EP0938034A1 - Non-sonic alarm device - Google Patents
Non-sonic alarm device Download PDFInfo
- Publication number
- EP0938034A1 EP0938034A1 EP98103009A EP98103009A EP0938034A1 EP 0938034 A1 EP0938034 A1 EP 0938034A1 EP 98103009 A EP98103009 A EP 98103009A EP 98103009 A EP98103009 A EP 98103009A EP 0938034 A1 EP0938034 A1 EP 0938034A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- oscillation
- variable
- assembly
- counter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G13/00—Producing acoustic time signals
- G04G13/02—Producing acoustic time signals at preselected times, e.g. alarm clocks
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B6/00—Tactile signalling systems, e.g. personal calling systems
Definitions
- the present invention relates to a device non-audible alarm, intended to equip a unit brought to the body contact, such as a watch, cell phone or a pager.
- Tactile means of information transmission offer an interesting alternative for this: is to vibrate a unit that the person wears close to the body, such as a watch for example, so to locally stimulate its epidermis to indicate a given time or the occurrence of an event (arrival of a message, a call, an appointment, etc.)
- Vibration type devices unbalance mounted on a rotor are known to the man of the job.
- the unbalance rotates at a speed of a few tens of revolutions per second thanks to an electric motor powered with a power of a few tens of milliwatts and switched on at the moment when the message must be perceived by the carrier.
- European patent application EP 0 625 738 in the name of the Applicant describes a vibrating device of a unit such as a watch.
- This device includes an electromagnetically coupled coil with a ground mobile.
- the conditions to wear induce variations of the order of 5% of the frequency clean of the whole, as well as a variation of the energy dissipated in the carrier.
- the object of the present invention is to remedy these disadvantages.
- a non-audible alarm device intended to equip a body-worn unit such as a timepiece or a mobile phone, including a case, a ground mobile inside this case intended for him transmit vibrations, a coupled coil electromagnetically to said moving mass to make it oscillate, and an excitation circuit of said coil,
- this device being characterized in that it comprises also means for measuring the instantaneous frequency of oscillation of the moving coil-earth assembly during the current oscillation, as well as means for generate during the following oscillation a series of excitation pulses from said coil, the characteristics are a function of the measurement of said instantaneous frequency of oscillation.
- the device according to the invention comprises structural members analogous to those described in the patent application European EP 0 625 738 mentioned above. It thus includes a housing (not shown), a moving mass inside of this case intended to transmit vibrations to it (not shown), and a coupled coil L electromagnetically to this moving mass.
- This coil is shown schematically on the figure 1. Its first B1 and second B2 terminals are likely to be brought to zero voltage or to a voltage VBB according to the states of four transistors of power Q1, Q2, Q3, Q4.
- transistors are controlled by a logic of LC command typically comprising first U1A and second U1B inverters, as well as first U2A and second U2B logic gates "OR".
- the first B1 and second B2 terminals of the coil L are also connected to a measuring circuit comprising a differential amplifier U3 and first U4 and second U5 comparators.
- the amplifier U3 restores the induced voltage UIND measured between the coil terminals (see curve 2-1 on Figure 2).
- the first comparator U4 compares the induced voltage UIND to 0. It provides an output signal COMP1, which is worth 1 when the induced voltage UIND is positive, and which is worth 0 when this voltage is negative (see curve 2-2 on Figure 2).
- the second comparator U5 compares the induced voltage UIND at a reference voltage REFA. It provides a signal COMP2 output, which is equal to 1 when the induced voltage UIND is greater than REFA, and which is 0 in the case otherwise (see curve 2-3 in Figure 2).
- excitation and measurement circuits described above interface with a unit likely to run a computer program, such than a microprocessor or a microcontroller M.
- the main program tests the ALARM signal (3-3), which is 1 when the device according to the invention is activated, and 0 otherwise. If ALARM is 0, the program principal repeats the test; if ALARM is 1, the main program executes the BALANCE subroutine (3-4) which is detailed in Figure 4.
- the BALANCE subroutine begins by setting the signal SHORT at 1 (4-1), the two signals DIAG1 and DIAG2 having also been set to 0 during the step initialization (3-2). Referring to the table of truth above, we see that we put the coil L short circuit, which has the effect of suffocating a possible movement of the moving coil-earth assembly.
- T2 and T3 so that their sum is substantially equal to a nominal half-period of oscillation of the moving coil-earth assembly.
- this set has a nominal natural frequency of 166 Hz, i.e. a nominal natural period of 6 ms
- the PUL variable is tested (4-17). As long as she is not equal to 1, the test is repeated. When she becomes equal to 1, in this case when UIND passes from a negative value to a positive value for the first time after the first oscillation period, the BALANCE subroutine resets the PUL variable to 0 (4-18), then return to the main program (4-19).
- the BALANCE subroutine has essential function of putting the coil-ground assembly mobile in free oscillation.
- the main program After execution of the BALANCE sub-program, the main program again tests the ALARM signal (3-5). If ALARM is reset to 0, i.e. if there is no longer instead of activating the device according to the invention, the program sets signals DIAG1 (3-6) and DIAG2 (3-7) to 0, and sets the signal SHORT (3-8) to 1. We thus suffocate oscillations of the moving coil-earth assembly.
- the main program waits for the appearance of a TIC signal (3-6 and 3-7) from of a time base.
- this time base is quartz type, and it can also be used to control other functions related to those of the device according to the invention.
- the time base will allow you to control a time display using the frequency divider usual.
- the internal variable PHASE is worth 1: indeed, it was set to this value by the subroutine BALANCE (see above). Under these conditions, the subroutine SELPHASE starts by launching the subroutine PHASE1 (see Figure 6).
- the PHASE1 subroutine begins by testing the internal variable PUL (6-1). If PULL is 0, we increment the internal variable CPT1 of a unit (6-2), then we returns to the main program (6-3). If PUL is 1, we launches the INIPER subroutine (6-4).
- VAR1 (7-1) and VAR2 (7-2) are defined as being worth a quarter and a eighth of the content of CPT1; VAR3 is equal to the sum of VAR1 and VAR2 (7-3); VAR4 is equal to VAR5 (7-4); CPT1 is set to 0 (7-5); CPT2 is equal to VAR1 (7-6); and PHASE is set to 2 (7-7). Then the subroutine INIPER returns to the main program (7-8).
- the sub-program PHASE1 allows you to totalize in the variable CPT1 the duration separating two passages consecutive of the PUL variable from 0 to 1, this duration being expressed in base units of time. We thus measure the period of the first free oscillation of the set moving coil-mass, i.e. its own period instantaneous oscillation.
- the INIPER sub-program which is launched after this instant clean period of oscillation has been calculated, used to define the characteristics of pulses that are going to be sent subsequently to the moving coil-earth assembly so as to bring it into forced oscillation. So, as we will see, VAR1 will determine the phase of these pulses, VAR4 their width, and VAR2 and VAR3 will be used to launch a procedure for safety in the event of a sudden disturbance inflicted on the unit worn close to the body fitted with the device according to the invention.
- the variable PHASE is 2. Therefore, the SELPHASE subroutine launches the PHASE2 sub-program.
- the subroutine PHASE2 begins by incrementing the variable CPT1 by one unit (8-1), then by decrementing the variable CPT2 of a unit (8-2). Then, we test the variable CPT2 (8-3). If it is different from the variable VAR4, we compare to 0 (8-4). If it is different from 0, we returns to the main program (8-5). If it is equal to 0, we put the variable PHASE at 3 (8-6) before returning in the main program (8-5).
- variable CPT2 is equal to the variable VAR4, we sets the DIAG1 signal to 1 (8-7) before returning to the main program (8-5).
- the time taken by the variable CPT2 to go from the value VAR1 at 0 is equal to a quarter of the duration which elapsed during execution of the subroutine PHASE1, i.e. a quarter of the proper period instantaneous oscillation of the coil-ground assembly mobile.
- the subroutine SELPHASE launches the PHASE3 sub-program.
- the subroutine PHASE3 begins by incrementing the variable CPT1 by a unit (9-1), then increment the variable CPT2 of a unit (9-2). Then, we test the variable CPT2 (9-3). If it is different from the variable VAR4, we compare to variable VAR1 (9-4). If it is different from VAR1, we return to the main program (9-5). If she is equal to VAR1, we put the variable PHASE at 4 (9-6) before return to the main program (9-5).
- variable CPT2 is equal to the variable VAR4, we sets the DIAG1 signal to 0 (9-7) before returning to the main program (9-5).
- the time taken by the variable CPT2 to iron from the value 0 to VAR1 is also equal to a quarter of instantaneous clean period of oscillation of the assembly moving coil-ground.
- VAR1 determines the instants 2-8 and 2-11 when the variable CPT2 is equal to the variable VAR4, and thereby the time position of the impulse 2-7 compared to the oscillation of the whole moving coil-ground.
