EP0933594B1 - Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide - Google Patents
Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide Download PDFInfo
- Publication number
- EP0933594B1 EP0933594B1 EP99400141A EP99400141A EP0933594B1 EP 0933594 B1 EP0933594 B1 EP 0933594B1 EP 99400141 A EP99400141 A EP 99400141A EP 99400141 A EP99400141 A EP 99400141A EP 0933594 B1 EP0933594 B1 EP 0933594B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- fuel
- fact
- intake
- envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 44
- 239000000446 fuel Substances 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 16
- 239000007788 liquid Substances 0.000 title claims description 10
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 8
- 235000021183 entrée Nutrition 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/44—Combustion chambers comprising a single tubular flame tube within a tubular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/38—Nozzles; Cleaning devices therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
- F23R3/14—Air inlet arrangements for primary air inducing a vortex by using swirl vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/58—Cyclone or vortex type combustion chambers
Definitions
- the present invention relates to the field of combustion of gas turbines powered by liquid fuel.
- Such gas turbines can be illustrated by the system shown in Figure 3.
- This assembly includes a compressor (20) the outlet of which is connected to the inlet of the combustion chamber (1) where a liquid fuel (fuel oil or kerosene) is injected.
- a liquid fuel fuel oil or kerosene
- the gases burned in this chamber are then expanded in a turbine (30) which thereby provides the desired power to the main shaft which itself drives the compressor (20).
- thermodynamic cycle of the machine In gas turbine combustion chambers, combustion at flame level is usually performed around stoichiometry as this ensures good flame stability. Wealth however global imposed by the conditions of the thermodynamic cycle of the machine is very low, on the order of 0.15 to 0.3, depending on the conditions of operation. Operating locally in or around rich conditions stoichiometry, with air preheated by the compressor, leads to locally very high temperatures in the room (around 2000 to 2500 K). The measurements showed that under these conditions, the majority of the nitrogen oxide formed was "thermal NO".
- the so-called dry processes generally aim to achieve combustion a lean premix of air and fuel made beforehand.
- the Patent application EP-A2-0 769 657 illustrates a system of this type.
- the stability of combustion and ignition of the main premix are ensured by a pilot flame of small power whose role is also to ensure the machine running at idle speed.
- the wealth in the chamber being fixed by the respective proportions of air and fuel pre-mixed, it is possible to limit the flame temperatures and therefore thermal nitrogen oxide.
- premixed combustion technologies do not not give satisfactory results with liquid fuel.
- this technique requires the implementation of a pilot burner allowing to ensure the stability of the flame especially in poor conditions.
- This burner ensuring the operation of the machine during the phases of idling, it passes a fuel flow of up to almost a third of the total flow. For some applications, it works under conditions operating close to stoichiometry so under conditions unfavorable procedures from the point of view of oxide production nitrogen.
- the present invention makes it possible in particular to resolve all of the problems discussed above. It is an alternative solution to combustion chambers operating in premix or in processes damp as mentioned above.
- the present invention aims to achieve a diffusion flame by combining certain conditions for injecting air and liquid fuel.
- the present invention relates to an operating method a gas turbine combustion chamber supplied with fuel liquid and air, said chamber comprising a tubular enclosure, a fuel injection means located on or near the longitudinal axis XX 'of the tubular enclosure and at least two types of air intake, the first introducing air helically around the longitudinal axis of the chamber combustion, the second inlet introducing air tangentially to the enclosure in order to create flows around the fuel jets contra rotary designed to improve the mixture of air and said fuel.
- the fuel is injected through 5 to 12 orifices provided on the injection means, preferably between 6 and 10 orifices.
- pressurized air is introduced inside the chamber combustion with a speed between 20 and 120 m / s.
- the fuel is injected with a plurality of jets located along the generators of a corner cone at the top preferably between 35 ° and 45 °.
- the fuel can also be injected through the means fuel injection system which includes a central disc located on the axis longitudinal of the tubular enclosure around which a ring is arranged pierced with holes, the surface of the ring being a truncated cone.
- air can be introduced into the inlet tangential which includes a set of inserts distributed around the periphery of the enclosure, which direct the air tangentially to the wall of the enclosure, with a direction of rotation opposite to that of the main flow.
