[go: up one dir, main page]

EP0926453A2 - Heizgerät zum Erwärmen von Luft und/oder Wasser - Google Patents

Heizgerät zum Erwärmen von Luft und/oder Wasser Download PDF

Info

Publication number
EP0926453A2
EP0926453A2 EP98119759A EP98119759A EP0926453A2 EP 0926453 A2 EP0926453 A2 EP 0926453A2 EP 98119759 A EP98119759 A EP 98119759A EP 98119759 A EP98119759 A EP 98119759A EP 0926453 A2 EP0926453 A2 EP 0926453A2
Authority
EP
European Patent Office
Prior art keywords
heat transfer
heat exchanger
gap
kettle
exchanger insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98119759A
Other languages
English (en)
French (fr)
Other versions
EP0926453A3 (de
EP0926453B1 (de
Inventor
Josef Brandtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truma Geraetetechnik GmbH and Co KG
Original Assignee
Truma Geraetetechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Truma Geraetetechnik GmbH and Co KG filed Critical Truma Geraetetechnik GmbH and Co KG
Publication of EP0926453A2 publication Critical patent/EP0926453A2/de
Publication of EP0926453A3 publication Critical patent/EP0926453A3/de
Application granted granted Critical
Publication of EP0926453B1 publication Critical patent/EP0926453B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/065Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the invention relates to a heater for heating air and / or water for Small rooms, especially for caravans, mobile homes, boats or the like according to the preamble of claim 1.
  • An air heater is also part of EP 0 544 853 B1 a heat exchanger insert known, in which the during the Combustion chamber combustion produces hot combustion gases experience heat dissipation and the actual heating process by releasing this heat energy via the essentially radially arranged ribs of the Heat exchanger use takes place. Heating water is pure with these Air heaters not provided.
  • Such heaters are equipped with a water boiler provided which around the heat exchanger insert on its outer circumference is arranged.
  • the heat exchanger insert from the hot ones Combustion gases absorb heat energy via the fins in the essentially directly to the inside of the kettle, which uses the heat exchanger surrounds, transmitted.
  • the heater should also be easy to use in summer Generate only heated water.
  • Another problem with the heaters for heating air and / or water according to the state of the Technology is that due to the small distance between the Inside of the water boiler and the outside of the heat exchanger insert in the frequently occurring situation that the caravans, campers etc. go wrong stand, a "diameter problem" occurs because in such a situation individual areas of the inside of the kettle directly on the outer surface of the heat exchanger while other areas are at a greater distance to the heat exchanger than when it was originally in the design state is provided.
  • the invention is therefore based on the object of the disadvantages described overcome and a heater for heating air and / or water too create in which the heat transfer from a heat exchanger insert a kettle can be specifically optimized so that an essentially constant Temperature in the kettle can be achieved and boiling of the water avoided and in which the manufacturing cost of the kettle in terms its accuracy of the dimensions to be observed can be reduced.
  • the heater according to the invention which is used for heating Air and / or water is used in small spaces, where in particular caravans, mobile homes, boats or the like, preferably the Represent areas of application.
  • the heater has a boiler, which in one Combustion chamber is arranged, which is designed in the form of a flame tube, a boiler room surrounding the combustion chamber, a Heat exchanger insert, which surrounds the boiler room and which one Has inner jacket, and a water boiler, which the heat exchanger insert surrounds.
  • the kettle and thus the heater are one surround an outer shell forming a housing.
  • the inner jacket of the Heat exchanger insert separates the boiler room through which the hot ones Combustion gases are passed from the combustion chamber after leaving the combustion chamber Heat exchanger surfaces of the heat exchanger insert, which the Are facing the inside of the kettle.
  • Kettle on the inside, which the heat exchanger insert facing areas on which the heat transfer from Use of heat exchanger to the kettle through different in between defined gap geometry can be determined.
  • the gap geometry of the individual areas determining the heat transfer is designed so that, depending on the required heat transfer also under Taking into account the nominal load to be achieved with the heater, the Gap geometry gap thicknesses of 0 mm, in which the inside of the Kettle directly on the outer surface of the heat exchanger insert is present, up to gap thicknesses of finite dimensions. Furthermore, it is possible that the gap geometry continuous transitions between the individual heat transfer areas or sharply defined transitions.
  • the gap geometry with respect to the Longitudinal axis of the combustion chamber to be constant or variably designed column exhibit.
  • Different defined gap geometry is the heat transfer from Heat exchanger use to the kettle directly influenced so that a constant water temperature in the kettle is reached and that the boiler is not overheated when the heating is on continuously, i.e. that no boiling of water occurs in the kettle.
  • the kettle in Area of the burner of the flame tube i.e. the lower part of the Heater, a first heat transfer area in which the inside of the kettle with close tolerance, i.e. high manufacturing accuracy, in essentially rests on the surface of the heat exchanger insert.
  • a first heat transfer area in which the inside of the kettle with close tolerance, i.e. high manufacturing accuracy, in essentially rests on the surface of the heat exchanger insert.
  • the gap geometry as a gap between the outside surface of the heat exchanger insert and the inside the kettle is formed so that in this second Convection and heat radiation dominate the heat transfer area.
  • Heat transfer is the first heat transfer area and the second heat transfer area trained different lengths.
  • the term “long” refers the extension in the longitudinal direction of the combustion chamber or Flame tube.
  • An advantage of such a design of the water boiler according to the invention exists among other things also in that the high manufacturing accuracy in terms of tight Manufacturing tolerances are limited to the first heat transfer area thereby reducing the overall manufacturing cost of the kettle.
  • the high manufacturing accuracy in terms of tight Manufacturing tolerances are limited to the first heat transfer area thereby reducing the overall manufacturing cost of the kettle.
  • Adequate tilt stability of the heat transfer area is already Kettle in front of the heat exchanger use.
  • the kettle exhibits increased rigidity either in the transition area between the first heat transfer area and the second Heat transfer area or within the first heat transfer area or an additional one within the second heat transfer area Bead on.
  • the kettle is for reasons of required food safety preferably made of stainless steel and has a wall thickness of preferably 1 mm on.