- variable PHASE is 4. Therefore, the subroutine SELPHASE launches the PHASE4 sub-program.
- the subroutine PHASE4 starts by incrementing the variable CPT1 by one unit (10-1), then by decrementing the variable CPT2 of a unit (10-2). Then, we test the variable CPT2 (10-3). If it is different from the variable VAR4, we compare to 0 (10-4). If it is different from 0, we returns to the main program (10-5). If it is equal at 0, we put the variable PHASE at 5 (10-6) before return to the main program (10-5).
- variable CPT2 is equal to the variable VAR4
- FIG. 11 represents a first variant of the LEVEL subroutine.
- COMP2 11-1
- this signal is not worth 1, i.e. if the induced voltage UIND across the coil L is lower than the reference value REFA, we put the internal variable VAR5 to the value MAX (11-2), then we returns to the PHASE4 subroutine (11-4). If this signal is equal to 1, that is to say if UIND is greater than REFA, we put the variable VAR5 to the value MIN (11-3), then we return in the PHASE4 sub-program (11-4).
- Figure 12 shows a second variant of the LEVEL subroutine.
- COMP2 (12-1). If this signal is not worth 1, we compare the variable VAR5 at MAX value (12-2). If VAR5 is not equal to MAX, we increment it by one unit (12-3), then we returns to the PHASE4 subroutine (12-4). If VAR5 is equal to MAX, we return directly to the subroutine PHASE4 (12-4).
- VAR5 If COMP2 is equal to 1, we compare the variable VAR5 to the MIN value (12-5). If VAR5 is not equal to MIN, it is decrements by one (12-6), then returns to the subroutine PHASE4 (12-4). If VAR5 is equal to MIN, we returns directly to the PHASE4 subroutine (12-4).
- the sub-program PHASE4 sends a negative pulse (2-13) to a instant (2-14) preceding by a base unit of time the end (2-15) of the third quarter of the oscillation period of the moving coil-earth assembly.
- the role of the LEVEL sub-program is to regulate the amplitude of the oscillation of this set.
- VAR5 is in sets the value assigned to VAR4 during initialization variables that takes place at the start of each new oscillation period of the moving coil-earth assembly.
- VAR4 value determines the start and end times pulses sent to this set, and therefore their duration. Referring to Figure 2 (see 2-8 and 2-11), we understands that this duration increases when VAR4 increases, and vice versa.
- the amplitude of the oscillations of the whole moving coil-mass directly depends on the duration of pulses sent to it: the longer this duration the larger, the greater this amplitude, and Conversely.
- the two variants of the subroutine LEVEL allow, by playing on the value of the variable VAR5, to regulate the amplitude of the oscillations of the moving coil-earth assembly.
- This regulation can be done either binary, with a high MAX level and a low level MIN (variant of FIG. 11), either of gradually, with intermediate values between these two levels (variant of the figure 12).
- the SELPHASE subroutine launches the PHASE5 sub-program.
- the subroutine PHASE5 starts by incrementing the variable CPT1 by a unit (13-1), then increment the variable CPT2 of a unit (13-2). Then, we test the variable CPT2 (13-3). If it is different from the variable VAR4, we compare to variable VAR2 (13-4). If it is higher to VAR2, we compare it to VAR3 (13-5). If she is different from VAR3, we test the variable PUL (13-6). Yes PUL is not worth 1, we return to the main program (13-7). If PUL is 1, the INIPER subroutine is executed (13-8) before returning to the main program (13-7).
- variable CPT2 is greater than the variable VAR2, set the PUL variable to 0 (13-10), then return in the main program (13-7).
- variable CPT2 is equal to the variable VAR4, we set signal DIAG2 to 0 (13-11), then return to main program (13-7).
- the sub-program PHASE5 allows to interrupt the negative pulse (2-13) sent to the moving coil-earth assembly during the phase preceding at an instant (2-16) succeeding by a unit of time base the start (2-15) of its fourth quarter oscillation period.
- the two variables VAR2 and VAR3 define first (2-18) and second (2-19) moments symmetrically framing the moment (2-20) when the variable CPT2 reaches the value VAR1, i.e., theoretically, the instant the fourth quarter of the period ends the forced oscillation of the moving coil-earth assembly and where PUL returns to 1.
- the subject of successive tests of the PHASE5 sub-program is to locate the moment when PUL goes back to 1 compared to instants 2-18 and 2-19.
- the INIPER subroutine is executed, and calculates the parameters of the following period, notably from the totalized duration in the variable CPT1.
- the PHASE2 sub-program succeeds new to sub-program PHASE5, and the cycle repeats similar to itself, adapting from period to period its parameters at the oscillation frequency of the whole moving coil-mass, as well as the amplitude of this oscillation.
- the first procedure which occurs at the start of activation of the device according to the invention or during a brutal disturbance, allows to adapt the frequency and the time position of the pulses as a function of characteristics of the free oscillation of the assembly moving coil-ground.
- the second procedure which occurs during the setting in forced oscillation this set, allows to correct the frequency and phase of the pulses at the start of each new period.
- the third procedure which also takes place during the forced oscillation of the assembly moving coil-mass, allows to adjust its amplitude oscillation.
- the device according to the invention is stopped as soon as the ALARM signal goes to 0 in the program main.
- the signals DIAG1 and DIAG2 are then set to 0 and the SHORT signal is set to 1, quickly suffocating the oscillation of the moving coil-earth assembly.
- the main program then runs in a waiting loop waiting for a new passage of the ALARM signal to 1.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Gyroscopes (AREA)
Abstract
Description
La présente invention est relative à un dispositif d'alarme non sonore, destiné à équiper une unité portée au contact du corps, tel qu'une montre, un téléphone portable ou un récepteur d'appel ("pager").The present invention relates to a device non-audible alarm, intended to equip a unit brought to the body contact, such as a watch, cell phone or a pager.
Dans de nombreuses situations, il est utile de pouvoir transmettre une information à une personne autrement que par des moyens sonores ou visuels. C'est le cas notamment lorsque l'on souhaite prévenir de façon discrète une personne qui se trouve au milieu d'une assemblée.In many situations it is useful to ability to transmit information to a person other than by audio or visual means. It's the especially when you want to prevent so discreet a person who is in the middle of a Assembly.
Les moyens tactiles de transmission de l'information offrent à cet effet une alternative intéressante : il s'agit de mettre en vibration une unité que la personne porte près du corps, telle qu'une montre par exemple, afin de stimuler localement son épiderme pour lui indiquer une heure donnée ou l'occurrence d'un événement (arrivée d'un message, d'un appel, d'un rendez-vous, etc.)Tactile means of information transmission offer an interesting alternative for this: is to vibrate a unit that the person wears close to the body, such as a watch for example, so to locally stimulate its epidermis to indicate a given time or the occurrence of an event (arrival of a message, a call, an appointment, etc.)
Des dispositifs de mise en vibration du type à balourd monté sur un rotor sont connus de l'homme du métier. Dans ces dispositifs, typiquement, le balourd tourne à une vitesse de quelques dizaines de tours par seconde grâce à un moteur électrique alimenté avec un puissance de quelques dizaines de milliwatts et enclenché à l'instant où le message doit être perçu par le porteur.Vibration type devices unbalance mounted on a rotor are known to the man of the job. In these devices, typically, the unbalance rotates at a speed of a few tens of revolutions per second thanks to an electric motor powered with a power of a few tens of milliwatts and switched on at the moment when the message must be perceived by the carrier.
Ces dispositifs présentent comme inconvénient principal de consommer beaucoup d'énergie, ce qui est peu compatible avec des exigences de miniaturisation des piles telles qu'on peut les rencontrer dans le domaine de l'horlogerie.These devices have the disadvantage main to consume a lot of energy, which is little compatible with battery miniaturization requirements as we can find them in the field of watchmaking.
La demande de brevet européen EP 0 625 738 au nom de
la Demanderesse décrit un dispositif de mise en vibration
d'une unité telle qu'une montre. Ce dispositif comprend
une bobine couplée électromagnétiquement avec une masse
mobile. European
Cette demande de brevet ne décrit pas les caractéristiques des moyens d'excitation de la bobine. Cela dit, l'homme du métier sait qu'il faut appliquer à la bobine des impulsions dont la fréquence est égale à la fréquence propre d'oscillation de l'ensemble bobine-masse mobile pour obtenir une amplitude de vibration maximale pour une quantité d'énergie fournie donnée.This patent application does not describe the characteristics of the coil excitation means. That said, the skilled person knows that it is necessary to apply to the pulse coil whose frequency is equal to the natural frequency of oscillation of the coil-mass assembly mobile to obtain maximum amplitude of vibration for a given amount of energy supplied.
Or, il se trouve qu'en pratique cette fréquence propre est difficile à déterminer rigoureusement. Tout d'abord, elle varie d'un ensemble de bobine-masse mobile à l'autre en raison des tolérances de fabrication, qui sont de l'ordre de 15 %.Now it turns out that in practice this frequency clean is difficult to determine rigorously. All first, it varies from a moving coil-to-ground assembly to the other because of the manufacturing tolerances, which are around 15%.
