[go: up one dir, main page]

EP0930426B1 - Method for pre-setting the reference pressure for an accumulator fuel injection system - Google Patents

Method for pre-setting the reference pressure for an accumulator fuel injection system Download PDF

Info

Publication number
EP0930426B1
EP0930426B1 EP98124810A EP98124810A EP0930426B1 EP 0930426 B1 EP0930426 B1 EP 0930426B1 EP 98124810 A EP98124810 A EP 98124810A EP 98124810 A EP98124810 A EP 98124810A EP 0930426 B1 EP0930426 B1 EP 0930426B1
Authority
EP
European Patent Office
Prior art keywords
fup
timer
engine
injection pressure
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98124810A
Other languages
German (de)
French (fr)
Other versions
EP0930426A2 (en
EP0930426A3 (en
Inventor
Andreas Hartke
Christian Dr. Birkner
Klaus Dr. Wenzlawski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0930426A2 publication Critical patent/EP0930426A2/en
Publication of EP0930426A3 publication Critical patent/EP0930426A3/en
Application granted granted Critical
Publication of EP0930426B1 publication Critical patent/EP0930426B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/606Driving style, e.g. sporty or economic driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position

Definitions

  • the invention relates to a method for specifying the injection pressure setpoint in storage injection systems for supplying fuel in internal combustion engines.
  • Accumulator injection systems are increasingly used for the fuel supply of internal combustion engines, in which very high injection pressures are used.
  • Such injection systems are known as common rail injection systems (for diesel engines) and HPDI injection systems (for gasoline engines). These injection systems are characterized in that the fuel is conveyed with a high-pressure pump into a pressure accumulator common to all cylinders, from which the injectors or injectors on the individual cylinders of the engine are supplied.
  • the opening and closing of the injection valves is usually controlled electromagnetically.
  • the amount of fuel injected is proportional to the opening duration of the injection valve and the system or injection pressure, which is measured via a pressure sensor on the pressure accumulator.
  • the injection pressure is independent of the engine speed and therefore represents an additional variable that enables fuel to be injected as required.
  • the injection pressure for example, has a considerable influence on the combustion process in the cylinder via the fuel atomization that is dependent on it. By increasing the injection pressure in the lower speed range, the exhaust gas values can be improved. In general, it is always necessary to specify an injection pressure that is adapted to the engine operating point and the operating state, in order to obtain combustion that is optimal with regard to pollutant emissions, combustion noise and torque development.
  • the setpoint value for the injection pressure in the event of a sudden change for example the amount of fuel injected, can be raised or lowered with an adapted timing behavior.
  • the time constants T 1 , T 2 and the gain factor K PDT1 for the first DT 1 timing element 204 are taken from characteristic curves 201, 202 and 203 depending on the speed, in order to coordinate the setpoint intervention via the first timing element 204 depending on the speed.
  • variable FUP_SP in equation (2) is described depending on the engine operating state either with FUP_SP_ST for engine start, with FUP_SP_IS for engine idling or with FUP_SP_PL for load operation.
  • the timer 401 is also informed of the engine operating state in coded form via the ENGINE_STATE input.
  • the basic time constants T1_PT1_BAS for the PT 1 timer 401 are specified via the map 402 as a function of the coolant temperature TCO and the current control difference FUP_DIFF between the target and actual pressure of the injection in the high-pressure accumulator, in order to determine the behavior of the mixture preparation, which depends on the engine temperature, and that for the Pressure build-up and reduction take into account different timing behavior of the injection system.
  • this base time constant is subjected to a multiplicative weighting in a multiplication point 404 before it is fed as a final time constant to the timer 401 and processed there in the form of the variable T 1 according to equation (2).
  • the weighting is carried out with the aid of the map 403.
  • the information about the gear engaged is contained in coded form in the signal GEAR, which is present as an input variable on the map 403.
  • the signal DRIVER_MODE of the driver identification function of a transmission control for an automatic transmission may be present at a further input of the characteristic diagram 403.
  • the pressure build-up and pressure reduction in the high-pressure accumulator can be accelerated or decelerated in relation to the specified time behavior in order, for example, to take into account the driver's desire for optimal torque development.
  • the desired value FUP_SP for the injection pressure obtained in the form described at the output of the timing element 401 is fed to the injection pressure regulator in the electronic control unit 22 as an input signal, which ensures that the optimal injection pressure for a certain operating behavior is set in the pressure accumulator 18 of the fuel supply system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Vorgabe des Einspritzdruck-Sollwertes bei Speichereinspritzsystemen zur Kraftstoffzuführung in Verbrennungsmotoren.
Für die Kraftstoffversorgung von Verbrennungsmotoren werden zunehmend Speichereinspritzsysteme verwendet, bei denen mit sehr hohen Einspritzdrücken gearbeitet wird. Solche Einspritzsysteme sind als Common-Rail-Einspritzsysteme (für Dieselmotoren) und HPDI-Einspritzsysteme (für Ottomotoren) bekannt. Diese Einspritzsysteme zeichnen sich dadurch aus, daß der Kraftstoff mit einer Hochdruckpumpe in einen allen Zylindern gemeinsamen Druckspeicher gefördert wird, von dem aus die Injektoren oder Einspritzventile an den einzelnen Zylindern des Motors versorgt werden. Das Öffnen und Schließen der Einspritzventile wird in der Regel elektromagnetisch gesteuert. Die eingespritzte Kraftstoffmenge ist proportional zur Öffnungsdauer des Einspritzventils und dem System- oder Einspritzdruck, der über einen Drucksensor am Druckspeicher gemessen wird.
Der Einspritzdruck ist bei einem solchen System von der Motordrehzahl unabhängig und stellt daher eine zusätzliche Variable dar, die eine bedarfsgerechte Einspritzung des Kraftstoffs ermöglicht. Der Einspritzdruck hat zum Beispiel über die davon abhängige Kraftstoffzerstäubung einen erheblichen Einfluß auf den Verbrennungsvorgang im Zylinder. Durch Anheben des Einspritzdruckes im unteren Drehzahlbereich lassen sich etwa die Abgaswerte verbessern. Generell gilt es, immer einen an den Motorbetriebspunkt und den Betriebszustand angepaßten Einspritzdruck vorzugeben, um eine hinsichtlich der Schadstoffemission, dem Verbrennungsgeräusch und der Drehmomententfaltung optimale Verbrennung zu erhalten.
The invention relates to a method for specifying the injection pressure setpoint in storage injection systems for supplying fuel in internal combustion engines.
Accumulator injection systems are increasingly used for the fuel supply of internal combustion engines, in which very high injection pressures are used. Such injection systems are known as common rail injection systems (for diesel engines) and HPDI injection systems (for gasoline engines). These injection systems are characterized in that the fuel is conveyed with a high-pressure pump into a pressure accumulator common to all cylinders, from which the injectors or injectors on the individual cylinders of the engine are supplied. The opening and closing of the injection valves is usually controlled electromagnetically. The amount of fuel injected is proportional to the opening duration of the injection valve and the system or injection pressure, which is measured via a pressure sensor on the pressure accumulator.
In such a system, the injection pressure is independent of the engine speed and therefore represents an additional variable that enables fuel to be injected as required. The injection pressure, for example, has a considerable influence on the combustion process in the cylinder via the fuel atomization that is dependent on it. By increasing the injection pressure in the lower speed range, the exhaust gas values can be improved. In general, it is always necessary to specify an injection pressure that is adapted to the engine operating point and the operating state, in order to obtain combustion that is optimal with regard to pollutant emissions, combustion noise and torque development.