  • a third heat transfer area is provided in which the gap geometry is defined by a gap which is larger than the gap of the first heat transfer area and is smaller than the gap of the second heat transfer area.
  • the number of defined provided Heat transfer areas i.e. the areas of different gap geometries, has a direct influence on the uniformity of the temperature distribution of water in the kettle.
  • the heat transfer areas are contrasted by shoulders or by beads or by these limited.
  • the beads or shoulders can also be within the respective Heat transfer areas can be provided for increased stability and To ensure strength, in particular buckling stiffness, of the kettle.
  • the flame tube is preferably essentially cylindrical and are the boiler room, the heat exchanger insert with its inner jacket, the Kettle and the outer jacket of the heater arranged coaxially with it.
  • the heat exchanger insert is in the essentially cylindrical, so that its inner jacket is cylindrical is trained.
  • the inner jacket carries radial, opposite one another attached inner and outer ribs, with on the outer edges of the outer ribs in each case an at least unilaterally projecting transverse web is formed. This Crossbars on the outer ribs are not connected to each other and with their outer surfaces essentially follow the inside of the kettle.
  • Such a heat exchanger insert can be designed, for example, as described in the applicant's EP 0 544 853 B1.
  • the individual heat transfer regions have each have a constant gap geometry.
  • constant Gap geometry is the radial expansion of the gap in the direction of Understand the longitudinal axis of the combustion chamber of the heater.
  • the gap of the first heat transfer region preferably measures 0 to 1.5 mm and the gap of the second heat transfer area 3 to 4 mm.
  • FIG. 1 shows an axial section through a heater according to the invention.
  • a burner 1 is provided, which within a Flame tube 2 designed as combustion chamber 3 is arranged.
  • the flame tube 2 is essentially cylindrical and extends inside the Heat exchanger insert 5 from the burner upwards, where it is with its upper Outlet shortly before the heat exchanger insert 5 or its Inner jacket 6 ends Dekel 24 covering cap-shaped.
  • the top cap 24 is preferably welded on. Through this top cap 24 are in Flame tube 2 ascending combustion gases 23 deflected into a boiler room 4.
  • the heating chamber 4 is between the inner jacket 6 of the heat exchanger insert 5 and the outer surface of the flame tube 2 is formed.
  • the combustion gases 23 then flow in the boiler room in a coaxial direction with respect to the flame tube 2 towards the burner side of the heat exchanger insert, from where from the combustion gases 23 via an exhaust gas connection 25, for example ins Free be dissipated.
  • the heat exchanger insert 5 has radially extending into the boiler room Inner ribs 17, which can have radially different dimensions, and radially outwardly extending outer ribs 18 from the inner jacket 6.
  • Inner ribs 17 which can have radially different dimensions, and radially outwardly extending outer ribs 18 from the inner jacket 6.
  • air which by heat transfer from the heat exchanger insert 5 due to heat emission from the combustion gases 23 on the one hand absorbs heat energy and on the other hand, depending on the gap geometry, Dissipates thermal energy from the kettle 7.
  • the along the outer ribs of the heat exchanger insert 5 flowing air flows in cocurrent to the Combustion gases 23 in the boiler room 4.
  • the air enters the burner for example, also acted upon by a fan in the between the External ribs 18 formed a space and directly at the other end of the heater out of this room again.
  • the radial direction arranged over the circumference, from the inner jacket 6 of the heat exchanger insert 5 outwardly extending outer ribs 18 have on their outer edges transverse webs 19 which are on both sides of the Extend ribs.
  • transverse webs 19 are on both sides of the Extend ribs.
  • the inner ribs 17 have such transverse processes or crosspieces.
  • the after outside facing outside of the crosspieces 19 forms the maximum Outer diameter or the outer surface of the cylindrical Heat exchanger insert 5.
  • the crossbars form the surfaces over which the heat transfer takes place essentially as heat conduction.
  • the crosspieces 19 additionally heat transfer surfaces, via which, for example Radiation is realized.
  • the number of outer fins of the heat exchanger insert is such that the airflow flowing over it is fanned out and thus in connection with the desired gap geometry of the selected gap geometry Heat transfer processes from the heat exchanger insert 5 to or from the Kettle 7 realized.
  • Fig. 2 shows an axial section through the water boiler 7 for the heater according to the invention.
  • the kettle 7 has a first Heat transfer area 9, the diameter of which is dimensioned so that it with narrow tolerance to the outer diameter or to the outer surface 12 of the Heat exchanger insert 5 fits so that the crossbars 19 on the inner surface of the kettle 7 or just have tight tolerances narrow gap is present.
  • the precisely fitting manufacture of the water boiler 5 is so only limited to the first heat transfer area 9, which therefore increases significantly reduces the manufacturing costs of the water boiler 7, since the other heat transfer areas require such tight manufacturing tolerances.
  • a centering collar 20 is provided, which for Put on a plate (not labeled) and thus to fix the Kettle 7 in the heater housing is used.
  • the first heat transfer area 9 is delimited by a bead 16 which serves at the same time to increase the rigidity of the water boiler 7. From the bead 16 extends up to a shoulder 15, a third heat transfer area 11, whose inner diameter is selected so that a gap between the inside of the Kettle 7 and the outer surface 12, which by the crosspieces 19 of the Heat exchanger element 5 are formed, which is> 0.
  • the inner diameter is chosen so that in the Heat transfer area 11 heat conduction, convection and radiation available are, preferably with almost equal shares.
  • the Inner diameter is larger than that by the outer surface 12 of the Heat exchanger insert 5 formed outer diameter, so that between the Outer surface 12 of the crossbars 19 and the inner surface of the kettle 7 there is a gap 14 with a defined gap width.
  • the gap 14 has such a dimension that convection and radiation dominate because the heat conduction is small over the air layer in the gap compared to the thermal energy transmitted by radiation and convection.
  • the water boiler 7 also has fasteners 21, 22.
  • the kettle 7 for the heater according to the invention can be selected Gap geometry also operated without water, for example in summer , in which case the heater is only for heating purposes without Water heating is used.
  • Fig. 3 shows a radial section of a cross-sectional view of the in the invention Heater used heat exchanger insert 5, the basic structure already described in connection with FIGS. 1 and 2 and which in detail the execution according to EP 0 544 853 B1 Applicant complies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Resistance Heating (AREA)
  • Gas Separation By Absorption (AREA)
  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