Ensuite, elle varie en fonction de la manière dont cet ensemble est porté, et fait plus ou moins corps avec le porteur. Typiquement, les conditions de porter induisent des variations de l'ordre de 5 % de la fréquence propre de l'ensemble, ainsi qu'une variation de l'énergie dissipiée dans le porteur.Then it varies depending on how this set is worn, and more or less integrates with the wearer. Typically, the conditions to wear induce variations of the order of 5% of the frequency clean of the whole, as well as a variation of the energy dissipated in the carrier.
Ces variations diminuent le rendement des moyens d'excitation de bobine conçus pour fonctionner à fréquence fixe, et il en résulte une importante déperdition d'énergie.These variations decrease the return on resources coil excitation designed to operate at frequency fixed, resulting in significant loss of energy.
La présente invention a pour but de remédier à ces inconvénients.The object of the present invention is to remedy these disadvantages.
On atteint ce but de l'invention, ainsi que d'autres qui apparaítront à la lecture de ce qui va suivre, avec un dispositif d'alarme non sonore, destiné à équiper une unité portée près du corps tel qu'une pièce d'horlogerie ou un téléphone portable, comprenant un boítier, une masse mobile à l'intérieur de ce boítier destinée à lui transmettre des vibrations, une bobine couplée électromagnétiquement à ladite masse mobile pour la faire osciller, et un circuit d'excitation de ladite bobine, ce dispositif étant caractérisé en ce qu'il comprend également des moyens pour mesurer la fréquence instantanée d'oscillation de l'ensemble bobine-masse mobile pendant l'oscillation en cours, ainsi que des moyens pour engendrer lors de l'oscillation suivante une série d'impulsions d'excitation de ladite bobine dont les caractéristiques sont fonction de la mesure de ladite fréquence instantanée d'oscillation.This object of the invention is achieved, as well as other which will appear on reading the following, with a non-audible alarm device, intended to equip a body-worn unit such as a timepiece or a mobile phone, including a case, a ground mobile inside this case intended for him transmit vibrations, a coupled coil electromagnetically to said moving mass to make it oscillate, and an excitation circuit of said coil, this device being characterized in that it comprises also means for measuring the instantaneous frequency of oscillation of the moving coil-earth assembly during the current oscillation, as well as means for generate during the following oscillation a series of excitation pulses from said coil, the characteristics are a function of the measurement of said instantaneous frequency of oscillation.
Grâce à ces caractéristiques, il devient possible de réaliser un dispositif d'alarme non sonore nécessitant peu d'énergie et fonctionnant avec un bon rendement, ce qui permet d'envisager de l'utiliser en particulier dans des pièces d'horlogerie de petites dimensions, telles que des montres.Thanks to these characteristics, it becomes possible to make a non-audible alarm device requiring little of energy and operating with good efficiency, which allows to consider using it in particular in small timepieces, such as watches.
D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description qui va suivre et des dessins annexés donnés uniquement à titre d'exemple, et dans lesquels :
- la figure 1 représente le circuit d'excitation de la bobine du dispositif selon l'invention, ainsi qu'un circuit de mesure connecté à ses bornes;
- la figure 2 représente le diagramme du principe de fonctionnement du dispositif selon l'invention; et
- les figures 3 à 13 représentent les organigrammes d'un programme informatique destiné à fonctionner en interface avec les circuits d'excitation et de mesure de la bobine, en accord avec le principe de fonctionnement indiqué par le diagramme de la figure 2. La figure 3 représente l'organigramme du programme principal, et les figures 4 à 13 représentent les organigrammes de sous-programmes rattachés directement ou indirectement au programme principal.
- FIG. 1 represents the excitation circuit of the coil of the device according to the invention, as well as a measurement circuit connected to its terminals;
- FIG. 2 represents the diagram of the operating principle of the device according to the invention; and
- FIGS. 3 to 13 represent the flowcharts of a computer program intended to operate in interface with the excitation and measurement circuits of the coil, in accordance with the operating principle indicated by the diagram in FIG. 2. FIG. 3 represents the flowchart of the main program, and FIGS. 4 to 13 represent the flowcharts of subprograms attached directly or indirectly to the main program.
Sur ces figures, des références numériques identiques représentent des organes ou éléments identiques ou analogues.In these figures, identical reference numbers represent identical organs or elements or analogues.
Dans un mode de réalisation préféré, le dispositif
selon l'invention comporte des organes de structure
analogues à ceux décrits dans la demande de brevet
européen EP 0 625 738 susmentionnée. Il comporte ainsi un
boítier (non représenté), une masse mobile à l'intérieur
de ce boítier destinée à lui transmettre des vibrations
(non représentée), et une bobine L couplée
électromagnétiquement à cette masse mobile. In a preferred embodiment, the device
according to the invention comprises structural members
analogous to those described in the patent application
Cette bobine est représentée schématiquement sur la figure 1. Ses première B1 et deuxième B2 bornes sont susceptibles d'être portées à une tension nulle ou à une tension VBB selon les états de quatre transistors de puissance Q1, Q2, Q3, Q4.This coil is shown schematically on the figure 1. Its first B1 and second B2 terminals are likely to be brought to zero voltage or to a voltage VBB according to the states of four transistors of power Q1, Q2, Q3, Q4.
Ces transistors sont commandés par une logique de commande LC comportant, typiquement, des premier U1A et deuxième U1B inverseurs, ainsi que des première U2A et deuxième U2B portes logiques "OU".These transistors are controlled by a logic of LC command typically comprising first U1A and second U1B inverters, as well as first U2A and second U2B logic gates "OR".
En fonction de premier DIAG1, deuxième DIAG2 et
troisième SHORT signaux d'entrée appliqués à la logique de
commande LC, les transistors de puissance Q1, Q2, Q3, Q4
et la bobine L occupent les états indiqués par la table de
vérité suivante :
Les première B1 et deuxième B2 bornes de la bobine L sont par ailleurs reliées à un circuit de mesure comportant un amplificateur différentiel U3 et des premier U4 et deuxième U5 comparateurs.The first B1 and second B2 terminals of the coil L are also connected to a measuring circuit comprising a differential amplifier U3 and first U4 and second U5 comparators.
L'amplificateur U3 restitue la tension induite UIND mesurée entre les bornes de la bobine (voir courbe 2-1 sur la figure 2).The amplifier U3 restores the induced voltage UIND measured between the coil terminals (see curve 2-1 on Figure 2).
Le premier comparateur U4 compare la tension induite UIND à 0. Il fournit un signal de sortie COMP1, qui vaut 1 lorsque la tension induite UIND est positive, et qui vaut 0 lorsque cette tension est négative (voir courbe 2-2 sur la figure 2).The first comparator U4 compares the induced voltage UIND to 0. It provides an output signal COMP1, which is worth 1 when the induced voltage UIND is positive, and which is worth 0 when this voltage is negative (see curve 2-2 on Figure 2).
Le deuxième comparateur U5 compare la tension induite UIND à une tension de référence REFA. Il fournit un signal de sortie COMP2, qui vaut 1 lorsque la tension induite UIND est supérieure à REFA, et qui vaut 0 dans le cas contraire (voir courbe 2-3 sur la figure 2).The second comparator U5 compares the induced voltage UIND at a reference voltage REFA. It provides a signal COMP2 output, which is equal to 1 when the induced voltage UIND is greater than REFA, and which is 0 in the case otherwise (see curve 2-3 in Figure 2).
Les circuits d'excitation et de mesure décrits ci-dessus fonctionnent en interface avec une unité susceptible d'exécuter un programme informatique, telle qu'un microprocesseur ou un microcontrôleur M.The excitation and measurement circuits described above interface with a unit likely to run a computer program, such than a microprocessor or a microcontroller M.
L'objet de ce qui suit est la description d'un tel programme informatique permettant, à partir d'un signal ALARM d'activation du dispositif selon l'invention et des signaux de sortie COMP1 et COMP2, de commander dans le temps les signaux d'entrée DIAG1, DIAG2 et SHORT de manière à faire osciller l'ensemble bobine-masse mobile en fournissant le minimum d'énergie.The object of what follows is the description of such computer program allowing, from a signal ALARM for activating the device according to the invention and COMP1 and COMP2 output signals, to control in the time the input signals DIAG1, DIAG2 and SHORT from so as to oscillate the moving coil-earth assembly in providing the minimum amount of energy.
Dans la description qui suit, les renvois aux différentes opérations du programme sont indiqués entre parenthèses.In the following description, the references to different program operations are indicated between parentheses.
Cette description sera utilement éclairée par le diagramme de la figure 2. Il y sera donc fait référence aussi souvent que possible.This description will be usefully clarified by the diagram of figure 2. Reference will therefore be made to it as often as possible.