Bislang erfolgte die Einspritzdruckvorgabe insbesondere beim Common-Rail-System lediglich über ein einziges Kennfeld, das über die aktuell eingespritzte Kraftstoffmenge und die aktuelle Motordrehzahl angesprochen wird. Übergangszustände, die sich etwa beim Beschleunigen aus einem transienten, nichtstationären Motorbetriebszustand ergeben, können dabei nicht ausreichend berücksichtigt werden.
Aufgabe der Erfindung ist es, ein Verfahren zur Vorgabe des Einspritzdruck-Sollwertes bei Speichereinspritzsystemen zu schaffen, in das die aus einem transienten Motorbetriebszustand resultierenden speziellen Anforderungen an den zeitlichen Verlauf dieser Größe eingebunden sind.
Diese Aufgabe wird erfindungsgemäß mit dem im Patentanspruch 1 angegebenen Verfahren gelöst.
Bei dem erfindungsgemäßen Verfahren erfolgt die Vorgabe des Einspritzdruck-Sollwertes betriebspunktabhängig mit Hilfe jeweils eigener Kennfelder für die Motorbetriebszustände Start, Leerlauf und Last.
Im Lastbetrieb wird zusätzlich über ein erstes Zeitglied, dessen Zeitverhalten von der Motordrehzahl abhängt, der Verlauf des Einspritzdruck-Sollwertes an die besonderen Anforderungen des transienten Motorbetriebes angepaßt. Auf diese Weise kann zum Beispiel bei einer Beschleunigung aus einer niedrigen Motordrehzahl heraus der Einspritzdruck kurzzeitig angehoben werden, um die tendenziell schlechtere Gemischaufbereitung bei niedrigen Drehzahlen durch eine Einspritzdrukkerhöhung und damit eine bessere Kraftstoffzerstäubung zu kompensieren. Umgekehrt läßt sich durch eine kurzzeitige Absenkung des Einspritzdruckes bei plötzlicher Lastanforderung unter hoher Motordrehzahl die Geräuschemission reduzieren.
Mit Hilfe eines zweiten, vom ersten Zeitglied unabhängigen Zeitgliedes werden Übergänge in der Sollwertvorgabe beim Wechsel des Motorbetriebszustandes geeignet ausgeformt. Auf diese Weise können plötzliche Sprünge im Einspritzdruck-Sollwert, wie sie ohne entsprechende Gegenmaßnahmen beispielsweise beim Wechsel vom Startbetrieb (erhöhter Einspritzdruck) in den Leerlauf (abgesenkter Einspritzdruck) auftreten würden, vermieden werden. Dadurch werden sprunghafte Änderungen des Antriebsmomentes der Hochdruckpumpe etwa beim Übergang in den Leerlauf oder aus dem Leerlauf heraus umgangen. Neben einer geringeren Belastung der Komponenten des Einspritzsystems ist durch die erhöhte Drehzahlstabilität ein wesentlicher Komfortgewinn für die Fahrzeuginsassen die Folge.
Das zweite Zeitglied kann ferner dazu genutzt werden, dem Einspritzdruck im Lastbetrieb eine Änderungsbegrenzung aufzuerlegen. Dazu wird abhängig vom eingelegten Gang oder der Fahrweise des Fahrers das Zeitverhalten der Übertragungsfunktion des Zeitgliedes entsprechend vorgegeben. Auf diese Weise kann dem Fahrverhalten des Fahrzeuglenkers oder einer besonderen Situation Rechnung getragen werden und die üblicherweise als Kompromiß hinsichtlich des Kraftstoffverbrauchs, der Drehmomententfaltung, der Schadstoffemission und dem Geräuschverhalten vorgenommene Motorabstimmung in Richtung eines bestimmten Effektes, etwa einer maximalen Drehmomententfaltung, verschoben werden.
Die Erfindung ermöglicht somit eine betriebspunktabhängige Änderung des Einspritzdruckes in Echtzeit und damit die optimale Anpassung des Einspritzdruckverlaufes an die besonderen Anforderungen des transienten Motorbetriebes.
Anhand der Zeichnung wird die vorliegende Erfindung beispielhaft näher erläutert. Es zeigen:

  • Fig. 1 eine schematische Darstellung eines Common-Rail-Kraftstoffeinspritzsystems;
  • Fig. 2 eine schematische Blockdarstellung zur Vorgabe des Einspritzdruck-Sollwertes bei dem System der Fig. 1;
  • Fig. 3 die Sprungantwort des ersten Übertragungs-Zeitgliedes in der Blockdarstellung der Fig. 2; und
  • Fig. 4 die Sprungantwort des zweiten Übertragungs-Zeitgliedes in der Blockdarstellung der Fig. 2.
  • Die Fig. 1 zeigt schematisch den Aufbau eines Kraftstoffeinspritzsystems, wie es unter der Bezeichnung Common-Rail-System vor allem bei Dieselmotoren eingesetzt wird. Der Kraftstoff wird durch eine Vorförderpumpe 10 aus einem Kraftstoffbehälter 12 angesaugt. Die Vorförderpumpe 10 fördert den Kraftstoff über ein Kraftstoffilter 14 zu einer Hochdruckpumpe 16, die den Kraftstoff unter hohem Druck in einen Druckspeicher 18 einspeist. Der Druckspeicher 18 steht mit Einspritzventilen 20 in Verbindung, über die der Kraftstoff in die Zylinder des Verbrennungsmotors eingespritzt wird. Der Einspritzvorgang wird von einer elektronischen Steuereinheit 22 gesteuert, die über Signalleitungen 24 mit den einzelnen Einspritzventilen 20 verbunden ist.
    Die elektronische Steuereinheit 22 wirkt über eine Steuerleitung 26 auch auf ein Saugdrosselventil 28 ein, das zwischen der Vorförderpumpe 10 und der Hochdruckpumpe 16 in der Kraftstoffleitung angeordnet ist und mit dessen Hilfe der Förderstrom der Hochdruckpumpe 16 geregelt werden kann, um den Volumenstrom der Hochdruckpumpe 16 bedarfsabhängig einzustellen. Der Förderstrom der Hochdruckpumpe 16 kann alternativ jedoch auch auf andere Weise, etwa eine entsprechende druckoder drehzahlabhängige Auslegung der Vorförderpumpe 10 verändert werden.
    Am Druckspeicher 18 ist ein Drucksensor 30 angebracht, der den im Druckspeicher 18 herrschenden Druck erfaßt. Das Ausgangssignal des Drucksensors 30 wird der elektronischen Steuereinheit 22 zugeführt.
    Zum Einstellen des Drucks im Druckspeicher 18 in Abhängigkeit von den Betriebsbedingungen des Verbrennungsmotors ist in die Kraftstoffleitung 32 zwischen der Hochdruckpumpe 16 und dem Druckspeicher 18 ein Druckregelventil 34 geschaltet. Dieses Druckregelventil 34 leitet überschüssigen Kraftstoff, der nicht zur Aufrechterhaltung eines gewünschten Drucks im Druckspeicher 18 benötigt wird, über eine Kraftstoffrückleitung 36 in den Kraftstoffbehälter 12 zurück. Das Druckregelventil 34 ist über eine Steuerleitung 38 mit der elektronischen Steuereinheit 22 verbunden, die an das Druckregelventil 34 ein Ansteuersignal abgibt, das den Druck im Druckspeicher 18 bestimmt.
    In Abhängigkeit von den von außen zugeführten Eingangssignalen, zu denen neben dem Ausgangssignal des Drucksensors 30 auch die Motordrehzahl sowie weitere Informationen, wie solche über den eingelegten Gang gehören, und in Abhängigkeit von intern festgelegten Größen wie der aktuell eingespritzten Kraftstoffmenge bestimmt die elektronische Steuereinheit 22 den Druck, der an den Einspritzventilen 20 anliegen soll, das heißt den Solldruck im Druckspeicher 18 oder den Einspritzdruck-Sollwert, und gibt über die Steuerleitungen 26 und 38 entsprechende Signale an das Druckregelventil 34 und/oder die Hochdruckpumpe 16.
    Die Fig. 2 zeigt eine schematische Blockdarstellung für die Vorgabe des Einspritzdruck-Sollwertes durch die elektronische Steuereinheit 22.
    Mit Hilfe der Kennfelder 101, 301 und 302 werden für die Motorbetriebszustände Start ST (Kennfeld 301), Leerlauf IS (Kennfeld 302) und Lastbetrieb PL (Kennfeld 101) entsprechende Sollwerte FUP_SP_ST, FUP_SP_IS und FUP_SP_PL_BAS für den Einspritzdruck vorgegeben. Dabei werden die Sollwertkennfelder für den Start und den Leerlauf über die aktuelle Motordrehzahl N und die Kühlmitteltemperatur TCO angesprochen, um der Abhängigkeit der Gemischaufbereitung von der Ladungsbewegung im Brennraum und der Temperatur des Motors Rechnung zu tragen.
    Unter Rückgriff auf eine vorgegebene Kennlinie 102 wird der im Lastbetrieb betriebspunktabhängig vorgegebene Sollwert FUP_SP_BL_BAS für den Einspritzdruck in der Summationsstelle 103 auf additivem Weg kühlmitteltemperaturabhängig zu FUP_SP_PL korrigiert. Der so ermittelte Sollwert FUP_SP_PL für den Lastbetrieb liegt an einem ersten Zeitglied 204 an und wird, additiv in einer Summationsstelle 205 durch das Ausgangssignal des ersten Zeitgliedes 204 modifiziert, auch zu einem zweiten Zeitglied 401 geführt. Am zweiten Zeitglied 401 liegen auch die Sollwerte FUP_SP_ST und FUP_SP_IS aus den Kennfeldern 301 und 302 für die Betriebszustände Start und Leerlauf an.
    Das erste Zeitglied 204 ist als DT1-Glied ausgebildet. Die rekursive Gleichung für die Übertragungsfunktion dieses Zeitgliedes 204 lautet
    Figure 00060001
    mit
  • FUP_SP_PL_DYN(i): Ausgangssignal des ersten Zeitgliedes,
  • KPDT1: Verstärkungsfaktor,
  • T1: erste Zeitkonstante,
  • T2: zweite Zeitkonstante,
  • FUP_SP_PL(i): Einspritzdruck-Sollwert im Lastbetrieb,
  • ta: Abtastzeit.
  • Der Index i kennzeichnet dabei den aktuellen Rechendurchlauf, i-1 den vorhergehenden.In the past, the injection pressure was specified, in particular in the common rail system, only via a single map, which is addressed via the currently injected fuel quantity and the current engine speed. Transition states, which result from a transient, non-stationary engine operating state when accelerating, for example, cannot be sufficiently taken into account.
    The object of the invention is to provide a method for specifying the injection pressure setpoint in storage injection systems, in which the special requirements resulting from a transient engine operating state for the time profile of this variable are incorporated.
    This object is achieved with the method specified in claim 1.
    In the method according to the invention, the injection pressure setpoint is specified as a function of the operating point with the aid of separate maps for the engine operating states of start, idling and load.
    In load operation, the course of the injection pressure setpoint is additionally adapted to the special requirements of transient engine operation via a first timing element, the timing of which depends on the engine speed. In this way, for example, when accelerating from a low engine speed, the injection pressure can be raised briefly in order to compensate for the tendency towards poorer mixture preparation at low speeds by increasing the injection pressure and thus better atomizing the fuel. Conversely, by briefly lowering the injection pressure in the event of a sudden load request under high engine speed, the noise emission can be reduced.