- the air inlets can be dimensioned so that the air speed inside the combustion chamber is between 20 and 120 m / s.
- the angle at the top of the injection cone is preferably between 35 ° and 45 °.
- the combustion chamber according to the invention illustrated schematically in Figure 1, includes a tubular outer casing 1 and an inner enclosure 2 coaxial with the casing 1.
- envelopes 1 and 2 are closed at one end where they delimit a functional space 3.
- envelopes 1 and 2 define between they an annular space 4 for the circulation of air under pressure before to enter the combustion chamber proper.
- the actual combustion chamber, 5, is defined by the interior volume of the enclosure 2.
- a means for injecting fuel 6 which preferably comprises a central disc 61 located on or in the immediate vicinity of the longitudinal axis XX 'of the enclosure 2.
- the injection means 6 comprises a set of orifices 62 arranged on a truncated cone ring.
- from 5 to 12 jets can be created; preferably between 6 and 10. These jets are separated from each other from others and located along the generatrices of a corner cone at the top a between 30 ° and 60 °, preferably between 35 ° and 45 °.
- the injection means 6 can operate with assistance additional air; we then obtain droplets of average diameter less than 50 micrometers.
- the number of jets is also important. If this one is too important, there is an effect of blocking the flow by the jets of combustible. This results in an air-depleted area behind the jets, which leads to rich combustion conditions, therefore at high temperature. Yes the jets are too few, the interactions between jets decrease and we found in the case of n independent axial flames.
- the first type introduces air helically into enclosure 2, around the longitudinal axis of the enclosure.
- This entry 7 is here a ring around the injection means 6.
- the second type of air intake includes peripheral inlets 8 which allow the air to be injected tangentially to the wall of the enclosure 2. A this effect of the inserts 81 as shown in FIG. 2 can be provided.
- the inserts 81 direct the air tangentially and in the opposite direction to the first type of flow. This increases the shear between the two flows and therefore accelerate the mixing between the air and the fuel droplets.
- the air flow at inlet 7 is between 30 and 70% air used for combustion, preferably between 40 and 50%.
- Well heard the air flow passing through the tangential inlets 8 is the 100% complement.
- Dilution air is introduced if necessary downstream of the combustion zone 5, through orifices made in the enclosure 2.
- the means injection 6 advantageously comprises a central disc 61.
- the latter allows, in combination with the rotation of the flow, generate a small internal recirculation according to the arrows A in Figure 1, at level of the injector nose 6.
- the area 10 delimited by this recirculation is rather rich in fuel and it partly ensures the stability of the combustion.
- the majority of the fuel is burned in poor conditions since the overall wealth in the combustion chamber 5 is between 0.4 and 0.8. It is recalled here that a separate flame burner operates around stoichiometry or with a slight excess of air.
- thermodynamic cycle of this imposes operation under pressure which can vary from approximately 2 to approximately 30 bars.
- the residence times in the combustion chamber 5 according to the invention are commonly less than 50 milliseconds, which leads to heating densities of between 50 and 200 MW / m 3 .
- the heating densities in the field of boiler burners are rather less than 1 MW / m 3 , with residence times of the order of a second.
- the figure 3 shows in longitudinal section a turbo-compressor assembly likely to implement the invention; this figure was commented on in description head.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
- le "prompt" NO résulte de réactions rapides complexes entre le fuel et l'azote de l'air. Il est formé en un temps très court généralement bien inférieur à la milliseconde.
- Le "fuel" NO est produit par des réactions entre l'azote contenu dans le carburant sous forme N et l'oxygène de l'air. Ce type d'oxyde d'azote est principalement formé en milieu pauvre, lorsque l'air est en excès par rapport au carburant.
- L'oxyde d'azote thermique est produit à haute température, à partir de l'azote de l'air N2. L'oxyde d'azote est couramment produit à des températures supérieures à 1500°C, compte tenu des temps de séjour dans la chambre de combustion, qui est alors de l'ordre de quelques dizaines de millisecondes. La vitesse des réactions conduisant à l'azote thermique croít exponentiellement en fonction de la température.