Es wird ein Heizgerät zum Erwärmen von Luft und/oder Wasser für Kleinräume, insbesondere für Caravans, Wohnmobile, Boote oder dergleichen beschrieben, welches einen Brenner (1) in einer als Flammrohr (2) ausgebildeten Brennkammer (3), einen diese umgebenden Heizraum (4), einen den Heizraum (4) umschließenden Wärmeübertragereinsatz (5) mit einem Innenmantel (6) und einem den Wärmeübertragereinsatz (5) umgebenden Wasserkessel (7) auweist, wobei ein den Wasserkessel (7) umschließender Außenmantel (8) vorgesehen ist. Erfindungsgemäß weist der Wasserkessel (7) an seiner dem Wärmeübertragereinsatz (5) zugewandten Innenseite Bereiche (9, 11, 10) unterschiedlicher definierter Spaltgeometrie auf, welche den Wärmeübergang vom Wärmeübertragereinsatz (5) zum Wasserkessel (7) bestimmen. <IMAGE>

Description

Die Erfindung betrifft ein Heizgerät zum Erwärmen von Luft und/oder Wasser für Kleinräume, insbesondere für Caravans, Wohnmobile, Boote oder dergleichen gemäß Oberbegriff von Anspruch 1.
Seitens der Anmelderin werden derartige Heizgeräte hergestellt und in Caravans bzw. Wohnmobilen eingesetzt. Aus der EP 0 544 853 B1 ist ein Luftheizgerät mit einem Wärmetauschereinsatz bekannt, bei welchem die während der in der Brennkammer stattfindenden Verbrennung erzeugten heißen Verbrennungsgase eine Wärmeabfuhr erfahren und der eigentliche Heizvorgang durch Abgeben dieser Wärmeenergie über die im wesentlichen radial angeordneten Rippen des Wärmeübertragereinsatzes erfolgt. Ein Erwärmen von Wasser ist bei diesen reinen Luftheizgeräten nicht vorgesehen.
Seitens der Anmelderin werden derartige Heizgeräte mit einem Wasserkessel versehen, welcher um den Wärmeübertragereinsatz an dessen Außenumfang angeordnet ist. Die durch den Wärmeübertragereinsatz von den heißen Verbrennungsgasen aufgenommene Wärmeenergie wird über die Rippen im wesentlichen direkt an die Innenseite des Wasserkessels, welche den Wärmeübertragereinsatz umgibt, übertragen.
Besonders während der kalten Jahreszeit ist es erforderlich, daß die in Caravans und Wohnmobilen eingesetzten Heizgeräte einerseits zum Heizen verwendet werden und andererseits der Warmwassererzeugung dienen. Vorallem während dieser kalten Jahreszeit ist häufig ein permanentes Heizen erforderlich. Beim permanenten Heizen wird jedoch permanent Wärmeenergie vom Wärmeübertragereinsatz an den Wasserkessel abgegeben, so daß die Gefahr besteht, daß das Wasser im Wasserkessel zu kochen beginnt.
Darüberhinaus besteht bei derartigen Heizgeräten zum Erwärmen von Luft und/oder Wasser das Problem, daß die Innenmaße des Wasserkessels mit relativ hoher Genauigkeit auf die Außenmaße des relativ kompliziert profilierten und kompliziert herzustellenden Wärmeübertragereinsatzes abgestimmt werden müssen. Dadurch entstehen einerseits relativ hohe Fertigungskosten, und andererseits führt der durch die Verbrennungsgase bei ihrem Strömen über die Oberfläche des Wärmeübertragereinsatzes hervorgerufene ungleichmäßige Wärmeübergang vom Verbrennungsgas an den Wärmeübertragereinsatz zu einem ungleichmäßigen Erwärmen des im Wasserkessel befindlichen zu erwärmenden Wassers. Das hat zur Folge, daR beim Öffnen einer Zapfstelle ständig mit unterschiedlich stark erwärmtem Wasser zu rechnen ist. Neben der Gefahr des Verbrühens besteht außerdem das Problem, daß dadurch permanent die Zufuhr von Kaltwasser zur Erzielung einer gewünschten Mischtemperatur geändert werden muß.
Des weiteren soll das Heizgerät auch problemlos im Sommerbetrieb zur Erzeugung von lediglich erwärmtem Wasser dienen. Ein weiteres Problem mit den Heizgeräten zum Erwärmen von Luft und/oder Wasser gemäß dem Stand der Technik besteht darin, daß aufgrund des geringen Abstandes zwischen der Innenseite des Wasserkessels und der Außenseite des Wärmeübertragereinsatzes bei der häufig auftretenden Situation, daß die Caravans, Wohnmobile etc. schief stehen, ein "Durchmesserproblem" auftritt, weil nämlich in einer solchen Situation einzelne Bereiche der Innenseite des Wasserkessels direkt an der Außenoberfläche des Wärmeübertragers anliegen, während andere Bereiche einen größeren Abstand zum Wärmeübertrager aufweisen, als er ursprünglich im Entwurfszustand vorgesehen ist.
Der Erfindung liegt daher die Aufgabe zugrunde, die geschilderten Nachteile zu überwinden und ein Heizgerät zum Erwärmen von Luft und/oder Wasser zu schaffen, bei welchem der Wärmeübergang von einem Wärmeübertragereinsatz zu einem Wasserkessel so gezielt optimierbar ist, daß eine im wesentlichen konstante Temperatur im Wasserkessel erzielbar ist und ein Kochen des Wassers vermieden wird, und bei welchem die Herstellungskosten des Wasserkessels hinsichtlich seiner Genauigkeit der einzuhaltenden Abmessungen verringerbar sind.
Diese Aufgabe wird durch ein Heizgerät mit den Merkmalen gemaß Anspruch 1 gelöst. Zweckmäßige Weiterbildungen sind in den abhängigen Ansprüchen definiert.