    With the help of a second timing element that is independent of the first timing element, transitions in the setpoint specification are suitably shaped when the engine operating state changes. In this way, sudden jumps in the injection pressure setpoint, as would occur without appropriate countermeasures, for example when changing from starting operation (increased injection pressure) to idling (reduced injection pressure), can be avoided. This avoids sudden changes in the drive torque of the high-pressure pump, for example when changing to idling or out of idling. In addition to a lower load on the components of the injection system, the increased speed stability results in a significant gain in comfort for the vehicle occupants.
    The second timing element can also be used to impose a change limit on the injection pressure during load operation. For this purpose, the timing of the transmission function of the timing element is predefined depending on the gear selected or the driver's driving style. In this way, the driving behavior of the vehicle driver or a special situation can be taken into account and the engine tuning, which is usually carried out as a compromise with regard to fuel consumption, torque development, pollutant emission and noise behavior, is shifted in the direction of a certain effect, such as maximum torque development.
    The invention thus makes it possible to change the injection pressure as a function of the operating point in real time and thus to optimally adapt the injection pressure curve to the special requirements of transient engine operation.
    The present invention is explained in more detail by way of example with reference to the drawing. Show it:
  • Figure 1 is a schematic representation of a common rail fuel injection system.
  • FIG. 2 shows a schematic block diagram for specifying the injection pressure setpoint in the system of FIG. 1;
  • Fig. 3 shows the step response of the first transmission timer in the block diagram of Fig. 2; and
  • 4 shows the step response of the second transmission timer in the block diagram of FIG. 2.
  • Fig. 1 shows schematically the structure of a fuel injection system, as it is used under the name common rail system, especially in diesel engines. The fuel is drawn in from a fuel tank 12 by a pre-feed pump 10. The pre-feed pump 10 delivers the fuel via a fuel filter 14 to a high-pressure pump 16, which feeds the fuel into a pressure accumulator 18 under high pressure. The pressure accumulator 18 is connected to injection valves 20, via which the fuel is injected into the cylinders of the internal combustion engine. The injection process is controlled by an electronic control unit 22, which is connected to the individual injection valves 20 via signal lines 24.
    The electronic control unit 22 also acts via a control line 26 on a suction throttle valve 28, which is arranged between the prefeed pump 10 and the high pressure pump 16 in the fuel line and with the aid of which the flow rate of the high pressure pump 16 can be regulated in order to adjust the volume flow of the high pressure pump 16 as required adjust. The delivery flow of the high pressure pump 16 can alternatively also be changed in a different way, for example a corresponding pressure or speed-dependent design of the prefeed pump 10.
    A pressure sensor 30 is attached to the pressure accumulator 18 and detects the pressure prevailing in the pressure accumulator 18. The output signal of the pressure sensor 30 is fed to the electronic control unit 22.
    In order to set the pressure in the pressure accumulator 18 as a function of the operating conditions of the internal combustion engine, a pressure control valve 34 is connected into the fuel line 32 between the high pressure pump 16 and the pressure accumulator 18. This pressure control valve 34 leads excess fuel, which is not required to maintain a desired pressure in the pressure accumulator 18, back into the fuel tank 12 via a fuel return line 36. The pressure control valve 34 is connected via a control line 38 to the electronic control unit 22, which emits a control signal to the pressure control valve 34 which determines the pressure in the pressure accumulator 18.
    Depending on the input signals supplied from the outside, to which, in addition to the output signal of the pressure sensor 30, the engine speed and further information, such as those relating to the gear engaged, and depending on internally defined variables such as the currently injected fuel quantity, the electronic control unit 22 determines the Pressure that is to be applied to the injection valves 20, that is to say the setpoint pressure in the pressure accumulator 18 or the injection pressure setpoint, and gives corresponding signals to the pressure control valve 34 and / or the high pressure pump 16 via the control lines 26 and 38.
    2 shows a schematic block diagram for the specification of the injection pressure setpoint by the electronic control unit 22.
    With the aid of maps 101, 301 and 302, corresponding setpoints FUP_SP_ST, FUP_SP_IS and FUP_SP_PL_BAS for the injection pressure are specified for the engine operating states Start ST (map 301), idling IS (map 302) and load operation PL (map 101). The setpoint maps for starting and idling are addressed via the current engine speed N and the coolant temperature TCO in order to take into account the dependence of the mixture preparation on the charge movement in the combustion chamber and the temperature of the engine.
    Using a predefined characteristic curve 102, the setpoint value FUP_SP_BL_BAS, which is predefined in the operating mode as a function of the load point, is corrected in an additive manner to FUP_SP_PL for the injection pressure in the summation point 103. The setpoint FUP_SP_PL for load operation determined in this way is applied to a first timing element 204 and, additively modified in a summation point 205 by the output signal of the first timing element 204, is also passed to a second timing element 401. The setpoint values FUP_SP_ST and FUP_SP_IS from the characteristic diagrams 301 and 302 for the operating states start and idling are also present on the second timer 401.
    The first timing element 204 is designed as a DT 1 element. The recursive equation for the transfer function of this timer 204 is
    Figure 00060001
    With
  • FUP_SP_PL_DYN (i): output signal of the first timer,
  • K PDT1 : gain factor ,
  • T 1 : first time constant,
  • T 2 : second time constant,
  • FUP_SP_PL (i): injection pressure setpoint in load operation,
  • t a : sampling time.
  • The index i identifies the current computing cycle, i-1 the previous one.

