 12 to the sewer.
- float 23 Arranged at the bottom of expansion tank 2 under replenishing buffer 3 is another float 23 which is connected for mechanical tilting to an opening at the bottom of replenishing buffer 3 in order to operate a valve 42 which is held closed under spring force.
- valve 42 At a low water level in expansion tank 2 float 23 descends and valve 42 is pressed away so that water can flow out of replenishing buffer 3 into the expansion tank.
- float 35 When float 23 has once again risen so far that valve 42 is closed, float 35 once again comes into operation to increase the level in replenishing buffer 3 in co-action with control 41 and replenishing valve 10. This preferably takes place only when the c.h. system has been brought to pressure, since the actual deficiency of water in expansion tank 2 is only then apparent.
- a float 34 is further arranged which generates a signal as an indication that such a low level has been reached in expansion tank 2 that it is no longer possible to build up pressure in the c.h. system because too little water is present in the expansion tank for this purpose. This may arise for instance when a pipe fracture has occurred. In such a situation the control 41 is programmed to keep pump 28 inoperative and replenishing valve 10 is not opened.
- Expansion valve 7 comprises a membrane 43 which in figure 7 lies parallel to the connecting conduit 6 and the whole membrane 43 is located outside this conduit.
- Membrane 43 can thus take a large form.
- a large surface area of membrane 43 enhances conversion of the pressure prevailing in the c.h. system into a movement of the plunger with stop connected to the membrane by arm 45.
- Membrane 43 is also under the influence of spring 44 which controls the pressure characteristics of membrane 43.
- an arm 45 with a stop Arranged on membrane 43 is an arm 45 with a stop which, in the position of membrane 43 tending to the left in figure 7, closes a passage in connecting conduit 6. That is, when the pressure prevailing in the c.h. system is insufficiently high to cause membrane 43 in figure 7 to deflect to the right, the stop on arm 45 will close the passage in connecting conduit 6. In this way water from the c.h. system will then only reach expansion tank 2 when the pressure in the c.h. system is sufficiently high therefor.
- replenishing compartment other than centrally (as in the embodiments of the figures) relative to the expansion compartment, for instance laterally.
- the choice of the form of the two compartments can also be other than stated above.
- the diverse functions can also be realized in a manner other than purely mechanically, for instance with electrical pressure sensors and electrical or electromagnetic control of the diverse valves etc. in a therefore much more active manner.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
- Figure 1
- shows a partly broken away front view of a device according to the invention in a preferred embodiment;
- figures 2-5
- shows cross-sections corresponding with figure 3 of the device shown in figure 1 in four different operating positions;
- figure 6
- shows a side view of a float used in the device in three operating positions; and
- figure 7
- shows a schematic view of an alternative embodiment of a device according to the present invention.
Claims (9)
- System for replenishing and degassing circulation water of a central heating system, comprising: an expansion volume (2); a replenishing volume (3); a connecting line (6) debouching in the expansion volume (2) to connect the expansion volume with the central heating system; a pressure-controlled expansion valve (7) arranged between the connecting line (6) and the expansion volume (2) and opening at a high pressure in the connecting line (6); a pump (28) between the expansion volume and the connecting line, to be actuated at a low pressure in the connecting line (6); a level-controlled valve (42; 22, 23) arranged between the expansion volume (2) and-the replenishing volume (3) and opening at a low level in the expansion volume (2); and a level-controlled replenishing valve (10, 25) opening at a low level in the replenishing volume (3),
characterised in that
the expansion volume (2) and replenishing volume (3) are respectively formed as an expansion compartment and a replenishing compartment of a unitary device (1), wherein the device is embodied as a self-supporting unit (1, 36). - System as claimed in claim 1, wherein the expansion compartment (2) is formed in a substantially cylindrical vessel and the replenishing compartment (3) is formed in a substantially cylindrical chamber (4) accommodated in this vessel.
- System as claimed in claim 1 or 2, wherein the expansion valve (7) comprises a plunger displaceable counter to spring pressure and the pressure-controlled switch (26) is activated when the plunger is displaced through a predetermined distance.
- System as claimed in claim 3, wherein the plunger is disposed for vertical movement and is connected eccentrically (17) to a base plate (24) which is pivotable on a horizontal axis and bears an inclination-sensitive switch, such as a mercury switch (26), which forms the pressure-controlled switch activating the pump (28).
- System as claimed in claim 4, wherein a float (21) arranged in the replenishing compartment (3) is likewise connected eccentrically (18) to the base plate (24) such that in the case of a low level in the replenishing compartment (3) it urges the base plate (24) into a pivoted position opposite to the pivoted position associated with a low pressure in the connecting line (6).
- System as claimed in claim 5, wherein the base plate (24) bears a second inclination-sensitive switch, such as a mercury switch (25), with which the replenishing valve (10) can be activated.
- System as claimed in claim 1 or 2, wherein the expansion valve (7) comprises a membrane (43) which is suitable, in accordance with pressure prevailing in the c.h. system, to selectively open and close the connection between the central heating system and the expansion compartment.
- System as claimed in claim 7, wherein the pressure resistance of the membrane (43) is determined by a spring (44).