- les procédés humides basés sur l'injection de vapeur ou d'eau dans la chambre de combustion.
- les procédés dits secs qui sont basés sur une amélioration des conditions de combustion.
- Les richesses sont beaucoup plus fortes dans les brûleurs que dans les turbines. Les brûleurs opèrent autour de la stoechiométrie ou avec un léger excès d'air alors que la richesse globale dans les chambres de turbines est habituellement comprise entre 0,15 et 0,35.
- La combustion est opérée sous pression (celle de la sortie du compresseur) alors que les brûleurs fonctionnent à la pression atmosphérique.
- Par ailleurs les densités de chauffe sont largement supérieures dans les chambres de combustion de turbines, couramment plusieurs dizaines de fois supérieures.
- on injecte le carburant avec une pluralité de jets séparés les uns des autres et situés suivant les génératrices d'un cône d'angle au sommet compris entre 30° et 60°;
- on introduit l'air avec une pression comprise entre 2 et 30 bars;
- on réalise un mélange air sous pression/carburant avec une richesse comprise entre environ 0,4 et environ 0,8 et
- le temps de séjour des fluides à l'intérieur de l'enceinte est inférieur à 50 millisecondes.
- La figure 1 est une coupe longitudinale simplifiée d'une chambre de combustion selon l'invention;
- La figure 2 est une coupe schématique d'un détail de l'invention selon II de la figure 1; et
- La figure 3 est une coupe longitudinale simplifiée d'un turbo-compresseur mettant en oeuvre l'invention.
Claims (8)
- Procédé de fonctionnement d'une chambre de combustion de turbine à gaz alimentée avec un carburant liquide et de l'air, ladite chambre comprenant une enceinte tubulaire (2), un moyen (6) d'injection du carburant situé sur ou à proximité de l'axe longitudinal XX' de l'enceinte tubulaire et au moins deux types d'entrée d'air (7, 8), la première (7) introduisant l'air hélicoïdalement autour de l'axe longitudinal de la chambre de combustion, la deuxième entrée (8) introduisant l'air tangentiellement à l'enceinte (2) afin de créer autour des jets de combustible des écoulements contra rotatifs destinés à améliorer le mélange de l'air et dudit combustible, caractérisé en ce qu'on injecte le carburant avec une pluralité de jets séparés les uns des autres et situés suivant les génératrices d'un cône d'angle au sommet compris entre 30° et 60°, en ce qu'on introduit l'air avec une pression comprise entre 2 et 30 bars, en ce qu'on réalise un mélange air sous pression/carburant avec une richesse comprise entre environ 0,4 et environ 0,8 et en ce que le temps de séjour des fluides à l'intérieur de l'enceinte (2) est inférieur à 50 millisecondes.
- Procédé selon la revendication 1, caractérisée en ce qu'on introduit de 30% à 70% de la quantité totale d'air sous pression utilisé pour la combustion par la première entrée d'air (7), le reste étant introduit à travers la deuxième entrée d'air (8).
- Procédé selon l'une quelconque des revendications 1 ou 2, caractérisée en ce qu'on injecte le carburant au travers de 5 à 12 orifices (62) prévus sur le moyen d'injection (6), de préférence entre 6 et 10 orifices.
- Procédé selon l'une quelconque des revendications précédentes, caractérisée en ce qu'on introduit l'air sous pression à l'intérieur de la chambre de combustion avec une vitesse comprise entre 20 et 120 m/s.
- Procédé selon l'une quelconque des revendications précédentes, caractérisée en ce qu'on dispose les entrées d'air (7, 8) et le moyen d'injection (6) de telle sorte que l'on obtienne un nombre de swirl N compris entre 0,2 et 0,4 ; N étant défini par : où:R1 et R2 sont respectivement les rayons intérieur et extérieur de l'entrée d'air (7), exprimés en mètres;ρ est la masse volumique de l'air en kg/m3;Vax est la vitesse axiale du fluide à la sortie de l'entrée (7);Vtg est la vitesse tangentielle du fluide à la sortie de l'entrée (7) ; les vitesses étant exprimées en m/s.