    Die Fig. 3 zeigt die Sprungantwort des ersten Zeitgliedes 204. Mit Hilfe dieses Zeitgliedes kann, je nach Wahl des Vorzeichens des Verstärkungsfaktors, der Sollwert für den Einspritzdruck bei einer sprungförmigen Änderung beispielsweise der eingespritzten Kraftstoffmenge mit einem angepaßten Zeitverhalten angehoben oder abgesenkt werden. Die Zeitkonstanten T1, T2 und der Verstärkungsfaktor KPDT1 für das erste DT1-Zeitglied 204 werden drehzahlabhängig vorgegebenen Kennlinien 201, 202 und 203 entnommen, um den Sollwerteingriff über das erste Zeitglied 204 drehzahlabhängig abzustimmen. 3 shows the step response of the first timing element 204. With the aid of this timing element, depending on the choice of the sign of the amplification factor, the setpoint value for the injection pressure in the event of a sudden change, for example the amount of fuel injected, can be raised or lowered with an adapted timing behavior. The time constants T 1 , T 2 and the gain factor K PDT1 for the first DT 1 timing element 204 are taken from characteristic curves 201, 202 and 203 depending on the speed, in order to coordinate the setpoint intervention via the first timing element 204 depending on the speed.

    Das dem ersten Zeitglied 204 nachgeschaltete zweite Zeitglied 401 ist als Verzögerungsglied erster Ordnung (PT1-Glied) ausgeführt. Die Gleichung für die Übertragungsfunktion dieses Zeitglieds 401, dessen Sprungantwort in der Fig. 4 dargestellt ist, lautet in der rekursiven Form FUP_SP_DFT(i) = 11 + T1/Ta [T1/Ta(FUP_SP_DFT(i - 1)) + FUP - SP(i)] mit

  • FUP_SP_DFT(i): verzögerter Einspritzdruck-Sollwert,
  • FUP_SP(i): aktueller Einspritzdruck-Sollwert,
  • T1: Zeitkonstante des Verzögerungs-Zeitgliedes,
  • ta: Abtastzeit,
  • wobei der Index i wieder den aktuellen Rechendurchlauf und i-1 den vorhergehenden kennzeichnet.The second timing element 401 connected downstream of the first timing element 204 is designed as a first-order delay element (PT 1 element). The equation for the transfer function of this timing element 401, whose step response is shown in FIG. 4, is in the recursive form FUP_SP_DFT (i) = 1 1 + T 1 / T a [T 1 / T a (FUP_SP_DFT (i - 1)) + FUP - SP (i)] With
  • FUP_SP_DFT (i): delayed injection pressure setpoint,
  • FUP_SP (i): current injection pressure setpoint,
  • T 1 : time constant of the delay timer,
  • t a : sampling time,
  • where the index i again indicates the current computing cycle and i-1 the previous one.