- System as claimed in claim 7 or 8, wherein the membrane (43) is connected to an arm (45) which extends toward a passage in the connecting line (6) and on which is arranged a stop closing the passage in a position of the membrane (43) corresponding with low pressure in the central heating system.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1008803 | 1998-04-03 | ||
NL1008803 | 1998-04-03 | ||
NL1010047A NL1010047C2 (en) | 1998-04-03 | 1998-09-09 | Microserver. |
NL1010047 | 1998-09-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0947777A1 EP0947777A1 (en) | 1999-10-06 |
EP0947777B1 true EP0947777B1 (en) | 2004-03-24 |
Family
ID=26642794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99201037A Expired - Lifetime EP0947777B1 (en) | 1998-04-03 | 1999-04-06 | Replenishing and degassing device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0947777B1 (en) |
AT (1) | ATE262661T1 (en) |
DE (1) | DE69915724T2 (en) |
NL (1) | NL1010047C2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1017198C1 (en) | 2001-01-26 | 2002-07-29 | Jan Henk Cnossen | Liquid heating. |
NL1036252C2 (en) * | 2008-04-24 | 2010-05-31 | Flamco Stag Gmbh | HEATING SYSTEM WITH EXPANSION DEVICE. |
NL2011333C2 (en) * | 2013-08-23 | 2015-02-24 | Flamco Bv | METHOD AND DEVICE DEVICE. |
EP3415825A1 (en) * | 2017-06-14 | 2018-12-19 | Honeywell Technologies Sarl | Heat circuit refilling device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5007583A (en) * | 1987-05-05 | 1991-04-16 | A. Schwarz & Co. | Device for accomodating expansion in fluid circulation systems |
AT399217B (en) * | 1991-11-22 | 1995-04-25 | Schwarz A & Co | DEVICE FOR TAKING EXPANSION IN LIQUID CIRCUIT SYSTEMS |
NL9400106A (en) | 1994-01-24 | 1995-09-01 | Cnossen Jan H | Device for central heating system with expansion vessel, pressure control, water loss supplementation, ventilation, registration and control. |
US5964215A (en) | 1995-04-21 | 1999-10-12 | Cnossen; Jan Henk | Heating installation with closed liquid circuit |
-
1998
- 1998-09-09 NL NL1010047A patent/NL1010047C2/en not_active IP Right Cessation
-
1999
- 1999-04-06 DE DE69915724T patent/DE69915724T2/en not_active Expired - Lifetime
- 1999-04-06 EP EP99201037A patent/EP0947777B1/en not_active Expired - Lifetime
- 1999-04-06 AT AT99201037T patent/ATE262661T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE69915724D1 (en) | 2004-04-29 |
ATE262661T1 (en) | 2004-04-15 |
DE69915724T2 (en) | 2005-01-27 |
EP0947777A1 (en) | 1999-10-06 |
NL1010047C2 (en) | 1999-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0787245B1 (en) | Electromechanical liquid level regulator | |
US4987746A (en) | Apparatus for transferring water from a container to a refrigerator ice maker | |
EP0947777B1 (en) | Replenishing and degassing device | |
HUP0303201A2 (en) | Easy-to-install, mechanically-operated automatic/manual device for controlling an outlet for water or any fluid | |
US5218986A (en) | Pneumatically pressurized water pumping apparatus | |
EP0321376B1 (en) | Apparatus for controlling start up and stop down of a hydraulic pump | |
EP1363527B1 (en) | A water level indicating device for a dishwasher | |
US6568507B2 (en) | Gas and oil suction system and method | |
JP3331391B2 (en) | Liquid pumping device | |
US3902028A (en) | Pressure responsive switch | |
EP1239231B1 (en) | System for temperature treatment with transfer medium | |
US5964215A (en) | Heating installation with closed liquid circuit | |
US7648345B2 (en) | Liquid pump with multiple chambers and control apparatus | |
US6202676B1 (en) | Magnetic liquid control for boiler feedwater receivers | |
JPH1030792A (en) | Liquid force feed device | |
CA3119719A1 (en) | Vacuum sewage system with sump breather apparatus | |
JP2000054999A (en) | Liquid force-feed device | |
JPH11294398A (en) | Pressure feeding device of liquid | |
US20240044517A1 (en) | Expansion assembly and hot water tank | |
JP3445851B2 (en) | Liquid pumping device | |
JPH10288298A (en) | Liquid force-feeding device | |
WO1993021465A1 (en) | Valved outlet | |
JP3414538B2 (en) | Liquid pumping device | |
GB2115911A (en) | Boiler heated water system | |
JPH10288299A (en) | Liquid force feeding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000406 |
|
AKX | Designation fees paid |
Free format text: AT BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20030310 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FLAMCO B.V. |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CNOSSEN, JAN HENK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CNOSSEN, JAN HENK |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040324 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040324 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040324 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040324 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69915724 Country of ref document: DE Date of ref document: 20040429 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040624 |
|
EN | Fr: translation not filed | ||
26N | No opposition filed |
Effective date: 20041228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150430 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20150430 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69915724 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 |