- Procédé selon la revendication 1, caractérisée en ce qu'on injecte le carburant avec une pluralité de jets situés suivant les génératrices d'un cône d'angle au sommet compris préférentiellement entre 35° et 45°.
- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on injecte le carburant au travers du moyen d'injection de carburant (6) qui comprend un disque central (61) situé sur l'axe longitudinal XX' de l'enceinte tubulaire, autour duquel est disposé un anneau percé desdits orifices (62), la surface de l'anneau étant un tronc de cône.
- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on introduit l'air dans l'entrée tangentielle (8) qui comprend un ensemble d'inserts répartis sur la périphérie de l'enceinte (2) qui dirigent l'air tangentiellement à la paroi de l'enceinte (2), avec un sens de rotation contraire à celui de l'écoulement principal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9800932 | 1998-01-28 | ||
FR9800932A FR2774152B1 (fr) | 1998-01-28 | 1998-01-28 | Chambre de combustion de turbine a gaz fonctionnant au carburant liquide |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0933594A1 EP0933594A1 (fr) | 1999-08-04 |
EP0933594B1 true EP0933594B1 (fr) | 2004-12-15 |
Family
ID=9522281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99400141A Expired - Lifetime EP0933594B1 (fr) | 1998-01-28 | 1999-01-21 | Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide |
Country Status (5)
Country | Link |
---|---|
US (1) | US6378310B1 (fr) |
EP (1) | EP0933594B1 (fr) |
JP (1) | JPH11270852A (fr) |
DE (1) | DE69922559T2 (fr) |
FR (1) | FR2774152B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110397935A (zh) * | 2018-04-25 | 2019-11-01 | 中国科学院工程热物理研究所 | 旋风熔融炉及其使用方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10040791A1 (de) * | 2000-08-21 | 2002-03-14 | Siemens Ag | Verfahren und Vorrichtung zur Bestimmung und Kompensation der Verkippung des Spektrums in einer Lichtleitfaser einer Datenübertragungsstrecke |
US6543235B1 (en) * | 2001-08-08 | 2003-04-08 | Cfd Research Corporation | Single-circuit fuel injector for gas turbine combustors |
MX2007004119A (es) * | 2004-10-18 | 2007-06-20 | Alstom Technology Ltd | Quemador para turbina de gas. |
US20060218932A1 (en) * | 2004-11-10 | 2006-10-05 | Pfefferle William C | Fuel injector |
DE102005036889A1 (de) * | 2005-08-05 | 2007-02-15 | Gerhard Wohlfarth | Verfahren und Vorrichtung zur Einleitung, Förderung und Beschleunigung physikalischer Prozesse bzw. Reaktionen an flüssigen, gasförmigen Stoffen, Stoffgemischen, Lösungen und im besonderen ein Verfahren und Vorrichtung zur Steigerung des Wirkungsgrades bei Verbrennungsvorgängen in Ölfeuerungsanlagen |
US8062027B2 (en) * | 2005-08-11 | 2011-11-22 | Elster Gmbh | Industrial burner and method for operating an industrial burner |
US7614211B2 (en) * | 2005-12-15 | 2009-11-10 | General Electric Company | Swirling flows and swirler to enhance pulse detonation engine operation |
FR2903173B1 (fr) * | 2006-06-29 | 2008-08-29 | Snecma Sa | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
EP2072899B1 (fr) * | 2007-12-19 | 2016-03-30 | Alstom Technology Ltd | Procédé d'injection de carburant |
US9062563B2 (en) | 2008-04-09 | 2015-06-23 | General Electric Company | Surface treatments for preventing hydrocarbon thermal degradation deposits on articles |
US8683808B2 (en) * | 2009-01-07 | 2014-04-01 | General Electric Company | Late lean injection control strategy |
US8701418B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection for fuel flexibility |
US8112216B2 (en) * | 2009-01-07 | 2012-02-07 | General Electric Company | Late lean injection with adjustable air splits |
US8701382B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection with expanded fuel flexibility |
US8701383B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection system configuration |