    Die Variable FUP_SP in der Gleichung (2) wird dabei in Abhängigkeit vom Motorbetriebszustand entweder mit FUP_SP_ST für den Motorstart, mit FUP_SP_IS für den Motorleerlauf oder mit FUP_SP_PL für den Lastbetrieb beschrieben. Dazu wird dem Zeitglied 401 zusätzlich über den Eingang ENGINE_STATE in kodierter Form der Motorbetriebszustand mitgeteilt. Die Vorgabe der Basiszeitkonstanten T1_PT1_BAS für das PT1-Zeitglied 401 erfolgt über das Kennfeld 402 in Abhängigkeit von der Kühlmitteltemperatur TCO und der aktuellen Regeldifferenz FUP_DIFF zwischen Einspritzsoll- und -istdruck im Hochdruckspeicher, um dem von der Motortemperatur abhängigen Verhalten der Gemischaufbereitung und dem für den Druckauf- und -abbau unterschiedlichen Zeitverhalten des Einspritzsystems Rechnung zu tragen. In Abhängigkeit vom eingelegten Gang und dem Ergebnis einer Fahrererkennung wird diese Basiszeitkonstante in einer Multiplikationsstelle 404 einer multiplikativen Wichtung unterzogen, bevor sie als endgültige Zeitkonstante dem Zeitglied 401 zugeführt und dort in Form der Variablen T1 nach Gleichung (2) verarbeitet wird. Die Wichtung erfolgt mit Hilfe des Kennfeldes 403. Die Information über den eingelegten Gang ist in kodierter Form im Signal GEAR enthalten, das als Eingangsgröße am Kennfeld 403 anliegt. An einem weiteren Eingang des Kennfeldes 403 liegt gegebenenfalls das Signal DRIVER_MODE der Fahrererkennungsfunktion einer Getriebesteuerung für ein Automatikgetriebe an.
    Unter Rückgriff auf die Informationen über das allgemeine Fahrverhalten des Fahrers, das in modernen Getriebesteuerungen üblicherweise über ein Fuzzy-System ermittelt oder vom Fahrer durch Betätigung eines Schalters vorgegeben wird, kann somit der Druckaufbau und der Druckabbau im Hochdruckspeicher gegenüber dem vorgegebenen Zeitverhalten gezielt beschleunigt oder verzögert werden, um damit zum Beispiel dem Wunsch des Fahrers nach optimaler Drehmomententfaltung Rechnung zu tragen.
    Der in der beschriebenen Form am Ausgang des Zeitgliedes 401 erhaltene Sollwert FUP_SP für den Einspritzdruck wird dem Einspritzdruckregler in der elektronischen Steuereinheit 22 als Eingangssignal zugeführt, der dafür sorgt, daß im Druckspeicher 18 des Kraftstoffversorgungssystems der für ein bestimmtes Betriebsverhalten optimale Einspritzdruck eingestellt wird.
    The variable FUP_SP in equation (2) is described depending on the engine operating state either with FUP_SP_ST for engine start, with FUP_SP_IS for engine idling or with FUP_SP_PL for load operation. For this purpose, the timer 401 is also informed of the engine operating state in coded form via the ENGINE_STATE input. The basic time constants T1_PT1_BAS for the PT 1 timer 401 are specified via the map 402 as a function of the coolant temperature TCO and the current control difference FUP_DIFF between the target and actual pressure of the injection in the high-pressure accumulator, in order to determine the behavior of the mixture preparation, which depends on the engine temperature, and that for the Pressure build-up and reduction take into account different timing behavior of the injection system. Depending on the gear selected and the result of a driver identification, this base time constant is subjected to a multiplicative weighting in a multiplication point 404 before it is fed as a final time constant to the timer 401 and processed there in the form of the variable T 1 according to equation (2). The weighting is carried out with the aid of the map 403. The information about the gear engaged is contained in coded form in the signal GEAR, which is present as an input variable on the map 403. The signal DRIVER_MODE of the driver identification function of a transmission control for an automatic transmission may be present at a further input of the characteristic diagram 403.
    Using the information about the general driving behavior of the driver, which is usually determined in modern transmission controls via a fuzzy system or specified by the driver by operating a switch, the pressure build-up and pressure reduction in the high-pressure accumulator can be accelerated or decelerated in relation to the specified time behavior in order, for example, to take into account the driver's desire for optimal torque development.
    The desired value FUP_SP for the injection pressure obtained in the form described at the output of the timing element 401 is fed to the injection pressure regulator in the electronic control unit 22 as an input signal, which ensures that the optimal injection pressure for a certain operating behavior is set in the pressure accumulator 18 of the fuel supply system.

    Claims (7)

    1. Method for specifying the required injection pressure value for common rail fuel injection systems for feeding fuel into internal combustion engines, in the pressure in a pressure store (18) is set using the required value specification depending on the operating states of the internal combustion engine,
      with key fields (101, 301, 302) for an injection pressure basic value with the engine under load (FUP_SP_PL_BAS), when the engine is started (FUP_SP_ST) and when idling (FUP_SP_IS);
      with a first differential DT1 timer (204), at the input of which the output of the load mode key field (101) is present and of which the timing behaviour depends on the engine speed and
      with a second PT1 delay timer (401), at the input of which the output of the first timer (204), the outputs of key fields (301, 302) for start and idling and the output of a key field (402) for specifying a base time constant (T1 PT1 BAS) are present and at the output of which the injection pressure required value (FUP_SP) for the respective operating state of the engine will be output.
    2. Method according to Claim 1 with a graph (102) for the coolant temperature-dependent modification of the injection pressure basic value (FUP_SP_PL_BAS) from key field (101) for load mode.
    3. Method according to Claim 1 with graphs (201, 202, 203) for speed-dependent specification of time constants (T1, T2) and an amplification factor (KPDT1) to the first timer (204).
    4. Method according to Claim 1, whereby the output of the key field (402) is modified for specifying a basic time constant (T1_PT1_BAS) for the second timer (401) by a key field (403) for the gear selected and the behaviour of the driver.
    5. Method according to Claim 1, whereby at the input of the second timer (401) a signal (ENGINE STATE) is present about the state of the engine.
    6. Method according to Claim 1, whereby the equation for the transmission function of the first timer (204) in recursive form is
      Figure 00130001
      with
      FUP_SP_PL_DYN(i): Output signal of the first timer;
      KPDT1: amplification;
      T1: first time constant;
      T2: second time constant;
      FUP SP_PL(i): injection pressure required value in load mode;
      ta: scan time;
      in which case index i designates the current calculation run and i-1 designates the previous run.
    7. Method according to Claim 1 whereby the equation for the transmission function of the second timer (401) in recursive form is UP_SP_DFT(i) = 11+T1/Ta [T1/Ta(FUP_SP_DFT(i-1))+ FUP_SP(i)] FUP_SP_DFT(i) = 11+T1/Ta [T1/Ta(FUP_SP_DFT(i-1))+ FUP_SP(i)]    with
      FUP_SP_DFT(i): delayed injection pressure required value;
      FUP_SP(i): current injection pressure required value;
      T1: Time constant of the delay timer
      ta: Scanning time;
      in which case index i designates the current calculation run and i-1 designates the previous run.
    EP98124810A 1998-01-13 1998-12-29 Method for pre-setting the reference pressure for an accumulator fuel injection system Expired - Lifetime EP0930426B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19800940 1998-01-13
    DE19800940 1998-01-13

    Publications (3)

    Publication Number Publication Date
    EP0930426A2 EP0930426A2 (en) 1999-07-21
    EP0930426A3 EP0930426A3 (en) 2000-11-08
    EP0930426B1 true EP0930426B1 (en) 2003-12-03

    Family

    ID=7854457

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98124810A Expired - Lifetime EP0930426B1 (en) 1998-01-13 1998-12-29 Method for pre-setting the reference pressure for an accumulator fuel injection system

    Country Status (3)

    Country Link
    US (1) US6035829A (en)
    EP (1) EP0930426B1 (en)
    DE (1) DE59810332D1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005026441B4 (en) * 2005-06-08 2009-11-12 Continental Automotive Gmbh Method for adapting the pilot control map of a volume-flow-controlled diesel common rail pump
    DE102017211077A1 (en) * 2017-06-29 2019-01-03 Continental Automotive Gmbh Use of a diesel injector for injecting oxymethylene ether (OME)

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2000018078A (en) 1998-06-30 2000-01-18 Isuzu Motors Ltd Pressure dropping start timing specifying method of common rail, besides engine's fuel injection method and device thereof
    DE19934833A1 (en) * 1999-07-24 2001-01-25 Bosch Gmbh Robert Method for controlling a common rail injection system
    US6223720B1 (en) * 2000-06-02 2001-05-01 International Truck And Engine Corp. Diesel engine speed control to prevent under-run
    DE10112163A1 (en) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Accumulator injection system (common rail) for internal combustion engines
    DE10131783B4 (en) * 2001-07-03 2006-03-16 Robert Bosch Gmbh Method for operating an internal combustion engine
    DE10144669C1 (en) * 2001-09-11 2003-04-17 Siemens Ag Fuel pressure control method for high pressure fuel injection for IC engine supplies fuel quantity corresponding to required fuel pressure to common-rail of fuel injection system
    DE10156637C1 (en) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Method for controlling and regulating the starting operation of an internal combustion engine
    US7100631B2 (en) * 2002-11-06 2006-09-05 Atomic Energy Council-Institute Of Nuclear Energy Research Multifunction passive and continuous fluid feeding system
    DE102004009616A1 (en) * 2004-02-27 2005-09-22 Siemens Ag Method and device for controlling the volume flow in a fuel injection system of an internal combustion engine
    SE0402222L (en) * 2004-09-15 2006-02-07 Scania Cv Ab Fuel pressure control in a common rail system
    US7200485B2 (en) * 2004-09-23 2007-04-03 International Engine Intellectual Property Company, Llc Transient speed-and transient load-based compensation of fuel injection pressure
    WO2007083404A1 (en) * 2006-01-20 2007-07-26 Bosch Corporation Fuel injection system for internal combustion engine
    DE102006045923A1 (en) 2006-08-18 2008-02-21 Robert Bosch Gmbh Method for determining a rail pressure setpoint
    JP4274263B2 (en) * 2007-03-29 2009-06-03 トヨタ自動車株式会社 Vehicle control device
    DE102007027943B3 (en) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure during a start-up procedure
    WO2011102822A1 (en) * 2009-08-27 2011-08-25 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
    DE102012019457B3 (en) * 2012-10-04 2014-03-20 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure of an internal combustion engine
    DE102017206084A1 (en) * 2017-04-10 2018-10-11 Robert Bosch Gmbh Fuel injection with reduced return flow
    CN109779775B (en) * 2017-11-13 2022-04-05 联合汽车电子有限公司 Variable fuel injection pressure control method for engine