Comme on peut le voir sur la figure 3, préalablement à toute opération, le programme principal (3-1) débute par une initialisation de ses variables internes (3-2).As can be seen in Figure 3, previously for any operation, the main program (3-1) begins with an initialization of its internal variables (3-2).
Ensuite, le programme principal teste le signal ALARM (3-3), qui vaut 1 lorsque te dispositif selon l'invention est activé, et 0 sinon. Si ALARM vaut 0, le programme principal recommence le test ; si ALARM vaut 1, le programme principal exécute le sous-programme BALANCE (3-4) qui est détaillé sur la figure 4.Then the main program tests the ALARM signal (3-3), which is 1 when the device according to the invention is activated, and 0 otherwise. If ALARM is 0, the program principal repeats the test; if ALARM is 1, the main program executes the BALANCE subroutine (3-4) which is detailed in Figure 4.
Le sous-programme BALANCE commence par mettre le signal SHORT à 1 (4-1), les deux signaux DIAG1 et DIAG2 ayant par ailleurs été mis à 0 lors de l'étape d'initialisation (3-2). En se référant à la table de vérité ci-dessus, on voit que l'on met ainsi la bobine L en court-circuit, ce qui a pour effet d'étouffer un éventuel mouvement de l'ensemble bobine-masse mobile.The BALANCE subroutine begins by setting the signal SHORT at 1 (4-1), the two signals DIAG1 and DIAG2 having also been set to 0 during the step initialization (3-2). Referring to the table of truth above, we see that we put the coil L short circuit, which has the effect of suffocating a possible movement of the moving coil-earth assembly.
On attend ensuite pendant une durée T1 (4-2) suffisante pour que l'ensemble soit parvenu au repos, puis on met le signal SHORT à 0 (4-3) : l'ensemble bobine-masse mobile est alors prêt à osciller librement.We then wait for a period T1 (4-2) sufficient for the assembly to come to rest, then the SHORT signal is set to 0 (4-3): the coil-ground assembly mobile is then ready to oscillate freely.
Ensuite, on met le signal DIAG2 à 1 (4-5). Au bout d'une durée T2 (4-6), on remet ce signal à 0 (4-7). On envoie de la sorte une première impulsion - dite positive par convention - à l'ensemble bobine-masse mobile.Then, we put the signal DIAG2 to 1 (4-5). At the end with a duration T2 (4-6), this signal is reset to 0 (4-7). We thus sends a first impulse - called positive by convention - to the moving coil-earth assembly.
Au bout d'une durée T3 (4-8), on met le signal DIAG1 à 1 (4-9). Au bout de la durée T2 (4-10), on remet ce signal à 0 (4-11). On envoie de la sorte une deuxième impulsion à l'ensemble bobine-masse mobile, de signe opposé à celui de la première impulsion.At the end of a duration T3 (4-8), we put the signal DIAG1 to 1 (4-9). At the end of the T2 period (4-10), we reset this signal at 0 (4-11). So we send a second impulse to the moving coil-earth assembly, of sign opposite to that of the first impulse.
On choisit T2 et T3 de manière que leur somme soit sensiblement égale à une demi-période propre nominale d'oscillation de l'ensemble bobine-masse mobile. Par exemple, dans le cas typique où cet ensemble a une fréquence propre nominale de 166 Hz, c'est à dire une période propre nominale de 6 ms, on peut choisir T3 = 2 ms et T2 = 1 ms.We choose T2 and T3 so that their sum is substantially equal to a nominal half-period of oscillation of the moving coil-earth assembly. Through example, in the typical case where this set has a nominal natural frequency of 166 Hz, i.e. a nominal natural period of 6 ms, you can choose T3 = 2 ms and T2 = 1 ms.
Après l'envoi de ces deux impulsions, on attend à nouveau pendant la durée T3 (4-12). Puis on initialise une variable interne VAR5 en lui donnant une certaine valeur MAX (4-13). Cette variable interne va permettre de définir la largeur des impulsions qui vont être ultérieurement envoyées à l'ensemble bobine-masse mobile.After sending these two pulses, we expect new during duration T3 (4-12). Then we initialize a internal variable VAR5 by giving it a certain value MAX (4-13). This internal variable will make it possible to define the width of the pulses which will be later sent to the moving coil-earth assembly.
Ensuite, on met une variable interne PHASE à 1 (4-14). Cette variable interne va permettre de sélectionner des sous-programmes.Then, we put an internal variable PHASE at 1 (4-14). This internal variable will allow you to select subroutines.
Ensuite, on met une variable interne CPT1 à 0 (4-15). Cette variable interne va jouer un rôle de compteur.Then, we put an internal variable CPT1 at 0 (4-15). This internal variable will play a counter role.
Ensuite, on met une variable interne PUL à 0 (4-16). Cette variable interne ne passe à 1 que lorsque le signal COMP1 passe à 1, c'est à dire à l'instant où la tension induite UIND aux bornes de la bobine L devient positive (voir figure 2 (2-4)).Then, we put an internal variable PUL at 0 (4-16). This internal variable only goes to 1 when the signal COMP1 goes to 1, i.e. at the moment when the voltage induced UIND across coil L becomes positive (see figure 2 (2-4)).
La variable PUL est testée (4-17). Tant qu'elle n'est pas égale à 1, le test est répété. Lorsque qu'elle devient égale à 1, c'est à dire en l'occurrence lorsqu'UIND passe d'une valeur négative à une valeur positive pour la première fois après la première période d'oscillation, le sous-programme BALANCE remet la variable PUL à 0 (4-18), puis retourne au programme principal (4-19).The PUL variable is tested (4-17). As long as she is not equal to 1, the test is repeated. When she becomes equal to 1, in this case when UIND passes from a negative value to a positive value for the first time after the first oscillation period, the BALANCE subroutine resets the PUL variable to 0 (4-18), then return to the main program (4-19).
On comprend à présent que le sous-programme BALANCE a pour fonction essentielle de mettre l'ensemble bobine-masse mobile en oscillation libre. En envoyant deux impulsions à un intervalle de temps sensiblement égal à la demi-période propre nominale de l'ensemble bobine-masse mobile, on est sûr d'obtenir une oscillation libre d'amplitude convenable.We now understand that the BALANCE subroutine has essential function of putting the coil-ground assembly mobile in free oscillation. By sending two pulses at a time interval substantially equal to the nominal own half-period of the coil-earth assembly mobile, we are sure to get a free oscillation of suitable amplitude.
Après exécution du sous-programme BALANCE, le programme principal teste à nouveau le signal ALARM (3-5). Si ALARM est repassé à 0, c'est à dire s'il n'y a plus lieu d'activer le dispositif selon l'invention, le programme met à 0 les signaux DIAG1 (3-6) et DIAG2 (3-7), et met à 1 le signal SHORT (3-8). On étouffe ainsi les oscillations de l'ensemble bobine-masse mobile.After execution of the BALANCE sub-program, the main program again tests the ALARM signal (3-5). If ALARM is reset to 0, i.e. if there is no longer instead of activating the device according to the invention, the program sets signals DIAG1 (3-6) and DIAG2 (3-7) to 0, and sets the signal SHORT (3-8) to 1. We thus suffocate oscillations of the moving coil-earth assembly.
Si le signal ALARM est maintenu à 1, c'est à dire s'il y a lieu de continuer la procédure d'activation du dispositif selon l'invention, le programme principal attend l'apparition d'un signal TIC (3-6 et 3-7) provenant d'une base de temps. Typiquement, cette base de temps est du type à quartz, et elle peut servir par ailleurs à piloter d'autres fonctions connexes à celles du dispositif selon l'invention. Par exemple, dans le cas où ce dispositif est destiné à équiper une pièce d'horlogerie telle qu'une montre, la base de temps permettra de piloter un affichage horaire moyennant le diviseur de fréquence habituel.If the ALARM signal is kept at 1, i.e. if there is reason to continue the activation procedure of the device according to the invention, the main program waits for the appearance of a TIC signal (3-6 and 3-7) from of a time base. Typically, this time base is quartz type, and it can also be used to control other functions related to those of the device according to the invention. For example, in case this device is intended to equip a timepiece such as a watch, the time base will allow you to control a time display using the frequency divider usual.
Lorsque le signal TIC arrive, le programme principal exécute le sous-programme SELPHASE (3-8) qui concerne la sélection de phase. Comme on peut le voir sur la figure 5, ce sous-programme teste la variable interne PHASE :
- si PHASE vaut 1 (5-1), on exécute le sous-programme PHASE1 (5-2);
- si PHASE vaut 2 (5-3), on exécute le sous-programme PHASE2 (5-4);
- si PHASE vaut 3 (5-5), on exécute le sous-programme PHASE3 (5-6);
- si PHASE vaut 4 (5-7), on exécute le sous-programme PHASE4 (5-8);
- si PHASE vaut 5 (5-9), on exécute le sous-programme PHASE5 (5-10);
- si PHASE n'est égal à aucune valeur comprise
entre 1 et 5 (cas d'erreur), le programme principal est réinitialisé (5-11).