US8707707B2 (en) * | 2009-01-07 | 2014-04-29 | General Electric Company | Late lean injection fuel staging configurations |
NL2005381C2 (en) * | 2010-09-21 | 2012-03-28 | Micro Turbine Technology B V | Combustor with a single limited fuel-air mixing burner and recuperated micro gas turbine. |
US20120210717A1 (en) * | 2011-02-21 | 2012-08-23 | General Electric Company | Apparatus for injecting fluid into a combustion chamber of a combustor |
DE102011013950A1 (de) * | 2011-03-14 | 2012-09-20 | Air Liquide Deutschland Gmbh | Brenner und Verfahren zum Betreiben eines Brenners |
US8893500B2 (en) | 2011-05-18 | 2014-11-25 | Solar Turbines Inc. | Lean direct fuel injector |
US8919132B2 (en) | 2011-05-18 | 2014-12-30 | Solar Turbines Inc. | Method of operating a gas turbine engine |
US9182124B2 (en) | 2011-12-15 | 2015-11-10 | Solar Turbines Incorporated | Gas turbine and fuel injector for the same |
US20160053681A1 (en) * | 2014-08-20 | 2016-02-25 | General Electric Company | Liquid fuel combustor having an oxygen-depleted gas (odg) injection system for a gas turbomachine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB387049A (en) * | 1930-10-23 | 1933-02-02 | Hubert Jezler | Improvements in or relating to the firing of boilers and the like |
US2638745A (en) * | 1943-04-01 | 1953-05-19 | Power Jets Res & Dev Ltd | Gas turbine combustor having tangential air inlets for primary and secondary air |
BE560443A (fr) * | 1956-09-01 | |||
JPS4931059Y1 (fr) * | 1970-11-30 | 1974-08-22 | ||
US4006589A (en) * | 1975-04-14 | 1977-02-08 | Phillips Petroleum Company | Low emission combustor with fuel flow controlled primary air flow and circumferentially directed secondary air flows |
US4271675A (en) * | 1977-10-21 | 1981-06-09 | Rolls-Royce Limited | Combustion apparatus for gas turbine engines |
US4222232A (en) * | 1978-01-19 | 1980-09-16 | United Technologies Corporation | Method and apparatus for reducing nitrous oxide emissions from combustors |
EP0124146A1 (fr) * | 1983-03-30 | 1984-11-07 | Shell Internationale Researchmaatschappij B.V. | Procédé et appareil pour la combustion du combustible avec émission à faible teneur en NOx, de suie et de particules |
US4702073A (en) * | 1986-03-10 | 1987-10-27 | Melconian Jerry O | Variable residence time vortex combustor |
US4928481A (en) * | 1988-07-13 | 1990-05-29 | Prutech Ii | Staged low NOx premix gas turbine combustor |
FR2656676B1 (fr) | 1989-12-28 | 1994-07-01 | Inst Francais Du Petrole | Bruleur industriel a combustible liquide a faible emission d'oxyde d'azote, ledit bruleur generant plusieurs flammes elementaires et son utilisation. |
US5628184A (en) * | 1993-02-03 | 1997-05-13 | Santos; Rolando R. | Apparatus for reducing the production of NOx in a gas turbine |
FR2706985B1 (fr) * | 1993-06-22 | 1995-08-25 | Pillard Ent Gle Chauffage Indl | |
US5479781A (en) * | 1993-09-02 | 1996-01-02 | General Electric Company | Low emission combustor having tangential lean direct injection |
US5488829A (en) * | 1994-05-25 | 1996-02-06 | Westinghouse Electric Corporation | Method and apparatus for reducing noise generated by combustion |
US5822992A (en) | 1995-10-19 | 1998-10-20 | General Electric Company | Low emissions combustor premixer |
FR2741424B1 (fr) | 1995-11-17 | 1998-01-02 | Schlumberger Services Petrol | Bruleur a faible pollution, pour essais de puits petroliers |
US5680766A (en) * | 1996-01-02 | 1997-10-28 | General Electric Company | Dual fuel mixer for gas turbine combustor |
-
1998
- 1998-01-28 FR FR9800932A patent/FR2774152B1/fr not_active Expired - Lifetime
-
1999
- 1999-01-21 DE DE69922559T patent/DE69922559T2/de not_active Expired - Fee Related
- 1999-01-21 EP EP99400141A patent/EP0933594B1/fr not_active Expired - Lifetime
- 1999-01-28 US US09/238,586 patent/US6378310B1/en not_active Expired - Fee Related