Insbesondere wird das erfindungsgemäße Heizgerät, welches zum Erwärmen von Luft und/oder Wasser verwendet wird, in Kleinräumen eingesetzt, wobei insbesondere Caravans, Wohnmobile, Boote oder dergleichen vorzugsweise die Einsatzbereiche darstellen. Das Heizgerät weist einen Boiler, welcher in einer Brennkammer angeordnet ist, welche in Form eines Flammrohres ausgebildet ist, einen Heizraum, welcher die Brennkammer umgibt, einen Wärmeübertragereinsatz, welcher den Heizraum umgibt und welcher einen Innenmantel aufweist, und einen Wasserkessel auf, welcher den Wärmeübertragereinsatz umgibt. Der Wasserkessel und damit das Heizgerät sind von einem ein Gehäuse bildenden Außenmantel umgeben. Der Innenmantel des Wärmeübertragereinsatzes trennt den Heizraum, durch welchen die heißen Verbrennungsgase nach Verlassen der Brennkammer geleitet werden, von den Wärmeübertrageroberflächen des Wärmeübertragereinsatzes, welche der Innenseite des Wasserkessels zugewandt sind. Erfindungsgemäß weist der Wasserkessel an seiner Innenseite, welche dem Wärmeübertragereinsatz zugewandt ist, Bereiche auf, mittels welcher der Wärmeübergang vom Wärmeübertragereinsatz zum Wasserkessel durch dazwischen unterschiedliche definierte Spaltgeometrie bestimmbar ist. Mittels der Spaltgeometrie zwischen der Außenseite des Wärmeübertragereinsatzes und der Innenseite des Wasserkessels, welche einander zugewandt sind, wird der Wärmeübergang als solcher sowie auch die Art der Wärmeübertragung so festgelegt, daß eine Gleichgewichtsituation des im Wasserkessel befindlichen Wassers erzielbar ist. Unter Gleichgewichtssituation wird in diesem Zusammenhang eine möglichst konstante Temperatur des Wassers im wesentlichen im gesamten Wasserkessel verstanden.
Die Spaltgeometrie der einzelnen den Wärmeübergang bestimmenden Bereiche ist dabei so gestaltet, daß, je nach erforderlichem Wärmeübergang auch unter Berücksichtigung der mit dem Heizgerät zu erzielenden Nennlast, die Spaltgeometrie Spaltdicken von 0 mm, bei welchen die Innenseite des Wasserkessels direkt an der Außenoberfläche des Wärmeübertragereinsatzes anliegt, bis zu Spaltdicken endlicher Abmessungen aufweist. Des weiteren ist es möglich, daß die Spaltgeometrie kontinuierliche Übergänge zwischen den einzelnen Wärmeübergangsbereichen oder scharf abgesetzte Übergänge aufweist. Innerhalb der einzelnen Bereiche kann dabei die Spaltgeometrie bezüglich der Längsachse der Brennkammer konstant sein oder variabel ausgebildete Spalte aufweisen. Durch die in den jeweiligen Wärmeübergangsbereichen unterschiedliche definierte Spaltgeometrie wird der Wärmeübergang vom Wärmeübertragereinsatz zum Wasserkessel direkt so beeinflußt, daß eine möglichst konstante Temperatur des Wassers im Wasserkessel erreicht wird und daß bei ständigem Heizbetrieb der Wasserkessel nicht überheizt wird, d.h., daß kein Kochen des Wassers im Wasserkessel auftritt.
Gemäß einem Ausführungsbeispiel der Erfindung weist der Wasserkessel im Bereich des Brenners des Flammrohres, d.h. dem unteren Bereich des Heizgerätes, einen ersten Wärmeübergangsbereich auf, in welchem die Innenseite des Wasserkessels mit enger Toleranz, d.h. hoher Fertigungsgenauigkeit, im wesentlichen an der Oberfläche des Wärmeübertragereinsatzes anliegt. Dadurch, daß der Wasserkessel mit seiner Innenseite in diesem Wärmeübergangsbereich an der Außenoberfläche des Wärmeübertragereinsatzes anliegt, dominiert in diesem ersten Wärmeübergangsbereich die Wärmeleitung. Selbst wenn ein sehr geringer Spalt zwischen der Außenoberfläche des Wärmeübertragereinsatzes und der Innenoberfläche des Wasserkessels in diesem ersten Wärmeübergangsbereich vorhanden sein sollte, so ist dieser sehr enge Spalt dennoch nicht groß genug, daß sich in starkem Maße Konvektion und Strahlung am Wärmeübergang beteiligen, sondern es ist in einem solchen Fall ebenfalls die Wärmeleitung dominierend. Des weiteren weist der Wasserkessel zumindest im Bereich des Austritts der Verbrennungsgase aus dem Flammrohr, d.h. dem oberen Bereich des Heizgerätes, einen zweiten Wärmeübergangsbereich auf, dessen Spaltgeometrie als ein Spalt zwischen der Außenoberfläche des Wärmeübertragereinsatzes und der Innenseite des Wasserkessels ausgebildet ist, so daß in diesem zweiten Wärmeübergangsbereich Konvektion und Wärmestrahlung dominieren. Das bedeutet, daß der zwischen der Innenoberfläche des Wasserkessels und der Außenoberfläche des Wärmeübertragereinsatzes in diesem zweiten Wärmeübergangsbereich vorgesehene Spalt groß genug ist, daß die Wärmeleitung von der Konvektion und der Wärmestrahlung dominiert wird.
Je nach Betriebsbedingung des Heizgerätes und je nach zu erzielendem Wärmeübergang sind der erste Wärmeübergangsbereich und der zweite Wärmeübergangsbereich unterschiedlich lang ausgebildet. Der Begriff "lang" bezieht sich dabei auf die Erstreckung in Längsrichtung des Brennraumes bzw. Flammrohres.
Ein Vorteil einer derartigen erfindungsgemäßen Ausbildung des Wasserkessels besteht u.a. auch darin, daß die hohe Fertigungsgenauigkeit im Hinblick auf enge Fertigungstoleranzen auf den ersten Wärmeübergangsbereich beschränkt ist, wodurch die Gesamtherstellungskosten des Wasserkessels reduziert werden. Im Falle des direkten Kontaktes zwischen der Innenoberfläche des Wasserkessels und der Außenoberfläche des Wärmeübertragereinsatzes im ersten Wärmeübertragungsbereich liegt bereits eine ausreichende Kippstabilität des Wasserkessels gegenüber dem Wärmeübertragereinsatz vor. Aus Gründen einer erhöhten Steifigkeit weist der Wasserkessel entweder im Übergangsbereich zwischen dem ersten Wärmeübertragungsbereich und dem zweiten Wärmeübertragungsbereich oder innerhalb des ersten Wärmeübertragungsbereiches oder innerhalb des zweiten Wärmeübertragungsbereiches zusätzlich eine Sicke auf. Der Wasserkessel ist aus Gründen der geforderten Lebensmittelechtheit vorzugsweise aus Edelstahl gefertigt und weist eine Wandstärke von vorzugsweise 1 mm auf.