- if PHASE is worth 1 (5-1), the subroutine PHASE1 (5-2) is executed;
- if PHASE is 2 (5-3), execute the subroutine PHASE2 (5-4);
- if PHASE is 3 (5-5), execute the subroutine PHASE3 (5-6);
- if PHASE is 4 (5-7), execute the subroutine PHASE4 (5-8);
- if PHASE is 5 (5-9), execute the subroutine PHASE5 (5-10);
- if PHASE is not equal to any value between 1 and 5 (error case), the main program is reset (5-11).
Lors de la première exécution du sous-programme SELPHASE, la variable interne PHASE vaut 1 : en effet, elle a été mise à cette valeur par le sous-programme BALANCE (voir ci-dessus). Dans ces conditions, le sous-programme SELPHASE commence par lancer le sous-programme PHASE1 (voir Figure 6).When running the subroutine for the first time SELPHASE, the internal variable PHASE is worth 1: indeed, it was set to this value by the subroutine BALANCE (see above). Under these conditions, the subroutine SELPHASE starts by launching the subroutine PHASE1 (see Figure 6).
Le sous-programme PHASE1 commence par tester la variable interne PUL (6-1). Si PULL vaut 0, on incrémente la variable interne CPT1 d'une unité (6-2), puis on retourne au programme principal (6-3). Si PUL vaut 1, on lance le sous-programme INIPER (6-4).The PHASE1 subroutine begins by testing the internal variable PUL (6-1). If PULL is 0, we increment the internal variable CPT1 of a unit (6-2), then we returns to the main program (6-3). If PUL is 1, we launches the INIPER subroutine (6-4).
Comme on peut le voir sur la figure 7, le sous-programme INIPER, qui concerne l'initialisation de la période, permet de calculer et d'initialiser un certain nombre de variables internes. VAR1 (7-1) et VAR2 (7-2) sont définies comme valant respectivement le quart et le huitième du contenu de CPT1 ; VAR3 est égale à la somme de VAR1 et VAR2 (7-3) ; VAR4 est égale à VAR5 (7-4) ; CPT1 est mise à 0 (7-5) ; CPT2 est égale à VAR1 (7-6) ; et PHASE est mise à 2 (7-7). Ensuite, le sous-programme INIPER retourne au programme principal (7-8).As can be seen in Figure 7, the subroutine INIPER, which concerns the initialization of the period, allows to calculate and initialize a certain number of internal variables. VAR1 (7-1) and VAR2 (7-2) are defined as being worth a quarter and a eighth of the content of CPT1; VAR3 is equal to the sum of VAR1 and VAR2 (7-3); VAR4 is equal to VAR5 (7-4); CPT1 is set to 0 (7-5); CPT2 is equal to VAR1 (7-6); and PHASE is set to 2 (7-7). Then the subroutine INIPER returns to the main program (7-8).
Comme on peut le comprendre à présent (voir figure 2 (2-5)), le sous-programme PHASE1 permet de totaliser dans la variable CPT1 la durée séparant deux passages consécutifs de la variable PUL de 0 à 1, cette durée étant exprimée en unités de base de temps. On mesure ainsi la période de la première oscillation libre de l'ensemble bobine-masse mobile, c'est à dire sa période propre instantanée d'oscillation. As we can now understand (see Figure 2 (2-5)), the sub-program PHASE1 allows you to totalize in the variable CPT1 the duration separating two passages consecutive of the PUL variable from 0 to 1, this duration being expressed in base units of time. We thus measure the period of the first free oscillation of the set moving coil-mass, i.e. its own period instantaneous oscillation.
Le sous-programme INIPER, qui est lancé une fois que cette période propre instantanée d'oscillation a été calculée, permet de définir les caractéristiques des impulsions qui vont être envoyées par la suite à l'ensemble bobine-masse mobile de manière à le mettre en oscillation forcée. Ainsi, comme on va le voir, VAR1 va déterminer la phase de ces impulsions, VAR4 leur largeur, et VAR2 et VAR3 vont servir à lancer une procédure de sécurité en cas de perturbation brutale infligée à l'unité portée près du corps équipée du dispositif selon l'invention.The INIPER sub-program, which is launched after this instant clean period of oscillation has been calculated, used to define the characteristics of pulses that are going to be sent subsequently to the moving coil-earth assembly so as to bring it into forced oscillation. So, as we will see, VAR1 will determine the phase of these pulses, VAR4 their width, and VAR2 and VAR3 will be used to launch a procedure for safety in the event of a sudden disturbance inflicted on the unit worn close to the body fitted with the device according to the invention.
A la fin de l'exécution réitérée du sous-programme PHASE1 puis de celle du sous-programme INIPER, la variable PHASE vaut 2. Par conséquent, le sous-programme SELPHASE lance le sous-programme PHASE2.At the end of the repeated execution of the subroutine PHASE1 then that of the INIPER sub-program, the variable PHASE is 2. Therefore, the SELPHASE subroutine launches the PHASE2 sub-program.
Comme on peut le voir sur la figure 8, le sous-programme PHASE2 commence par incrémenter la variable CPT1 d'une unité (8-1), puis par décrémenter la variable CPT2 d'une unité (8-2). Ensuite, on teste la variable CPT2 (8-3). Si elle est différente de la variable VAR4, on la compare à 0 (8-4). Si elle est différente de 0, on retourne au programme principal (8-5). Si elle est égale à 0, on met la variable PHASE à 3 (8-6) avant de retourner au programme principal (8-5).As can be seen in Figure 8, the subroutine PHASE2 begins by incrementing the variable CPT1 by one unit (8-1), then by decrementing the variable CPT2 of a unit (8-2). Then, we test the variable CPT2 (8-3). If it is different from the variable VAR4, we compare to 0 (8-4). If it is different from 0, we returns to the main program (8-5). If it is equal to 0, we put the variable PHASE at 3 (8-6) before returning in the main program (8-5).
Si la variable CPT2 est égale à la variable VAR4, on met le signal DIAG1 à 1 (8-7) avant de retourner au programme principal (8-5).If the variable CPT2 is equal to the variable VAR4, we sets the DIAG1 signal to 1 (8-7) before returning to the main program (8-5).
Comme on peut le comprendre à présent (voir figure 2 (2-6)), la durée mise par la variable CPT2 pour passer de la valeur VAR1 à 0 est égale au quart de la durée qui s'est écoulée pendant l'exécution du sous-programme PHASE1, c'est à dire au quart de la période propre instantanée d'oscillation de l'ensemble bobine-masse mobile.As we can now understand (see Figure 2 (2-6)), the time taken by the variable CPT2 to go from the value VAR1 at 0 is equal to a quarter of the duration which elapsed during execution of the subroutine PHASE1, i.e. a quarter of the proper period instantaneous oscillation of the coil-ground assembly mobile.
On envoie ainsi une impulsion positive (2-7) à cet ensemble à un instant (2-8) précédant d'une unité de base de temps la fin (2-9) du premier quart de sa période d'oscillation. We thus send a positive impulse (2-7) to this together at a time (2-8) preceding by a base unit time the end (2-9) of the first quarter of its period oscillation.
Après l'exécution réitérée du sous-programme PHASE2, la variable PHASE vaut 3. Par conséquent, le sous-programme SELPHASE lance le sous-programme PHASE3.After repeated execution of the PHASE2 subroutine, the variable PHASE is worth 3. Therefore, the subroutine SELPHASE launches the PHASE3 sub-program.
Comme on peut le voir sur la figure 9, le sous-programme PHASE3 commence par incrémenter la variable CPT1 d'une unité (9-1), puis par incrémenter la variable CPT2 d'une unité (9-2). Ensuite, on teste la variable CPT2 (9-3). Si elle est différente de la variable VAR4, on la compare à la variable VAR1 (9-4). Si elle est différente de VAR1, on retourne au programme principal (9-5). Si elle est égale à VAR1, on met la variable PHASE à 4 (9-6) avant de retourner au programme principal (9-5).As can be seen in Figure 9, the subroutine PHASE3 begins by incrementing the variable CPT1 by a unit (9-1), then increment the variable CPT2 of a unit (9-2). Then, we test the variable CPT2 (9-3). If it is different from the variable VAR4, we compare to variable VAR1 (9-4). If it is different from VAR1, we return to the main program (9-5). If she is equal to VAR1, we put the variable PHASE at 4 (9-6) before return to the main program (9-5).
Si la variable CPT2 est égale à la variable VAR4, on met le signal DIAG1 à 0 (9-7) avant de retourner au programme principal (9-5).If the variable CPT2 is equal to the variable VAR4, we sets the DIAG1 signal to 0 (9-7) before returning to the main program (9-5).