- 1999-01-28 JP JP11020214A patent/JPH11270852A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110397935A (zh) * | 2018-04-25 | 2019-11-01 | 中国科学院工程热物理研究所 | 旋风熔融炉及其使用方法 |
Also Published As
Publication number | Publication date |
---|---|
EP0933594A1 (fr) | 1999-08-04 |
FR2774152B1 (fr) | 2000-03-24 |
JPH11270852A (ja) | 1999-10-05 |
US6378310B1 (en) | 2002-04-30 |
US20020050139A1 (en) | 2002-05-02 |
FR2774152A1 (fr) | 1999-07-30 |
DE69922559T2 (de) | 2005-05-12 |
DE69922559D1 (de) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0933594B1 (fr) | Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide | |
CA2588952C (fr) | Chambre de combustion d'une turbomachine | |
JP4368112B2 (ja) | 燃焼室用の、液体燃料を空気流れ中に噴射する装置および方法 | |
CA2593199C (fr) | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif | |
FR2724447A1 (fr) | Melangeur de carburant double pour chambre de combustion de turbomoteur | |
FR2931537A1 (fr) | Procedes et systemes pour reduire la dynamique de combustion | |
FR2933766A1 (fr) | Dispositif de premelange pour moteur a turbine. | |
FR2634005A1 (fr) | Ensemble injecteur de carburant de pilotage pour un statoreacteur supersonique | |
EP1923636B1 (fr) | Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif | |
WO2012156597A1 (fr) | Turbomachine à chambre de détonation et engin volant pourvu d'une telle turbomachine | |
EP2761226B1 (fr) | Chambre annulaire de combustion d'une turbomachine | |
EP0984223B1 (fr) | Procédé de combustion pour brûler un combustible | |
FR2772890A1 (fr) | Ensemble de melange d'air et de combustible et moteur a turbine a gaz le comportant | |
EP1640661B1 (fr) | Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine | |
FR3116592A1 (fr) | Vrille pour dispositif d’injection étagé de turbomachine | |
FR2706020A1 (fr) | Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées. | |
EP3247945B1 (fr) | Ensemble comprenant un système d'injection pour chambre de combustion de turbomachine d'aéronef ainsi qu'un injecteur de carburant | |
WO2020025234A1 (fr) | Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique | |
WO2023057722A1 (fr) | Dispositif d'injection de dihydrogène et d'air | |
WO2024052611A1 (fr) | Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine | |
FR3061948A1 (fr) | Chambre de combustion de turbomachine a haute permeabilite | |
FR3144221A1 (fr) | Fonctionnement de turbine à gaz | |
FR3144206A1 (fr) | Procédure de rallumage de chambre de combustion | |
FR3144223A1 (fr) | Procédé de fonctionnement d'un moteur à turbine à gaz | |
FR2729743A1 (fr) | Tete de combustion, en particulier pour bruleur a air souffle, et bruleur equipe d'une telle tete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHOTT, GERARD Inventor name: GRIENCHE, GUY Inventor name: MARTIN, GERARD Inventor name: FLAMENT, PATRICK Inventor name: LE GAL, JEAN-HERVE |
|
17P | Request for examination filed |
Effective date: 20000204 |
|
AKX | Designation fees paid |
Free format text: DE GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20021017 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD OF OPERATING A GAS TURBINE COMBUSTION CHAMBER FOR LIQUID FUEL |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHOTT, GERARD Inventor name: GRIENCHE, GUY Inventor name: MARTIN, GERARD Inventor name: FLAMENT, PATRICK Inventor name: LE GAL, JEAN-HERVE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20041215 |
|
REF | Corresponds to: |
Ref document number: 69922559 Country of ref document: DE Date of ref document: 20050120 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050916 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090211 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090120 Year of fee payment: 11 Ref country code: IT Payment date: 20090124 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100121 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100122 |