Gemäß einem weiteren Ausführungsbeispiel ist zwischen dem Bereich des Brenners und dem Bereich des Austritts der Verbrennungsgase aus dem Flammrohr, d.h. zwischen dem ersten Wärmeübergangsbereich und dem zweiten Wärmeübergangsbereich, ein dritter Wärmeübergangsbereich vorgesehen, in welchem die Spaltgeometrie durch einen Spalt definiert ist, welcher größer ist als der Spalt des ersten Wärmeübergangsbereiches und Kleiner ist als der Spalt des zweiten Wärmeübergangsbereiches. Die Anzahl der definierten vorgesehenen Wärmeübergangsbereiche, d.h. der Bereiche unterschiedlicher Spaltgeometrien, hat dabei einen direkten Einfluß auf die Gleichmäßigkeit der Temperaturverteilung des Wassers im Wasserkessel. Darüberhinaus berücksichtigt die unterschiedliche Spaltgeometrie die unterschiedlichen Wärmeübergangsbedingungen infolge der unterschiedlichen Temperatur- und Strömungsbedingungen, welche aufgrund des Strömens der Verbrennungsgase längs des Heizraumes im Verlaufe der Strömung vom oberen Teil des Heizgerätes zum unteren Teil des Heizgerätes an der Außenseite der Brennkammer auftreten.
Gemäß einem weiteren Ausführungsbeispiel sind die Wärmeübergangsbereiche durch Schultern oder durch Sicken gegeneinander abgesetzt bzw. durch diese begrenzt. Die Sicken bzw. Schultern können jedoch auch innerhalb der jeweiligen Wärmeübergangsbereiche vorgesehen sein, um eine erhöhte Stabilität und Festigkeit, insbesondere Ausbeulsteifigkeit, des Wasserkessels zu gewährleisten.
Vorzugsweise ist das Flammrohr im wesentlichen zylindrisch ausgebildet und sind der Heizraum, der Wärmeübertragereinsatz mit seinem Innenmantel, der Wasserkessel und der Außenmantel des Heizgerätes koaxial dazu angeordnet. Gemäß einem weiteren Ausführungsbeispiel ist der Wärmeübertragereinsatz im wesentlichen zylindrisch ausgebildet, so daß auch sein Innenmantel zylindrisch ausgebildet ist. Der Innenmantel trägt dabei radiale, einander gegenüberliegende angesetzte Innen- und Außenrippen, wobei an den Außenkanten der Außenrippen jeweils ein zumindest einseitig abstehender Quersteg ausgebildet ist. Diese Querstege an den Aüßenrippen sind dabei untereinander nicht verbunden und folgen mit ihren Außenflächen im wesentlichen der Innenseite des Wasserkessels. Ein derartiger Wärmeübertragereinsatz kann beispielsweise so ausgebildet sein, wie er in EP 0 544 853 B1 der Anmelderin beschrieben ist.
Gemäß einem weiteren Ausführungsbeispiel weisen die einzelnen Wärmeübergangsbereiche jeweils eine konstante Spaltgeometrie auf. Unter konstanter Spaltgeometrie wird dabei die radiale Ausdehnung des Spaltes in Richtung der Längsachse der Brennkammer des Heizgerätes verstanden.
Vorzugsweise mißt der Spalt des ersten Wärmeübergangsbereiches 0 bis 1,5 mm und der Spalt des zweiten Wärmeübergangsbereiches 3 bis 4 mm. Unterschiedliche Heizbedingungen und andere Wärmeübertragereinsätze als die beschriebenen können jedoch Spaltmaße erfordern, welche erheblich von den beispielhaft angegebenen abweichen.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der Erfindung werden nun anhand eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Zeichnungen detailliert erläutert. Es zeigen:
Fig. 1
einen Axialschnitt durch das Heizgerät gemäß der Erfindung;
Fig. 2
einen Axialschnitt durch den Wasserkessel gemäß der Erfindung; und
Fig. 3
ein Segment des bei dem erfindungsgemäßen Heizgerät verwendeten Wärmeübertragereinsatzes.
In Fig. 1 ist ein Axialschnitt durch ein erfindungsgemäßes Heizgerät dargestellt. Im Innern des Heizgerätes ist ein Brenner 1 vorgesehen, welcher innerhalb eines als Brennraum 3 ausgebildeten Flammrohres 2 angeordnet ist. Das Flammrohr 2 ist im wesentlichen zylindrisch ausgebildet und erstreckt sich im Innern des Wärmeübertragereinsatzes 5 vom Brenner aus nach oben, wo es mit seiner oberen Austrittsöffnung kurz vor einem den Wärmeübertragereinsatz 5 bzw. dessen Innenmantel 6 kappenförmig abdeckenden Dekel 24 endet. Die Deckkappe 24 ist vorzugsweise aufgeschweißt. Durch diese Deckkappe 24 werden die im Flammrohr 2 aufsteigenden Verbrennungsgase 23 in einen Heizraum 4 umgelenkt. Der Heizraum 4 ist zwischen dem Innenmantel 6 des Wärmeübertragereinsatzes 5 und der Außenoberfläche des Flammrohres 2 ausgebildet. Die Verbrennungsgase 23 strömen dann in dem Heizraum in koaxialer Richtung bezüglich des Flammrohres 2 in Richtung auf die Brennerseite des Wärmeübertragereinsatzes, von wo aus die Verbrennungsgase 23 über einen Abgasanschluß 25 beispielsweise ins Freie abgeführt werden.
Der Wärmeübertragereinsatz 5 weist radial sich in den Heizraum erstreckende Innenrippen 17, welche radial unterschiedliche Abmessungen aufweisen können, und radial vom Innenmantel 6 sich nach außen erstreckende Außenrippen 18 auf. In den Längszwischenräumen zwischen den Außenrippen 18 des Wärmeübertragereinsatzes 5 strömt Luft, welche durch Wärmeübertragung vom Wärmeübertragereinsatz 5 infolge Wärmeabgabe von den Verbrennungsgasen 23 einerseits Wärmeenergie aufnimmt und welche andererseits, je nach Spaltgeometrie, Wärmeenergie vom Wasserkessel 7 abführt. Die längs der Außenrippen des Wärmeübertragereinsatzes 5 strömende Luft strömt im Gleichstrom zu den Verbrennungsgasen 23 im Heizraum 4. Dazu tritt die Luft brennerseitig beispielsweise auch durch ein Gebläse beaufschlagt in den zwischen den Außenrippen 18 gebildeten Raum ein und am anderen Ende des Heizgerätes direkt aus diesem Raum wieder aus.