Comme on peut le comprendre à présent (voir figure 2
(2-10)), la durée mise par la variable CPT2 pour repasser
de la valeur 0 à VAR1 est aussi égale à un quart de
période propre instantanée d'oscillation de l'ensemble
bobine-masse mobile.As we can now understand (see Figure 2
(2-10)), the time taken by the variable CPT2 to iron
from the
On interrompt ainsi l'impulsion positive (2-7) envoyée à cet ensemble lors de la phase précédente à un instant (2-11) succédant d'une unité de base de temps le début (2-9) de son deuxième quart de période d'oscillation.We thus interrupt the positive impulse (2-7) sent to this set in the previous phase to a instant (2-11) following a unit of time base on start (2-9) of his second quarter period oscillation.
On a ainsi réussi à envoyer à l'ensemble bobine-masse mobile une impulsion positive (2-7) en phase par rapport à son pic d'amplitude (2-12).We thus managed to send to the coil-ground assembly moving a positive impulse (2-7) in phase with respect to its amplitude peak (2-12).
On voit ici que la valeur de VAR1 détermine les instants 2-8 et 2-11 où la variable CPT2 est égale à la variable VAR4, et par là même la position temporelle de l'impulsion 2-7 par rapport à l'oscillation de l'ensemble bobine-masse mobile.We see here that the value of VAR1 determines the instants 2-8 and 2-11 when the variable CPT2 is equal to the variable VAR4, and thereby the time position of the impulse 2-7 compared to the oscillation of the whole moving coil-ground.
Après l'exécution réitérée du sous-programme PHASE3, la variable PHASE vaut 4. Par conséquent, le sous-programme SELPHASE lance le sous-programme PHASE4.After the repeated execution of the PHASE3 subroutine, variable PHASE is 4. Therefore, the subroutine SELPHASE launches the PHASE4 sub-program.
Comme on peut le voir sur la figure 10, le sous-programme PHASE4 commence par incrémenter la variable CPT1 d'une unité (10-1), puis par décrémenter la variable CPT2 d'une unité (10-2). Ensuite, on teste la variable CPT2 (10-3). Si elle est différente de la variable VAR4, on la compare à 0 (10-4). Si elle est différente de 0, on retourne au programme principal (10-5). Si elle est égale à 0, on met la variable PHASE à 5 (10-6) avant de retourner au programme principal (10-5).As can be seen in Figure 10, the subroutine PHASE4 starts by incrementing the variable CPT1 by one unit (10-1), then by decrementing the variable CPT2 of a unit (10-2). Then, we test the variable CPT2 (10-3). If it is different from the variable VAR4, we compare to 0 (10-4). If it is different from 0, we returns to the main program (10-5). If it is equal at 0, we put the variable PHASE at 5 (10-6) before return to the main program (10-5).
Si la variable CPT2 est égale à la variable VAR4, on exécute un sous-programme NIVEAU (10-7) avant de mettre le signal DIAG2 à 1 (10-8) puis de retourner au programme principal (10-5).If the variable CPT2 is equal to the variable VAR4, we executes a LEVEL subroutine (10-7) before switching on the DIAG2 signal at 1 (10-8) then return to the program main (10-5).
La figure 11 représente une première variante du sous-programme NIVEAU. On commence par tester le signal COMP2 (11-1). Si ce signal ne vaut pas 1, c'est-à-dire si la tension induite UIND aux bornes de la bobine L est inférieure à la valeur de référence REFA, on met la variable interne VAR5 à la valeur MAX (11-2), puis on retourne au sous-programme PHASE4 (11-4). Si ce signal vaut 1, c'est-à-dire si UIND est supérieure à REFA, on met la variable VAR5 à la valeur MIN (11-3), puis on retourne au sous-programme PHASE4 (11-4).FIG. 11 represents a first variant of the LEVEL subroutine. We start by testing the signal COMP2 (11-1). If this signal is not worth 1, i.e. if the induced voltage UIND across the coil L is lower than the reference value REFA, we put the internal variable VAR5 to the value MAX (11-2), then we returns to the PHASE4 subroutine (11-4). If this signal is equal to 1, that is to say if UIND is greater than REFA, we put the variable VAR5 to the value MIN (11-3), then we return in the PHASE4 sub-program (11-4).
La figure 12 représente une deuxième variante du sous-programme NIVEAU. On commence par tester le signal COMP2 (12-1). Si ce signal ne vaut pas 1, on compare la variable VAR5 à la valeur MAX (12-2). Si VAR5 n'est pas égale à MAX, on l'incrémente d'une unité (12-3), puis on retourne au sous-programme PHASE4 (12-4). Si VAR5 est égale à MAX, on retourne directement au sous-programme PHASE4 (12-4).Figure 12 shows a second variant of the LEVEL subroutine. We start by testing the signal COMP2 (12-1). If this signal is not worth 1, we compare the variable VAR5 at MAX value (12-2). If VAR5 is not equal to MAX, we increment it by one unit (12-3), then we returns to the PHASE4 subroutine (12-4). If VAR5 is equal to MAX, we return directly to the subroutine PHASE4 (12-4).
Si COMP2 vaut 1, on compare la variable VAR5 à la valeur MIN (12-5). Si VAR5 n'est pas égale à MIN, on la décrémente d'une unité (12-6), puis on retourne au sous-programme PHASE4 (12-4). Si VAR5 est égale à MIN, on retourne directement au sous-programme PHASE4 (12-4).If COMP2 is equal to 1, we compare the variable VAR5 to the MIN value (12-5). If VAR5 is not equal to MIN, it is decrements by one (12-6), then returns to the subroutine PHASE4 (12-4). If VAR5 is equal to MIN, we returns directly to the PHASE4 subroutine (12-4).
Comme on l'aura aisément compris à la lumière de la description du sous-programme PHASE2, le sous-programme PHASE4 permet d'envoyer une impulsion négative (2-13) à un instant (2-14) précédant d'une unité de base de temps la fin (2-15) du troisième quart de la période d'oscillation de l'ensemble bobine-masse mobile.As will be readily understood in the light of the description of the PHASE2 sub-program, the sub-program PHASE4 sends a negative pulse (2-13) to a instant (2-14) preceding by a base unit of time the end (2-15) of the third quarter of the oscillation period of the moving coil-earth assembly.
Le rôle du sous-programme NIVEAU est de réguler l'amplitude de l'oscillation de cet ensemble.The role of the LEVEL sub-program is to regulate the amplitude of the oscillation of this set.
En effet, en se référant à l'organigramme du sous-programme INIPER (figure 7), on voit (7-4) que VAR5 est en fait la valeur attribuée à VAR4 lors de l'initialisation des variables qui a lieu au début de chaque nouvelle période d'oscillation de l'ensemble bobine-masse mobile.Indeed, by referring to the organizational chart of the sub-program INIPER (figure 7), we see (7-4) that VAR5 is in sets the value assigned to VAR4 during initialization variables that takes place at the start of each new oscillation period of the moving coil-earth assembly.
Or, il ressort clairement de ce qui précède que la valeur de VAR4 détermine les instants de début et de fin des impulsions envoyées à cet ensemble, et donc leur durée. En se référant à la figure 2 (voir 2-8 et 2-11), on comprend que cette durée augmente lorsque VAR4 augmente, et inversement.However, it is clear from the above that the VAR4 value determines the start and end times pulses sent to this set, and therefore their duration. Referring to Figure 2 (see 2-8 and 2-11), we understands that this duration increases when VAR4 increases, and vice versa.
Or, l'amplitude des oscillations de l'ensemble bobine-masse mobile dépend directement de la durée des impulsions qui lui sont envoyées : plus cette durée est grande, plus cette amplitude est importante, et inversement.Now, the amplitude of the oscillations of the whole moving coil-mass directly depends on the duration of pulses sent to it: the longer this duration the larger, the greater this amplitude, and Conversely.
Ainsi, il apparaít que les deux variantes du sous-programme NIVEAU permettent, en jouant sur la valeur de la variable VAR5, de réguler l'amplitude des oscillations de l'ensemble bobine-masse mobile. Cette régulation peut être effectuée soit de manière binaire, avec un niveau haut MAX et un niveau bas MIN (variante de la figure 11), soit de manière graduelle, avec des valeurs intermédiaires comprises entre ces deux niveaux (variante de la figure 12).Thus, it appears that the two variants of the subroutine LEVEL allow, by playing on the value of the variable VAR5, to regulate the amplitude of the oscillations of the moving coil-earth assembly. This regulation can be done either binary, with a high MAX level and a low level MIN (variant of FIG. 11), either of gradually, with intermediate values between these two levels (variant of the figure 12).
A la fin de l'exécution réitérée du sous-programme PHASE4 puis de celle du sous-programme NIVEAU, la variable PHASE vaut 5. Par conséquent, le sous-programme SELPHASE lance le sous-programme PHASE5.At the end of the repeated execution of the subroutine PHASE4 then that of the LEVEL subroutine, the variable PHASE equals 5. Therefore, the SELPHASE subroutine launches the PHASE5 sub-program.