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4313852B4 (en) * 1993-04-28 2004-11-25 Robert Bosch Gmbh Fuel injection device for internal combustion engines
    US5678521A (en) * 1993-05-06 1997-10-21 Cummins Engine Company, Inc. System and methods for electronic control of an accumulator fuel system
    IT1261574B (en) * 1993-09-03 1996-05-23 Fiat Ricerche INJECTION CONTROL SYSTEM IN HIGH PRESSURE INJECTION SYSTEMS FOR INTERNAL COMBUSTION ENGINES
    ES2146952T3 (en) * 1993-09-14 2000-08-16 Lucas Industries Ltd FUEL FEED SYSTEM.
    GB9422864D0 (en) * 1994-11-12 1995-01-04 Lucas Ind Plc Fuel system
    IT1281303B1 (en) * 1995-03-28 1998-02-17 Elasis Sistema Ricerca Fiat DEVICE FOR REGULATING THE SUPPLY PRESSURE OF A FLUID IN A PRESSURE FLUID ACCUMULATOR, FOR EXAMPLE FOR
    EP0747585B1 (en) * 1995-06-07 2002-07-17 Volkswagen Aktiengesellschaft Control of the supercharging pressure of a turbocharger for an internal combustion engine
    DE19540892A1 (en) * 1995-11-02 1997-05-07 Bayerische Motoren Werke Ag Fuel system
    DE19607070B4 (en) * 1996-02-24 2013-04-25 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
    DE19618932C2 (en) * 1996-05-10 2001-02-01 Siemens Ag Device and method for regulating the fuel pressure in a high pressure accumulator

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005026441B4 (en) * 2005-06-08 2009-11-12 Continental Automotive Gmbh Method for adapting the pilot control map of a volume-flow-controlled diesel common rail pump
    DE102017211077A1 (en) * 2017-06-29 2019-01-03 Continental Automotive Gmbh Use of a diesel injector for injecting oxymethylene ether (OME)

    Also Published As

    Publication number Publication date
    EP0930426A2 (en) 1999-07-21
    EP0930426A3 (en) 2000-11-08
    DE59810332D1 (en) 2004-01-15
    US6035829A (en) 2000-03-14

    Similar Documents

    Publication Publication Date Title
    EP0930426B1 (en) Method for pre-setting the reference pressure for an accumulator fuel injection system
    EP0837986B1 (en) Device and process to regulate fuel pressure in a high pressure accumulator
    EP1303693B1 (en) Method and device for controlling an internal combustion engine
    EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
    DE10296833B4 (en) Method for controlling the operation of a fuel injection device and device for fuel injection
    DE19712143C2 (en) Method and device for controlling an internal combustion engine
    DE19731994B4 (en) Method and device for controlling an internal combustion engine
    DE102010016093A1 (en) Fuel injection detecting device
    WO2010003737A1 (en) Method and device for the pressure wave compensation of consecutive injections in an injection system of an internal combustion engine
    DE102007027943B3 (en) Method for regulating the rail pressure during a start-up procedure
    DE102011052138A1 (en) Control device for pressure reducing valves
    DE10343759A1 (en) Measurement of a variation in the fuel injection quantity to a motor vehicle combustion engine from its set value by measurement of a simple fuel injection quantity and comparison with a total multiple fuel injection quantity
    DE60204325T2 (en) METHOD AND DEVICE FOR CONTROLLING THE FUEL INJECTION VOLUME
    WO2010052119A1 (en) Method and device for operating an injection system for an internal combustion engine
    WO2009152877A1 (en) Method and device for calibrating a fuel metering system of an internal combustion engine, particularly of a motor vehicle
    EP1882841A2 (en) Method for detecting a pilot injection
    DE4443879B4 (en) Device and method for supplying fuel to an internal combustion engine
    DE10160311C2 (en) Method, computer program, control and regulating device for operating an internal combustion engine and internal combustion engine
    DE19731201C2 (en) Method for regulating the fuel pressure in a fuel accumulator
    DE60005617T2 (en) Fuel injection control device for an internal combustion engine
    DE10141821C1 (en) Method, computer program and control and / or regulating device for operating an internal combustion engine
    DE10302058B4 (en) Method for operating an internal combustion engine
    DE102004053418B4 (en) Method and device for pressure wave compensating control of temporally successive injections in an injection system of an internal combustion engine
    EP1377736B1 (en) Method for operating an internal combustion engine using a fuel apportioning system
    DE69507672T2 (en) ELECTRONIC CONTROL SYSTEM FOR THE INJECTION PRESSURE IN THE EVENT OF CHANGING OPERATING CONDITIONS

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001204

    AKX Designation fees paid

    Free format text: DE FR GB IT

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031203

    REF Corresponds to:

    Ref document number: 59810332

    Country of ref document: DE

    Date of ref document: 20040115

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040906

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081212

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081216

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081227

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091229

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091229

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141231

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59810332

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160701