Die radialer Richtung über den Umfang angeordneten, sich vom Innenmantel 6 des Wärmeübertragereinsatzes 5 nach außen erstreckenden Außenrippen 18 weisen an ihren Außenkanten Querstege 19 auf, welche sich zu beiden Seiten der Rippen erstrecken. Zur Vergrößerung der Wärmeübertrageroberfläche sind an den Rippen zwischen den Querstegen 19 und dem Innenmantel 6 weitere Querfortsätze an den Außenrippen 18 ausgebildet. Selbstverständlich ist es auch möglich, daß die Innenrippen 17 derartige Querfortsätze bzw. Querstege aufweisen. Die nach außen gewandte Außenseite der Querstege 19 bildet den maximalen Außendurchmesser bzw. die Außenoberfläche des zylindrisch ausgebildeten Wärmeübertragereinsatzes 5. Im Wärmeübertragungsbereich 9, in welchem die Querstege 19 im wesentlichen an der Innenseite des Wasserkessels 7 anliegen oder einen geringen Spalt dazu aufweisen, bilden die Querstege die Flächen, über welche der im wesentlichen als Wärmeleitung realisierte Wärmeübergang erfolgt. Im Wärmeübertragungsbereich 10, in welchem zwischen den Querstegen 19 und dem Innendurchmesser des Wasserkessels 7 ein Spalt 14 vorgesehen ist, bilden die Querstege 19 zusätzlich Wärmeübertragungsflächen, über welche beispielsweise Strahlung realisiert wird. Durch Vorsehen des Spaltes 14 trägt die im Bereich der Außenrippen, d.h. zwischen dem Innenmantel 6 des Wärmeübertragereinsatzes 5 und dem Wasserkessel 7, strömende Luft, je nach Heizbedingung, dazu bei, entweder für den Wärmeübergang an den Wasserkessel zu sorgen oder Wärmeenergie vom Wasserkessel abzuführen, um ein Kochen des Wassers im Wasserkessel 7 zu vermeiden.
Die Anzahl der Außenrippen des Wärmeübertragereinsatzes ist so bemessen, daß der darüber strömende Luftstrom aufgefächert wird und somit in Verbindung mit der gewählten Spaltgeometrie die gewünschten definierten Wärmeübergangsvorgänge vom Wärmeübertragereinsatz 5 an den bzw. von dem Wasserkessel 7 realisiert.
Fig. 2 zeigt einen Axialschnitt durch den erfindungsgemäßen Wasserkessel 7 für das erfindungsgemäße Heizgerät. Der Wasserkessel 7 weist einen ersten Wärmeübergangsbereich 9 auf, dessen Durchmesser so bemessen ist, daß er mit enger Toleranz zum Außendurchmesser bzw. zur Außenoberfläche 12 des Wärmeübertragereinsatzes 5 so paßt, daß die Querstege 19 an der Innenoberfläche des Wasserkessels 7 anliegen oder lediglich ein enge Toleranzen aufweisender enger Spalt vorhanden ist. Die paßgenaue Fertigung des Wasserkessels 5 ist damit lediglich auf den ersten Wärmeübergangshereich 9 beschränkt, was somit zu erheblicher Senkung der Fertigungskosten des Wasserkessels 7 beiträgt, da die weiteren Warmeübergangsbereiche derartig enge Fertigungstoleranzen erfordern. An der Unterseite des Wasserkessels 7, welche im Bereich des Brenners 1 des Heizgerätes angeordnet ist, ist ein Zentrierbund 20 vorgesehen, welcher zum Aufsetzen auf eine Platte (nicht bezeichnet) und damit zum Fixieren des Wasserkessels 7 im Gehäuse des Heizers dient.
Der erste Wärmeübergangshereich 9 ist begrenzt durch eine Sicke 16, welche gleichzeitig der Erhöhung der Steifigkeit des Wasserkessels 7 dient. Von der Sicke 16 bis zu einer Schulter 15 erstreckt sich ein dritter Wärmeübergangsbereich 11, dessen Innendurchmesser so gewählt ist, daß ein Spalt zwischen der Innenseite des Wasserkessels 7 und der Außenoberfläche 12, welche durch die Querstege 19 des Wärmeübertragerelementes 5 gebildet werden, vorhanden ist, welcher > 0 ist. Vorzugsweise ist der Innendurchmesser so gewählt, daß in dem Warmeübergangsbereich 11 Wärmeleitung, Konvektion und Strahlung vorhanden sind, vorzugsweise mit nahezu paritätischen Anteilen.
Im oberen Bereich des Wasserkessels 7, welcher im Bereich des oberen Endes des Flammrohres 2 liegt, erstreckt sich von einer Schulter 15 bis zu einem Fixierbund (nicht gezeichnet) ein zweiter Wärmeübergangsbereich 10, dessen Innendurchmesser größer ist als der durch die Außenoberfläche 12 des Wärmeübertragereinsatzes 5 gebildete Außendurchmesser, so daß zwischen der Außenoberfläche 12 der Querstege 19 und der Innenoberfläche des Wasserkessels 7 ein Spalt 14 mit einer definierten Spaltbreite vorhanden ist. Der Spalt 14 weist dabei eine solche Abmessung auf, daß Konvektion und Strahlung dominieren, da die über die im Spalt vorhandene Luftschicht die Wärmeleitung klein ist gegenüber der durch Strahlung und Konvektion übertragenen Wärmeenergie. Des weiteren weist der Wasserkessel 7 Befestiger 21, 22 auf.
Der Wasserkessel 7 für das erfindungsgemäße Heizgerät kann bei der gewählten Spaltgeometrie auch, beispielsweise im Sommerbetrieb, ohne Wasser betrieben werden, in welchem Fall das Heizgerät lediglich zu Heizzwecken ohne Wassererwärmung dient.
Fig. 3 zeigt einen Radialausschnitt einer Querschnittsansicht des im erfindungsgemäßen Heizgerät eingesetzten Wärmeübertragereinsatzes 5, dessen prinzipieller Aufbau bereits im Zusammenhang mit den Fig. 1 und 2 beschrieben wurde und welcher im Detail der Ausfürung gemäß EP 0 544 853 B1 der Anmelderin entspricht.