Comme on peut le voir sur la figure 13, le sous-programme PHASE5 commence par incrémenter la variable CPT1 d'une unité (13-1), puis par incrémenter la variable CPT2 d'une unité (13-2). Ensuite, on teste la variable CPT2 (13-3). Si elle est différente de la variable VAR4, on la compare à la variable VAR2 (13-4). Si elle est supérieure à VAR2, on la compare à VAR3 (13-5). Si elle est différente de VAR3, on teste la variable PUL (13-6). Si PUL ne vaut pas 1, on retourne au programme principal (13-7). Si PUL vaut 1, on exécute le sous-programme INIPER (13-8) avant de retourner au programme principal (13-7).As can be seen in Figure 13, the subroutine PHASE5 starts by incrementing the variable CPT1 by a unit (13-1), then increment the variable CPT2 of a unit (13-2). Then, we test the variable CPT2 (13-3). If it is different from the variable VAR4, we compare to variable VAR2 (13-4). If it is higher to VAR2, we compare it to VAR3 (13-5). If she is different from VAR3, we test the variable PUL (13-6). Yes PUL is not worth 1, we return to the main program (13-7). If PUL is 1, the INIPER subroutine is executed (13-8) before returning to the main program (13-7).
Si la variable CPT2 est égale à la variable VAR3, on procède à une réinitialisation du programme principal (13-9).If the variable CPT2 is equal to the variable VAR3, we resets the main program (13-9).
Si la variable CPT2 est supérieure à la variable VAR2, on met la variable PUL à 0 (13-10), puis on retourne au programme principal (13-7).If the variable CPT2 is greater than the variable VAR2, set the PUL variable to 0 (13-10), then return in the main program (13-7).
Si la variable CPT2 est égale à la variable VAR4, on met le signal DIAG2 à 0 (13-11), puis on retourne au programme principal (13-7).If the variable CPT2 is equal to the variable VAR4, we set signal DIAG2 to 0 (13-11), then return to main program (13-7).
Comme on l'aura aisément compris à la lumière de la description du sous-programme PHASE3, le sous-programme PHASE5 permet d'interrompre l'impulsion négative (2-13) envoyée à l'ensemble bobine-masse mobile lors de la phase précédente à un instant (2-16) succédant d'une unité de base de temps le début (2-15) de son quatrième quart de période d'oscillation.As will be readily understood in the light of the description of the PHASE3 sub-program, the sub-program PHASE5 allows to interrupt the negative pulse (2-13) sent to the moving coil-earth assembly during the phase preceding at an instant (2-16) succeeding by a unit of time base the start (2-15) of its fourth quarter oscillation period.
On a ainsi réussi à envoyer à l'ensemble bobine-masse mobile une impulsion négative (2-13) en phase par rapport à son creux d'amplitude (2-17), c'est-à-dire au maximum négative de la tension induite. Bien entendu, le maximum de la tension induite correspond au maximum de la vitesse de l'ensemble bobine-masse mobile.We thus managed to send to the coil-ground assembly moving a negative pulse (2-13) in phase with respect at its amplitude trough (2-17), that is to say at the maximum negative of the induced voltage. Of course, the maximum of the induced voltage corresponds to the maximum speed of the moving coil-earth assembly.
Par ailleurs, les deux variables VAR2 et VAR3 définissent des premier (2-18) et deuxième (2-19) instants encadrant symétriquement l'instant (2-20) où la variable CPT2 atteint la valeur VAR1, c'est à dire, théoriquement, l'instant où se termine le quatrième quart de période de l'oscillation forcée de l'ensemble bobine-masse mobile et où PUL repasse à 1.In addition, the two variables VAR2 and VAR3 define first (2-18) and second (2-19) moments symmetrically framing the moment (2-20) when the variable CPT2 reaches the value VAR1, i.e., theoretically, the instant the fourth quarter of the period ends the forced oscillation of the moving coil-earth assembly and where PUL returns to 1.
Si cet ensemble est fortement perturbé dans son oscillation, par une brusque secousse extérieure par exemple, le moment où PUL repasse à 1 risque d'être fortement décalé par rapport à sa position théorique.If this set is strongly disturbed in its oscillation, by a sudden external jolt by example, when PUL goes back to 1 may be strongly offset from its theoretical position.
L'objet des tests successifs du sous-programme PHASE5 est de situer le moment où PUL repasse à 1 par rapport aux instants 2-18 et 2-19.The subject of successive tests of the PHASE5 sub-program is to locate the moment when PUL goes back to 1 compared to instants 2-18 and 2-19.
Si ce moment est antérieur à l'instant 2-18 ou postérieur à l'instant 2-19, c'est à dire si la variable CPT2 atteint VAR3 avant que PUL ne repasse à 1 (test 13-5), cela signifie que l'ensemble bobine-masse a subi une perturbation susceptible de modifier de manière importante sa fréquence propre instantanée d'oscillation: il faut donc la mesurer à nouveau en relançant tout le programme (13-9).If this moment is before instant 2-18 or after time 2-19, i.e. if the variable CPT2 reaches VAR3 before PUL returns to 1 (test 13-5), this means that the coil-ground assembly has undergone a disruption likely to materially change its instantaneous natural frequency of oscillation: so measure it again by relaunching the whole program (13-9).
Si ce moment est compris entre les instants 2-18 et 2-19 (test 13-6), le sous-programme INIPER est exécuté, et calcule comme indiqué plus haut les paramètres de la période suivante, à partir notamment de la durée totalisée dans la variable CPT1.If this moment is between instants 2-18 and 2-19 (test 13-6), the INIPER subroutine is executed, and calculates the parameters of the following period, notably from the totalized duration in the variable CPT1.
Dans ce cas, le sous-programme PHASE2 succède à nouveau au sous-programme PHASE5, et le cycle se répète semblable à lui-même, en adaptant de période en période ses paramètres à la fréquence d'oscillation de l'ensemble bobine-masse mobile, ainsi qu'à l'amplitude de cette oscillation.In this case, the PHASE2 sub-program succeeds new to sub-program PHASE5, and the cycle repeats similar to itself, adapting from period to period its parameters at the oscillation frequency of the whole moving coil-mass, as well as the amplitude of this oscillation.
On comprend à présent que l'ajustement des impulsions envoyées à l'ensemble bobine-masse mobile est obtenu grâce à trois procédures différentes.We now understand that the adjustment of the impulses sent to the moving coil-earth assembly is obtained by to three different procedures.
La première procédure, qui intervient au début de l'activation du dispositif selon l'invention ou lors d'une perturbation brutale, permet d'adapter la fréquence et la position temporelle des impulsions en fonction des caractéristiques de l'oscillation libre de l'ensemble bobine-masse mobile.The first procedure, which occurs at the start of activation of the device according to the invention or during a brutal disturbance, allows to adapt the frequency and the time position of the pulses as a function of characteristics of the free oscillation of the assembly moving coil-ground.
La deuxième procédure, qui intervient pendant la mise en oscillation forcée ce cet ensemble, permet de corriger la fréquence et la phase des impulsions au début de chaque nouvelle période.The second procedure, which occurs during the setting in forced oscillation this set, allows to correct the frequency and phase of the pulses at the start of each new period.
La troisième procédure, qui intervient également pendant la mise en oscillation forcée de l'ensemble bobine-masse mobile, permet d'ajuster son amplitude d'oscillation.The third procedure, which also takes place during the forced oscillation of the assembly moving coil-mass, allows to adjust its amplitude oscillation.
Ces trois procédures d'ajustement pourraient être mises en oeuvre indépendamment les unes des autres. Cela dit, elles apparaissent comme parfaitement complémentaires vis-à-vis du but recherché par l'invention, qui est de réaliser un dispositif à rendement énergétique optimal.These three adjustment procedures could be implemented independently of each other. That said, they appear to be perfectly complementary vis-à-vis the aim sought by the invention, which is to create a device with optimal energy efficiency.
L'arrêt du dispositif selon l'invention est obtenu dés que le signal ALARM passe à 0 dans le programme principal. Les signaux DIAG1 et DIAG2 sont alors mis à 0 et le signal SHORT est mis à 1, étouffant ainsi rapidement l'oscillation de l'ensemble bobine-masse mobile. Le programme principal tourne alors dans une boucle d'attente en attendant un nouveau passage du signal ALARM à 1.The device according to the invention is stopped as soon as the ALARM signal goes to 0 in the program main. The signals DIAG1 and DIAG2 are then set to 0 and the SHORT signal is set to 1, quickly suffocating the oscillation of the moving coil-earth assembly. The main program then runs in a waiting loop waiting for a new passage of the ALARM signal to 1.