Claims (9)

  1. Heizgerät zum Erwärmen von Luft und/oder Wasser für Kleinräume, insbesondere für Caravans, Wohnmobile, Boote oder dergleichen, welches einen Brenner (1) in einer als Flammrohr (2) ausgebildet Brennkammer (3), einen diese umgebenden Heizraum (4), einen den Heizraum (4) umschließenden Warmeübertragereinsatz (5) mit einem Innenmantel (6) und einem den Wärmeübertragereinsatz (5) umgebenden Wasserkessel (7) aufweist, wobei ein den Wasserkessel (7) umschließender Außenmantel (8) vorgesehen ist,
    dadurch gekennzeichnet, daß
    der Wasserkessel (7) an seiner dem Warmeübertragereinsatz (5) zugewandten Innenseite den Wärmeübergang vom Wärmeübertragereinsatz (5) zum Wasserkessel (7) bestimmende Bereiche (9, 11, 10) unterschiedlicher definierter Spaltgeometrie aufweist.
  2. Heizgerät nach Anspruch 1, dadurch gekennzeichnet, daß der Wasserkessel (7) im Bereich des Brenners (1) des Flammrohres (2) einen ersten Wärmeübergangsbereich (9) aufweist, in welchem die Spaltgeometrie so ausgebildet ist, daß die Innenseite des Wasserkessels (7) mit enger Toleranz im wesentlichen an der Außenoberfläche (12) des Wärmeübertragereinsatzes (5) anliegt, und in welchem dadurch Wärmeleitung dominiert, und daß der Wasserkessel (7) zumindest im Bereich des Austritts (13) der Verbrennungsgase aus dem Flammrohr (2) einen zweiten Wärmeübergangsbereich (10) aufweist, in welchem die Spaltgeometrie so ausgebildet ist, daß zwischen der Außenoberfläche des Wärmeübertragereinsatzes (5) und der Innenseite des Wasserkessels (7) ein Spalt (14) vorgesehen ist, so daß in dem zweiten Wärmeübergangsbereich (10) Konvektion und Wärmestrahlung dominieren.
  3. Heizgerät nach Anspruch 2, dadurch gekennzeichnet, daß der Wasserkessel (7) zwischen dem Bereich des Brenners (1) und dem Bereich des Austritts (13) der Verbrennungsgase aus dem Flammrohr (2) einen dritten Wärmeübergangsbereich (11) aufweist, in welchem die Spaltgeometrie durch einen Spalt definiert ist, welcher größer als der Spalt des ersten Wärmeübergangsbereiches (9) und kleiner als der Spalt (14) des zweiten Warmeübergangsbereiches (14) ist.
  4. Heizgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Wärmeübergangsbereiche (9, 11, 10) durch Schultern (15) gegeneinander abgesetzt sind.
  5. Heizgerät nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Wärmeübergangsbereiche durch Sicken (16) begrenzt sind.
  6. Heizgerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Flammrohr (2) im wesentlichen zylindrisch ausgebildet ist und der Heizraum (4), der Wärmeübertragereinsatz (5) mit seinem Innenmantel (6), der Wasserkessel (7) und der Außenmantel (8) koaxial dazu angeordnet sind.
  7. Heizgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Wärmeübertragereinsatz (5) am im wesentlichen zylindrischen Innenmantel (6) radiale, einander gegenüberliegende angesetzte Innen- (17) und Außenrippen (18) aufweist, wobei an den Außenkanten der Außenrippen (18) jeweils ein zumindest einseitig abstehender Quersteg (19) ausgebildet ist, und die Querstege (19) untereinander nicht verbunden sind und mit ihren Außenflächen der Innenseite des Wasserkessels (7) im wesentlichen folgend zugewandt sind.
  8. Heizgerät nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Wärmeübergangsbereiche (9, 11, 10) jeweils eine konstante Spaltgeometrie aufweisen.
  9. Heizgerät nach Anspruch 8, dadurch gekennzeichnet, daß der Spalt des ersten Wärmeübergangsbereiches 0 bis 1,5 mm und der Spalt (14) des zweiten Wärmeübergangsbereiches 3 bis 4 mm betragen.
EP98119759A 1997-12-23 1998-10-22 Heizgerät zum Erwärmen von Luft und/oder Wasser Expired - Lifetime EP0926453B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29722802U 1997-12-23
DE29722802U DE29722802U1 (de) 1997-12-23 1997-12-23 Heizgerät zum Erwärmen von Luft und/oder Wasser

Publications (3)

Publication Number Publication Date
EP0926453A2 true EP0926453A2 (de) 1999-06-30
EP0926453A3 EP0926453A3 (de) 2001-09-12
EP0926453B1 EP0926453B1 (de) 2004-04-21

Family

ID=8050466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98119759A Expired - Lifetime EP0926453B1 (de) 1997-12-23 1998-10-22 Heizgerät zum Erwärmen von Luft und/oder Wasser

Country Status (2)

Country Link
EP (1) EP0926453B1 (de)
DE (2) DE29722802U1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008465A1 (en) * 2006-03-14 2009-01-08 Webasto Ag Combined heating/warm water system for mobile applications
DE102007034245A1 (de) * 2007-07-23 2009-01-29 J. Eberspächer GmbH & Co. KG Heizsystem, insbesondere für Campingfahrzeuge, und Verfahren zum Betreiben eines derartigen Heizsystems

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048986A1 (de) * 2006-10-17 2008-04-24 Webasto Ag Heizgerät zum Erwärmen von Luft und Wasser
DE102006055139A1 (de) * 2006-11-22 2008-05-29 J. Eberspächer GmbH & Co. KG Fahrzeugheizgerät
DE102007017106A1 (de) * 2007-04-10 2008-10-23 Webasto Ag Wärmeübertrager für ein kombiniertes Heizungs-/Warmwassersystem für mobile Anwendungen und kombiniertes Heizungs-/Warmwassersystem für mobile Anwendungen
AU201712794S (en) 2016-11-23 2017-05-23 Dometic Sweden Ab Ventilation and air conditioning apparatus
CN213237945U (zh) 2017-08-04 2021-05-18 多美达瑞典有限公司 用于休闲旅游车的加热设备和休闲旅游车
CN111344168B (zh) 2017-11-16 2024-06-18 多美达瑞典有限公司 用于休闲旅游车的空调设备
DE202018001770U1 (de) 2018-04-09 2018-05-09 Enno Wagner Heizgerät
USD905217S1 (en) 2018-09-05 2020-12-15 Dometic Sweden Ab Air conditioning apparatus
IT201900019193A1 (it) 2019-10-17 2021-04-17 Dometic Sweden Ab Apparato di condizionamento dell'aria per veicoli ricreativi
DE102021001082A1 (de) * 2021-03-01 2022-09-01 Truma Gerätetechnik GmbH & Co. KG Vorrichtung zum Erwärmen eines Mediums
DE102023000495A1 (de) 2023-02-14 2024-08-14 Truma Gerätetechnik GmbH & Co. KG Vorrichtung zum Erwärmen eines Mediums und von Luft
DE102023000595A1 (de) 2023-02-20 2024-08-22 Truma Gerätetechnik GmbH & Co. KG Vorrichtung zum Erwärmen eines Mediums

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544853B1 (de) 1991-05-22 1996-08-14 Philipp Kreis GmbH & Co. TRUMA-Gerätebau Luftheizgerät

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT215959Z2 (it) * 1988-12-23 1991-03-20 Mariani Mario Ati & C Apparecchio a gas per la produzionedi acqua calda e/o il riscaldamento di ambienti
EP0633434B1 (de) * 1993-07-05 1998-10-28 Alde International Systems Ab Kombiniertes Heizgerät

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544853B1 (de) 1991-05-22 1996-08-14 Philipp Kreis GmbH & Co. TRUMA-Gerätebau Luftheizgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008465A1 (en) * 2006-03-14 2009-01-08 Webasto Ag Combined heating/warm water system for mobile applications
CN101400530B (zh) * 2006-03-14 2013-03-13 韦巴斯托股份公司 用于移动应用的组合的供暖/热水系统
DE102007034245A1 (de) * 2007-07-23 2009-01-29 J. Eberspächer GmbH & Co. KG Heizsystem, insbesondere für Campingfahrzeuge, und Verfahren zum Betreiben eines derartigen Heizsystems

Also Published As

Publication number Publication date
EP0926453A3 (de) 2001-09-12
DE29722802U1 (de) 1998-02-19
EP0926453B1 (de) 2004-04-21
DE59811234D1 (de) 2004-05-27

Similar Documents

Publication Publication Date Title
EP0926453B1 (de) Heizgerät zum Erwärmen von Luft und/oder Wasser
EP0350528A1 (de) Radiator
DE3490119C2 (de) Wärmeaustauscher
DE60212069T2 (de) Raketentriebwerksglied und ein verfahren zur herstellung eines raketentriebwerksglieds
EP2881691A1 (de) Wärmeüberträger mit Rohrscheibe und eingeschobener Hülse
DE4116692A1 (de) Waermetauschereinsatz fuer luftheizgeraete
DE19604218C2 (de) Heizgerät mit einem PTC-Element und einem Profilkontaktkörper
DE69513839T2 (de) Wärmetauscher
DE4207500C2 (de) Heizkessel mit verringerter NO¶x¶-Emission
EP1106785B1 (de) Leckstromkanal im Rotor einer Turbomaschine
EP2622276B1 (de) Ölvormischbrenner
AT401016B (de) Katalytischer wärmeerzeuger
EP1464893B1 (de) Brenneranordnung für ein Heizgerät und Heizgerät, insbesondere Fahrzeugheizgerät
DE3153101C2 (de) Kraftstoffkühler
EP0663563B1 (de) Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage
EP0130361B1 (de) Rohrboden mit iner Einrichtung zu seiner Kühlung
EP0994322A2 (de) Wärmetauscher mit einem Verbindungsstück
EP0618410A2 (de) Wärmetauscher für einen Brennwertkessel
DE19713407A1 (de) Atmosphärischer Gasbrenner
DE102005053518A1 (de) Verfahren zum Herstellen eines Wärmetauschers
EP1577614B1 (de) Anordnung einer Tragstruktur und eines Hitzeschildes einer Gasturbine
EP1348914B1 (de) Wärmetauscher, Verbrennungsvorrichtung, einen Wärmetauscher umfassend, Absperrelement zur Verwendung in einem solchen Wärmetauscher, und Verfahren zur Herstellung eines Wärmetauschers
DE1551431A1 (de) Erhitzer
CH692215A5 (de) Heizeinrichtung.
AT262698B (de) Gekühlte Wand für Brennkammern, insbesondere von Gasturbinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011119

AKX Designation fees paid

Free format text: DE FR GB IT NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040421

REF Corresponds to:

Ref document number: 59811234

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061023

Year of fee payment: 9

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081028

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081028

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101015

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100928

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101022

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59811234

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102