Bien entendu, l'invention n'est pas limitée aux mode de réalisation décrit et représenté qui n'a été donné qu'à titre d'exemple. C'est ainsi par exemple qu'une seule ou plus de deux impulsions par période pourraient être envoyées à l'ensemble bobine-masse mobile.Of course, the invention is not limited to the modes of realization described and represented which was given only as an example. For example, only one or more than two pulses per period could be sent to the moving coil-earth assembly.
Claims (10)
de manière à faire sensiblement coïncider lesdites première et deuxième impulsions aux deux maxima de la tension induite par le mouvement dudit ensemble bobine-masse mobile.
so as to make said first and second pulses substantially coincide with the two maxima of the voltage induced by the movement of said moving coil-mass assembly.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69839114T DE69839114T2 (en) | 1998-02-20 | 1998-02-20 | Inaudible alarm device |
EP98103009A EP0938034B1 (en) | 1998-02-20 | 1998-02-20 | Non-sonic alarm device |
US09/937,148 US6563422B1 (en) | 1998-02-20 | 1999-03-25 | Non acoustic alarm device |
PCT/EP1999/002027 WO2000058923A1 (en) | 1998-02-20 | 1999-03-25 | Soundless alarm device |
HK00101028.4A HK1022354B (en) | 2000-02-21 | Non-sonic alarm device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98103009A EP0938034B1 (en) | 1998-02-20 | 1998-02-20 | Non-sonic alarm device |
PCT/EP1999/002027 WO2000058923A1 (en) | 1998-02-20 | 1999-03-25 | Soundless alarm device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0938034A1 true EP0938034A1 (en) | 1999-08-25 |
EP0938034B1 EP0938034B1 (en) | 2008-02-13 |
Family
ID=26070357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98103009A Expired - Lifetime EP0938034B1 (en) | 1998-02-20 | 1998-02-20 | Non-sonic alarm device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0938034B1 (en) |
WO (1) | WO2000058923A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000058923A1 (en) * | 1998-02-20 | 2000-10-05 | Asulab S.A. | Soundless alarm device |
WO2002046847A1 (en) * | 2000-12-05 | 2002-06-13 | Eta Sa Manufacture Horlogere Suisse | Method for maintaining oscillations of a vibrating device and vibrating device using same |
US6563422B1 (en) | 1998-02-20 | 2003-05-13 | Asulab S.A. | Non acoustic alarm device |
EP1669821A1 (en) * | 2004-12-09 | 2006-06-14 | ETA SA Manufacture Horlogère Suisse | Driving method of a vibrating device for a portable object, with a coil and a moving mass |
EP1669820A1 (en) * | 2004-12-09 | 2006-06-14 | ETA SA Manufacture Horlogère Suisse | Driving method of a vibrating device for a portable object, with a coil and a moving mass |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4395665A (en) * | 1981-06-09 | 1983-07-26 | The Arthur G. Russell Company, Incorporated | Control system for vibrating a member at its resonant frequency |
US4629977A (en) * | 1985-06-03 | 1986-12-16 | Tektronix, Inc. | Method and apparatus for measuring the resonant frequency of a high Q resonator |
US5436622A (en) * | 1993-07-06 | 1995-07-25 | Motorola, Inc. | Variable frequency vibratory alert method and structure |
WO1997004618A1 (en) * | 1995-07-24 | 1997-02-06 | Motorola Inc. | Electronic driver for an electromagnetic resonant transducer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3382061B2 (en) * | 1995-05-31 | 2003-03-04 | 松下電工株式会社 | Linear vibration motor |
JP2897729B2 (en) * | 1996-08-02 | 1999-05-31 | 日本電気株式会社 | Portable small electronic equipment |
US6057753A (en) * | 1997-07-03 | 2000-05-02 | Projects Unlimited, Inc. | Vibrational transducer |
EP0938034B1 (en) * | 1998-02-20 | 2008-02-13 | Asulab S.A. | Non-sonic alarm device |
-
1998
- 1998-02-20 EP EP98103009A patent/EP0938034B1/en not_active Expired - Lifetime
-
1999
- 1999-03-25 WO PCT/EP1999/002027 patent/WO2000058923A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4395665A (en) * | 1981-06-09 | 1983-07-26 | The Arthur G. Russell Company, Incorporated | Control system for vibrating a member at its resonant frequency |
US4629977A (en) * | 1985-06-03 | 1986-12-16 | Tektronix, Inc. | Method and apparatus for measuring the resonant frequency of a high Q resonator |
US5436622A (en) * | 1993-07-06 | 1995-07-25 | Motorola, Inc. | Variable frequency vibratory alert method and structure |
WO1997004618A1 (en) * | 1995-07-24 | 1997-02-06 | Motorola Inc. | Electronic driver for an electromagnetic resonant transducer |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000058923A1 (en) * | 1998-02-20 | 2000-10-05 | Asulab S.A. | Soundless alarm device |
US6563422B1 (en) | 1998-02-20 | 2003-05-13 | Asulab S.A. | Non acoustic alarm device |
WO2002046847A1 (en) * | 2000-12-05 | 2002-06-13 | Eta Sa Manufacture Horlogere Suisse | Method for maintaining oscillations of a vibrating device and vibrating device using same |
US6894618B2 (en) | 2000-12-05 | 2005-05-17 | Eta Sa Manufacture Horlogere Suisse | Method for maintaining oscillations of a vibrating device and vibrating device using same |
EP1669821A1 (en) * | 2004-12-09 | 2006-06-14 | ETA SA Manufacture Horlogère Suisse | Driving method of a vibrating device for a portable object, with a coil and a moving mass |
EP1669820A1 (en) * | 2004-12-09 | 2006-06-14 | ETA SA Manufacture Horlogère Suisse | Driving method of a vibrating device for a portable object, with a coil and a moving mass |
US7385362B2 (en) | 2004-12-09 | 2008-06-10 | Eta Sa Manufacture Horlogere Suisse | Method for driving a vibrating device for a portable object that comprises a coil and a moving mass |
Also Published As
Publication number | Publication date |
---|---|
EP0938034B1 (en) | 2008-02-13 |
WO2000058923A1 (en) | 2000-10-05 |
HK1022354A1 (en) | 2000-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0762243B1 (en) | Timepiece with power-reserve indication | |
EP2044490B1 (en) | Electromechanical escapement device and timepiece part utilizing said device | |
EP0822470B1 (en) | Electronic timepiece comprising a generator driven by a barrel spring | |
EP0806710B2 (en) | Stabilisation of an electronic circuit for regulating the mechanical movement of a timepiece | |
WO2012126978A1 (en) | Multifunctional case | |
EP3842876A1 (en) | Timepiece fitted with a mechanical movement and a device for correcting the time displayed | |
EP0938034A1 (en) | Non-sonic alarm device | |
FR2635194A1 (en) | METHOD FOR CHECKING A BATTERY | |
EP0683441B1 (en) | Electronic watch with minute repetition function | |
CH716841B1 (en) | Chronograph watch movement. | |
CH688462GA3 (en) | watch movement comprising an end of battery life indicator device. | |
FR2562279A1 (en) | ELECTRONIC TIMEPIECE WITH ANALOGUE DISPLAY | |
EP0135104B1 (en) | Method and device for the control of a stepping motor | |
EP0476425B1 (en) | Time-piece adaptable for wearing in different ways | |
EP1342132B1 (en) | Method for maintaining oscillations of a vibrating device and vibrating device using same | |
CA1031051A (en) | Electronic security circuit | |
EP0982846B1 (en) | Process and device for controlling a stepper motor | |
EP4078298A1 (en) | Timepiece component provided with a mechanical movement and a device for correcting a displayed time | |
EP0108711B1 (en) | Method and device for controlling a step motor | |
EP4095623B1 (en) | Device for winding or adjusting and controlling a watch | |
EP0621525B1 (en) | Microprocessor without timer for providing time base signals | |
FR2645295A1 (en) | DEVICE FOR MONITORING THE OPERATION OF A MICROPROCESSOR | |
CH717002A2 (en) | Timepiece fitted with a mechanical movement and a device for correcting a displayed time. | |
CH717000A2 (en) | Timepiece fitted with a mechanical movement and a device for correcting a displayed time. | |
EP0427077A1 (en) | Electronic timepiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FI FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 20000225 |
|
AKX | Designation fees paid |
Free format text: CH DE FI FR GB IT LI NL SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FI FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69839114 Country of ref document: DE Date of ref document: 20080327 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ASULAB S.A. |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: ASULAB S.A.;RUE DES SORS 3;2074 MARIN (CH) |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1022354 Country of ref document: HK |
|
26N | No opposition filed |
Effective date: 20081114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090128 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080213 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20170124 Year of fee payment: 20 Ref country code: FR Payment date: 20170124 Year of fee payment: 20 Ref country code: FI Payment date: 20170120 Year of fee payment: 20 Ref country code: DE Payment date: 20170119 Year of fee payment: 20 Ref country code: CH Payment date: 20170125 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69839114 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |